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Abstract—Massively parallel applications often require periodic data checkpointing for program restart and post-run data analysis.

Although high performance computing systems provide massive parallelism and computing power to fulfill the crucial requirements of

the scientific applications, the I/O tasks of high-end applications do not scale. Strict data consistency semantics adopted from

traditional file systems are inadequate for homogeneous parallel computing platforms. For high performance parallel applications

independent I/O is critical, particularly if checkpointing data are dynamically created or irregularly partitioned. In particular, parallel

programs generating a large number of unrelated I/O accesses on large-scale systems often face serious I/O serializations introduced

by lock contention and conflicts at file system layer. As these applications may not be able to utilize the I/O optimizations requiring

process synchronization, they pose a great challenge for parallel I/O architecture and software designs. We propose an I/O

mechanism to bridge the gap between scientific applications and parallel storage systems. A static file domain partitioning method is

developed to align the I/O requests and produce a client-server mapping that minimizes the file lock acquisition costs and eliminates

the lock contention. Our performance evaluations of production application I/O kernels demonstrate scalable performance and achieve

high I/O bandwidths.

Index Terms—Parallel I/O, I/O delegation, MPI-IO, non collective I/O, collaborative caching, parallel file systems, file locking.

Ç

1 INTRODUCTION

I/O architectures in modern high performance systems [1],
[2], [3] have been contrived such that the compute nodes

and storage servers are separated in groups and connected
through high speed networking devices. Data generated by
applications must pass through many abstraction layers of
I/O stack before reaching the storage devices. Fig. 1 shows a
common perception of I/O stack. The best I/O throughput
can only be guaranteed if all of these layers are utilized to
the best of their capacities. Incidentally, most of these layers
have been designed independently, and hence certain
information that describes the I/O intention at one layer
may not have adequate interfaces to pass to another.

Modern parallel file systems are configured with
multiple I/O servers in order to provide high data
throughput. Each server may contain one or more disk
RAIDs (Redundant Array of Independent Disks) to
further improve the data reliability and performance. A
file stored on the parallel file systems can be partitioned
across multiple servers so large requests can be served by
multiple servers simultaneously. However, evolving from
traditional distributed file systems, modern parallel file
systems inherit certain I/O consistency semantics that

were designed to protect data integrity from concurrent
file accesses, a scenarios commonly occurred in a
distributed environment. To achieve desired I/O seman-
tics, file locking mechanism is used to guarantee the
access permissions of individual I/O requests. Two
important consistency requirements from POSIX standard
known to restrict parallel I/O performance from scaling
are atomicity and cache coherence [4], [5]. When multiple
processes concurrently access a shared file, file locks may
cause serialization of the I/O operations which adversely
affects the I/O performance. While a large number of the
application processes are waiting for acquiring locks on
the same file regions, the I/O bandwidth sustainable by a
parallel file system is underutilized. Details of file system
locking issues are discussed in Section 5.1 of the
supplementary file which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2011.166.

In the traditional distributed environment, requests from
different clients are seldom related, so the impact of
performance degradation due to enforcing strict data
consistency semantics is not a frequent problem. However,
in the modern era of science and engineering, computa-
tional simulations like combustion, molecular dynamics,
fusion, climate prediction, etc. are parallel programs that
run on hundreds of thousands of cores to scale with the size
of the problem. In contrast to the distributed computing,
processes performing parallel computations are closely
related I/O clients, which often partition global data objects
and access shared files concurrently. For such parallel
applications, treating each client process independently
may restrict the I/O scalability.

Scientific community has started recognizing the pro-
blem of pessimist storage system protocols adopted by the
file systems that are rarely required by the parallel
applications but handicap their I/O parallelism. In recent
years, various contributions have been made both on
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hardware and software to address these problems. A
noteworthy example in hardware improvement is the IBM
BlueGene systems that adds a new I/O architecture layer
sitting in between compute nodes and I/O servers, specially
designed to reduce the scale of I/O contention. The I/O
sub-system of BlueGene systems is discussed in Section 5.4.
Message Passing Interface (MPI) defines a set of program-
ming interfaces for parallel file access, commonly referred
as MPI-IO. With this framework, many optimizations such
as two-phase I/O [6] and data sieving [7], have successfully
demonstrated significant performance improvement for the
parallel I/O. One of the prominent software contributions is
the collective I/O functionality proposed in the MPI
standard [8].

Designed for MPI collective I/O, the two-phase I/O
rearranges small, noncontiguous requests among processes
to form large, contiguous ones that can result in better I/O
latency. Data sieving avoids small-sized I/O by first
reading large file chunks into memory buffers, updating
the buffers with the requests, and then writing the chunks
back to the file. Despite of data sieving technique being
available for MPI independent I/O functions, optimizations
for independent I/O are generally considered to be a
challenging task. High performance independent I/O is
critical, particularly for the applications whose data are
dynamically created or irregularly partitioned among
processes. An example is the parallel programs based on
Adaptive Mesh Refinement (AMR) algorithm [9]. For such
data partitioning patterns, global process synchronization
may not be practical and hence they must rely on
independent I/O to complete the I/O task.

This paper presents an I/O delegation system that aims
to minimize file lock conflicts and improve the MPI
independent I/O performance. The I/O delegation work
was initiated in [5] which provided an intermediate soft-
ware layer between the application processes and parallel
file systems to enable several I/O optimizations. I/O
delegation system employs a set of additional compute

processes to carry out the I/O requests for the application
processes. These additional compute processes are alter-
natively referred to as I/O delegates or delegate processes.
Application’s I/O requests are forwarded to the delegate
processes, where they are rearranged to best match the file
locking characteristics, such as lock granularity of the
underlying file system.

In this paper, we present a new strategy for I/O delegate
system, a static file domain mapping method that statically
maps evenly partitioned file regions to the delegates in a
round robin fashion. This essentially means that a unique I/O
delegate can only access the assigned file regions, termed as
the file domain of this delegate. The motivation is to
minimize the number of I/O clients accessing an I/O server
and hence potentially minimize the number of conflicted
locks. We exercise this design in ROMIO, a popular MPI-IO
implementation developed at Argonne National Laboratory
[10]. With the static mapping of file domains, lock contentions
that frequently occur in the parallel I/O operations can be
mostly eliminated. A file caching mechanism [11] is
implemented in delegate system that enables data aggrega-
tion across multiple requests aiming for improving MPI
independent I/O performance. Implementation details and
additional experimental analysis for caching system have
been provided in supplementary Sections 6.2 and 7.3, which
can be found on the Computer Society Digital Library at
h t t p : / / d o i . i e e e c o m p u t e r s o c i e t y . o r g / 1 0 . 1 1 0 9 /
TPDS.2011.166. This feature is also considered an optimiza-
tion that spans multiple MPI-IO requests, collectives and/or
independents, which has been ignored by existing MPI-IO
optimizations. The I/O delegation system thins the perfor-
mance gap between the collective and independent I/O,
while latter’s performance has long been considered much
worse than that of former’s. Most importantly, I/O delegate
system achieves such performance improvement, while still
fulfilling the MPI-IO data consistency semantics.

We conducted our experiments on two production
parallel machines with real application I/O kernels.
Franklin, a Cray XT4 system at National Energy Research
Scientific Computing Center [3], and Abe, the TeraGrid
Intel-64 Cluster at the National Center for Supercomputing
Applications [12], were used to evaluate I/O delegate
system. Two application I/O kernels FLASH [13], [14], and
S3D [15], and an MPI-IO test program taken from
ROMIO[10] are used in the evaluation. With only 4 to 6
percent of additional compute resources allocated as
delegates, independent I/O achieves up to 2.5 times faster
than the native collective I/O method on Franklin. On Abe,
we achieved up to 15 times I/O bandwidth improvement
over the collective I/O.

The paper is organized as follows: Section 2 explains the
strategy of static file domain mapping to the delegates in
detail. Section 3 presents our evaluations and analysis of the
I/O performance for different I/O benchmarks. Section 4
draws conclusions and discusses future work.

Additional sections have been added in supplementary
file, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2011.166, which are as follows: Section 5 discusses the
research background and motivation from the perspective of
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Fig. 1. A Common Parallel I/O Architecture Stack: This figure explains
the way different I/O layers are commonly stacked one over another in
large-scale parallel environments. High end application layer leverages
its parallel I/O related tasks directly or through a high level I/O library
(PnetCDF, HDF, etc.) to MPI-IO. ROMIO, an MPI-IO’s implementation
services these parallel file accesses by directly interacting with under-
lying parallel file systems.



existing I/O optimizations and characteristics of parallel file
systems. This section also discusses a number of related
works including Cray MPI-IO library [16] and I/O forward-
ing techniques [17]. Section 6 discusses the intrinsic im-
plementation details of basic I/O delegation operations.
Section 7 provides the details on experimental setup and
additional evaluations of I/O delegation system.

2 DESIGN AND DEVELOPMENT

This section discusses file domain assignment strategy in
I/O delegation system. Details about I/O delegation
system architecture, and other I/O delegation functions,
such as initialization, I/O request flow, caching, etc. may
be found in Section 6.

2.1 Static File Domain Mapping

Lock conflict at the file system occurs when two processes
compete with each other to acquire the lock to the same file
region. We investigated Lustre [18] for exploring its
scalability issues, so that an adaptive solution for large-
scale systems and their underlying parallel file system can
be developed. Modern parallel file systems, in order to meet
high data throughput requirements, employ multiple I/O
servers each managing a set of disks. Files stored on these
systems can be striped across the I/O servers, so large
requests can be served concurrently. Due to the nature of
file striping, lock granularity is usually set to be the file
block or stripe size instead of a byte. Details about locking
mechanisms implemented in popular file systems, GPFS
and Lustre may be found in Section 5.1.

As described in Section 5.1, Lustre’s locking mechanism
is an implementation of extent-based locking protocol.
Extent-based locking protocol is implemented such that the
I/O server tends to grant locks to as many stripes as
possible. For example, on any given server, the first
requesting process will be granted a lock over all the file
stripes managed by that server. Future requests made by
the same client process need not to acquire the lock for
those stripes. Second lock acquisition to those stripes, will
only be required if a different process has already held the
locks to those stripes. Ideally, if we can arrange a one-to-one
mapping between the I/O clients and servers, then lock
conflicts can be entirely avoided.

Fig. 2 illustrates a parallel I/O situation, where lock
conflicts occur. In this example, three processes P0;P1, and
P2 concurrently write to a shared file, each covering
multiple noncontiguous, nonoverlapping file regions. The
aggregate access region occupies 16 consecutive stripes,
S0; S1; . . . ; S15, which are stored on three I/O servers (Object
Storage Targets in Lustre), OST0;OST1, and OST2 in a
round robin fashion. Data written by different application
processes are depicted in different colors. In this figure,
each I/O server receives requests from all three processes,
which essentially means that each process repeatedly
acquires, relinquishes, and reacquires the lock in the midst
of accesses from other processes. Considering OST0, if the
first request is made by process P0 to write stripe S0, then a
lock covering all stripes S0; S3; S6; . . . S15 is granted to P0.
However, if P1’s lock request to stripe S6 arrives while P0 is
still writing S0, then locks to stripe S6 and onward will be
relinquished from P0 and granted to P1. Later, P0 must wait

behind P1 for acquiring the lock to S9. Parallel I/O can
cause lock permissions to oscillate from one process to
another. In addition, partial accessing stripes S6 and S9

results in I/O serialization, given the lock granularity being
of a file stripe size. Such conflicts are observed on all other
I/O servers in this figure as well. Obviously, the lock
conflicts can easily carry away when applications run on
thousands of processes. With a large number of processes
competing for locks to file stripes, I/O becomes a serious
bottleneck for parallel applications [19].

I/O delegate system adopts a new static file domain
mapping strategy that aims to minimize file lock conflicts.
This strategy divides the whole file into blocks of size each
equal to the file system stripe size and statically assigns the
I/O responsibilities of the blocks to the delegate processes in
a round robin fashion (identical to file system stripping
configuration). All file blocks assigned to a delegate process
are collectively termed as the file domain of this delegate. In
order to achieve an optimal mapping between the delegates
and servers, we specifically adjust the number of delegate
processes to be a factor or multiple of the number of I/O
servers. For the same number of delegate processes as I/O
servers, each delegate process is uniquely mapped to a single
server. When the number of delegate processes is a factor of
the number of servers, each delegate is uniquely mapped to a
group of servers which serve requests from that delegate
only. When the number of delegates is a multiple of the
number of servers, a group of delegates is mapped to a
unique server which serves no requests other than this group
of delegates. Since the mapping is static from one I/O
request to another, most of the lock conflicts can be avoided,
given any arbitrary I/O pattern from the clients. Fig. 3 shows
an example of static file domain mapping on delegate
processes D0;D1, and D2 with the same number of I/O
servers OST0;OST1, and OST2. Static one-to-one delegate-
to-server mapping enables only a unique delegate process
requesting lock from a given I/O server. On the first I/O
request a delegate process will be granted locks for all the
stripes stored by the uniquely mapped I/O server. There-
fore, despite the number of application processes and
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Fig. 2. File access region is partitioned among the application processes
P0;P1, and P2. Different colors represent data accessed by different
application processes. From Lustre file system’s perspective, the entire
file is partitioned into 16 stripes S0;S1; . . . ; S15 which are distributed
across the I/O servers, OST0;OST1, and OST2. Even though file
accesses are nonoverlapping among the processes, when requests
from two processes access the same stripe, lock conflict occurs.



arbitrariness of application’s I/O access pattern, there is only
one lock acquisition necessary for writing all the stripes in a
given I/O server. In this case where the number of delegate
processes and number of I/O servers are the same, lock
conflicts are completely eliminated.

2.2 Delegate-to-Server Mapping

Most of the high-performance computing systems have
only a few dozens to a few hundreds I/O servers, which is
a small fraction of the total available compute nodes. One
can expect that if the number of delegate processes is kept
equal to the number of I/O servers, then the performance
will not scale beyond thousands of nodes. For I/O
delegate system design, the question becomes how we
can still avoid lock conflicts or at least keep the conflicts
minimal when the number of delegate processes is more
than the I/O servers. This section discusses the strategy to
minimize the lock conflicts if the number of delegate
processes is more than I/O servers.

Figs. 4 and 5 demonstrate how two different delegate-to-
server mappings affect lock confliction. In both mappings,

file domain is logically partitioned in to file stripe sized
regions that are statically assigned to the delegates in a
round robin fashion. Small write requests can be aggregated
at the cache pages and later flushed to the file system.
Collaborative caching mechanism enables aggregation of
data across the multiple I/O calls, generates stripe sized I/O
which matches the stripe boundary of underlying file
system, avoids read-modify-write by flushing the cache
pages which are already full, and reduces the network
communication by keeping I/O size multiple of system page
size. Section 6.2 describes the details of caching mechanism
implemented in the I/O delegation.

In Fig. 4, the number of delegates is a multiple of the
number of I/O servers. Each server is accessed by unique
group of delegates. The potential lock conflicts happen only
within the group of delegate processes that map to the
single server. Such conflicts can be resolved by exchanging
dirty cache pages within the same group of delegates, or
coordinating the order of cache page flushing among
different groups.

If number of delegates are not a multiple of I/O servers
then, each I/O server may receive lock requests from all the
delegate processes as shown in Fig. 5. In contrast to perfect
delegate-to-server mapping case (Fig. 4), lock server needs
to resolve the lock conflicts among all the delegates.
Therefore, to minimize lock conflicts at the I/O servers,
the number of delegate processes is adjusted such that they
are always a factor or multiple of the number of I/O
servers. Our experimentation conforms that performance is
adversely affected if such delegate-to-server mapping is not
enforced. Section 7.4 evaluates I/O performance for
mapped and unmapped delegate-to-server cases.

3 EXPERIMENT RESULTS

I/O Delegate System is evaluated on two large production
machines; Franklin, a Cray XT4 system at National Energy
Research Scientific Computing Center [3] and the TeraGrid
Intel-64 Cluster named Abe at the National Center for
Supercomputing Applications [12]. Details about experi-
mental setup is given in Section 7.

Performance evaluation consists of comparison of
1) independent MPI-IO with I/O delegation, 2) native
MPI independent I/O, and 3) native MPI collective I/O.
The latter two native methods use the default MPI library
on the machines. We did not explicitly evaluate the MPI
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Fig. 4. Lock conflicts are completely eliminated if number of delegate
processes are equal or a factor of the number of I/O servers. If number
of delegates are more than I/O servers, lock conflicts can occur. To
minimize lock conflicts, number of delegates should be kept a multiple of
I/O servers. In this example, delegate processes are double of I/O
servers so each I/O server is shared by only two delegate processes.
Lock conflicts can still occur between these two delegate processes but
on a reduced level.

Fig. 3. Lock conflicts can be eliminated by identical partitioning of data
across same number of delegate processes and I/O servers. Each of the
delegate processes stores data in the form of cache pages directly
mapped to the file stripes stored on a unique I/O server. Perfect cache
page to file stripe mapping has been shown for the case of D2-to-OST2

mapping. This figure shows that with perfect mapping lock acquisition
can be reduced to only 1.

Fig. 5. If delegate processes are not a factor or multiple of I/O servers
then all the delegate processes might be accessing all the I/O servers
causing serious lock acquisition competition between the processes. In
this example, each I/O server is contended by all the delegates which
may deteriorate I/O performance.



collective I/O over the I/O delegation method, because

delegation system treats collective I/O the same as

independent I/O. Under the static file domain assignment

strategy, data of an I/O request will be split and sent to

delegates based on their file offsets. Hence, communication

related to collective I/O optimizations will be redundant as

delegate system will rearrange data according to the

predefined file domain mapping. Therefore, if the collec-

tive I/O is changed to use independent I/O underneath,

the advantage of I/O delegation can be fully utilized. We

expect the significance of I/O delegation system is for

independent I/O as independent I/O traditionally per-

forms poorly.

3.1 S3D I/O Kernel

The S3D I/O benchmark is the I/O kernel of S3D [15], a

parallel turbulent combustion application using a direct

numerical simulation solver developed at Sandia National

Laboratories. Section 7.1 provides further information about
the S3D I/O kernel. For performance evaluation, we keep
the subarray size of globally block-partitioned array along
X-Y-Z dimensions, a constant 50� 50� 50. This produces
about 15.26 MB of write data per process per checkpoint.

Evaluation shows that independent I/O with I/O delega-
tion performs bout twice better than the default MPI
collective I/O on Franklin and more than ten time better on
Abe. Fig. 6 show I/O performance evaluation of S3D I/O
kernel on Franklin ((a) and (b)) and Abe ((c) and (d)) with the
increasing number of application processes. Fig. 6a shows
the comparison of native independent I/O, native collective
I/O, and independent I/O using 4-6 percent and 9-12 percent
of additional compute resources as delegate processes.
Keeping everything else constant, more delegates perform
better because of the bigger cache pool and less communica-
tion contention for multiple application processes sending
data to the same delegates. On Franklin, the native collective
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Fig. 6. I/O Performance Evaluation of S3D I/O Kernel, FLASH I/O Kernel and ROMIO Benchmark with Franklin and Abe machines. (a), (e), and (i)
show the comparison of write bandwidths of three I/O methods: Independent I/O with I/O delegation, native independent MPI-IO, and native
collective MPI-I/O on Franklin. These charts show the effect of changing the ratio of number of delegates to the application processes. Franklin’s
Theoretical peak I/O bandwidth is approximately 16 GB/sec [3]. I/O delegate provides independent I/O performance scaling up to the peak I/O
bandwidth on Franklin. (c), (g), and (k) provide the similar comparison on Abe. (b), (f), and (j) report write bandwidths by utilizing more cores-per-
delegate-node with 4-6 percent delegates allocation. These charts show that there is no advantage in terms of I/O performance by using more than
one core-per-delegate. (d), (h), and (l) provide the similar comparison on Abe.



I/O performs better for the case of 256 application processes
and less, but the bandwidths flatten thereafter. However,
both I/O delegate methods keep scaling up beyond
256 processes. We provide our analysis of this observation
in Section 5.3. In the case of 8,192 processes, we achieve up to
two times performance improvement over the native
collective I/O with just 4 to 12 percent of delegate processes.
Figs. 6c and 6d show the results of similar experimentation
setups on Abe. Native independent and collective I/O
perform so slow on Abe that their curves are almost
coinciding with horizontal axis. On the other hand, the
independent I/O using delegation system outperforms both
native cases by a significant margin.

The bandwidth numbers obtained on these two ma-
chines show a significant difference for the native collective
I/O method. The latest Cray MPI-IO adopts a strategy
similar to the static file domain assignment that provides
much better performance over the traditional collective I/O
implementation. More discussion on this aspect is given in
Section 5.3.

3.1.1 I/O Delegation on Multicore Platform

As modern computers are moving toward multicore
architecture, it would be interesting to understand the
performance impact of running I/O delegate processes on
such systems. One of two possible implementations is to
run delegate processes on a group of compute nodes
separated from those running the application processes.
The other is to run one delegate on one of the cores of each
compute node and the rest of the cores for application
processes. In this paper, we focus on the former scenario.
We choose the 4-6 percent delegates cases on both machines
and compare the I/O bandwidths by varying the number of
cores as delegates in each compute node. The charts (b) and
(d) show that if all other parameters are kept constant,
having different number of cores per delegate node does
not make any deterministic difference in I/O bandwidth. In
theory, as the number of delegate processes increases, the
number of requests arriving at the same I/O server from
different delegates also increase which can potentially cause
more lock contentions. The similar bandwidths of our
delegation system with more delegate cores can be
explained by the fact that Lustre’s distributed lock manage-
ment scheme is implemented such that locks are held by
nodes and not processes. In other words, lock requests

originated by all processes belonging to the same compute
node do not compete with each other for lock acquisition.

The adoption of static file domain mapping in delegate
system aims to improve the costs of read()/write() calls
made from the application side to the file system. In fact,
this strategy reduces such costs so significantly that they no
longer dominate the overall I/O performance. To under-
stand the performance bottleneck, we profile the timing in
the delegate system. We measured the time spent in the
read()/write() calls and refer them as I/O time in this
section. The rest of the time is referred as communication
time, as the operations are mostly data transfer between
application and delegate processes. We choose the case of
S3D I/O on Franklin with 2,048 application processes to
investigate the I/O bandwidth trends with the changing
number of delegates and number of cores per delegates. The
profiling results are given in Fig. 7.

Fig. 7a shows the overall write bandwidth trend with the
increasing number of delegates with different number of
cores used per delegate. To maintain perfect mapping
between delegate processes and I/O servers, the number of
delegates is kept a multiple of 48, the number of I/O servers
on Franklin. It can be observed that best I/O bandwidth is
achieved when only 1 core per delegate node is used. Figs. 7b
and 7d report total time taken in the interprocess commu-
nication as a function of number of delegates and the number
of cores per delegates, respectively. As the total amount of
data is kept constant, increasing the number of delegates
results into smaller amount of data received by each delegate
but more messages passing from application processes to
delegates. Such changes of the communication patterns add
complexity to the measured communication costs. We
observed that in Fig. 7b with the increase in the number of
delegates, mostly communication time decreases except the
cases of 48 to 96 delegates for three and four cores.

Fig. 7d shows the effect of changing the number of cores
per delegate node while keeping everything else constant.
As no other parameter is changed except the number of
cores per delegate node, total data received by each
delegate node do not change. As the number of cores per
delegate node increases, number of messages received by
each delegate node increases and size of individual message
decreases. So, overall interprocess communication time
does not improve as the number of cores per delegate node
increases.
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Fig. 7. S3D I/O Kernel, 2,048 application processes, Franklin: Breakdown analysis of two major time consuming operations: (i) Data Communication
between application and delegate processes. (ii) File system I/O. (a)-(c). Overall I/O bandwidths, time spent in data communication among the
application and delegate processes, and file system I/O time as a function of number of delegates, respectively. (d) and (e). Time spent in data
communication among the application and delegate processes and time for file I/O with varying number of cores-per-delegate-node, respectively.



Exception is the 96-delegate case where the communica-
tion cost increases significantly. The S3D-IO kernel has the
write amount proportional to the number of application
processes and almost all of the individual write request sizes
are not aligned to the file stripe size and hence the lock
boundaries. Hence, using different number of delegates can
result in different distributions of communication from
the application processes to the delegates. We speculate the
increasing communication time in the 96 delegates case
might attribute to such distribution changes. However, the
communication time is also affected by the hardware (hot-
spots) on the parallel machine and contention from other
applications running at the same time (as the interprocess
communication network is shared by all applications).

Nevertheless, observations from Figs. 7b and 7d help us
conclude that the best practice of I/O delegation config-
uration is to use only one core in a multicore platform.

Figs. 7c and 7e show the effect on I/O with varying
number of delegates and number of cores-per-delegate,
respectively. Fig. 7e shows that the number of cores per
delegate node do not affect the I/O time much. We attribute
this to the fact that locks are granted on the basis of nodes
and not cores. So, as long as static file domain mapping is
maintained on delegate node basis, no I/O time change
should be observed. So, we conclude that to obtain a good
overall I/O bandwidth (Fig. 7a) using only one delegate
process per node is the best option as additional cores do
not provide further benefit.

Fig. 7c shows very important fact about lock contention
at file servers. As discussed in Section 2.1, using more
delegate nodes than I/O servers may introduce some lock
conflict but this chart does not show any definite increase in
I/O time when the number of I/O delegates is more than
the number of I/O servers. We attributed this observation
to the extent-based locking mechanism of Lustre file system.
As explained in Section 5.1, each I/O server is the lock
manager of the stripes stored on that server and it grants
the locks growing downward covering all the stripes to the
largest uncontended extent. If a couple of requests from the
same delegate node reach an I/O server, only first of them
needs to acquire the lock and rest of the requests can
proceed without any lock acquisition overhead.

For example, for 96 delegates only two will be accessing
any given I/O server at a time writing to alternate file
stripes. As shown in Fig. 4, if a write request for S0 from D0

arrives at OST0 before any write request from D2, then a
downward grown lock for all the stripes on this server will
be granted to D0. In case write requests for S4; S8, and S12

from D0 also arrive before any write request from D2 then
these additional three stripes will be written without any
further lock acquisition. While D0 is writing S12 and a
request for S2 arrives from D2 then a downward grown lock
from S2 to S10 will be granted to D2. So, requests for S2; S6,
and S10 can be serviced with a single lock request. D2 will
have to send another write request to write D14 though.
Section 7.4 further explores the possible lock acquisition
patterns to understand the Fig. 7c better. It also includes
additional evaluation to compare mapped and unmapped
delegate-to-server assignment strategies shown in Figs. 4
and 5.

An important observation from Fig. 7 is that the I/O
costs are about the same as the communication. Tradition-
ally, in a parallel I/O operation, the I/O part dominates
the entire performance. Optimizations such as two-phase
I/O was proposed to addressed this problem by rearran-
ging request data among processes to produce fastest I/O
part, i.e., sacrificing the interprocess communication for
better I/O to the file system. I/O delegation system
changes such scenario and raises the attention on the
optimization for the communication part. The relative
constant I/O cost also explains why increasing the number
of delegates from 4-6 percent to 9-12 percent does not
produce proportional performance improvement.

We conclude here that a substantial part of the maximum
I/O bandwidth for an I/O server has been achieved with 4-
6 percent of delegate processes. Any increase in number of
delegates hence does not provide linear improvement to the
overall performance. This observation also implies that I/O
delegation system does not require many delegate pro-
cesses in order to achieve a scalable performance.

3.2 FLASH I/O Kernel

The FLASH I/O benchmark suite [14] is the I/O kernel of
the FLASH application, a block-structured adaptive mesh
hydrodynamics code that solves fully compressible, reac-
tive hydrodynamic equations, developed mainly for the
study of nuclear flashes on neutron stars and white dwarfs
[13]. The computational domain is divided into blocks that
are distributed across a number of MPI processes. A block
is a 3D array with an additional four elements as guard
cells in each dimension on both sides to hold information
from its neighbors. Further detail of FLASH I/O is given in
Section 7.2. In our experiments, we used 16� 16� 16 block
size. There are 24 variables per array element, and about
80 blocks on each MPI process. So, total of 60 MB data is
generated per process.

Figs. 6e, 6f, 6g, and 6h show the similar performance
trends as S3D-IO benchmark shown in the previous section.
In Figs. 6e and 6g, independent I/O with I/O delegate system
performs the best on both Franklin and Abe. An interesting
observation from Fig. 6g is that native independent I/O
performs better than native collective I/O in Abe’s case. This
can be explained by the I/O access pattern from each process
being already contiguous. As most part of the I/O accesses
consists of large contiguous data, synchronization and data
exchange has become not as critical as in the S3D-IO case. On
the other hand, Fig. 6e shows that although independent I/O
does not perform as bad as in the case of other applications,
collective I/O still performs better than independent I/O. We
attribute this observation to the new collective buffering
algorithm [16] used for collective I/O on Franklin. Figs. 6f
and 6h show the effect of using multiple cores per delegate
nodes on Franklin and Abe, respectively. As discussed in
Section 3.1, using multiple cores per delegate node has no
significant impact to the I/O performance.

3.3 ROMIO Benchmark

ROMIO software package includes a set of test programs in
which the collective I/O test, named coll_perf, writes and
reads a 3D integer array that is block partitioned along all
three dimensions among processes. The subarray size in each
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process is kept constant, independent from the number of
processes used, and hence the total I/O amount is propor-
tional to the number of processes. We set the subarray size to
100� 100� 100. In order to get stable performance numbers,
we measured ten iterations of the write operations. So, total
of 38.15 MB data is generated per process.

Figs. 6i, 6j, 6k, and 6l show the similar performance
results as the S3D-IO and FLASH I/O cases. Figs. 6i and 6k
show that, independent I/O with the proposed I/O
delegation performs best among the native collective I/O
and native independent I/O on both Franklin and Abe.
Native independent I/O performs very poorly, but when
used with the I/O delegation architecture, its performance
is improved significantly on both machines. Figs. 6j and 6l
show the effect of using multiple cores per delegate nodes
on Franklin and Abe. As discussed in Section 3.1, using
multiple cores per delegate node does not affect the I/O
performance.

4 CONCLUSIONS AND FUTURE WORK

We have proposed an I/O software architecture, I/O
delegation system with static file domain mapping for
large-scale parallel applications and file systems. The
proposed architecture bridges the gap between modern
scientific applications’ requirements and old fashioned
parallel storage protocols. For many high performance
scientific applications independent I/O is becoming critical,
particularly for the applications whose data are dynami-
cally created or irregularly partitioned among processes.
For very large-scale systems, global process synchroniza-
tion may not be feasible for such data partitioning patterns.

Performance evaluation demonstrates very high I/O
bandwidth for independent I/O which outperforms even
optimized collective I/O. I/O delegate system can be used
by parallel I/O library, such as MPI-IO, and enabled by
automatically detecting the underlying system configura-
tions like stripe count, stripe size, and stripe offset to choose
the most optimal values of cache page size and number of
cores per node and achieve optimal performance. The best
practice for I/O delegation configuration is to produce
perfect delegate-to-server mapping that requires choosing
the number of delegates being either a factor or multiple of
underlying stripe count.

We have observed that using multiple delegate pro-
cesses per node does not provide any noticeable I/O benefit
over single delegate process per node. This observation
implies the extra compute cores can be used for computa-
tion best run closely to where data reside, such as data
analytics, statistical operations, and subsetting operations.
These extra compute cores can also be utilized for running
application processes, thus reducing the overall resource
allocation significantly.

We have demonstrated experimentation evaluation up to
a few thousand application processes with 4-12 percent of
delegates. For even larger application size, number of
delegates may grow to a few thousands. For such a large
number of delegates, lock contention between a larger
number of delegate processes may also emerge. In order for
I/O delegate system to scale for very large number of

application processes, we plan to investigate new methods

for lock conflicts avoidance.
We believe that scientific applications involving parallel

reads can benefit from I/O delegate system. Collaborative

caching on delegate processes can provide the benefits of

read ahead as file system reads are performed on stripe

basis and data are cached in memory. This prefetching

mechanism can save many read requests from traveling

across the network over to the parallel file system. We plan

to study read performance of I/O delegation system with

different applications.
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