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Abstract

This thesis represents an addition to the theory of information transmission, signal estima-
tion, nonlinear filtering, and multiuser detection over channels with Gaussian noise. The
work consists of two parts based on two problem settings—single-user and multiuser—which
draw different techniques in their development.

The first part considers canonical Gaussian channels with an input of arbitrary but fixed
distribution. An “incremental channel” is devised to study the mutual information increase
due to an infinitesimal increase in the signal-to-noise ratio (SNR) or observation time. It
is shown that the derivative of the input-output mutual information (nats) with respect
to the SNR is equal to half the minimum mean-square error (MMSE) achieved by optimal
estimation of the input given the output. This relationship holds for both scalar and vector
signals, as well as for discrete- and continuous-time models. This information-theoretic
result has an unexpected consequence in continuous-time estimation: The causal filtering
MMSE achieved at SNR is equal to the average value of the noncausal smoothing MMSE
achieved with a channel whose signal-to-noise ratio is chosen uniformly distributed between
0 and SNR.

The second part considers Gaussian multiple-access channels, in particular code-division
multiple access (CDMA), where the input is the superposition of signals from many users,
each modulating independent symbols of an arbitrary distribution onto a random signature
waveform. The receiver conducts optimal joint decoding or suboptimal separate decod-
ing that follows a posterior mean estimator front end, which can be particularized to the
matched filter, decorrelator, linear MMSE detector, and the optimal detectors. Large-
system performance of multiuser detection is analyzed in a unified framework using the
replica method developed in statistical physics. It is shown under replica symmetry as-
sumption that the posterior mean estimate, which is generally non-Gaussian in distribu-
tion, converges to a deterministic function of a hidden Gaussian statistic. Consequently, the
multiuser channel can be decoupled into equivalent single-user Gaussian channels, where
the degradation in SNR due to multiple-access interference, called multiuser efficiency, is
determined by a fixed-point equation. The multiuser efficiency uniquely characterizes the
error performance and input-output mutual information of each user, as well as the overall
system spectral efficiency.
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Chapter 1

Introduction

The exciting revolution in communication technology in recent years would not have been
possible without significant advances in detection, estimation, and information theory since
the mid-twentieth century. This thesis represents an addition to the theory of information
transmission, signal estimation, nonlinear filtering and multiuser detection over channels
with Gaussian noise.

“The fundamental problem of communication,” described by Shannon in his 1948 land-
mark paper [86], “is that of reproducing at one point either exactly or approximately a
message selected at another point.” Typically, communication engineers are given a phys-
ical channel, which, upon an input signal representing the message, generates an output
signal coupled with the input. The problem is then to determine which message was sent
among all possibilities based on the observed output and knowledge about the channel.

A key index of success is how many distinct messages, or in more abstract sense, the
amount of information that can be communicated reliably through the channel. This is
measured by the notion of mutual information. Meanwhile, the difficulty faced by com-
munication engineers is how much error the receiver would make in estimating the input
signal given the output. A key measure here is the minimum mean-square error (MMSE)
due to its tractability and practical effectiveness. This thesis is centered around the input-
output mutual information and MMSE of Gaussian channels, whose output is equal to the
input plus random noise of Gaussian distribution. Two problem settings—single-user and
multiuser—which draw different techniques in their development, consist of the two main
chapters (Chapters 2 and 3) of the thesis.

1.1 Mutual Information and MMSE

Chapter 2 deals with the transmission of an arbitrarily distributed input signal from a single
source (user). Since Wiener’s pioneer work in 1940s [114], a rich theory of detection and
estimation in Gaussian channels has been developed [59], notably the matched filter [74], the
RAKE receiver [79], the likelihood ratio (e.g., [78]), and the estimator-correlator principle
(e.g., [92, 84, 56]). Alongside was the development of the theory of stochastic processes
and stochastic calculus since 1930s that set the mathematical stage. Shannon, the founder
of information theory, obtained the capacity of Gaussian channels under power constraint
[86]. Since then, much has been known about the information theory of Gaussian channels,
as well as practical codes that achieve rates very close to the channel capacity.

Information theory and the theory of detection and estimation have largely been treated
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2 Introduction

separately, although numerous results and techniques connect the two. In the Gaussian
regime, information and estimation have strong ties through known likelihood ratios. For
example, by taking the expectation of the “estimator-correlator” type of log-likelihood ratios
in continuous-time problems, Duncan found that the input-output mutual information can
be expressed as a time-average of the MMSE of causal filtering [21].

Encompassing not only continuous-time, but also discrete-time channels, as well as
scalar random transformations with additive Gaussian noise, Chapter 2 finds a fundamental
relationship between the input-output mutual information and MMSE, which is unknown
until this work. That is, the derivative of the mutual information (nats) with respect to the
signal-to-noise ratio (SNR) is equal to half the MMSE, achieved by (noncausal) conditional
mean estimation. The relationships holds for vector as well as scalar inputs of arbitrary but
fixed distribution. Using these information-theoretic results, a new relationship is found
in continuous-time nonlinear filtering: Regardless of the input signal statistics, the causal
filtering MMSE achieved at SNR is equal to the expected value of the noncausal smoothing
MMSE achieved with a channel whose signal-to-noise ratio is chosen uniformly distributed
between 0 and SNR.

The connection between information and estimation is drawn through a key observation
that the mutual information of a small SNR Gaussian channel is essentially the input vari-
ance times the SNR. This is due to the geometry of the likelihood ratio associated with the
Gaussian channel. Major results in Chapter 2 are proved by using the idea of “incremental
channels” to investigate the increase of mutual information due to an infinitesimal increase
in SNR or observation time.

In a nutshell, Chapter 2 reveals a “hidden” link between information and estimation
theory. The new relationship facilitates interactions of the two fields and lead to interesting
results.

1.2 Multiuser Channels

Chapter 3 studies multiuser communication systems where individual user’s mutual in-
formation and estimation error are of interest. Each user modulates coded symbols onto
a multidimensional signature waveform which is randomly generated. The input to the
Gaussian channel is the superposition of signals from many users, where the users are dis-
tinguished by their signature waveforms. This model is often referred to as code-division
multiple access (CDMA), but is also a popular paradigm of many multi-input multi-output
(MIMO) channels. The most efficient use of such a channel is by optimal joint decoding,
the complexity of which is rarely affordable in practice. A common suboptimal strategy is
to apply a multiuser detector front end which generates an estimate of the input symbols
of each user and then perform independent single-user decoding.

Detection and estimation of multiuser signals are well studied [112]. It is often impossi-
ble to maintain orthogonality of the signatures and hence interference among users degrades
performance. Various interference suppression techniques provide a wide spectrum of trade-
offs between performance and complexity. Detectors range from the primitive single-user
matched filter, to the decorrelator, linear MMSE detector, sophisticated interference can-
celers, and the jointly and individually optimal detectors. Performance analysis of various
multiuser detection techniques is of great theoretical and practical interest.

Verdú first used the concept of multiuser efficiency to refer to the SNR degradation
relative to a single-user channel calibrated at the same bit-error-rate (BER) [107]. Exact



1.2 Multiuser Channels 3

evaluation of the multiuser efficiency of even the simplest matched filter can be highly com-
plex, since the multiple access interference (MAI), which shows up in detection outputs,
often takes an exponential number of different values. More recently, much attention is
devoted to the large-system regime, where dependence of performance on signature wave-
forms diminishes. For most linear front ends of interest, regardless of the input, the MAI in
detection output is asymptotically normal, which is tantamount to an enhancement of the
background Gaussian noise. Thus the multiuser channel can be decoupled into single-user
ones with a degradation in the effective SNR. As far as linear detectors are concerned, the
multiuser efficiency directly maps to the SNR of detection output, which completely charac-
terizes large-system performance, and can often be obtained analytically, e.g., [112, 99, 44].
Unfortunately, the traditional wisdom of asymptotic normality fails in case of nonlinear
detectors, since the detection output is in general non-Gaussian in the large-system limit.
Analytical result for performance is scarce and numerical analysis is costly but often the
only resort.

Chapter 3 unravels several outstanding problems in multiuser detection and its informa-
tion theory. A family of multiuser detectors is analyzed in a unified framework by treating
each detector as a posterior mean estimator (PME) informed with a carefully chosen pos-
terior probability distribution. Examples of such detectors include the above-mentioned
linear detectors, as well as the optimal nonlinear detectors. One of the key results is that
the detection output of all such detectors, although asymptotically non-Gaussian in general,
converges to a deterministic function of a “hidden” Gaussian statistic centered at the trans-
mitted symbol. Hence asymptotic normality is still valid subject to an inverse function, and
system performance can nonetheless be fully characterized by a scalar parameter, the mul-
tiuser efficiency, which is found to satisfy a fixed-point equation along with the MMSE of an
adjunct Gaussian channel. Moreover, the spectral efficiencies, i.e., total mutual information
per dimension, under both joint and separate decoding are found in simple expressions in
the multiuser efficiency.

The methodology applied in Chapter 3 is rather unconventional. The many-user com-
munication system is regarded as a thermodynamic system consisting of a large number
of interacting particles, known as a spin glass. The system is studied in the large-system
limit using the replica method developed in statistical physics. We leave the “self-averaging
property”, the “replica trick” and replica symmetry assumption unjustified, which are them-
selves notoriously difficult challenges in mathematical physics. The general results obtained
are consistent with known results in special cases, and supported by numerical example.

The use of the replica method in multiuser detection was introduced by Tanaka [96],
who also suggested special-case PME with postulated posteriors, although referred to as the
marginal-posterior-mode detectors. Chapter 3 puts forth the “decoupling principle” thereby
enriching Tanaka’s groundbreaking framework. The replica analysis is also developed in this
chapter to a full generality in signaling and detection schemes based on [96].

In all, this thesis studies mutual information, posterior mean estimation and their inter-
actions, and presents single-user and multiuser variations on this theme. In the single-user
setting (Chapter 2), a fundamental formula that links mutual information and MMSE is
discovered, which points to new relationships, applications, and open problems. In the mul-
tiuser setting (Chapter 3), the multidimensional channel with a rich structure is essentially
decoupled into equivalent single-user Gaussian channels where the SNR degradation is fully
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quantified.1 In either case, the results speak of new connections between the fundamental
limits of digital communications to those of analog signal processing.

1.3 Notation

Throughout this thesis, random objects and matrices are denoted by upper case letters
unless otherwise noted. Vectors and matrices are in bold font. For example, x denotes
a number, x a column vector, X a scalar random variable, X a random column vector,
S a matrix which is either random or deterministic depending on the context. Gaussian
distribution with mean m and variance σ2 is denoted by N

(
m,σ2

)
and unit Gaussian

random noise is usually denoted by the letter N . In general, PX denotes the probability
measure (or distribution) of the random object X. The probability density function, if
exists, is denoted by pX . Sometimes qX also denotes a probability density function to
distinguish from pX . An expectation E {·} is taken over the joint distribution of the random
variables within the braces. Conditional expectation is denoted by E {· | ·}. In general,
notations are introduced at first occurrence.

1Chronologically most of the results in Chapter 3 were obtained before those in Chapter 2. In fact, it was
the process of proving Theorem 3.1 that prompted Theorem 2.1 and thereby the main theme of Chapter 2.
After reading an earlier version of [43] Professor Shlomo Shamai came up independently of us with a proof
of Theorem 2.1 using Duncan’s Theorem (see Section 2.4.1). Upon finding out that we had obtained similar
results independently we joined forces, and the results in Chapter 2 have been obtained in close cooperation
with both my thesis advisor, Professor Sergio Verdú and Professor Shlomo Shamai.



Chapter 2

Mutual Information and MMSE

This chapter unveils several new relationships between the input-output mutual information
and MMSE of Gaussian channels. The relationships are shown to hold for arbitrarily
distributed input signals and the broadest settings of Gaussian channels. Although the
signaling can be multidimensional, the input is regarded as a whole from a single source.
Multiuser problems where individual user’s performance is of interest will be studied in
Chapter 3.

2.1 Introduction

Consider an arbitrary pair of jointly distributed random objects (X, Y ). The mutual in-
formation, which stands for the amount of information contained in one of them about the
other, is defined as the expectation of the logarithm of the likelihood ratio (Radon-Nikodym
derivative) between the joint probability measure and the product of the marginal measures
[60, 75]:

I(X;Y ) =
∫

log
dPXY

dPX dPY
dPXY . (2.1)

Oftentimes, one would also want to infer the value of X from Y . An estimate of X given
Y is essentially a function of Y , which is desired to be close to X in some sense. Suppose
that X resides in a metric space with L2-norm defined, then the mean-square error of an
estimate f(Y ) of X is given by

msef (X|Y ) = E
{
|X − f(Y )|2

}
, (2.2)

where the expectation is taken over the joint distribution PXY . It is well-known that the
minimum of (2.2), referred to as the minimum mean-square error or MMSE, is achieved by
conditional mean estimation (CME) (e.g., [76]):

X̂(Y ) = E {X | Y } , (2.3)

where the expectation is over the posterior probability distribution PX|Y . In Bayesian statis-
tics literature, the CME is also known as the posterior mean estimation (PME). Clearly,
both mutual information and MMSE are measures of dependence between two random
objects.

In general, (X, Y ) can be regarded as the input-output pair of a channel characterized
by the random transformation PY |X and input distribution PX . The mutual information

5



6 Mutual Information and MMSE

is then a measure of how many distinct input sequences are distinguishable on average
by observing the output sequence from repeated and independent use of such a channel.
Meanwhile, the MMSE stands for the minimum error in estimating each input X using the
observation Y while being informed of the posterior distribution PX|Y .

This thesis studies the important case where X and Y denote the input and output
of an additive Gaussian noise channel respectively. Take for example the simplest scalar
Gaussian channel with an arbitrary input. Fix the input distribution. Let the power
ratio of the signal and noise components seen in the channel output, i.e., signal-to-noise
ratio, be denoted by snr. Both the input-output mutual information and the MMSE are
then monotonic functions of the SNR, denoted by I(snr) and mmse(snr) respectively. This
chapter finds that the mutual information in nats and the MMSE satisfy the following
relationship regardless of the input statistics:

d
dsnr

I(snr) =
1
2
mmse(snr). (2.4)

Simple as it is, the identity (2.4) was unknown before this work. It is trivial that one can
go from one monotonic function to another by simply composing the inverse function of one
with the other; what is quite surprising here is that the overall transformation is not only
strikingly simple but also independent of the input distribution. In fact the relationship
(2.4) and its variations hold under arbitrary input signaling and the broadest settings of
Gaussian channels, including discrete-time and continuous-time channels, either in scalar
or vector versions.

In a wider context, the mutual information and mean-square error are at the core of
information theory and signal processing respectively. Thus not only is the significance of
a formula like (2.4) self-evident, but the relationship is intriguing and deserves thorough
exposition.

At zero SNR, the right hand side of (2.4) is equal to one half of the input variance.
In that special case the identity, and in particular, the fact that at low SNRs the mutual
information is insensitive to the input distribution has been remarked before [111, 61, 104].
Relationships between the local behavior of mutual information at vanishing SNR and the
MMSE are given in [77].

Formula (2.4) can be proved using a new idea of “incremental channels”, which is to
analyze the increase in the mutual information due to an infinitesimal increase in SNR,
or equivalently, the decrease in mutual information due to an independent extra Gaussian
noise which is infinitesimally small. The change in mutual information is found to be equal
to the mutual information of a Gaussian channel whose SNR is infinitesimally small, in
which region the mutual information is essentially linear in the estimation error, and hence
relates the rate of mutual information increase to the MMSE.

A deeper reasoning of the relationship, however, traces to the geometry of Gaussian
channels, or, more tangibly, the geometric properties of the likelihood ratio associated with
signal detection in Gaussian noise. Basic information-theoretic notions are firmly associated
with the likelihood ratio, and foremost is the mutual information. The likelihood ratio also
plays a fundamental role in detection and estimation, e.g., in hypothesis testing, it is com-
pared to a threshold to determine which hypothesis to take. Moreover, the likelihood ratio
is central in the connection of detection and estimation, in either continuous-time setting
[55, 56, 57] or discrete one [48]. In fact, Esposito [27] and Hatsell and Nolte [46] noted
simple relationships between conditional mean estimation and the gradient and Laplacian
of the log-likelihood ratio respectively, although they did not import mutual information
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into the picture. Indeed, the likelihood ratio bridges information measures and basic quan-
tities in detection and estimation, and in particular, the estimation errors (e.g., [65]). The
relationships between information and estimation have been continuously used to evaluate
results in one area taking advantage of known results from the other. This is best exempli-
fied by the classical capacity-rate distortion relations, that have been used to develop lower
bounds on estimation errors on one hand [119] and on the other to find achievable bounds
for mutual information based on estimation errors associated with linear estimators [31].

The central formula (2.4) holds in case of continuous-time Gaussian channels as well,
where the left hand side shall be replaced by the input-output mutual information rate,
and the right hand side by the average noncausal smoothing MMSE per unit time. The
information-theoretic result has also a surprising consequence in relating the causal and
noncausal MMSEs, which becomes clear in Section 2.3.

In fact, the relationship between the mutual information and noncausal estimation error
holds in even more general settings of Gaussian channels. Zakai has recently generalized
the central formula (2.4) to the abstract Wiener space [120].

The remainder of this chapter is organized as follows. Section 2.2 deals with random
variable/vector channels, while continuous-time channels are considered in Section 2.3. In-
teractions between discrete- and continuous-time models are studied in Section 2.4. Results
for general channels and information measures are presented in Section 2.5.

2.2 Scalar and Vector Channels

2.2.1 The Scalar Gaussian-noise Channel

Consider a real-valued scalar Gaussian-noise channel of the canonical form:

Y =
√

snr X + N, (2.5)

where snr denotes the signal-to-noise ratio of the observed signal,1 and the noise N ∼
N (0, 1) is a standard Gaussian random variable independent of the input, X. The input-
output conditional probability density is described by

pY |X;snr(y|x; snr) =
1√
2π

exp
[
−1

2
(
y −

√
snr x

)2]
. (2.6)

Let the distribution of the input be PX , which does not depend on snr. The marginal
probability density function of the output exists:

pY ;snr(y; snr) = E
{
pY |X;snr(y|X; snr)

}
, ∀y. (2.7)

Given the channel output, the MMSE in estimating the input is a function of snr:

mmse(snr) = mmse
(
X |

√
snr X + N

)
. (2.8)

The input-output mutual information of the channel (2.5) is also a function of snr. Let it
be denoted by

I(snr) = I
(
X;
√

snr X + N
)
. (2.9)

1If EX2 = 1 then snr complies with the usual notion of signal-to-noise power ratio Es/σ2.
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To start with, consider the special case when the distribution PX of the input X is
standard Gaussian. The input-output mutual information is then the well-known channel
capacity under constrained input power [86]:

I(snr) = C(snr) =
1
2

log(1 + snr). (2.10)

Meanwhile, the conditional mean estimate of the Gaussian input is merely a scaling of the
output:

X̂(Y ; snr) =
√

snr

1 + snr
Y, (2.11)

and hence the MMSE is:
mmse(snr) =

1
1 + snr

. (2.12)

An immediate observation is

d
dsnr

I(snr) =
1
2
mmse(snr) log e. (2.13)

Here the base of logarithm is consistent with the unit of mutual information. From this
point on throughout this thesis, we assume nats to be the unit of all information measures,
and that logarithms have base e, so that log e = 1 disappears from (2.13). It turns out that
the above relationship holds not only for Gaussian inputs, but for all inputs of finite power:

Theorem 2.1 For every input distribution PX that satisfies EX2 < ∞,

d
dsnr

I
(
X;
√

snr X + N
)

=
1
2
mmse

(
X |

√
snr X + N

)
. (2.14)

Proof: See Section 2.2.3.

The identity (2.14) reveals an intimate and intriguing connection between Shannon’s mutual
information and optimal estimation in the Gaussian channel (2.5), namely, the rate of the
mutual information increase as the SNR increases is equal to half the minimum mean-square
error achieved by the optimal (in general nonlinear) estimator.

Theorem 2.1 can also be verified for a simple and important input signaling: ±1 with
equal probability. The conditional mean estimate is given by

X̂(Y ; snr) = tanh
(√

snr Y
)
. (2.15)

The MMSE and the mutual information are obtained as:

mmse(snr) = 1−
∫ ∞

−∞

e−
y2

2

√
2π

tanh(snr −
√

snr y) dy, (2.16)

and (e.g., [6, p. 274] and [30, Problem 4.22])

I(snr) = snr −
∫ ∞

−∞

e−
y2

2

√
2π

log cosh(snr −
√

snr y) dy (2.17)

respectively. Verifying (2.14) is a matter of algebra [45].
For illustration purposes, the MMSE and the mutual information are plotted against

the SNR in Figure 2.1 for Gaussian and binary inputs.
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Figure 2.1: The mutual information (in nats) and MMSE of a scalar Gaussian channel with
Gaussian and binary inputs, respectively.

2.2.2 A Vector Channel

Consider a multiple-input multiple-output system described by the vector Gaussian channel:

Y =
√

snr H X + N (2.18)

where H is a deterministic L ×K matrix and the noise vector N consists of independent
identically distributed (i.i.d.) standard Gaussian entries. The input X (with distribution
PX) and the output Y are column vectors of appropriate dimensions related by a Gaussian
conditional probability density:

pY |X;snr(y|x; snr) = (2π)−
L
2 exp

[
−1

2

∥∥y −√snr Hx
∥∥2
]

, (2.19)

where ‖ · ‖ denotes the Euclidean norm of a vector. Let the (weighted) MMSE be defined
as the minimum error in estimating HX:

mmse(snr) = E

{∥∥∥H X −H X̂(Y ; snr)
∥∥∥2
}

, (2.20)

where X̂(Y ; snr) is the conditional mean estimate. A generalization of Theorem 2.1 is the
following:

Theorem 2.2 Consider the vector model (2.18). For every PX satisfying E‖X‖2 < ∞,

d
dsnr

I
(
X;

√
snr H X + N

)
=

1
2
mmse

(
HX |

√
snr H X + N

)
. (2.21)

Proof: See Section 2.2.3.

A verification of Theorem 2.2 in the special case of Gaussian input with positive definite
covariance matrix Σ is straightforward. The covariance of the conditional mean estimation
error is

E

{(
X − X̂

)(
X − X̂

)>}
=
(
Σ−1 + snrH>H

)−1

, (2.22)
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from which one can calculate the MMSE:

E

{∥∥∥H (
X − X̂

)∥∥∥2
}

= tr
{

H
(
Σ−1 + snrH>H

)−1

H>
}

. (2.23)

The mutual information is [17, 103]:

I(X;Y ) =
1
2

log det
(
I + snrΣ

1
2 H>HΣ

1
2

)
, (2.24)

where Σ
1
2 is the unique positive semi-definite symmetric matrix such that

(
Σ

1
2

)2
= Σ.

Taking direct derivative of (2.24) leads to the desired result:2

d
dsnr

I(X;Y ) =
1
2

tr
{(

I + snrΣ
1
2 H>HΣ

1
2

)−1

Σ
1
2 H>HΣ

1
2

}
(2.25)

=
1
2

E

{∥∥∥H (
X − X̂

)∥∥∥2
}

. (2.26)

The versions of Theorems 2.1 and 2.2 for complex-valued channel and signaling hold
verbatim if each real/imaginary component of the circularly symmetric Gaussian noise N
or N has unit variance, i.e., E {NNH} = 2I. In particular, the factor of 1/2 in (2.14) and
(2.21) remains intact. However, with the more common definition of snr in complex valued
channels where the complex noise has real and imaginary components with variance 1/2
each, the factor of 1/2 in (2.14) and (2.21) disappears.

2.2.3 Proof via the SNR-Incremental Channel

The central relationship given by Theorems 2.1 and 2.2 can be proved in various, rather
different, ways. In fact, five proofs are given in this thesis, including two direct proofs by
taking derivative of the mutual information and a related information divergence respec-
tively, a proof through the de Bruijn identity, and a proof taking advantage of results in the
continuous-time domain. However, the most enlightening proof is by considering what we
call an “incremental channel” and apply the chain rule for mutual information. A proof of
Theorem 2.1 using this technique is given next, while its generalization to the vector version
is omitted but straightforward. The alternative proofs are discussed in Section 2.2.6.

The key to the incremental-channel proof is to reduce the proof of the relationship for
all SNRs to that for the special case of vanishing SNR, in which domain better is known
about the mutual information:

Lemma 2.1 As δ → 0, the input-output mutual information of the Gaussian channel:

Y =
√

δ Z + U, (2.27)

where EZ2 < ∞ and U ∼ N (0, 1) is independent of Z, is given by

I(Y ;Z) =
δ

2
E(Z − EZ)2 + o(δ). (2.28)

2The following identity is useful:

∂ log det Q

∂x
= tr

{
Q−1 ∂Q

∂x

}
.
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Essentially, Lemma 2.1 states that the mutual information is half the SNR times the
variance of the input at the vicinity of zero SNR, but insensitive to the shape of the input
distribution otherwise. Lemma 2.1 has been given in [61] and [104] (also implicitly in [111]).
A proof is given here for completeness.

Proof: For any given input distribution PZ , the mutual information, which is a conditional
divergence, allows the following decomposition due to Verdú [111]:

I(Y ;Z) = D
(
PY |Z‖PY |PZ

)
= D

(
PY |Z‖PY ′ |PZ

)
− D (PY ‖PY ′) , (2.29)

where PY ′ is an arbitrary distribution as long as the two divergences on the right hand side
of (2.29) are well-defined. Choose Y ′ to be a Gaussian random variable with the same mean
and variance as Y . Let the variance of Z be denoted by v. The probability density function
associated with Y ′ is

pY ′(y) =
1√

2π(δv + 1)
exp

[
− y2

2(δv + 1)

]
. (2.30)

The first term on the right hand side of (2.29) is a divergence between two Gaussian distri-
butions. Using a general formula [111]

D
(
N
(
m1, σ

2
1

)
‖N

(
m0, σ

2
0

))
=

1
2

log
σ2

0

σ2
1

+
1
2

(
(m1 −m0)2

σ2
0

+
σ2

1

σ2
0

− 1
)

log e, (2.31)

the interested divergence can be easily found as

1
2

log(1 + δv) =
δv

2
+ o(δ). (2.32)

The unconditional output distribution can be expressed as

pY (y) =
1√
2π

E

{
exp

[
−1

2

(
y −

√
δ Z
)2
]}

. (2.33)

By (2.30) and (2.33),

log
pY (y)
pY ′(y)

=
1
2

log(1 + δv) + log E

{
exp

[
(y −

√
δ EZ)2

2(δv + 1)
− 1

2
(y −

√
δ Z)2

]}
(2.34)

=
1
2

log(1 + δv)

+ log E

{
exp

[√
δ y(Z − EZ)− δ

2
(
vy2 + Z2 − (EZ)2

)
+ o(δ)

]}
(2.35)

=
1
2

log(1 + δv) + log E
{

1 +
√

δ y(Z − EZ)

+
δ

2
(
y2(Z − EZ)2 − vy2 − Z2 + (EZ)2

)
+ o(δ)

}
(2.36)

=
1
2

log(1 + δv) + log
(

1− δv

2

)
+ o(δ) (2.37)

= o(δ), (2.38)
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Figure 2.2: An SNR-incremental Gaussian channel.

where the limit δ → 0 and the expectation can be exchanged in (2.37) as long as EZ2 < ∞
due to Lebesgue convergence theorem [83]. Therefore, the second divergence on the right
hand side of (2.29) is o(δ). Lemma 2.1 is immediate:

I(Y ;Z) =
δv

2
+ o(δ). (2.39)

It is interesting to note that the proof relies on the fact that the divergence between the
output distributions of a Gaussian channel under different input distributions is sublinear
in the SNR when the noise dominates.

Lemma 2.1 is the special case of Theorem 2.1 at vanishing SNR, which, by means of the
incremental-channel method, can be bootstrapped to a proof of Theorem 2.1 for all SNRs.

Proof: [Theorem 2.1] Fix arbitrary snr > 0 and δ > 0. Consider a cascade of two Gaussian
channels as depicted in Figure 2.2:

Y1 = X + σ1N1, (2.40a)
Y2 = Y1 + σ2N2, (2.40b)

where X is the input, and N1 and N2 are independent standard Gaussian random variables.
Let σ1 and σ2 satisfy:

snr + δ =
1
σ2

1

, (2.41a)

snr =
1

σ2
1 + σ2

2

, (2.41b)

so that the SNR of the first channel (2.40a) is snr + δ and that of the composite channel
is snr. Such a channel is referred to as an SNR-incremental Gaussian channel since the
signal-to-noise ratio increases by δ from Y2 to Y1. Here we choose to scale the noise for
obvious reason.

Since the mutual information vanishes trivially at zero SNR, Theorem 2.1 is equivalent
to the following:

I(X;Y1)− I(X;Y2) = I(snr + δ)− I(snr) (2.42)

=
δ

2
mmse(snr) + o(δ). (2.43)

Noting that X—Y1—Y2 is a Markov chain, one has

I(X;Y1)− I(X;Y2) = I(X;Y1, Y2)− I(X;Y2) (2.44)
= I(X;Y1|Y2), (2.45)
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where (2.45) is by the chain rule for information [17]. Given X, the outputs Y1 and Y2 are
jointly Gaussian. Hence Y1 is Gaussian conditioned on X and Y2. Using (2.40), it is easy
to check that

(snr + δ) Y1 − snr Y2 − δ X = δ σ1 N1 − snr σ2 N2. (2.46)

Let
N =

1√
δ

(δ σ1 N1 − snr σ2 N2). (2.47)

Then N is a standard Gaussian random variable due to (2.41). Given X, N is independent
of Y2 since, by (2.40) and (2.41),

E {N Y2 | X} =
1√
δ

(
δ σ2

1 − snr σ2
2

)
= 0. (2.48)

Therefore, (2.46) is tantamount to

(snr + δ) Y1 = snr Y2 + δ X +
√

δ N, (2.49)

where N ∼ N (0, 1) is independent of X and Y2. Clearly,

I(X;Y1|Y2) = I
(
X; δ X +

√
δ N

∣∣∣ Y2

)
. (2.50)

Hence given Y2, (2.49) is equivalent to a Gaussian channel with its SNR equal to δ where the
input distribution is PX|Y2

. Applying Lemma 2.1 to the Gaussian channel (2.49) conditioned
on Y2 = y2, one obtains

I(X;Y1|Y2 = y2) =
δ

2
E
{

(X − E {X | Y2})2
∣∣∣ Y2 = y2

}
+ o(δ). (2.51)

Taking the expectation over Y2 on both sides of (2.51), one has

I(X;Y1|Y2) =
δ

2
E
{

(X − E {X | Y2})2
}

+ o(δ), (2.52)

which establishes (2.43) by (2.44) together with the fact that

E
{

(X − E {X | Y2})2
}

= mmse(snr). (2.53)

Hence the proof of Theorem 2.1.

2.2.4 Discussions

Mutual Information Chain Rule

Underlying the incremental-channel proof of Theorem 2.1 is the chain rule for information:

I(X;Y1, . . . , Yn) =
n∑

i=1

I(X;Yi |Yi+1, . . . , Yn). (2.54)

In case that X—Y1—. . .—Yn is a Markov chain, (2.54) becomes

I(X;Y1) =
n∑

i=1

I(X;Yi |Yi+1), (2.55)
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Figure 2.3: A Gaussian pipe where noise is added gradually.

where we let Yn+1 ≡ 0. This applies to the train of outputs tapped from a Gaussian pipe
where noise is added gradually until the SNR vanishes as depicted in Figure 2.3. The sum
in (2.55) converges to an integral as Yi becomes a finer and finer sequence of Gaussian
channel outputs by noticing from (2.52) that each conditional mutual information in (2.55)
is that of a low-SNR channel and is essentially proportional to the MMSE times the SNR
increment. This viewpoint leads us to an equivalent form of Theorem 2.1:

I(snr) =
1
2

∫ snr

0
mmse(γ) dγ. (2.56)

Therefore, the mutual information can be regarded as an accumulation of the MMSE as a
function of the SNR, as is illustrated by the curves in Figure 2.1.

The infinite divisibility of Gaussian distributions, namely, the fact that a Gaussian
random variable can always be decomposed as the sum of independent Gaussian random
variables of smaller variances, is crucial in establishing the incremental channel (or, the
Markov chain). This property enables us to study the mutual information increase due to
an infinitesimal increase in the SNR, and henceforth obtain the integral equation (2.14) in
Theorem 2.1.

Derivative of the Divergence

Consider an input-output pair (X, Y ) connected through (2.5). The mutual information
I(X;Y ) is the average value over the input X of a divergence:

D
(
PY |X=x‖PY

)
=
∫

log
dPY |X=x(y)

dPY (y)
dPY |X=x(y). (2.57)

Refining Theorem 2.1, it is possible to directly obtain the derivative of the divergence given
any value of the input:

Theorem 2.3 Consider the channel (2.5). For every input distribution PX that satisfies
EX2 < ∞,

d
dsnr

D
(
PY |X=x‖PY

)
=

1
2
E
{

(X −X ′)2
∣∣ X = x

}
− 1

2
√

snr
E
{

X ′ N
∣∣ X = x

}
, (2.58)

where X ′ is an auxiliary random variable which is i.i.d. with X conditioned on Y .

Proof: See [45].

The auxiliary random variable X ′ has an interesting physical meaning. It can be re-
garded as the output of the so-called “retrochannel” (see also Section 3.2.4), which takes Y
as the input and generates a random variable according to the posterior probability distri-
bution pX|Y ;snr. Using Theorem 2.3, Theorem 2.1 can be recovered by taking expectation on
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both sides of (2.58). The left hand side becomes the derivative of the mutual information.
The right hand side becomes 1/2 times the following:

1√
snr

E
{
(X −X ′)(Y −

√
snrX ′)

}
=

1√
snr

E
{
XY −X ′Y

}
+ E

{
(X ′)2 −XX ′} . (2.59)

Since conditioned on Y , X ′ and X are i.i.d., (2.59) can be further written as

E
{
X2 −XX ′} = E

{
X2 − E

{
XX ′ ∣∣ Y ; snr

}}
(2.60)

= E
{

X2 − (E {X | Y ; snr})2
}

, (2.61)

which is the MMSE.

Multiuser Channel

A multiuser system in which users may be received at different SNRs can be better modelled
by:

Y = H ΓX + N (2.62)

where H is a deterministic L × K matrix, Γ = diag{√snr1, . . . ,
√

snrK} consists of the
square-root of the SNRs of the K users, and N consists of i.i.d. standard Gaussian entries.
The following theorem addresses the derivative of the total mutual information with respect
to an individual user’s SNR:

Theorem 2.4 For every input distribution PX that satisfies E‖X‖2 < ∞,

∂

∂snrk
I(X;Y ) =

1
2

K∑
i=1

√
snri
snrk

[
H>H

]
ki

E {Cov {Xk, Xi|Y ;Γ}} , (2.63)

where Cov {·, ·|·} denotes conditional covariance.

Proof: The proof follows straightforwardly that of Theorem 2.2 in Appendix A.2 and is
omitted.

Using Theorem 2.4, Theorem 2.1 can be easily recovered by setting K = 1 and Γ =
√

snr,
since

E {Cov {X, X|Y ; snr}} = E {var {X|Y ; snr}} (2.64)

is exactly the MMSE. Theorem 2.2 can also be recovered by letting snrk = snr for all k.
Then,

d
dsnr

I(X;Y ) =
K∑

k=1

∂

∂snrk
I(X;Y ) (2.65)

=
1
2

K∑
k=1

K∑
i=1

[
H>H

]
ki

E {Cov {Xk, Xi|Y ;Γ}} (2.66)

=
1
2

E
{
‖H X −H E {X | Y ;Γ} ‖2

}
. (2.67)
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2.2.5 Some Applications of Theorems 2.1 and 2.2

Extremality of Gaussian Inputs

Gaussian inputs are most favorable for Gaussian channels in information-theoretic sense
that they maximize mutual information for a given power; on the other hand they are least
favorable in estimation-theoretic sense that they maximize MMSE for a given power. These
well-known results are seen to be immediately equivalent through Theorem 2.1 (or Theorem
2.2 for the vector case). This also points to a simple proof of the result that Gaussian input
is capacity-achieving by showing that the linear estimation upper bound for the MMSE is
achieved for Gaussian inputs.

Proof of De Bruijn’s Identity

An interesting observation here is that Theorem 2.2 is equivalent to the (multivariate) de
Bruijn identity [90, 16]:

d
dt

h
(
HX +

√
t N

)
=

1
2
tr
{

J
(
HX +

√
t N

)}
(2.68)

where h(·) stands for the differential entropy and J(·) for Fisher’s information matrix [76],
which is defined as3

J(y) = E
{

[∇ log pY (y)] [∇ log pY (y)]>
}

, (2.69)

where the gradient with respect to a vector is defined as ∇ =
[

∂
∂y1

, . . . , ∂
∂yL

]>
. Let snr = 1/t

and Y =
√

snr H X + N . Then

h
(
HX +

√
t N

)
= h(Y )− L

2
log snr (2.70)

= I(X;Y )− L

2
log

snr

2πe
. (2.71)

In the meantime,
J
(
HX +

√
t N

)
= snr J(Y ). (2.72)

Note that
pY ;snr(y; snr) = E

{
pY |X;snr(y|X; snr)

}
, (2.73)

where pY |X;snr(y|x; snr) is a Gaussian density (2.19). It can be shown that

∇ log pY ;snr(y; snr) =
√

snr HX̂(y; snr)− y. (2.74)

Plugging (2.74) into (2.72) and (2.69) gives

J(Y ) = I − snr H E

{(
X − X̂

)(
X − X̂

)>}
H>. (2.75)

Now de Bruijn’s identity (2.68) and Theorem 2.2 prove each other by (2.71) and (2.75).
Noting this equivalence, the incremental-channel approach offers an intuitive alternative to
the conventional proof of de Bruijn’s identity obtained by integrating by parts (e.g., [17]).

3The gradient operator can be regarded as ∇ =
[

∂
∂y1

, · · · , ∂
∂yL

]>
. For any differentiable function f :

RL →R, its gradient at any y is a column vector ∇f(y) =
[

∂f
∂y1

(y), · · · , ∂f
∂yL

(y)
]>

.
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The inverse of Fisher’s information is in general a lower bound on estimation accuracy,
a result known as the Cramér-Rao lower bound [76]. For Gaussian channels, Fisher’s in-
formation matrix and the covariance of conditional mean estimation error determine each
other in a simple way (2.75). In particular, for a scalar channel,

J
(√

snr X + N
)

= 1− snr ·mmse(snr). (2.76)

Joint and Separate Decoding Capacities

Theorem 2.1 is the key to show a relationship between the mutual informations of multiuser
channels under joint and separate decoding. This will be relegated to Section 3.2.4 in the
chapter on multiuser channels.

2.2.6 Alternative Proofs of Theorems 2.1 and 2.2

The incremental-channel proof of Theorem 2.1 provides much information-theoretic insight
into the result. In this subsection, we give an alternative proof of Theorem 2.2, which is
a distilled version of the more general result of Zakai [120] (follow-up to this work) that
uses the Malliavin calculus and shows that the central relationship between the mutual
information and estimation error holds in the abstract Wiener space. This alternative
approach of Zakai makes use of relationships between conditional mean estimation and
likelihood ratios due to Esposito [27] and Hatsell and Nolte [46].

As mentioned earlier, the central theorems also admit several other alternative proofs.
In fact, a third proof using de Bruijn’s identity is already evident in Section 2.2.5. A fourth
proof taking advantage of results in the continuous-time domain is relegated to Section 2.4.
A fifth proof of Theorems 2.1 and 2.2 by taking the derivative of the mutual information is
given in Appendices A.1 and A.2 respectively.

It suffices to prove Theorem 2.2 assuming H to be the identity matrix since one can
always regard HX as the input. Let Z =

√
snr X. Then the channel (2.18) is represented

by the canonical L-dimensional Gaussian channel:

Y = Z + N . (2.77)

By Verdú’s formula (2.29), the mutual information can be expressed in the divergence
between the unconditional output distribution and the noise distribution:

I(Y ;Z) = D
(
PY |Z‖PN |PZ

)
− D (PY ‖PN ) (2.78)

=
1
2
E‖Z‖2 − D (PY ‖PN ) . (2.79)

Hence Theorem 2.2 is equivalent to the following:

Theorem 2.5 For every PX satisfying E‖X‖2 < ∞,

d
dsnr

D
(
P√snr X+N‖PN

)
=

1
2
E
{∥∥E{X |

√
snr X + N

}∥∥2
}

. (2.80)

It is clear that, pY , the probability density function for the channel output exists. The
likelihood ratio between two hypotheses, one with the input signal Z and the other with
zero input, is given by

l(y) =
pY (y)
pN (y)

. (2.81)
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Theorem 2.5 can be proved using some geometric properties of the above likelihood ratio.
The following lemmas are important steps.

Lemma 2.2 (Esposito [27]) The gradient of the log-likelihood ratio is equal to the condi-
tional mean estimate:

∇ log l(y) = E {Z | Y = y} . (2.82)

Lemma 2.3 (Hatsell and Nolte [46]) The log-likelihood ratio satisfies Poisson’s equa-
tion:4

∇2 log l(y) = E
{
‖Z‖2

∣∣ Y = y
}
− ‖E {Z | Y = y}‖2 . (2.83)

From Lemmas 2.2 and 2.3,

E
{
‖Z‖2

∣∣ Y = y
}

= ∇2 log l(y) + ‖∇ log l(y)‖2 (2.84)

=
l(y)∇2 log l(y)− ‖∇l(y)‖2 + ‖∇l(y)‖2

l2(y)
. (2.85)

Thus we have proved

Lemma 2.4

E
{
‖Z‖2

∣∣ Y = y
}

=
∇2l(y)
l(y)

. (2.86)

A proof of Theorem 2.5 is obtained by taking the derivative directly.

Proof: [Theorem 2.5] Note that the likelihood ratio can be expressed as

l(y) =
E
{
pY |X(y|X)

}
pN (y)

(2.87)

= E
{

exp
[√

snr y>X − snr

2
‖X‖2

]}
. (2.88)

Hence,

d
dsnr

l(y) =
1
2
E

{(
1√
snr

y>X − ‖X‖2

)
exp

[√
snr y>X − snr

2
‖X‖2

]}
(2.89)

=
1
2
l(y)

[
1√
snr

y>E {X | Y = y} − E
{
‖X‖2

∣∣ Y = y
}]

(2.90)

=
1

2snr

[
l(y) y>∇ log l(y)−∇2 log l(y)

]
. (2.91)

Note that the order of expectation with respect to PX and the derivative with respect to the
SNR can be exchanged as long as the input has finite power. This is essentially guaranteed
by Lemma A.1 in Appendix A.2.

The divergence can be written as

D (PY ‖PN ) =
∫

pY (y) log
pY (y)
pN (y)

dy (2.92)

= E {l(N) log l(N)} , (2.93)

4For any differentiable f : RL →RL, ∇·f =
∑L

l=1
∂fl
∂yl

. Also, if f is doubly differentiable, its Laplacian

is defined as ∇2f = ∇ · (∇f) =
∑L

l=1
∂2f

∂y2
l
.



2.2 Scalar and Vector Channels 19

and its derivative
d

dsnr
D (PY ‖PN ) = E

{
log l(N)

d
dsnr

l(N)
}

. (2.94)

Again, the derivative and expectation can be exchanged in order by the same argument as
in the above. By (2.91), the derivative (2.94) can be evaluated as

1
2snr

E
{

l(N) log l(N) N>∇ log l(N)
}
− 1

2snr
E
{
log l(N)∇2l(N)

}
=

1
2snr

E
{
∇ · [l(N) log l(N)∇ log l(N)]− log l(N)∇2l(N)

}
(2.95)

=
1

2snr
E
{
l(N) ‖∇ log l(N)‖2

}
(2.96)

=
1

2snr
E ‖∇ log l(Y )‖2 (2.97)

=
1
2
E‖E {X | Y } ‖2, (2.98)

where to write (2.95) one also needs the following result which can be proved easily by
integration by parts:

E
{

N>f(N)
}

= E {∇ · f(N)} (2.99)

for all f : RL → RL that satisfies fi(n)e−
1
2
n2

i → 0 as ni →∞.

2.2.7 Asymptotics of Mutual Information and MMSE

It can be shown that the mutual information and MMSE are both differentiable functions
of the SNR given any finite-power input. In the following, the asymptotics of the mutual
information and MMSE at low and high SNRs are studied mainly for the scalar Gaussian
channel.

Low-SNR Asymptotics

Using the dominated convergence theorem, one can prove continuity of the MMSE estimate:

lim
snr→0

E {X | Y ; snr} = EX, (2.100)

and hence
lim

snr→0
mmse(snr) = mmse(0) = σ2

X (2.101)

where σ2
X is the input variance. It has been shown in [104] that symmetric (proper-complex

in the complex case) signaling is second-order optimal. Indeed, for any real-valued symmet-
ric input with unit variance, the mutual information can be expressed as

I(snr) =
1
2
snr − 1

4
snr2 + o(snr2). (2.102)

A more refined study of the asymptotics is possible by examining the Taylor expansion
of the following:

pi(y; snr) = E
{
Xi pY |X;snr(y |X; snr)

}
, (2.103)
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which is well-defined at least for i = 1, 2, and in case all moments of the input are finite, it
is well-defined for all i. Clearly, the unconditional probability density function is a special
case:

pY ;snr(y; snr) = p0(y; snr). (2.104)

As snr → 0,

pi(y; snr) =
1√
2π

e−
y2

2 E

{
Xi

[
1 + yXsnr

1
2 +

1
2
(y2 − 1)X2snr

+
1
6
(y2 − 3)yX3snr

3
2 +

1
24

(y4 − 6y2 + 3)X4snr2 +O
(
snr

5
2

)]}
.

(2.105)

Without loss of generality, it is assumed that the input has zero mean and unit variance.
For convenience, it is also assumed that the input distribution is symmetric, i.e., X and
−X are identically distributed. In this case, the odd moments of X vanish and by (2.105),

pY ;snr(y; snr) =
1√
2π

e−
y2

2

[
1 +

1
2
(y2 − 1)snr +

1
24

(y4 − 6y2 + 3)EX4snr2 +O
(
snr

5
2

)]
,

(2.106)
and

p1(y; snr) =
1√
2π

e−
y2

2 y

[
snr

1
2 +

1
6
(y2 − 3)EX4snr

3
2 +O

(
snr

5
2

)]
. (2.107)

Thus, the conditional mean estimate is

E{X|Y = y; snr} =
p1(y; snr)

pY ;snr(y; snr)
(2.108)

=
√

snr y

[
1 +

(
1− EX4 − y2 +

1
3
y2EX4

)
snr

2
+O(snr2)

]
.(2.109)

Using (2.109), a finer characterization of the MMSE than (2.101) is obtained by definition
(2.8) as

mmse(snr) = 1− snr +
(

3− 2
3
EX4

)
snr2 +O

(
snr3

)
. (2.110)

Note that the expression (2.102) for the mutual information can also be refined either by
noting that

I(snr) = −1
2

log(2πe)− E {log pY ;snr(Y ; snr)} , (2.111)

and using (2.106), or integrating both sides of (2.110) and invoking Theorem 2.1:

I(snr) =
1
2
snr − 1

4
snr2 +

(
1
2
− 1

9
EX4

)
snr3 +O

(
snr4

)
. (2.112)

The smoothness of the mutual information and MMSE carries over to the vector channel
model (2.18) for finite-power inputs. The asymptotics also have their counterparts. The
MMSE of the real-valued vector channel (2.18) is obtained as:

mmse
(
HX |

√
snr H X + N

)
= tr

{
HΣH>

}
−snr·tr

{
HΣH>HΣH>

}
+O(snr2) (2.113)

where Σ is the covariance matrix of the input vector. The input-output mutual information
is (see [77]):

I
(
X;

√
snr H X + N

)
=

snr

2
tr
{

HΣH>
}
− snr2

4
tr
{

HΣH>HΣH>
}

+O(snr3). (2.114)

The asymptotics can be refined to any order of the SNR following the above analysis.
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High-SNR Asymptotics

At high SNRs, the mutual information does not grow without bound for finite-alphabet
inputs such as the binary one (2.17), whereas it can increase at the speed of 1

2 log snr
for Gaussian inputs. Using the entropy power inequality [17], the mutual information of
the scalar channel given any symmetric input distribution with a density is shown to be
bounded:

1
2

log(1 + α snr) ≤ I(snr) ≤ 1
2

log(1 + snr), (2.115)

for some α ∈ (0, 1].
The MMSE behavior at high SNR depends on the input distribution. The decay can be

as low as 1/snr for Gaussian input, whereas for binary input, the MMSE can also be easily
shown to be exponentially small. In fact, for binary equiprobable inputs, the MMSE given
by (2.16) allows another representation:

mmse(snr) = E

{
2

exp
[
2(snr −

√
snr Y )

]
+ 1

}
(2.116)

where Y ∼ N (0, 1). The MMSE can then be upper bounded by Jensen’s inequality and
lower bounded by considering only negative values of Y :

1
e2snr + 1

< mmse(snr) <
2

e2snr + 1
, (2.117)

and hence
lim

snr→∞

1
snr

log mmse(snr) = −2. (2.118)

If the inputs are not equiprobable, then it is possible to have an even faster decay of
MMSE as snr →∞. For example, using a special input of the type (similar to flash signaling
[104])

X =


√

1−p
p w.p. p,

−
√

p
1−p w.p. 1− p,

(2.119)

it can be shown that in this case

mmse(snr) ≤ 1
2p(1− p)

exp
[
− snr

4p(1− p)

]
. (2.120)

Hence the MMSE can be made to decay faster than any given exponential by choosing a
small enough p.

2.3 Continuous-time Channels

The success in the random variable/vector Gaussian channel setting in Section 2.2 can
be extended to the more sophisticated continuous-time models. Consider the following
continuous-time Gaussian channel:

Rt =
√

snr Xt + Nt, t ∈ [0, T ], (2.121)

where {Xt} is the input process, {Nt} a white Gaussian noise with a flat double-sided
spectrum of unit height, and snr denotes the signal-to-noise ratio. Since {Nt} is not second-
order, it is mathematically more convenient to study an equivalent model obtained by
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Figure 2.4: Sample paths of the input and output processes of an additive white Gaussian
noise channel, the output of the optimal forward and backward filters, as well as the out-
put of the optimal smoother. The input {Xt} is a random telegraph waveform with unit
transition rate. The SNR is 15 dB.

integrating the observations in (2.121). In a concise form, the input and output processes
are related by a standard Wiener process {Wt} (also known as the Brownian motion)
independent of the input:

dYt =
√

snr Xt dt + dWt, t ∈ [0, T ]. (2.122)

An example of the sample paths of the input and output signals is shown in Figure 2.4.
Note that instead of scaling the Brownian motion as is ubiquitous in the literature, we
choose to scale the input process so as to minimize notation in the analysis and results.
The additive Brownian motion model is fundamental in many fields and is central in many
textbooks (see e.g. [62]).

In continuous-time signal processing, both the causal (filtering) MMSE and noncausal
(smoothing) MMSE are important performance measures. Suppose for now that the input
is a stationary process. Let cmmse(snr) and mmse(snr) denote the causal and noncausal
MMSEs respectively. Let I(snr) denote now the mutual information rate, which measures
the average mutual information between the input and output processes per unit time.
This section shows that the central formula (2.4) in Section 2.2 also holds literally in this
continuous-time setting, i.e., the derivative of the mutual information rate is equal to half
the noncausal MMSE. Furthermore, the filtering MMSE is equal to the expected value of
the smoothing MMSE:

cmmse(snr) = E {mmse(Γ)} (2.123)

where Γ is chosen uniformly distributed between 0 and snr. In fact, stationarity of the input
is not required if the MMSEs are defined as time averages.

Relationships between the causal and noncausal estimation errors have been studied
for the particular case of linear estimation (or Gaussian inputs) in [1], where a bound on
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the loss due to causality constraint is quantified. Duncan [20, 21], Zakai [58, ref. [53]] and
Kadota et al. [53] pioneered the investigation of relations between the mutual information
and conditional mean filtering, which capitalized on earlier research on the “estimator-
correlator” principle by Price [78], Kailath [54], and others (see [59]). In particular, Duncan
showed that the input-output mutual information can be expressed as a time-integral of
the causal MMSE [21].5 Duncan’s relationship is proven to be useful in a wide spectrum
of applications in information theory and statistics [53, 52, 4, 10]. There are also a number
of other works in this area, most notably those of Liptser [63] and Mayer-Wolf and Zakai
[64], where the rate of increase in the mutual information between the sample of the input
process at the current time and the entire past of the output process is expressed in the
causal estimation error and some Fisher informations. Similar results were also obtained
for discrete-time models by Bucy [9]. In [88] Shmelev devised a general, albeit complicated,
procedure to obtain the optimal smoother from the optimal filter.

The new relationships as well as Duncan’s Theorem are proved in this chapter using
incremental channels, which analyze the increase in the input-output mutual information
due to an infinitesimal increase in either the SNR or observation time. A counterpart of
formula (2.4) in continuous-time setting is first established. The result connecting filtering
and smoothing MMSEs admits an information-theoretic proof. So far, no other proof is
known.

2.3.1 Mutual Information Rate and MMSEs

We are concerned with three quantities associated with the model (2.122), namely, the
causal MMSE achieved by optimal filtering, the noncausal MMSE achieved by optimal
smoothing, and the mutual information between the input and output processes. As a
convention, let Xt

τ denote the process {Xt} in the interval [τ, t]. Also, let µX denote the
probability measure induced by {Xt} in the interval of interest. The input-output mutual
information I

(
XT

0 ;Y T
0

)
is defined by (2.1). The causal and noncausal MMSEs at any time

t ∈ [0, T ] are defined in the usual way:

cmmse(t, snr) = E
{(

Xt − E
{

Xt | Y t
0 ; snr

})2}
, (2.124)

and
mmse(t, snr) = E

{(
Xt − E

{
Xt | Y T

0 ; snr
})2}

. (2.125)

Recall the mutual information rate (mutual information per unit time) defined in the
natural way:

I(snr) = lim
T→∞

1
T

I
(
XT

0 ;Y T
0

)
. (2.126)

Similarly, the average causal and noncausal MMSEs (per unit time) are defined as

cmmse(snr) =
1
T

∫ T

0
cmmse(t, snr) dt (2.127)

and

mmse(snr) =
1
T

∫ T

0
mmse(t, snr) dt (2.128)

5Duncan’s Theorem was independently obtained by Zakai in the more general setting of inputs that may
depend causally on the noisy output in a 1969 unpublished Bell Labs Memorandum (see [58]).
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respectively.
To start with, let T → ∞ and assume that the input to the continuous-time model

(2.122) is a stationary6 Gaussian process with power spectrum SX(ω). The mutual infor-
mation rate was obtained by Shannon [87]:

I(snr) =
1
2

∫ ∞

−∞
log (1 + snr SX(ω))

dω

2π
. (2.129)

In this case optimal filtering and smoothing are both linear. The noncausal MMSE is due
to Wiener [114],

mmse(snr) =
∫ ∞

−∞

SX(ω)
1 + snr SX(ω)

dω

2π
, (2.130)

and the causal MMSE is due to Yovits and Jackson [118, equation (8c)]:

cmmse(snr) =
1

snr

∫ ∞

−∞
log (1 + snr SX(ω))

dω

2π
. (2.131)

From (2.129) and (2.130), it is easy to see that the derivative of the mutual information rate
(nats per unit time) is equal to half the noncausal MMSE, i.e., the central formula (2.4)
for the random variable channel holds literally in case of continuous-time Gaussian input
process. Moreover, (2.129) and (2.131) show that the mutual information rate is equal to
the causal MMSE scaled by half the SNR, although, interestingly, this connection escaped
Yovits and Jackson [118].

In fact, these relationships are true not only for Gaussian inputs. Theorem 2.1 can be
generalized to the continuous-time model with an arbitrary input process:

Theorem 2.6 If the input process {Xt} to the Gaussian channel (2.122) has finite average
power, i.e., ∫ T

0
EX2

t dt < ∞, (2.132)

then
d

dsnr
I(snr) =

1
2
mmse(snr). (2.133)

Proof: See Section 2.3.2.

What is special for the continuous-time model is the relationship between the mutual
information rate and the causal MMSE due to Duncan [21], which is put into a more concise
form here:

Theorem 2.7 (Duncan [21]) For any input process with finite average power,

I(snr) =
snr

2
cmmse(snr). (2.134)

Together, Theorems 2.6 and 2.7 show that the mutual information, the causal MMSE
and the noncausal MMSE satisfy a triangle relationship. In particular, using the mutual
information rate as a bridge, the causal MMSE is found to be equal to the noncausal MMSE
averaged over SNR:

6For stationary input it would be more convenient to shift [0, T ] to [−T/2, T/2] and then let T →∞ so
that the causal and noncausal MMSEs at any time t ∈ (−∞,∞) is independent of t. We stick to [0, T ] in
this chapter for notational simplicity in case of general inputs.
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Theorem 2.8 For any input process with finite average power,

cmmse(snr) =
1

snr

∫ snr

0
mmse(γ) dγ. (2.135)

Equality (2.135) is a surprising new relationship between causal and noncausal MMSEs. It
is quite remarkable considering the fact that nonlinear filtering is usually a hard problem
and few special case analytical expressions are known for the optimal estimation errors in
continuous-time problems.

Note that, the equality can be rewritten as

cmmse(snr)−mmse(snr) = −snr
d

dsnr
cmmse(snr), (2.136)

which quantifies the increase of the minimum estimation error due to the causality con-
straint. It is interesting to point out that for stationary inputs the anti-causal MMSE is
equal to the causal MMSE. The reason is that the noncausal MMSE remains the same
in reversed time and white Gaussian noise is reversible. Note that in general the optimal
anti-causal filter is different from the optimal causal filter.

It is worth pointing out that Theorems 2.6–2.8 are still valid if the time averages in
(2.126)–(2.128) are replaced by their limits as T →∞. This is particularly relevant to the
case of stationary inputs.

Random Telegraph Input

Besides Gaussian inputs, another example of the relation in Theorem 2.8 is an input process
called the random telegraph waveform, where {Xt} is a stationary Markov process with two
equally probable states (Xt = ±1). See Figure 2.4 for an illustration. Assume that the
transition rate of the input Markov process is ν, i.e., for sufficiently small h,

P{Xt+h = Xt} = 1− νh + o(h), (2.137)

the expressions for the MMSEs achieved by optimal filtering and smoothing are obtained
as [115, 116]:

cmmse(snr) =

∫∞
1 u−

1
2 (u− 1)−

1
2 e−

2νu
snr du∫∞

1 u
1
2 (u− 1)−

1
2 e−

2νu
snr du

, (2.138)

and

mmse(snr) =

∫ 1
−1

∫ 1
−1

(1+xy) exp
[
− 2ν

snr

(
1

1−x2 + 1
1−y2

)]
−(1−x)3(1−y)3(1+x)(1+y)

dxdy[∫∞
1 u

1
2 (u− 1)−

1
2 e−

2νu
snr du

]2 (2.139)

respectively. The relationship (2.135) can be verified by algebra [45]. The MMSEs are
plotted in Figure 2.5 as functions of the SNR for unit transition rate.

Figure 2.4 shows experimental results of the filtering and smoothing of the random
telegraph signal corrupted by additive white Gaussian noise. The forward filter follows
Wonham [115]:

dX̂t = −
[
2νX̂t + snr X̂t

(
1− X̂2

t

)]
dt +

√
snr

(
1− X̂2

t

)
dYt, (2.140)

where
X̂t = E

{
Xt | Y t

0

}
. (2.141)
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Figure 2.5: The causal and noncausal MMSEs of continuous-time Gaussian channel with a
random telegraph waveform input. The transition rate ν = 1. The two shaded regions have
the same area due to Theorem 2.8.

This is in fact resulted from a representation theorem of Doob’s [18]. The backward filter
is merely a time reversal of the filter of the same type. The smoother is due to Yao [116]:

E
{

Xt | Y T
0

}
=

E
{

Xt | Y t
0

}
+ E

{
Xt | Y T

t

}
1 + E {Xt | Y t

0 }E
{

Xt | Y T
t

} . (2.142)

The smoother results in better MMSE of course. Numerical values of the MMSEs in Figure
2.4 are consistent with the curves in Figure 2.5.

Low-SNR and High-SNR Asymptotics

Based on Theorem 2.8, one can study the asymptotics of the mutual information and MMSE
in continuous-time setting under low SNR. The relationship (2.135) implies that

lim
snr→0

mmse(0)−mmse(snr)
cmmse(0)− cmmse(snr)

= 2 (2.143)

where

cmmse(0) = mmse(0) =
1
T

∫ T

0
var {Xt} dt. (2.144)

Hence the rate of decrease (with snr) of the noncausal MMSE is twice that of the causal
MMSE at low SNRs.

In the high SNR regime, there exist inputs that make the MMSE exponentially small.
However, in case of Gauss-Markov input processes, Steinberg et al. [91] observed that the
causal MMSE is asymptotically twice the noncausal MMSE, as long as the input-output
relationship is described by

dYt =
√

snr h(Xt) dt + dWt (2.145)

where h(·) is a differentiable and increasing function. In the special case where h(Xt) = Xt,
Steinberg et al.’s observation can be justified by noting that in the Gauss-Markov case, the
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Figure 2.6: A continuous-time SNR-incremental Gaussian channel.

smoothing MMSE satisfies [8]:

mmse(snr) =
c√
snr

+ o

(
1

snr

)
, (2.146)

which implies according to (2.135) that

lim
snr→∞

cmmse(snr)
mmse(snr)

= 2. (2.147)

Unlike the universal factor of 2 result in (2.143) for the low SNR regime, the factor of 2
result in (2.147) for the high SNR regime fails to hold in general. For example, for the
random telegraph waveform input, the causality penalty increases in the order of log snr
[116].

2.3.2 The SNR-Incremental Channel

Theorem 2.6 can be proved using the SNR-incremental channel approach developed in
Section 2.2. Consider a cascade of two Gaussian channels with independent noise processes
as depicted in Figure 2.6:

dY1t = Xt dt + σ1 dW1t, (2.148a)
dY2t = dY1t + σ2 dW2t, (2.148b)

where {W1t} and {W2t} are independent standard Wiener processes also independent of
{Xt}, and σ1 and σ2 satisfy (2.41) so that the signal-to-noise ratio of the first channel and
the composite channel is snr + δ and snr respectively. Given {Xt}, {Y1t} and {Y2t} are
jointly Gaussian processes. Following steps similar to those that lead to (2.49), it can be
shown that

(snr + δ) dY1t = snr dY2t + δ Xt dt +
√

δ dWt, (2.149)

where {Wt} is a standard Wiener process independent of {Xt} and {Y2t}. Hence conditioned
on the process {Y2t} in [0, T ], (2.149) can be regarded as a Gaussian channel with an SNR
of δ. Similar to Lemma 2.1, the following result holds.

Lemma 2.5 As δ → 0, the input-output mutual information of the following Gaussian
channel:

dYt =
√

δ Zt dt + dWt, t ∈ [0, T ], (2.150)

where {Wt} is standard Wiener process independent of the input {Zt}, which satisfies∫ T

0
EZ2

t dt < ∞, (2.151)
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is given by the following:

lim
δ→0

1
δ

I
(
ZT

0 ;Y T
0

)
=

1
2

∫ T

0
E (Zt − EZt)

2 dt. (2.152)

Proof: See Appendix A.3.

Applying Lemma 2.5 to the Gaussian channel (2.149) conditioned on {Y2t} in [0, T ], one
has

I
(
XT

0 ;Y T
1,0|Y T

2,0

)
=

δ

2

∫ T

0
E
{(

Xt − E
{

Xt | Y T
2,0

})2}
dt + o(δ). (2.153)

Since {Xt}—{Y1t}—{Y2t} is a Markov chain, the left hand side of (2.153) is recognized as
the mutual information increase:

I
(
XT

0 ;Y T
1,0 |Y T

2,0

)
= I

(
XT

0 ;Y T
1,0

)
− I

(
XT

0 ;Y T
2,0

)
(2.154)

= T [I(snr + δ)− I(snr)]. (2.155)

By (2.155) and the definition of the noncausal MMSE (2.125), (2.153) can be rewritten as

I(snr + δ)− I(snr) =
δ

2T

∫ T

0
mmse(t, snr) dt + o(δ). (2.156)

Hence the proof of Theorem 2.6.
The property that independent Wiener processes sum up to a Wiener process is essen-

tial in the above proof. The incremental channel device is very useful in proving integral
equations such as in Theorem 2.6. Indeed, by the SNR-incremental channel it has been
shown that the mutual information at a given SNR is an accumulation of the MMSEs of
degraded channels due to the fact that an infinitesimal increase in the SNR adds to the
total mutual information an increase proportional to the MMSE.

2.3.3 The Time-Incremental Channel

Note Duncan’s Theorem (Theorem 2.7) that links the mutual information and the causal
MMSE is yet another integral equation, although inexplicit, where the integral is with
respect to time on the right hand side of (2.134). Analogous to the SNR-incremental
channel, one can investigate the mutual information increase due to an infinitesimal extra
time duration of observation of the channel output. This leads to a new proof of Theorem
2.7 in the following, which is more intuitive than Duncan’s original one [21].

Theorem 2.7 is equivalent to

I
(
Xt+δ

0 ;Y t+δ
0

)
− I

(
Xt

0;Y
t
0

)
= δ

snr

2
E
{(

Xt − E
{

Xt | Y t
0 ; snr

})2}+ o(δ), (2.157)

which is to say that the mutual information increase due to the extra observation time is
proportional to the causal MMSE. The left hand side of (2.157) can be written as

I
(
Xt+δ

0 ;Y t+δ
0

)
− I

(
Xt

0;Y
t
0

)
= I

(
Xt

0, X
t+δ
t ;Y t

0 , Y t+δ
t

)
− I

(
Xt

0;Y
t
0

)
(2.158)

= I
(
Xt

0, X
t+δ
t ;Y t

0

)
+ I

(
Xt+δ

t ;Y t+δ
t |Y t

0

)
+I
(
Xt

0;Y
t+δ
t |Xt+δ

t , Y t
0

)
− I

(
Xt

0;Y
t
0

)
(2.159)

= I
(
Xt+δ

t ;Y t+δ
t |Y t

0

)
+ I

(
Xt

0;Y
t+δ
t |Xt+δ

t , Y t
0

)
+ I

(
Xt+δ

t ;Y t
0 |Xt

0

)
. (2.160)
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Since Y t
0 —Xt

0—Xt+δ
t —Y t+δ

t is a Markov chain, the last two mutual informations in (2.160)
vanish due to conditional independence. Therefore,

I
(
Xt+δ

0 ;Y t+δ
0

)
− I

(
Xt

0;Y
t
0

)
= I

(
Xt+δ

t ;Y t+δ
t |Y t

0

)
, (2.161)

i.e., the increase in the mutual information is the conditional mutual information between
the input and output during the extra time interval given the past observation. This can
be understood easily by considering a conceptual “time-incremental channel”. Note that
conditioned on Y t

0 , the channel in (t, t + δ) remains the same but with a different input
distribution due to conditioning on Y t

0 . Let us denote this new channel by

dỸt =
√

snr X̃t dt + dWt, t ∈ [0, δ], (2.162)

where the time duration is shifted to [0, δ], and the input process X̃δ
0 has the same law as

Xt+δ
t conditioned on Y t

0 . Instead of looking at this new problem of an infinitesimal time
interval [0, δ], we can convert the problem to a familiar one by an expansion in the time
axis. Since √

δ Wt/δ (2.163)

is also a standard Wiener process, the channel (2.162) in [0, δ] is equivalent to a new channel
described by

d ˜̃Yτ =
√

δ snr ˜̃Xτ dτ + dW ′
τ , τ ∈ [0, 1], (2.164)

where ˜̃Xτ = X̃τδ, and {W ′
t} is a standard Wiener process. The channel (2.164) is of (fixed)

unit duration but a diminishing signal-to-noise ratio of δ snr. It is interesting to note here
that the trick here performs a “time-SNR” transform (see also Section 2.4.1). By Lemma
2.5, the mutual information is

I
(
Xt+δ

t ;Y t+δ
t |Y t

0

)
= I

(
˜̃X1

0 ; ˜̃Y 1
0

)
(2.165)

=
δ snr

2

∫ 1

0
E( ˜̃Xτ − E ˜̃Xτ )2 dτ + o(δ) (2.166)

=
δ snr

2

∫ 1

0
E
{(

Xt+τδ − E
{

Xt+τδ | Y t
0 ; snr

})2}dτ +o(δ)(2.167)

=
δ snr

2
E
{(

Xt − E
{

Xt | Y t
0 ; snr

})2}+ o(δ), (2.168)

where (2.168) is justified by the continuity of the MMSE. The relation (2.157) is then
established due to (2.161) and (2.168), and hence the proof of Theorem 2.7.

Similar to the discussion in Section 2.2.4, the integral equations in Theorems 2.6 and
2.7 proved by using the SNR- and time-incremental channels are also consequences of the
mutual information chain rule applied to a Markov chain of the channel input and degraded
versions of channel outputs. The independent-increment property both SNR-wise and time-
wise is quintessential in establishing the results.

2.4 Discrete-time vs. Continuous-time

In Sections 2.2 and 2.3, the mutual information and the estimation errors have been shown to
satisfy similar relations in the random variable/vector and continuous-time random process
models. This section bridges these results for different models under certain circumstances.
Moreover, discrete-time models can be analyzed by considering piecewise constant input to
the continuous-time channel.
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2.4.1 A Fourth Proof of Theorem 2.1

Besides the direct and incremental-channel approaches, a fourth proof of the mutual infor-
mation and MMSE relationship in the random variable/vector model can be obtained using
continuous-time results in Section 2.3. For simplicity we prove Theorem 2.1 using Theorem
2.7. The proof can be easily modified to show Theorem 2.2, using the vector version of
Duncan’s Theorem [21].

A continuous-time counterpart of the model (2.5) can be constructed by letting Xt ≡ X
for t ∈ [0, 1] where X is a random variable not dependent on t:

dYt =
√

snr X dt + dWt. (2.169)

For every u ∈ [0, 1], Yu is a sufficient statistic of the observation Y u
0 for X and hence also

for Xu
0 . Therefore, the input-output mutual information of the scalar channel (2.5) is equal

to that of the continuous-time channel (2.169):

I(snr) = I(X;Y1) = I
(
X1

0 ;Y 1
0

)
. (2.170)

Integrating both sides of (2.169), one has

Yu =
√

snr u X + Wu, u ∈ [0, 1], (2.171)

where Wu ∼ N (0, u). Note that (2.171) is exactly a scalar Gaussian channel with a signal-to-
noise ratio of u snr. Clearly, the MMSE of the continuous-time model given the observation
Y u

0 , i.e., the causal MMSE at time u with a signal-to-noise ratio of snr, is equal to the
MMSE of a scalar Gaussian channel with a signal-to-noise ratio of u snr:

cmmse(u, snr) = mmse(u snr). (2.172)

By Theorem 2.7, the mutual information can be written as

I(X1
0 ;Y 1

0 ) =
snr

2

∫ 1

0
cmmse(u, snr) du (2.173)

=
snr

2

∫ 1

0
mmse(u snr) du (2.174)

=
1
2

∫ snr

0
mmse(γ) dγ. (2.175)

Thus Theorem 2.1 follows by noticing (2.170).
Note also that in this setting, the MMSE at any time t of a continuous-time Gaussian

channel with a signal-to-noise ratio of u snr is equal to the MMSE of a scalar Gaussian
channel at the same SNR:

mmse(t, u snr) = mmse(u snr), ∀t ∈ [0, T ]. (2.176)

Together, (2.172) and (2.176) yield (2.135) for this special input by taking average over
time u.

Indeed, for an observation time duration [0, u] of the continuous-time channel output,
the corresponding signal-to-noise ratio is u snr in the equivalent scalar channel model; or in
other words, the useful signal energy is accumulated over time. The integral over time in
(2.134) and the integral over SNR are interchangeable in this case. This is clearly another
example of the “time-SNR” transform which is also used in Section 2.3.3.

In retrospect of the above proof, the time-invariant input can be replaced by a general
form of X h(t), where h(t) is any deterministic continuous signal.
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2.4.2 Discrete-time Channels

Consider the case where the input is a discrete-time process and the channel is

Yi =
√

snr Xi + Ni, i = 1, 2, . . . , (2.177)

where the noise Ni is a sequence of i.i.d. standard Gaussian random variables. Given that
we have already studied the case of a finite-dimensional vector channel, an advantageous
analysis of (2.177) consists of treating the finite-horizon case i = 1, . . . , n and then taking
the limit as n →∞.

Let Xn denote a column vector formed by the sequence X1, . . . , Xn. Putting the finite-
horizon version of (2.177) in a vector form results in a MIMO channel of the form (2.18) with
H being the identity matrix. Therefore the relation (2.21) between the mutual information
and the MMSE holds also in this case:

Theorem 2.9 If
∑n

i=1 EX2
i < ∞, then

d
dsnr

I
(
Xn;

√
snr Xn + Nn

)
=

1
2

n∑
i=1

mmse(i, snr), (2.178)

where
mmse(i, snr) = E

{
(Xi − E {Xi | Y n; snr})2

}
(2.179)

is the noncausal MMSE at time i given the entire observation Y n.

It is important to note that the MMSE in this case is noncausal since the estimate is
obtained through optimal smoothing. It is also interesting to consider optimal filtering and
prediction in this setting. Let the MMSE of optimal filtering be defined as

cmmse(i, snr) = E
{(

Xi − E
{

Xi | Y i; snr
})2}

, (2.180)

and the MMSE of optimal one-step prediction as

pmmse(i, snr) = E
{(

Xi − E
{

Xi | Y i−1; snr
})2}

. (2.181)

In discrete-time setting, the identity (2.4) still holds, while the relationship between
the mutual information and the causal MMSEs (Duncan’s Theorem) does not: Instead,
the mutual information is lower bounded by the filtering error but upper bounded by the
prediction error.

Theorem 2.10 The input-output mutual information satisfies:

snr

2

n∑
i=1

cmmse(i, snr) ≤ I (Xn;Y n) ≤ snr

2

n∑
i=1

pmmse(i, snr). (2.182)

Proof: Consider the discrete-time model (2.177) and its piecewise constant continuous-
time counterpart:

dYt =
√

snr Xdte dt + dWt, t ∈ [0,∞). (2.183)

It is clear that in the time interval (i− 1, i] the input to the continuous-time model is equal
to the random variable Xi. Note the delicacy in notation. Y n

0 stands for a sample path of
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the continuous-time random process {Yt, t ∈ [0, n]}, Y n stands for a discrete-time process
{Y1, . . . , Yn}, or the vector consisting of samples of {Yt} at integer times, whereas Yi is
either the i-th point of Y n or the sample of {Yt} at t = i depending on the context. It is
easy to see that the samples of {Yt} at natural numbers are sufficient statistics for the input
process Xn. Hence

I (Xn;Y n) = I (Xn;Y n
0 ) , n = 1, 2, . . . . (2.184)

Note that the causal MMSE of the continuous-time model takes the same value as the causal
MMSE of the discrete-time model at integer values i. Thus it suffices to use cmmse(·, snr)
to denote the causal MMSE under both discrete- and continuous-time models. Here,
cmmse(i, snr) is the MMSE of the estimation of Xi given the observation Y i which is a
sufficient statistic of Y i

0 , while pmmse(i, snr) is the MMSE of the estimation of Xi given the
observation Y i−1 which is a sufficient statistic of Y i−1

0 . Suppose that t ∈ (i−1, i]. Since the
filtration generated by Y i

0 (or Y i) contains more information about Xi than the filtration
generated by Y t

0 , which in turn contains more information about Xi than Y i−1
0 , one has

cmmse(dte, snr) ≤ cmmse(t, snr) ≤ pmmse(dte, snr). (2.185)

Integrating (2.185) over t establishes Theorem 2.10 by noting also that

I (Xn;Y n) =
snr

2

∫ n

0
cmmse(t, snr) dt (2.186)

due to Theorem 2.7.

The above analysis can also be reversed to prove the continuous-time results (Theorems
2.6 and 2.7) starting from the discrete-time ones (Theorems 2.9 and 2.10) through piecewise
constant process approximations at least for continuous input processes. In particular, let
Xn be the samples of Xt equally spaced in [0, T ]. Letting n →∞ allows Theorem 2.7 to be
recovered from Theorem 2.10, since the sum on both sides of (2.182) (divided by n) converge
to integrals and the prediction MMSE converges to the causal MMSE due to continuity.

2.5 Generalizations and Observations

2.5.1 General Additive-noise Channel

Theorems 2.1 and 2.2 show the relationship between the mutual information and the MMSE
as long as the mutual information is between a stochastic signal and an observation of it in
Gaussian noise. Let us now consider the more general setting where the input is preprocessed
arbitrarily before contamination by additive Gaussian noise as depicted in Figure 2.7. Let X
be a random object jointly distributed with a real-valued random variable Z. The channel
output is expressed as

Y =
√

snr Z + N, (2.187)

where the noise N ∼ N (0, 1) is independent of X and Z. The preprocessor can be regarded
as a channel with arbitrary conditional probability distribution PZ|X . Since X—Z—Y is a
Markov chain,

I(X;Y ) = I(Z;Y )− I(Z;Y |X). (2.188)

Note that given (X, Z), the channel output Y is Gaussian. Two applications of Theorem
2.1 to the right hand side of (2.188) give the following:
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X - PZ|X
Z -

⊗
√

snr

6

-
⊕?N

- Y

Figure 2.7: A general additive-noise channel.

Theorem 2.11 Let X—Z—Y be a Markov chain and Z and Y be connected through
(2.187). If EZ2 < ∞, then

d
dsnr

I
(
X;
√

snr Z + N
)

=
1
2
mmse

(
Z|
√

snr Z + N
)
− 1

2
mmse

(
Z|X,

√
snr Z + N

)
. (2.189)

The special case of this result for zero SNR is given by Theorem 1 of [77]. As a simple
illustration of Theorem 2.11, consider a scalar channel where X ∼ N

(
0, σ2

X

)
and PZ|X is a

Gaussian channel with noise variance σ2. Then straightforward calculations yield

I(X;Y ) =
1
2

log
(

1 +
snr σ2

X

1 + snr σ2

)
, (2.190)

and

mmse
(
Z|
√

snr Z + N
)

=
σ2

X + σ2

1 + snr
(
σ2

X + σ2
) , (2.191)

mmse
(
Z|X,

√
snr Z + N

)
=

σ2

1 + snr σ2
. (2.192)

The relationship (2.189) is easy to check.
In the special case where the preprocessor is a deterministic function of the input, e.g.,

Z = g(X) where g(·) is an arbitrary deterministic mapping, the second term on the right
hand side of (2.189) vanishes. Note also that since I(X;Y ) = I(g(X);Y ) in this case, one
has

d
dsnr

I(X;
√

snr g(X) + N) =
1
2
mmse

(
g(X) |

√
snr g(X) + N

)
. (2.193)

Hence (2.14) holds verbatim where the MMSE in this case is defined as the minimum error
in estimating g(X). Indeed, the vector channel in Theorem 2.2 is merely a special case of
the vector version of this general result.

One of the many scenarios in which the general result can be useful is the intersymbol
interference channel. The input (Zi) to the Gaussian channel is the desired symbol (Xi) cor-
rupted by a function of the previous symbols (Xi−1, Xi−2, . . . ). Theorem 2.11 can possibly
be used to calculate (or bound) the mutual information given a certain input distribution.
Another domain of applications of Theorem 2.11 is the case of fading channels known or
unknown at the receiver.

Using similar arguments as in the above, nothing prevents us from generalizing the
continuous-time results in Section 2.3 to a much broader family of models:

dYt =
√

snr Zt dt + dWt, (2.194)
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where {Zt} is a random process jointly distributed with the random message X, and {Wt}
is a Wiener process independent of X and {Zt}. The following is straightforward in view
of Theorem 2.11.

Theorem 2.12 As long as the input {Zt} to the channel (2.194) has finite average power,

d
dsnr

I
(
X;Y T

0

)
=

1
2T

∫ T

0
mmse

(
Zt |Y T

0

)
−mmse

(
Zt |X, Y T

0

)
dt. (2.195)

In case Zt = gt(X), where gt(·) is an arbitrary time-varying mapping, Theorems 2.6-
2.8 hold verbatim except that the finite-power requirement now applies to gt(X), and the
MMSEs in this case refer to the minimum errors in estimating gt(X).

Extension of the results to the case of colored Gaussian noise is straightforward by
filtering the observation to whiten the noise and recover the canonical model of the form
(2.187).

2.5.2 New Representation of Information Measures

Consider a discrete random variable X. The mutual information between X and its obser-
vation through a Gaussian channel converges to the entropy of X as the SNR of the channel
goes to infinity.

Lemma 2.6 For any discrete real-valued random variable X,

H(X) = lim
snr→∞

I
(
X;
√

snr X + N
)
. (2.196)

Proof: See Appendix A.7.

Note that if H(X) is infinity then the mutual information in (2.196) also increases without
bound as snr → ∞. Moreover, the result holds if X is subject to an arbitrary one-to-one
mapping g(·) before going through the channel. In view of (2.193), the following theorem
is immediate.

Theorem 2.13 For any discrete random variable X and one-to-one mapping g(·) that
maps X to real numbers, the entropy in nats can be obtained as

H(X) =
1
2

∫ ∞

0
E
{(

g(X)− E
{

g(X) |
√

snr g(X) + N
})2} dsnr. (2.197)

It is interesting to note that the integral on the right hand side of (2.197) is not dependent
on the choice of g(·), which is not evident from estimation-theoretic properties alone. It is
possible, however, to check this in special cases.

Other than for discrete random variables, the entropy is not defined and the input-
output mutual information is in general unbounded as SNR increases. One may consider
the divergence between the input distribution and a Gaussian distribution with the same
mean and variance:

Lemma 2.7 For any real-valued random variable X. Let X ′ be Gaussian with the same
mean and variance as X, i.e., X ′ ∼ N

(
EX, σ2

X

)
. Let Y and Y ′ be the output of the channel

(2.5) with X and X ′ as the input respectively. Then

D (PX‖PX′) = lim
snr→∞

D (PY ‖PY ′) . (2.198)
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The lemma can be proved using monotone convergence and the fact that data processing
reduces divergence. Note that in case the divergence between PX and PX′ is infinity, the
divergence between PY and PY ′ also increases without bound. Since

D (PY ‖PY ′) = I(X ′;Y ′)− I(X;Y ), (2.199)

the following theorem is straightforward by applying Theorem 2.1.

Theorem 2.14 For any random variable X with σ2
X < ∞,

D
(
PX‖N (EX, σ2

X)
)

=
1
2

∫ ∞

0

σ2
X

1 + snr σ2
X

−mmse
(
X|
√

snr X + N
)

dsnr. (2.200)

Note that the integrand in (2.200) is always positive since Gaussian inputs maximizes the
MMSE. Also, Theorem 2.14 holds even if the divergence is infinity, for example in the case
that X is not a continuous random variable.

In view of Theorem 2.14, the differential entropy of X can also be expressed as a function
of the MMSE:

h(X) =
1
2

log
(
2πe σ2

X

)
− D (PX‖PX′) (2.201)

=
1
2

log
(
2πe σ2

X

)
− 1

2

∫ ∞

0

σ2
X

1 + snr σ2
X

−mmse
(
X|
√

snr X + N
)

dsnr.(2.202)

Theorem 2.11 provides an apparently new means of representing the mutual information
between an arbitrary random variable X and a real-valued random variable Z:

I(X;Z) =
1
2

∫ ∞

0
E
{(

E
{

Z |
√

snr Z + N,X
})2 − (E{Z |

√
snr Z + N

})2} dsnr, (2.203)

where N is standard Gaussian.
It is remarkable that the entropy, differential entropy, divergence and mutual informa-

tion in fairly general settings admit expressions in pure estimation-theoretic quantities. It
remains to be seen whether such representations find any application.

2.5.3 Generalization to Vector Models

Just as that Theorem 2.1 obtained under a scalar model has its counterpart (Theorem 2.2)
under a vector model, all the results in Sections 2.3 and 2.4 are generalizable to vector
models, under both discrete-time and continuous-time settings. For example, the vector
continuous-time model takes the form of

dY t =
√

snr Xt dt + dW t, (2.204)

where {W t} is an m-dimensional Wiener process, and {Xt} and {Y t} are m-dimensional
random processes. Theorem 2.6 holds literally, while the mutual information rate, estima-
tion errors, and power are now defined with respect to the vector signals and their Euclidean
norms. Note also that Duncan’s Theorem was originally given in vector form [21]. It should
be noted that the incremental-channel devices are directly applicable to the vector models.

In view of the above generalizations, the discrete- and continuous-time results in Sections
2.5.1 and 2.5.2 also extend straightforwardly to vector models.
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2.6 Summary

This chapter reveals for the first time that the input-output mutual information and the
(noncausal) MMSE in estimating the input given the output determine each other by a sim-
ple differential formula under both discrete- and continuous-time, scalar and vector Gaussian
channel models (Theorems 2.1, 2.2, 2.4, 2.6 and 2.9). A consequence of this relationship
is the coupling of the MMSEs achievable by smoothing and filtering with arbitrary signals
corrupted by Gaussian noise (Theorems 2.8 and 2.10). Moreover, new expressions in terms
of MMSE are found for information measures such as entropy and input-output mutual
information of a general channel with real/complex-valued output (Theorems 2.3, 2.5, 2.11,
2.12, 2.13 and 2.14). Asymptotics of the mutual information and MMSE are studied in
both the low- and high-SNR domains.

The idea of incremental channels is the underlying basis for the most streamlined proof
of the main results and for their interpretation. The white Gaussian nature of the noise is
key to this approach since 1) the sum of independent Gaussian variates is Gaussian; and 2)
the Wiener process (time-integral of white Gaussian noise) has independent increments.

Besides those given in Section 2.2.5, applications of the relationships revealed in this
chapter are abundant. The fact that the mutual information and the (noncausal) MMSE
determine each other by a simple formula also provides a new means to calculate or bound
one quantity using the other. An upper (resp. lower) bound for the mutual information
is immediate by bounding the MMSE using a suboptimal (resp. genie aided) estimator.
Lower bounds on the MMSE, e.g., [7], may also lead to new lower bounds on the mutual
information.

Results in this chapter have been published in part in [37] and are included in a submitted
paper [36]. Extensions of this work are found in [34, 35]. In a follow-up to this work, Zakai
has recently extended the central formula (2.4) to the abstract Wiener space [120], which
generalizes the classical m-dimensional Wiener process.



Chapter 3

Multiuser Channels

In contrast to the canonical additive Gaussian channels studied in Chapter 2, this chapter
assumes a specific structure of the communication channel where independent inputs come
from multiple users, and study individual user’s error performance and reliable information
rate, as well as the overall efficiency of the multiuser system.

3.1 Introduction

Consider a multidimensional Euclidean space in which each user (or source) randomly picks
a signature vector and modulates its own symbol onto it. The channel output is then a
superposition of all users’ signals corrupted by Gaussian noise. Such a model, best described
as a matrix channel, is very versatile and is widely used in applications that include code-
division multiple access, multi-input multi-output systems, etc. With knowledge of all
signature waveforms, the task of an estimator is to recover the transmitted symbols from
some or all users.

This chapter focuses on a paradigm of multiuser channels, randomly spread code-division
multiple access, in which a number of users share a common media to communicate to a sin-
gle receiver simultaneously over the same bandwidth. Each user in a CDMA system employs
a “signature waveform” with a large time-bandwidth product that results in many advan-
tages particularly in wireless communications: frequency diversity, robustness to channel
impairment, ease of resource allocation, etc. The price to pay is multiple-access interference
due to non-orthogonal spreading sequences from all users. Numerous multiuser detection
techniques have been proposed to mitigate the MAI to various degrees. This work concerns
the efficiency of the multiuser system in two aspects: One is multiuser efficiency, which in
general measures the quality of multiuser detection outputs under uncoded transmission;
the other is spectral efficiency, which is the total information rate normalized by the di-
mensionality of the CDMA channel achievable by coded transmission. As one shall see, the
multiuser efficiency and spectral efficiency are tightly related to the mean-square error of
multiuser detection and the mutual information between the input and detection output
respectively.

3.1.1 Gaussian or Non-Gaussian?

The most efficient use of a multiuser channel is through jointly optimal decoding, which
is an NP-complete problem [110]. A common suboptimal strategy is to apply a multiuser

37
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detector front end with polynomial complexity and then perform independent single-user
decoding. The quality of the detection output fed to decoders is of great interest.

In [106, 107, 108], Verdú first used the concept of multiuser efficiency in binary uncoded
transmission to refer to the degradation of the output signal-to-noise ratio relative to a
single-user channel calibrated at the same BER. The multiuser efficiencies of matched filter,
decorrelator, and linear MMSE detector, were found as functions of the correlation matrix
of the spreading sequences. Particular attention has been given to the asymptotic multiuser
efficiency in the more tractable region of high SNR. Expressions for the optimum uncoded
asymptotic multiuser efficiency were found in [108, 109].

In the large-system limit, where the number of users and the spreading factor both
tend to infinity with a fixed ratio, the dependence of system performance on the spreading
sequences vanishes, and random matrix theory proves to be an excellent tool for analyzing
linear detectors. The large-system multiuser efficiency of the matched filter is trivial [112].
The multiuser efficiency of the MMSE detector is obtained explicitly in [112] for the equal-
power case and in [99] as the solution to the so-called Tse-Hanly fixed-point equation in the
case with flat fading. The decorrelator is also analyzed [23, 39]. The success with a wide
class of linear detectors hinges on the facts that 1) The detection output (e.g., for user k) is
a sum of independent components: the desired signal, the MAI and Gaussian background
noise:

X̃k = Xk + maik + Nk; (3.1)

and 2) The multiple-access interference maik is asymptotically Gaussian (e.g., [44]). Clearly,
as far as linear multiuser detectors are concerned, the performance is fully characterized by
the SNR degradation due to MAI regardless of the input distribution, i.e., the multiuser ef-
ficiency. Therefore, by incorporating the linear detector into the channel, an individual user
experiences essentially a single-user Gaussian channel with noise enhancement associated
with the MAI variance.

The error performance of nonlinear detectors such as the optimal ones are hard problems.
The difficulty here is inherent to nonlinear operations in estimation. That is, the detection
output cannot be decomposed as a sum of independent components associated with the
desired signal and interferences respectively. Moreover, the detection output is in general
asymptotically non-Gaussian conditioned on the input. An extreme case is the maximum-
likelihood multiuser detector for binary transmission, the hard decision output of which
takes only two values. The difficulty remains if one looks at the soft detection output, which
is the mean value of the posterior probability distribution. Hence, unlike for a Gaussian
output, the conditional variance of a general detection output does not lead to simple
characterization of multiuser efficiency and error performance. For illustration, Figure 3.1
plots the probability density function obtained from the histogram of the soft output statistic
of the individually optimal detector given that +1 was transmitted. The simulated system
has 8 users, a spreading factor of 12, and an SNR of 2 dB. Note that negative decision
values correspond to decision error; hence the area under the curve on the left half plane
gives the BER. The distribution shown in Figure 3.1 is far from Gaussian. Thus the usual
notion of output SNR fails to capture the essence of system performance. In fact, much
literature is devoted to evaluating the error performance by Monte Carlo simulation.

This chapter makes a contribution to the understanding of the multiuser detection in
the large-system regime. It is found under certain assumptions that the output decision
statistic of a nonlinear detector, such as the one whose distribution is depicted by Figure
3.1, converges in fact to a very simple monotonic function of a “hidden” Gaussian random
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Figure 3.1: The probability density function obtained from the histogram of an individually
optimal soft detection output conditioned on +1 being transmitted. The system has 8 users,
the spreading factor is 12, and the SNR 2 dB.
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Figure 3.2: The probability density function obtained from the histogram of the hidden
equivalent Gaussian statistic conditioned on +1 being transmitted. The system has 8 users,
the spreading factor is 12, and the SNR 2 dB. The asymptotic Gaussian distribution is also
plotted for comparison.
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variable, i.e.,
X̃k = f(Xk + maik + Nk). (3.2)

One may contend that it is always possible to monotonically map a non-Gaussian distribu-
tion to a Gaussian one. What is surprisingly simple and powerful here is that the mapping
f does not depend on the transmitted symbols which we wish to estimate in the first place;
neither does it depend on the instantaneous spreading sequences in the large-system regime.
Indeed, the function f is determined by merely a few parameters of the system. By applying
an inverse of this function, an equivalent Gaussian statistic is recovered, so that we are back
to the familiar ground where the output SNR (defined for the Gaussian statistic) completely
characterizes system performance. In other words, the multiuser efficiency can still be ob-
tained as the ratio of the output and input SNRs. Since each user enjoys now an equivalent
single-user Gaussian channel with an enhanced Gaussian noise in lieu of the MAI, we will
refer to this result as the “decoupling principle”. In this chapter, under certain assumption,
the decoupling principle will be shown to hold for not only optimal detection, but also a
generic multiuser detector front end, called the generalized posterior mean estimator, which
can be particularized to the matched filter, decorrelator, linear MMSE detector, as well as
the jointly and individually optimal detectors. Moreover, the principle holds for arbitrary
input distributions. Although results on performance analysis of multiuser detections are
abundant, we believe that this work is the first to point out the decoupling principle, and
henceforth introduces a completely new angle to multiuser detection problems.

For illustration, Figure 3.2 plots the probability density function of the Gaussian statistic
(obtained by applying the inverse function f−1) corresponding to the non-Gaussian one in
Figure 3.1. The theoretically predicted density function is also shown for comparison. The
“fit” is good considering that a relatively small system of 8 users with a processing gain of
12 is considered. Note that in case the multiuser detector is linear, the mapping f is also
linear, and (3.2) reduces to (3.1).

By merit of the decoupling principle, the mutual information between the input and the
output of the generic detector for each user is exactly the input-output mutual information
of the equivalent scalar Gaussian channel under the same input, which now admits a simple
analytical expression. Hence the large-system spectral efficiency of several well-known linear
detectors, first found in [105] and [85] with and without fading respectively, can be recovered
straightforwardly using the multiuser efficiency and the decoupling principle. New results for
spectral efficiency of nonlinear detector and arbitrary inputs under both joint and separate
decoding are obtained. The additive decomposition of optimal spectral efficiency as a sum of
single-user efficiencies and a joint decoding gain [85] applies under more general conditions
than originally thought.

It should be pointed out here that the large-system results are close representatives of
practical system of moderate size. As seen numerically, a system of as few as 8 users can
often be well approximated as a large system.

3.1.2 Random Matrix vs. Spin Glass

Much of the early success in the large-system analysis of linear detectors relies on the fact
that the multiuser efficiency of a finite-size system can be written as an explicit function of
the singular values of the random correlation matrix, the empirical distributions of which
converge to a known function in the large-system limit [100, 3]. As a result, the limit of
the multiuser efficiency can be obtained as an integral with respect to the limiting singular-
value distribution. Indeed, this random matrix technique is applicable to analyzing any
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performance measure that can be expressed as a function of the singular values. Based on
an explicit expression for CDMA channel capacity in [103], Verdú and Shamai quantified
the optimal spectral efficiency in the large-system limit [105, 85] (see also [32, 81]). The
expression found in [105] also solved the capacity of single-user narrowband multiantenna
channels as the number of antennas grows—a problem that was open since the pioneering
work of Foschini [29] and Teletar [97]. Unfortunately, few explicit expressions of the effi-
ciencies in terms of singular values are available beyond the above cases. Much less success
has been reported in the application of random matrix theory in other problems, for exam-
ple, the multiuser efficiency of nonlinear detectors and the spectral efficiency achieved by
practical signaling constellations such as m-PSK.

A major consequence of random matrix theory is that the dependence of the performance
measures on the spreading sequences vanishes as the system size increases without bound.
In other words, the performance measures are “self-averaging.” This property is nothing
but a manifestation of a fundamental law that the fluctuation of macroscopic properties
of certain many-body systems vanishes in thermodynamic limit, i.e., when the number of
interacting bodies becomes large. This falls under the general scope of statistical physics,
whose principal goal is to study the macroscopic properties of physical systems containing
a large number of particles starting from knowledge of microscopic interactions. Indeed,
the asymptotic eigenvalue distribution of large correlation matrices can be derived via sta-
tistical physics [82]. Tanaka pioneered statistical physics concepts and methodologies in
multiuser detection and obtained the large-system uncoded minimum BER (hence the mul-
tiuser efficiency) and spectral efficiency with equal-power antipodal inputs [93, 94, 95, 96].
We further elucidated the relationship between CDMA and statistical physics and gener-
alized Tanaka’s results to the case of non-equal powers [39]. Inspired by [96], Müller and
Gerstacker [72] studied the channel capacity under separate decoding and noticed that the
additive decomposition of the optimum spectral efficiency in [85] holds also for binary in-
puts. Müller thus further conjectured the same formula to be valid regardless of the input
distribution [71].

In this chapter, we continue along the line of [96, 39] and present a unified treatment of
Gaussian CDMA channels and multiuser detection assuming an arbitrary input distribution
and fading characteristic. A wide class of multiuser detectors, optimal as well as suboptimal,
are treated uniformly under the framework of posterior mean estimators. The central result
is the above-mentioned decoupling principle, and analytical solutions are also reported on
the multiuser efficiency and spectral efficiency under both general and specific settings.

The key technique in this chapter, the replica method, has its origin in spin glass theory
in statistical physics [22]. Analogies between statistical physics and neural networks, coding,
image processing, and communications have long been noted (e.g., [73, 89]). There have
been many recent activities to apply statistical physics wisdom in error-correcting codes
[49, 69, 50]. The rather unconventional method was first used by Tanaka to analyze several
well-known CDMA multiuser detectors [96]. In this chapter, we extend Tanaka’s original
ideas and draw a parallel between the general statistical inference problem in multiuser
communications and the problem of determining the configuration of random spins subject
to quenched randomness. A mathematical framework is then developed in the CDMA
context based on the replica recipe. For the purpose of analytical tractability, we will
assume that, 1) the self-averaging property applies, 2) the “replica trick” is valid, and 3)
replica symmetry holds. These assumptions have been used successfully in many problems
in statistical physics as well as neural networks and coding theory, to name a few, while
a complete justification of the replica method is an ongoing effort in mathematics and



42 Multiuser Channels

��� ���
�

�

�

�

�

�

���

���

���

	

	

	


 �
��� �����


 �
��� ��� �


 �
����� � �

�����������
�

�����������
�

�����������
�

 

 

 

! "
#$ % &(' )

*
&+ ,

�(-.��/���0������-1�32
�
�
�

Figure 3.3: The CDMA channel with joint decoding.

physics communities. The results in this chapter are based on these assumptions and
therefore a rigorous justification is pending on breakthroughs in those problems. In case
the assumptions fail to hold, results obtained using the replica method may still capture
many of the qualitative features of the system performance. Indeed, such results are often
found as good approximations in many cases where some of the assumptions are not true
[68, 19]. Furthermore, the decoupling principle carries great practicality and may find
convenient uses as long as the analytical predictions are close to the reality even if not
exact.

The remainder of this chapter is organized as follows. In Section 3.2, we give the model
and summarize major results. Relevant concepts and methodologies in statistical physics are
introduced in Section 3.3. Detailed calculation based on a real-valued channel is presented
in Section 3.4. Complex-valued channels are discussed in Section 3.5 followed by some
numerical examples in Section 3.6.

3.2 Model and Summary of Results

3.2.1 System Model

Consider the K-user CDMA system with spreading factor L depicted in Figure 3.3. Each
encoder maps its message into a sequence of channel symbols. All users employ the same
type of signaling so that at each interval the K symbols are i.i.d. random variables with
distribution PX , which has zero mean and unit variance. Let X = [X1, . . . , XK ]> denote
the vector of input symbols from the K users. For notational convenience in explaining
some of the ideas, it is assumed that either a probability density function or a probability
mass function of PX exists, and is denoted by pX . Let also pX(x) =

∏K
k=1 pX(xk) denote

the joint (product) distribution. The results in this chapter, however, hold in full generality
and do not depend on the existence of a probability density or mass function.

Let user k’s instantaneous SNR be denoted by snrk and Γ = diag{√snr1 , . . . ,
√

snrK }.
Denote the spreading sequence of user k by sk = 1√

L
[S1k, S2k, . . . , SLk]>, where Snk are i.i.d.

random variables with zero mean and finite moments. Let the symbols and spreading se-
quences be randomly chosen for each user and not dependent on the SNRs. The L×K chan-
nel state matrix is denoted by S = [

√
snr1 s1, . . . ,

√
snrK sK ]. Assuming symbol-synchronous
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Figure 3.4: The CDMA channel with separate decoding.

transmission, a memoryless Gaussian CDMA channel with flat fading is described by:

Y =
K∑

k=1

√
snrk skXk + N (3.3)

= SX + N (3.4)

where N is a vector consisting of i.i.d. zero-mean Gaussian random variables. Depend-
ing on the domain that the inputs and the spreading chips take values, the input-output
relationship (3.4) describes either a real-valued or a complex-valued fading channel.

The linear system (3.4) is quite versatile. In particular, with snrk = snr for all k and snr
deterministic, it models the canonical MIMO channel in which all propagation coefficients
are i.i.d. (see (2.18)). An example is single-user communication with K transmit antennas
and L received antennas, where the channel coefficients are not known to the transmitter.

3.2.2 Posterior Mean Estimation

The most efficient use of channel (3.4) in terms of information capacity is achieved by op-
timal joint decoding as depicted in Figure 3.3. The input-output mutual information of
the CDMA channel given the channel state S is I(X;Y |S). Due to the NP-complete com-
plexity of joint decoding, one often breaks the process into multiuser detection followed by
separate decoding as shown in Figure 3.4. A multiuser detector front end with no knowledge
of the error-control codes used by the encoder outputs an estimate of the transmitted sym-
bols given the received signal and the channel state. Each decoder only takes the decision
statistic of a single user of interest to decoding without awareness of the existence of any
other users (in particular, without knowledge of the spreading sequences). By adopting this
separate decoding approach, the channel together with the multiuser detector front end is
viewed as a single-user channel for each user. The detection output sequence for an individ-
ual user is in general not a sufficient statistic for decoding even this user’s own information.
Hence the sum of the single-user mutual informations is less than the input-output mutual
information of the multiple-access channel.

To capture the intended suboptimal structure, one has to restrict the capability of the
multiuser detector here; otherwise the detector could in principle encode the channel state
and the received signal (S,Y ) into a single real number as its output to each user, which is
a sufficient statistic for all users! A plausible choice is the posterior mean estimator, which
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computes the mean of the posterior probability distribution pX|Y ,S , hereafter denoted by
angle brackets 〈·〉:

〈X〉 = E {X | Y ,S} . (3.5)

In view of Chapter 2, (3.5) represents exactly the conditional mean estimator, or CME,
which achieves the MMSE. It is however termed PME here in accordance to the Bayesian
statistics literature for reasons to be clear shortly.

The PME can be understood as an “informed” optimal estimator which is supplied
with the posterior probability distribution pX|Y ,S . Of course we always assume that the
channel state S is revealed to the estimator, so that upon receipt of the channel output
Y , the informed estimator computes the posterior mean. A generalization of the PME
is conceivable: Instead of informing the estimator with the actual posterior distribution
pX|Y ,S , we can supply at will any other well-defined conditional distribution qX|Y ,S . The
estimator can nonetheless perform “optimal” estimation based on the postulated measure
q. We call this the generalized posterior mean estimation, which is conveniently denoted as

〈X〉q = Eq {X | Y ,S} (3.6)

where Eq{·} stands for the expectation with respect to the postulated measure q. For
consistency, the subscripts in (3.6) can be dropped if the postulated measure q coincides
with the true one p.

A postulated measure q different from p in general causes degradation in detection
output. Such a strategy may be either due to lack of knowledge of the true statistics or
a particular choice that corresponds to a certain estimator of interest. In principle, any
deterministic estimation can be regarded as a generalized PME since we can always choose
to put a unit mass at the desired estimation output given (Y ,S). We will see in Section
3.2.3 that by choosing an appropriate measure q, it is easy to particularize the generalized
PME to many important multiuser detectors. As will be shown in this chapter, the generic
representation (3.6) allows a uniform treatment of a large family of multiuser detectors
which results in a simple performance characterization. In general, information about the
channel state S is also subject to manipulation, but this is out of the scope of this thesis.

Clearly, pX|Y ,S is induced from the input distribution pX and the conditional Gaussian
density function pY |X,S of the channel (3.4) using the Bayes formula:1

pX|Y ,S(x|y,S) =
pX(x)pY |X,S(y|x,S)∫

pX(x)pY |X,S(y|x,S) dx
. (3.7)

In this work, the knowledge supplied to the generalized PME is assumed to be the posterior
probability distribution qX|Y ,S corresponding to a postulated CDMA system, where the
input distribution is an arbitrary qX , and the input-output relationship of the postulated
channel differs from the actual channel (3.4) by only the noise variance. That is, the
postulated channel is characterized by

Y = SX + σN ′ (3.8)

where the channel state matrix S is the same as that of the actual channel, and N ′ is
statistically the same as the Gaussian noise N in (3.4). Easily, qX|Y ,S is determined by

1Existence of a probability density function pX is assumed for notational convenience, although the Bayes
hold for an arbitrary measure PX .
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qX and qY |X,S according to the Bayes formula akin to (3.7). Here, σ serves as a control
parameter of the postulated channel. Also, the postulated input distribution qX has zero-
mean and finite moments. In short, we study a family of multiuser detectors parameterized
by the postulated input and noise level (qX , σ).

It should be noted that posterior mean estimation under postulated probability distribu-
tions has been used in Bayes statistics literature. This technique is introduced to multiuser
detection by Tanaka in the special case of equal-power users with binary or Gaussian inputs
[93, 94, 96]. This work, however, is the first to treat multiuser detection in a general scope
that includes arbitrary input and arbitrary SNR distribution.

3.2.3 Specific Detectors

We identify specific choices of the postulated input distribution qX and noise level σ under
which the generalized PME is particularized to well-known multiuser detectors.

Linear Detectors

Let the postulated input distribution be standard Gaussian

qX(x) =
1√
2π

e−
x2

2 . (3.9)

Then the posterior probability distribution is

qX|Y ,S(x|y,S) = [Z(y,S)]−1 exp
[
−1

2
‖x‖2 − 1

2σ2
‖y − Sx‖2

]
(3.10)

where Z(y,S) is a normalization factor such that (3.10) is a probability density. Since (3.10)
is a Gaussian density, it is easy to see that its mean is a linear filtering of the received signal
Y :

〈X〉q =
[
S>S + σ2I

]−1

S>Y . (3.11)

If σ →∞, (3.11) gives
σ2 〈Xk〉q −→ s>k Y , (3.12)

and hence the generalized PME estimate is consistent with the matched filter output. If
σ = 1, (3.11) is exactly the soft output of the linear MMSE detector. If σ → 0, (3.11)
converges to the soft output of the decorrelator. In general, the generalized PME reduces
to a linear detector by postulating Gaussian inputs regardless of the postulated noise level.
The control parameter σ can then be tuned to chose from the matched filter, decorrelator,
MMSE detector, etc.

Optimal Detectors

Let the postulated input distribution qX be identical to the true one, pX . The posterior
probability distribution is

qX|Y ,S(x|y,S) = [Z(y,S)]−1 pX(x) exp
[
− 1

2σ2
‖y − Sx‖2

]
(3.13)

where Z(y,S) is a normalization factor.
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Suppose that the postulated noise level σ → 0, then most of the probability mass of the
distribution qX|Y ,S is concentrated on a vector that achieves the minimum of ‖y − Sx‖,
which also maximizes the likelihood function pY |X,S(y|x,S). The generalized PME output
limσ→0 〈X〉q is thus equivalent to that of jointly optimal (or maximum-likelihood) detection
[112].

Alternatively, if σ = 1, then the postulated measure q coincides with the true measure p,
i.e., q ≡ p. The PME outputs 〈X〉 and is referred to as the soft version of the individually
optimal multiuser detector [112]. Indeed, in case of m-PSK (resp. binary) inputs, hard
decision of its soft output gives the most likely value of the transmitted symbol (resp. bit).

Also worth mentioning here is that, if σ → ∞, the generalized PME reduces to the
matched filter. This can be easily verified by noticing that

qX|Y ,S(x|y,S) = pX(x)
[
1− 1

2σ2
‖y − Sx‖2 +O

(
σ−4

)]
, (3.14)

and hence
σ2 〈X〉q → S>Y in L2 as σ →∞. (3.15)

3.2.4 Main Results

This subsection summarizes the main results of this chapter. The replica analysis we carry
out to obtain these results is relegated to Section 3.3 and 3.4.

Consider the generalized posterior mean estimator parameterized by (qX , σ). The goal
here is to quantify for each user k the distribution of the detection output 〈Xk〉q condi-
tioned on the input Xk, the mutual information I(Xk; 〈Xk〉q |S) between the input and the
output of the front end, as well as the overall spectral efficiency of optimal joint decoding
1
LI(X;Y |S). Although these quantities are all dependent on the realization of the channel
state, in the large-system asymptote such dependence vanishes. By a large system we refer
to the limit that both the number of users K and the spreading factor L tend to infinity
but with K/L, known as the system load, converging to a positive number β, which may be
greater than 1. It is also assumed that {snrk}K

k=1 are i.i.d. with distribution Psnr, hereafter
referred to as the SNR distribution. Clearly, the empirical distributions of the SNR of all
users converge to the same distribution Psnr as K → ∞. Note that this SNR distribution
captures the fading characteristics of the channel. All moments of the SNR distribution are
assumed to be finite.

The main results are stated in the following assuming a real-valued model. The complex-
valued model will be discussed in Section 3.5. In the real-valued system, the inputs Xk, the
spreading chips Snk, and all entries of the noise N take real values and have unit variance.
The characteristics of the actual channel and the postulated channel are

pY |X,S(y|x,S) = (2π)−
L
2 exp

[
−1

2
‖y − Sx‖2

]
, (3.16)

and

qY |X,S(y|x,S) =
(
2πσ2

)−L
2 exp

[
− 1

2σ2
‖y − Sx‖2

]
(3.17)

respectively.
Given the system load β, the input distribution pX to the actual CDMA channel, the

SNR distribution Psnr, and the input distribution qX and variance σ2 of the postulated
CDMA system, we express in these parameters the large-system limit of the multiuser
efficiency and spectral efficiency under both separate and joint decoding.
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Figure 3.5: The equivalent scalar Gaussian channel followed by a decision function.

The Equivalent Single-user Channel

Consider the scalar Gaussian channel depicted in Figure 3.5:

Z =
√

snr X +
1
√

η
N (3.18)

where snr > 0 is the input SNR, η > 0 the inverse noise variance and N ∼ N (0, 1) the
noise independent of the input X. The conditional distribution associated with the channel
is Gaussian:

pZ|X,snr;η(z|x, snr; η) =
√

η

2π
exp

[
−η

2
(
z −

√
snr x

)2]
. (3.19)

Let the input distribution be pX . The posterior mean estimate of X given the output Z is

〈X〉 = E {X|Z, snr; η} (3.20)

where the expectation is over the posterior probability distribution pX|Z,snr;η, which can
be obtained through Bayes formula from the input distribution pX and pZ|X,snr;η. It is
important to note that the single-user PME 〈X〉 is in general a nonlinear function of Z
parameterized by snr and η. Clearly, 〈X〉 is also the (nonlinear) MMSE estimate, since it
achieves the minimum mean-square error:

mmse(η snr) = E
{

(X − 〈X〉)2
∣∣ snr; η

}
. (3.21)

Note that this definition of mmse(·) is consistent with the one (2.8) in Chapter 2 under the
same input. The following is claimed for the multiuser posterior mean estimator (3.5).2

Claim 3.1 In the large-system limit, the distribution of the posterior mean estimate 〈Xk〉
of the multiple-access channel (3.4) conditioned on Xk = x being transmitted with signal-
to-noise ratio snrk is identical to the distribution of the posterior mean estimate 〈X〉 of the
scalar Gaussian channel (3.18) conditioned on X = x being transmitted with snr = snrk,
where the PME multiuser efficiency η (inverse noise variance of channel (3.18)) satisfies a
fixed-point equation:

η−1 = 1 + β E {snr ·mmse(η snr)} (3.22)

where the expectation is taken over the SNR distribution Psnr.
2Since the key assumptions made in Section 3.1 (essentially the replica method) are not rigorously justi-

fied, some of the results in this Chapter are referred to as claims. Nonetheless, proofs are provided in Section
3.4 based on those assumptions.
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The large-system limit result here is understood as the following. Let PK
〈Xk〉|Xk=x denote

the input-output conditional distribution defined on a system of size K, then as K → ∞,
PK
〈Xk〉|Xk=x converges weakly to the distribution P〈X〉|X=x associated with the equivalent

single-user channel for almost every x.
Claim 3.1 reveals that each single-user channel seen at the output of the PME for a

CDMA channel is equivalent to a scalar Gaussian channel with enhanced noise followed
by a (posterior mean) decision function as depicted in Figure 3.5. There exists a number
η ∈ [0, 1] associated with the multiuser system, called the multiuser efficiency, which is a
solution to the fixed-point equation (3.22). The effective SNR in each equivalent Gaussian
channel is the input SNR times the multiuser efficiency. In other words, the multiple-
access channel can be decoupled under nonlinear MMSE detection, where the effect of the
MAI is summarized as a single parameter η−1 as the noise enhancement. As stated in
Section 3.1, although the multiuser PME output 〈Xk〉 is in general non-Gaussian, it is in
fact asymptotically a function (the decision function (3.20)) of Z, a conditionally Gaussian
random variable centered at the actual input Xk scaled by

√
snrk.

It is straightforward to determine the multiuser efficiency η by (3.22). The following
functions play an important role in our development (cf. (2.103)):

pi(z, snr; η) = E
{

Xi pZ|X,snr;η(z |X, snr; η)
∣∣ snr

}
, i = 0, 1, . . . (3.23)

where the expectation is taken over the input distribution pX , and pZ|X,snr;η is the Gaussian
density associated with the scalar channel (3.18). The decision function (3.20) can be
written as

E {X|Z, snr; η} =
p1(Z, snr; η)
p0(Z, snr; η)

, (3.24)

and the MMSE

mmse(η snr) = 1−
∫

p2
1(z, snr; η)

p0(z, snr; η)
dz. (3.25)

The MMSE often allows simpler expressions than (3.25) for practical inputs (see examples
in Section 3.2.3). Otherwise numerical integrals can be applied to evaluate (3.23) and
henceforth (3.25). Thus, solutions to the fixed-point equation (3.22) can be found without
much difficulty. There are cases that (3.22) has more than one solution. The ambiguity is
resolved shortly in Claim 3.2.

Separate and Joint Decoding Spectral Efficiencies

The posterior mean decision function (3.24) is strictly monotone increasing (to be shown
in Section 3.4.2) and thus inconsequential in both detection- and information-theoretic
viewpoints. Hence the following corollary:

Corollary 3.1 In the large-system limit, the mutual information between the input Xk

and the output of the multiuser posterior mean estimator 〈Xk〉 is equal to the input-output
mutual information of the equivalent scalar Gaussian channel (3.18) with the same input
and SNR, and an inverse noise variance η as the PME multiuser efficiency.

According to Corollary 3.1, the large-system mutual information for a user with signal-
to-noise ratio snr is

I (Xk; 〈Xk〉 |S) → I(η snr) as K →∞ (3.26)



3.2 Model and Summary of Results 49

where the mutual information I(·) as a function of the SNR is consistent with the definition
(2.9) in Chapter 2, i.e.,

I(η snr) = D(pZ|X,snr;η || pZ|snr;η | pX), (3.27)

where pZ|snr;η is the marginal probability distribution of the output of channel (3.18). The
overall spectral efficiency under suboptimal separate decoding is the sum of the single-user
mutual informations divided by the dimensionality of the CDMA channel, which is simply

Csep(β) = β E {I(η snr)} . (3.28)

The optimal spectral efficiency under joint decoding is greater than (3.28), where the dif-
ference is given by the following:

Claim 3.2 The gain of optimal joint decoding over multiuser posterior mean estimation
followed by separate decoding in the large-system spectral efficiency of the multiple-access
channel (3.4) is determined by the PME multiuser efficiency η as3

Cjoint(β)− Csep(β) =
1
2
(η − 1− log η) = D (N (0, η) || N (0, 1)) . (3.29)

In other words, the spectral efficiency under joint decoding is

Cjoint(β) = β E {I(η snr)}+
1
2
(η − 1− log η). (3.30)

In case of multiple solutions to (3.22), the PME multiuser efficiency η is the one that gives
the smallest spectral efficiency under optimal joint decoding.

Indeed, Müller’s conjecture on the mutual information loss [71] is true for arbitrary
inputs and SNRs. Incidentally, the loss is identified as a (Kullback-Leibler) divergence
between two Gaussian distributions.

The fixed-point equation (3.22), which is obtained using the replica method, may have
multiple solutions. This is known as phase coexistence in statistical physics. Among those
solutions, the PME multiuser efficiency is the thermodynamically dominant one that gives
the smallest value of the joint decoding spectral efficiency (3.30). It is the solution that
carries relevant operational meaning in the communication problem. In general, as the
system parameters (such as the load) change, the dominant solution may switch from one
of the coexisting solutions to another. This is known as phase transition (refer to Section
3.6 for numerical examples).

Equal-power Gaussian input is the first known case that admits a closed form solution
for the multiuser efficiency [112] and henceforth also the spectral efficiencies. The spectral
efficiencies under joint and separate decoding were found for Gaussian inputs with fading
in [85], and then found implicitly in [96] and later explicitly [72] for equal-power users
with binary inputs. Formulas (3.28) and (3.30) give general formulas for arbitrary input
distributions and received powers.

Interestingly, the spectral efficiencies under joint and separate decoding are also related
by an integral equation. Even more so is the proof based on the central formula that links
mutual information and MMSE in Chapter 2.

3Note that natural logarithm is assumed throughout.
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Theorem 3.1 For every input distribution PX ,

Cjoint(β) =
∫ β

0

1
β′

Csep(β′) dβ′. (3.31)

Proof: Since Cjoint(0) = 0, it suffices to show

β
d
dβ

Cjoint(β) = Csep(β). (3.32)

By (3.28) and (3.30), it is enough to show

β
d
dβ

E {I(η snr)}+
1
2

d
dβ

[η − 1− log η] = 0. (3.33)

Noticing that η is a function of β, (3.33) is equivalent to

d
dη

E {I(η snr)}+
1
2β

(
1− η−1

)
= 0. (3.34)

By the central formula that links the mutual information and MMSE in Gaussian channels
(Theorem 2.1),

d
dη

I(ηsnr) =
snr

2
mmse(η snr). (3.35)

Thus (3.34) holds as η satisfies the fixed-point equation (3.22).

An interpretation of Theorem 3.1 through mutual information chain rule is given in
Section 3.2.6.

Generalized Posterior Mean Estimation

Given ξ > 0, consider a postulated scalar Gaussian channel similar to (3.18) with input
signal-to-noise ratio snr and inverse noise variance ξ:

Z =
√

snr X +
1√
ξ

U (3.36)

where U ∼ N (0, 1) is independent of X. Let the input distribution to this postulated chan-
nel be qX . Denote the underlying measure of the postulated system by q. A retrochannel is
characterized by the posterior probability distribution qX|Z,snr;ξ, namely, it takes in an input
Z and outputs a random variable X according to qX|Z,snr;ξ. Note that the retrochannel is
nothing but a materialization of the Bayes posterior distribution. The PME estimate of X
given Z is therefore the posterior mean under the measure q:

〈X〉q = Eq {X | Z, snr; ξ} . (3.37)

Consider now a concatenation of the scalar Gaussian channel (3.18) and the retrochannel
as depicted in Figure 3.6. Let the input to the Gaussian channel (3.18) be denoted by X0 to
distinguish it from the output X of the retrochannel. The probability law of the composite
channel is determined by snr and two parameters η and ξ. Let the generalized PME estimate
be defined as in (3.37). We define the mean-square error of the estimate as

mse(snr; η, ξ) = E

{(
X0 − 〈X〉q

)2
∣∣∣∣ snr; η, ξ

}
. (3.38)
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Figure 3.6: The equivalent single-user Gaussian channel, posterior mean estimator and
retrochannel.

We also define the variance of the retrochannel as

var(snr; η, ξ) = E

{(
X − 〈X〉q

)2
∣∣∣∣ snr; η, ξ

}
. (3.39)

Note that in the special case where q ≡ p and σ = 1, the postulated channel is identical to
the actual channel, and consequently

mse(snr;x, x) = var(snr;x, x) = mmse(x snr), ∀x. (3.40)

We claim the following for the generalized multiuser PME.

Claim 3.3 Let the generalized posterior mean estimator of the multiuser channel (3.4) be
defined by (3.6) parameterized by the postulated input distribution qX and noise level σ.
Then, in the large-system limit, the distribution of the multiuser detection output 〈Xk〉q
conditioned on Xk = x being transmitted with signal-to-noise ratio snrk is identical to the
distribution of the generalized PME 〈X〉q of the equivalent scalar Gaussian channel (3.18)
conditioned on X = x being transmitted with input signal-to-noise ratio snr = snrk, where the
multiuser efficiency η and the inverse noise variance ξ of the postulated scalar channel (3.36)
satisfy the coupled equations:

η−1 = 1 + β E {snr ·mse(snr; η, ξ)} , (3.41a)
ξ−1 = σ2 + β E {snr · var(snr; η, ξ)} , (3.41b)

where the expectations are taken over Psnr. In case of multiple solutions to (3.41), (η, ξ) is
chosen to minimize the free energy expressed as

F =− E

{∫
pZ|snr;η(z|snr; η) log qZ|snr;ξ(z|snr; ξ) d z

}
− 1

2
log

2π

ξ
− ξ

2η
+

σ2ξ(η − ξ)
2βη

+
1
2β

(ξ − 1− log ξ) +
1
2β

log(2π) +
ξ

2βη
.

(3.42)

Claim 3.3 is a generalization of Claim 3.1 to the case of generalized multiuser PME.
The multiuser detector in this case is parameterized by (qX , σ). Nonetheless, the single-user
channel seen at the output of the generalized PME is equivalent to a degraded Gaussian
channel followed by a decision function. However, the multiuser efficiency, same for all



52 Multiuser Channels

users, is now a solution to the coupled fixed-point equations (3.41), which is obtained using
the replica method to be shown later. In case of multiple solutions, only the parameters
(η, ξ) that minimize the free energy (3.42) conform with the operational meaning of the
communication system.

The decision function (3.37) is akin to (3.7):

Eq {X | Z, snr; ξ} =
q1(Z, snr; ξ)
q0(Z, snr; ξ)

(3.43)

where
qi(z, snr; ξ) = Eq

{
Xi qZ|X,snr;ξ(z|X, snr; ξ)

∣∣ snr
}

, i = 0, 1, . . . . (3.44)

Some algebra leads to

mse(snr; η, ξ) = 1 +
∫

p0(z, snr; η)
q2
1(z, snr; ξ)

q2
0(z, snr; ξ)

− 2p1(z, snr; η)
q1(z, snr; ξ)
q0(z, snr; ξ)

dz (3.45)

and

var(snr; η, ξ) =
∫

p0(z, snr; η)
q0(z, snr; ξ)q2(z, snr; ξ)− q2

1(z, snr; ξ)
q2
0(z, snr; ξ)

dz. (3.46)

Using (3.45) and (3.46), it is in general viable to find solutions to (3.41) numerically. Since
the decision function (3.43) is strictly monotone, the following result is straightforward:

Corollary 3.2 In the large-system limit, the mutual information between one user’s input
symbol and the output of the generalized multiuser posterior mean estimator for this user
is equal to the input-output mutual information of the equivalent scalar Gaussian chan-
nel (3.18) with the same input distribution and SNR, and an inverse noise variance η as
the multiuser efficiency given by Claim 3.3.

3.2.5 Recovering Known Results

As shown in 3.2.3, several well-known multiuser detectors can be regarded as the generalized
PME with appropriate parameters. Thus many previously known results can be recovered
as special case of the new findings in Section 3.2.4.

Linear Detectors

For linear multiuser detectors, standard Gaussian prior is postulated for the generalized
multiuser PME as well as the postulated scalar channel (3.36). Since the input Z and
output X of the retrochannel are jointly Gaussian (refer to Figure 3.6), the PME is simply
a linear attenuator (cf. (2.11)):

〈X〉q =
ξ
√

snr

1 + ξsnr
Z. (3.47)

The variance of X conditioned on Z is independent of Z. Hence the variance of the
retrochannel output is independent of η (cf. (2.12)):

var(snr; η, ξ) =
1

1 + ξsnr
. (3.48)
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From Claim 3.3, one finds that ξ is the solution to

ξ−1 = σ2 + β E

{
snr

1 + ξsnr

}
. (3.49)

Meanwhile, the mean-square error is

E

{(
X0 − 〈X〉q

)2
}

= E

{[
X0 −

ξ
√

snr

1 + ξsnr

(√
snrX0 +

1
√

η
N

)]2
}

(3.50)

=
η + ξ2snr

η(1 + ξsnr)2
. (3.51)

After some algebra, the multiuser efficiency is determined as

η = ξ + ξ (σ2 − 1)
[
1 + β E

{
snr

(1 + ξsnr)2

}]−1

. (3.52)

Clearly, the large-system multiuser efficiency of such a linear detector is independent of the
input distribution.

For the matched filter, we let the postulated noise level σ → ∞. One finds ξσ2 → 1
by (3.49) and consequently, the multiuser efficiency of matched filter is [112]

η(mf) =
1

1 + β E {snr}
. (3.53)

In case of MMSE detector, the control parameter σ = 1. By (3.52), one finds that η = ξ
and by (3.49), the multiuser efficiency η satisfies the Tse-Hanly equation [99, 105]:

η−1 = 1 + β E

{
snr

1 + ηsnr

}
, (3.54)

which has a unique positive solution η(mmse).
In case of decorrelator, the control parameter σ → 0. If β < 1, then (3.49) gives ξ →∞

and ξσ2 → 1− β, and the multiuser efficiency is found as η = 1− β by (3.52) regardless of
the SNR distribution. If β > 1, and assuming the generalized form of the decorrelator as
the Moore-Penrose inverse of the correlation matrix [112], then ξ is the unique solution to

ξ−1 = β E

{
snr

1 + ξsnr

}
(3.55)

and the multiuser efficiency is found by (3.52) with σ = 0. In the special case of equal SNR
from all users, an explicit expression can be found [23, 39]

η(dec) =
β − 1

β + snr(β − 1)2
, β > 1. (3.56)

By Corollary 3.2, the mutual information with input distribution pX for a user with
signal-to-noise ratio snr under linear multiuser detection is the input-output mutual infor-
mation of the scalar Gaussian channel (3.18) with the same input:

I(X; 〈X〉q |snr) = I(η snr), (3.57)
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where η depends on which type of linear detector is in use. Gaussian priors are known to
achieve the capacity:

C(snr) =
1
2

log(1 + η snr). (3.58)

By Corollary 3.2, the total spectral efficiency under Gaussian inputs is expressed in terms
of the linear MMSE multiuser efficiency:

C
(Gaussian)
joint =

β

2
E
{

log
(
1 + η(mmse)snr

)}
+

1
2

(
η(mmse) − 1− log η(mmse)

)
. (3.59)

This is exactly Shamai and Verdú’s result for fading channels [85].

Optimal Detectors

Using the actual input distribution pX as the postulated priors of the generalized PME
results in optimum multiuser detectors. In case of the jointly optimum detector, the pos-
tulated noise level σ = 0, and (3.41) becomes

η−1 = 1 + β E {snr ·mse(snr; η, ξ)} , (3.60a)
ξ−1 = β E {snr · var(snr; η, ξ)} , (3.60b)

where mse(·) and var(·) are given by (3.45) and (3.46) with qi(z, snr;x) = pi(z, snr;x), ∀x.
The parameters have to be solved numerically.

In case of the individually optimal detector, σ = 1. It is clear that the postulated
measure qX,Y |S is identical to the true measure pX,Y |S . In the equivalent scalar channel
and its retrochannel, the parameters satisfy

η−1 = 1 + β E {snr ·mse(snr; η, ξ)} , (3.61a)
ξ−1 = 1 + β E {snr · var(snr; η, ξ)} . (3.61b)

We take the symmetric solution η = ξ due to (3.40). The multiuser efficiency η is thus
the solution to the fixed-point equation (3.22) given in Claim 3.1. It should be cautioned
that (3.61) may have other solutions with η 6= ξ in the unlikely case that replica symmetry
does not hold.

It is of practical interest to find the spectral efficiency under the constraint that the input
symbols are antipodally modulated as in the popular BPSK. In this case, the distribution
pX(x) = 1/2, x = ±1, maximizes the mutual information. The MMSE is given by (2.16).
By Claim 3.1, The multiuser efficiency, η(b), where the superscript (b) stands for binary
inputs, is a solution to the fixed-point equation:

η−1 = 1 + β E

{
snr

[
1−

∫
1√
2π

e−
z2

2 tanh (ηsnr − z
√

ηsnr) dz

]}
, (3.62)

which is a generalization to unequal-power distribution [39] of an earlier result on equal
SNRs due to Tanaka [96]. The single-user channel capacity for a user with signal-to-noise
ratio snr is the same as that obtained by Müller and Gerstacker [72] and is given by (2.17)
with snr replaced by η(b) snr. The total spectral efficiency of the CDMA channel subject to
binary inputs is thus

C
(b)
joint =β E

{
η(b) snr −

∫
1√
2π

e−
z2

2 log cosh
(

η(b)snr − z

√
η(b)snr

)
dz

}
+

1
2

[
η(b) − 1− log η(b)

]
,

(3.63)

which is also a generalization in [39] of Tanaka’s implicit result [96].
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3.2.6 Discussions

Successive Interference Cancellation

Theorem 3.1 is an outcome of the chain rule of mutual information, which holds for all
inputs and arbitrary number of users:

I(X;Y |S) =
K∑

k=1

I(Xk;Y |S, Xk+1, . . . , XK). (3.64)

The left hand side of (3.64) is the total capacity of the multiuser channel. Each summand on
the right hand side of (3.64) is a single-user capacity over the multiuser channel conditioned
on the symbols of previously decoded users. As argued in the following, the limit of (3.64)
as K →∞ becomes the integral equation (3.31).

We conceive an interference canceler that decodes the users successively in which reliably
decoded symbols as well as the generalized PME estimates of the yet undecoded users
are used to reconstruct the interference for cancellation. Since the error probability of
intermediate decisions vanishes with code block-length, the MAI from decoded users are
asymptotically completely removed. Without loss of generality assume that the users are
decoded in reverse order, then the generalized PME for user k sees only k − 1 interfering
users. Hence the performance for user k under successive decoding is identical to that under
parallel separate decoding in a CDMA system with k instead of K users. Nonetheless,
the equivalent single-user channel for each user is Gaussian by Claim 3.3. The multiuser
efficiency experienced by user k is η

(
k
L

)
where we use the fact that it is a function of the

load k
L seen by the generalized PME for user k. Following (3.26), the single-user capacity

for user k is therefore

I

(
η

(
k

L

)
snrk

)
. (3.65)

Assuming that the i.i.d. snrk are not dependent on the indexes k, the overall spectral
efficiency under successive decoding converges almost surely:

1
L

K∑
k=1

I

(
η

(
k

L

)
snrk

)
→ E

{∫ β

0
I(β′ snr) dβ′

}
. (3.66)

Note that the above result on successive decoding is true for arbitrary input distribution
pX and generalized PME detectors. In the special case of the PME, for which the postulated
system is identical to the actual one, the right hand side of (3.66) is equal to Cjoint(β) by
Theorem 3.1. We can summarize this principle as:

Proposition 3.1 In the large-system limit, successive decoding with a PME front end
against yet undecoded users achieves the optimal CDMA channel capacity under arbitrary
input distributions.

Proposition 3.1 is a generalization of the previous result that a successive canceler with
a linear MMSE front end against undecoded users achieves the capacity of the CDMA
channel under Gaussian inputs [102, 80, 105, 2, 70, 33]. In the special case of Gaussian
inputs, however, the optimality is known to hold for any finite number of users [102, 105].
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Figure 3.7: A canonical interference canceler equivalent to the single-user Gaussian channel.

Parallel Interference Cancellation Puzzle

We give a quick and specious interpretation of the large-system results. The assumptions
that will be made are erroneous, hence the interpretation is fundamentally rootless. How-
ever, the argument leads surprisingly to the correct result. We suspect that this interpreta-
tion can be fixed to obtain a correct justification of the results. The author has failed but
nonetheless would like to include the argument in case the reader may turn it to a success.

We construct without loss of generality an estimator for user 1 using interference can-
cellation as depicted in Figure 3.7. Let 〈X2〉q , . . . , 〈XK〉q be the generalized PME estimates
for user 2 through user K. A decision statistic for user 1 can be generated by first subtract-
ing the reconstructed interferences using those estimates and then matched filtering with
respect to user 1’s spreading sequence:

Z1 =
√

snr1X1 +
K∑

k=2

s>1sk
√

snrk

(
Xk − 〈Xk〉q

)
+ N1 (3.67)

where N1 is a standard Gaussian random variable. If the desired symbol X1, the Gaussian
noise N1, and the residual errors

(
Xk − 〈Xk〉q

)
were independent, by virtue of the central

limit theorem, the sum of the residual MAI and Gaussian noise converges to a Gaussian
random variable as K → ∞. The variance of Xk − 〈Xk〉q is mse(snrk; η, ξ) by Claim 3.3.
The variance of the total interference in (3.67) is therefore

1 + β E {snr ·mse(snr; η, ξ)} , (3.68)

which, by the fixed-point equation (3.41a) in Claim 3.3, is equal to η−1. Thus if the
independence assumption were valid, we would have found a degraded Gaussian channel
for user 1 equivalent to the single-user channel as shown in Figure 3.6. That is also to say
that, given the generalized PME estimates of all interfering users, the interference canceler
produces for the desired user an estimate that is as good as the generalized PME output. We
can also argue that every user enjoys the same efficiency since otherwise users with worse
efficiency may benefit from users with better efficiency until an equilibrium is reached.
Roughly speaking, the generalized PME output is a “fixed-point” of a parallel interference
canceler. The multiuser efficiency, in a sense, is the outcome of such an equilibrium.

It should be emphasized that the above interpretation does not hold due to the erroneous
independence assumption. In particular, s>1sk are not independent, albeit uncorrelated, for
all k. Also, 〈Xk〉q is dependent on the desired signal X1 and the noise N1. This is evident
in the special case of linear MMSE detection. One is tempted to fix the argument by first
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decorrelating the residual errors, the desired symbol and the noise to satisfy the requirement
of central limit theorem. It seems to be possible because correlation between the MAI and
the desired signal may neutralize the correlations among the components of the MAI as
well as with the noise. The author has failed to show this.

3.3 Multiuser Communications and Statistical Physics

In this section, we prepare the reader with concepts and methodologies that will be needed
to prove the results given in Section 3.2.4. The replica method, which we will make use
of, was originally developed in spin glass theory in statistical physics [22]. Although one
can work with the mathematical framework only and avoid foreign concepts, we believe
it is more enlightening to draw an equivalence in between multiuser communications and
many-body problems in statistical physics. Such an analogy is first seen in a primitive form
in [96] and will be developed to a full generality here.

3.3.1 A Note on Statistical Physics

Let the microscopic state of a system be described by the configuration of some K variables
as a vector x. The Hamiltonian is a function of the configuration, denoted by H(x) . The
state of the system evolves over time according to some physical laws, and after long enough
time it reaches thermal equilibrium. The time average of an observable quantity can be
obtained by averaging over the ensemble of the states. In particular, the energy of the
system is

E =
∑
x

p(x)H(x) (3.69)

where p(x) is the probability of the system being found in configuration x. In other words, as
far as the macroscopic properties are concerned, it suffices to describe the system statistically
instead of solving the exact dynamic trajectories. Another fundamental quantity is the
entropy, defined as

S = −
∑
x

p(x) log p(x). (3.70)

It is assumed that the system is not isolated and may interact with the surroundings. As a
result, at thermal equilibrium, the energy of the system remains a constant and the entropy
is the maximum possible.

Given the energy E , one can use the Lagrange multiplier method to show that the equi-
librium probability distribution that maximizes the entropy is the Boltzmann distribution

p(x) = Z−1 exp
[
− 1

T
H(x)

]
(3.71)

where

Z =
∑
x

exp
[
− 1

T
H(x)

]
(3.72)

is the partition function, and the parameter T is the temperature, which is determined by
the energy constraint (3.69). The system is found in each configuration with a probability
that is negative exponential in the Hamiltonian associated with the configuration. The most
probable configuration is the ground state which has the minimum Hamiltonian.
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Figure 3.8: A canonical channel, its corresponding retrochannel, and the generalized PME.

One particularly useful macroscopic quantity of the thermodynamic system is the free
energy, defined as

E − T S. (3.73)

Since the entropy is the maximum at equilibrium, the free energy is at its minimum. Us-
ing (3.69)–(3.72), one finds that the free energy at equilibrium can also be expressed as
−T log Z. The free energy is often the starting point for calculating macroscopic properties
of a thermodynamic system.

3.3.2 Communications and Spin Glasses

The statistical inference problem faced by an estimator can be described as follows. A
(vector) source symbol X0 is drawn according to a prior distribution pX . The channel
response to the input X0 is an output Y generated according to a conditional probability
distribution pY |X,S where S is the channel state. The estimator would like to draw some
conclusion about the original symbol X0 upon receiving Y using knowledge about the
state S. Naturally, the posterior distribution pX|Y ,S is central in the statistical inference
problem.

If pX|Y ,S is revealed to the estimator, we have the posterior mean estimator, which is
optimal in mean-square sense. One may choose, however, to supply any posterior distribu-
tion qX|Y ,S in lieu of pX|Y ,S , henceforth resulting a generalized PME: 〈X〉q = Eq{X|Y ,S}.
As shown in Section 3.2.3, the freedom in choosing the postulated measure allows treatment
of various detection techniques in a uniform framework.

It is conceptually helpful here to also introduce the retrochannel induced by the postu-
lated system. The multiuser channel, the generalized multiuser PME, and the associated
retrochannel are depicted in Figure 3.8 (to be compared with its single-user counterpart in
Figure 3.6). Upon receiving a signal Y with a channel state S, the retrochannel outputs a
random vector according to the probability distribution qX|Y ,S , which is induced by the pos-
tulated prior distribution qX and the postulated conditional distribution qY |X,S . Clearly,
given (Y ,S), the generalized PME output 〈X〉q is the expected value of the retrochannel
output X.

In the multiple-access channel (3.4), the channel state consists of the spreading sequences
and the SNRs, collectively represented by matrix S. The conditional distribution pY |X,S

is a Gaussian density (3.16). In this work, the postulated channel (3.17) differs from the
actual one only in the noise variance. Assuming an input distribution of qX , the posterior
distribution of the postulated channel can be obtained by using the Bayes formula (cf. (3.7))
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as

qX|Y ,S(x|y,S) =
[
qY |S(y|S)

]−1
qX(x)

(
2πσ2

)−L
2 exp

[
− 1

2σ2
‖y − Sx‖2

]
(3.74)

where

qY |S(y|S) =
(
2πσ2

)−L
2 Eq

{
exp

[
− 1

2σ2
‖y − SX‖2

] ∣∣∣∣ S

}
(3.75)

and where the expectation in (3.75) is taken conditioned on S over X with distribution qX .
Interestingly, we can associate the posterior probability distribution (3.74) with the

characteristics of a thermodynamic system called spin glass. We believe this work is the
first to draw this analogy in the general setting, although in certain special cases the ar-
gument is found in Tanaka’s important paper [96]. A spin glass is a system consisting of
many directional spins, in which the interaction of the spins is determined by the so-called
quenched random variables whose values are determined by the realization of the spin glass.4

Let the microscopic state of a spin glass be described by a K-dimensional vector x. Let
the quenched random variables be denoted by (y,S). The system can be understood as K
random spins sitting in quenched randomness (y,S). The basic quantity characterizing a
microscopic state is the Hamiltonian, which is a function of the configuration dependent on
the quenched randomness, denoted by Hy,S(x). At thermal equilibrium, the spin glass is
found in each configuration with the Boltzmann distribution:

q(x|y,S) = Z−1(y,S) exp
[
− 1

T
Hy,S(x)

]
(3.76)

where

Z(y,S) =
∑
x

exp
[
− 1

T
Hy,S(x)

]
(3.77)

is the partition function. This equilibrium distribution maximizes the entropy subject to
energy constraint.

The reader may have noticed the similarity between (3.74)–(3.75) and (3.76)–(3.77).
Indeed, if the temperature T = 1 in (3.76)–(3.77) and that the Hamiltonian is defined as

Hy,S(x) =
L

2
log
(
2πσ2

)
+

1
2σ2

‖y − Sx‖2 − log qX(x), (3.78)

then

q(x|y,S) = qX|Y ,S(x|y,S), (3.79)
Z(y,S) = qY |S(y|S). (3.80)

In other words, by defining an appropriate Hamiltonian, the configuration distribution of the
spin glass at equilibrium is identical to the posterior probability distribution associated with
a multiuser communication system. Precisely, the probability that the transmitted symbol
is x under the postulated model, given the observation y and the channel state S, is equal
to the probability that the spin glass is at configuration x, given the values of the quenched

4An example is a system consisting molecules with magnetic spins that evolve over time, while the
positions of the molecules that determine the amount of interactions are random (disordered) but remain
fixed for each concrete instance as in a piece of glass (hence the name of spin glass).
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random variables (Y ,S) = (y,S). It is interesting to note that Gaussian distribution is a
natural Boltzmann distribution with squared Euclidean norm as the Hamiltonian.

The quenched randomness (Y ,S) takes a specific distribution in our problem, i.e.,
(Y ,S) is a realization of the received signal and channel state matrix according to the prior
and conditional distributions that underlie the “original” spins. Indeed, the communication
system depicted in Figure 3.8 can be also understood as a spin glass X under physical law q
sitting in the quenched randomness caused by another spin glass X0 under physical law p.
The channel corresponds to the random mapping from a given spin glass configuration to
an induced quenched randomness. Conversely, the retrochannel corresponds to the random
mechanism that maps some quenched randomness into an induced spin glass configuration.

The free energy of the thermodynamic (or communication) system is obtained as:

−T log Z(Y ,S). (3.81)

In the following, we show some useful properties of the free energy and associate it with the
spectral efficiency of communication systems.

3.3.3 Free Energy and Self-averaging Property

The free energy (3.81) with T = 1 and normalized by the number of users is (via (3.80))

− 1
K

log qY |S(Y |S). (3.82)

As mentioned in Section 3.1, the randomness in (3.82) vanishes as K → ∞ due to the
self-averaging assumption. As a result, the free energy normalized by the number of users
converges in probability to its expected value over the distribution of the quenched random
variables (Y ,S) in the large-system limit, which is denoted by F ,

F = − lim
K→∞

E

{
1
K

log Z(Y ,S)
}

. (3.83)

Hereafter, by the free energy we refer to the large-system limit F , which we will calculate
in Section 3.4.

The reader should be cautioned that for disordered systems, thermodynamic quantities
may or may not be self-averaging [14]. The self-averaging property remains to be proved
or disproved in the CDMA context. This is a challenging problem on its own. In this work
we take the self-averaging property for granted with a good faith that it be correct. Again,
we believe that even if the self-averaging property breaks down, the main results in this
chapter are good approximations and still useful to some extent in practice.

The self-averaging property resembles the asymptotic equipartition property (AEP) in
information theory [17]. An important consequence is that a macroscopic quantity of a
thermodynamic system, which is a function of a large number of random variables, may
become increasingly predictable from merely a few parameters independent of the realization
of the random variables as the system size grows without bound. Indeed, the macroscopic
quantity converges in probability to its ensemble average in the thermodynamic limit.

In the CDMA context, the self-averaging property leads to a strong consequence that
for almost all realizations of the received signal and the spreading sequences, macroscopic
quantities such as the BER, the output SNR and the spectral efficiency, averaged over
data, converge to deterministic quantities in the large-system limit. Previous work (e.g.
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[105, 99, 44]) has shown convergence of performance measures for almost all spreading
sequences. The self-averaging property results in convergence of empirical measures of
error performance and information rate, which holds for almost all realizations of the data
and noise.

3.3.4 Spectral Efficiency of Jointly Optimal Decoding

This section associates the optimal spectral efficiency of a multiuser communication system
with the free energy of a corresponding spin glass. This is again a full generalization of an
observation by Tanaka [96] in special cases. In fact, the analogy between free energy and
information-theoretic quantities has been noticed in belief propagation [117], coding [101]
and optimization problems [11] as well.

For a fixed input distribution pX , the total mutual information under joint decoding is

I(X;Y |S) = E

{
log

pY |X,S(Y |X,S)
pY |S(Y |S)

∣∣∣∣ S

}
(3.84)

where the expectation is taken over the conditional joint distribution pX,Y |S . Since the
channel characteristic given by (3.16) is a standard L-dimensional Gaussian density, one
has

E
{

log pY |X,S(Y |X,S)
∣∣ S
}

= −L

2
log(2πe). (3.85)

Suppose that the postulated measure q is the same as the actual measure p, then by (3.80),
(3.84) and (3.85), the spectral efficiency in nats per degree of freedom achieved by optimal
joint decoding is

C(S) =
1
L

I(X;Y |S) (3.86)

= −β E

{
1
K

log Z(Y ,S)
∣∣∣∣S}− 1

2
log(2πe). (3.87)

To calculate (3.87) is formidable for an arbitrary realization of S but due to the self-
averaging property, the spectral efficiency converges in probability as K, N →∞ to

C = βF|q=p −
1
2

log(2πe) (3.88)

where F is defined in (3.83). Note that the constant term in (3.88) can be removed by
redefining the partition function up to a constant coefficient. In either way, the spectral ef-
ficiency under optimal joint decoding is affine in the free energy under a postulated measure
q identical to the true measure p.

3.3.5 Separate Decoding

In case of a multiuser detector front end, one is interested in the distribution of the detection
output 〈Xk〉q conditioned on the input X0k. Here, X0k is used to denote the input to the
CDMA channel to distinguish it from the retrochannel output Xk. Our approach is to
calculate joint moments

E
{

Xj
0k 〈Xk〉iq

∣∣∣ S
}

, i, j = 0, 1, . . . (3.89)
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Figure 3.9: The replicas of the retrochannel.

and then infer the distribution of (〈Xk〉q −X0k). In the spin glass context, one may inter-
pret (3.89) as the joint moments of the spins X0 that induced the quenched randomness,
and the conditional expectation of the induced spins X. The calculation of (3.89) is again
formidable due to its dependence on the channel state, but in the large-system limit, the
result is surprisingly simple. Due to the self-averaging property, the moments also converge
in probability, and it suffices to calculate the moments with respect to the joint distribution
of the spins and the quenched randomness as

lim
K→∞

E
{

Xj
0k 〈Xk〉iq

}
. (3.90)

Note that X0 → (Y ,S) → X is a Markov chain. It can be shown that (3.90) is equivalent
to

lim
K→∞

E
{

Xj
0k Xi

k

}
, (3.91)

which turns out to be easier to calculate by studying the free energy associated with a
modified version of the partition function (3.75). More on this later.

The mutual information between the input and the output of a multiuser detector front
end for an arbitrary user k is given by

I(X0k; 〈Xk〉q |S), (3.92)

which can be derived once the input-output relationship is known. It will be shown that
conditioning on the channel state S is asymptotically inconsequential.

We have distilled our problems under both joint and separate decoding to finding some
ensemble averages, namely, the free energy (3.83) and the moments (3.91). In order to
calculate these quantities, we resort to a powerful technique developed in the theory of spin
glass, the heart of which is sketched in the following subsection.

3.3.6 Replica Method

The replica method was introduced to the field of multiuser detection by Tanaka to analyze
optimal detectors under equal power Gaussian or binary input. In the following we outline
the method in a more general setting following Tanaka’s pioneering work [96].

The expected value of the logarithm in (3.83) can be reformulated as

F = − lim
K→∞

1
K

lim
u→0

∂

∂u
log E {Zu(Y ,S)} . (3.93)
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The equivalence of (3.83) and (3.93) can be easily verified by noticing that

lim
u→0

∂

∂u
log E {Θu} = lim

u→0

E {Θu log Θ}
E {Θu}

= E {log Θ} , ∀Θ. (3.94)

For an arbitrary integer replica number u, we introduce u independent replicas of the
retrochannel (or the spin glass) with the same received signal Y and channel state matrix
S as depicted in Figure 3.9. Conditioned on (Y ,S), Xa are independent. By (3.80), the
partition function of the replicated system is

Zu(y,S) = Eq

{
u∏

a=1

qY |X,S(y|Xa,S)

∣∣∣∣∣ S

}
(3.95)

where the expectation is taken over the i.i.d. symbols {Xak|a = 1, . . . , u, k = 1, . . . ,K},
with distribution qX . Note that Xak are i.i.d. since Y = y is given. We can henceforth
evaluate

− lim
K→∞

1
K

log E {Zu(Y ,S)} (3.96)

as a function of the integer u. The replica trick assumes that the resulting expression is
also valid for an arbitrary real number u and finds the derivative at u = 0 as the free
energy. Besides validity of continuing to non-integer values of the replica number u, it is
also necessary to assume that the two limits in (3.93) can be exchanged in order.

It remains to calculate (3.96). Note that (Y ,S) is induced by the transmitted symbols
X0. By taking expectation over Y first and then averaging over the spreading sequences,
one finds that

1
K

log E {Zu(Y ,S)} =
1
K

log E
{

exp
[
β−1K G

(u)
K (Γ,X)

]}
(3.97)

where G
(u)
K is some function of the SNRs and the transmitted symbols and their replicas,

collectively denoted by a K × (u + 1) matrix X = [X0, . . . ,Xu]. By first conditioning on
the correlation matrix Q of ΓX, the central limit theorem helps to reduce (3.97) to

1
K

log
∫

exp
[
β−1K G(u)(Q)

]
µ

(u)
K ( dQ) (3.98)

where G(u) is some function of the (u + 1) × (u + 1) correlation matrix Q, and µ
(u)
K is the

probability measure of the random matrix Q. Large deviations can be invoked to show that
there exists a rate function I(u) such that the measure µ

(u)
K satisfies

− lim
K→∞

1
K

log µ
(u)
K (A) = inf

Q∈A
I(u)(Q) (3.99)

for all measurable set A of (u + 1)× (u + 1) matrices. Using Varadhan’s theorem [25], the
integral (3.98) is found to converge as K →∞ to

sup
Q

[β−1 G(u)(Q)− I(u)(Q)]. (3.100)

Seeking the extremum over a (u + 1)2-dimensional space is a hard problem. The technique
to circumvent this is to assume replica symmetry, namely, that the supremum in Q is
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symmetric over all replicated dimensions. The resulting supremum is then over merely a
few parameters, and the free energy can be obtained.

The replica method is also used to calculate (3.91). Clearly, X0—(Y ,S)—[X1, . . . ,Xu]
is a Markov chain. The moments (3.91) are equivalent to

lim
K→∞

E

{
Xj

0k

i∏
m=1

Xmk

}
(3.101)

which can be readily evaluated by working with a modified partition function akin to (3.95).
Detailed replica analysis of the real-valued channel is carried out in Section 3.4. The

complex-valued counterpart is discussed in Section 3.5. As mentioned in Section 3.1, while
we assume the replica trick and replica symmetry to be valid as well as the self-averaging
property, their fully rigorous justification is still open mathematical physics.

3.4 Proofs Using the Replica Method

This section proves Claims 3.1–3.3 using the replica method. The free energy is calculated
first and hence the spectral efficiency under joint decoding is derived. The joint moments
of the input and multiuser detection output are then found and it is demonstrated that the
CDMA channel can be effectively decoupled into single-user Gaussian channels. Thus the
multiuser efficiency as well as the spectral efficiency under separate decoding is found.

3.4.1 Free Energy

We will find the free energy by (3.93) and then the spectral efficiency is trivial by (3.88).
From (3.95),

E {Zu(Y ,S)} = E

{∫
pY |S(y|S)Zu(y,S) dy

}
(3.102)

= E

{∫
pY |X,S(y|X0,S)

u∏
a=1

qY |X,S(y|Xa,S) dy

}
(3.103)

where the expectation in (3.103) is taken over the channel state matrix S, the original
symbol vector X0 (i.i.d. entries with distribution pX), and the replicated symbols Xa,
a = 1, . . . , u (i.i.d. entries with distribution qX). Note that S, X0 and Xa are independent.
Let X = [X0, . . . ,Xu]. Plugging (3.16) and (3.17) into (3.103),

E {Zu(Y ,S)} =E

{∫
(2π)−

L
2 (2πσ2)−

uL
2 exp

[
−1

2
‖y − SX0‖2

]
×

u∏
a=1

exp
[
− 1

2σ2
‖y − SXa‖2

]
dy

}
.

(3.104)

We glean from the fact that the L dimensions of the CDMA channel are independent and
statistically identical, and write (3.104) as

E {Zu(Y ,S)} =E


[(

2πσ2
)−u

2

∫
E

{
exp

[
−1

2

(
y − S̃ΓX0

)2
]

×
u∏

a=1

exp
[
− 1

2σ2

(
y − S̃ΓXa

)2
]∣∣∣∣Γ,X

}
dy√
2π

]L
} (3.105)
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where the inner expectation in (3.105) is taken over S̃ = [S1, . . . , SK ], a vector of i.i.d.
random variables each taking the same distribution as the random spreading chips Snk.
Define the following variables:

Va =
1√
K

K∑
k=1

√
snrk SkXak, a = 0, 1, . . . , u. (3.106)

Clearly, (3.105) can be rewritten as

E {Zu(Y ,S)} = E
{

exp
[
LG

(u)
K (Γ,X)

]}
(3.107)

where

G
(u)
K (Γ,X) =− u

2
log
(
2πσ2

)
+ log

∫
E

{
exp

[
−1

2

(
y −

√
β V0

)2
]

×
u∏

a=1

exp
[
− 1

2σ2

(
y −

√
β Va

)2
]∣∣∣∣Γ,X

}
dy√
2π

.

(3.108)

Note that given Γ and X, each Va is a sum of K weighted i.i.d. random chips, and hence
converges to a Gaussian random variable as K →∞. In fact, due to a generalization of the
central limit theorem, V converges to a zero-mean Gaussian random vector with covariance
matrix Q where

Qab = E {VaVb | Γ,X} =
1
K

K∑
k=1

snrkXakXbk, a, b = 0, . . . , u. (3.109)

Note that although inexplicit in notation, Qab is a function of {snrk, Xak, Xbk}K
k=1. The

reader is referred to Appendix A.4 for a justification of the asymptotic normality of V
through the Edgeworth expansion. As a result,

exp
[
G

(u)
K (Γ,X)

]
= exp

[
G(u)(Q) +O(K−1)

]
(3.110)

where

G(u)(Q) =− u

2
log
(
2πσ2

)
+ log

∫
E

{
exp

[(
y −

√
β Ṽ0

)2
]

×
u∏

a=1

exp
[
− 1

2σ2

(
y −

√
β Ṽa

)2
]∣∣∣∣Q} dy√

2π
,

(3.111)

in which Ṽ is a Gaussian random vector with covariance matrix Q. By (3.107) and (3.110),

1
K

log E {Zu(Y ,S)} =
1
K

log E
{

exp
[
L
(
G(u)(Q) +O

(
K−1

))]}
(3.112)

=
1
K

log
∫

exp
[
K β−1 G(u)(Q)

]
dµ

(u)
K (Q) +O(K−1)(3.113)

where the expectation over the replicated symbols is rewritten as an integral over the
probability measure of the correlation matrix Q, which is expressed as

µ
(u)
K (Q) = E


u∏

0≤a≤b

δ

(
1
K

K∑
k=1

snrkXakXbk −Qab

) (3.114)



66 Multiuser Channels

where δ(·) is the Dirac function. By Cramér’s theorem, the probability measure of the
empirical means Qab defined by (3.109) satisfies, as K →∞, the large deviations property
with some rate function I(u)(Q) [25]. Note the factor K in the exponent in the integral
in (3.113). As K → ∞, the integral is dominated by the maximum of the overall effect of
the exponent and the rate of the measure on which the integral takes place. Precisely, by
Varadhan’s theorem [25],

lim
K→∞

1
K

log E {Zu(Y ,S)} = sup
Q

[β−1 G(u)(Q)− I(u)(Q)] (3.115)

where the supremum is over all possible Q that can be obtained from varying Xak in (3.109).
Let the moment generating function be defined as

M (u)(Q̃) = E
{

exp
[
snrX>Q̃X

]}
(3.116)

where Q̃ is a (u + 1) × (u + 1) symmetric matrix and the expectation in (3.116) is taken
over independent random variables snr ∼ Psnr, X0 ∼ pX and X1, . . . , Xu ∼ qX . The rate
of the measure µ

(u)
K is given by the Legendre-Fenchel transform of the cumulant generating

function (logarithm of the moment generating function) [25]:

I(u)(Q) = sup
Q̃

I(u)(Q, Q̃) (3.117)

= sup
Q̃

[
tr
{

Q̃Q
}
− log M (u)(Q̃)

]
(3.118)

where the supremum is taken with respect to the symmetric matrix Q̃.
In Appendix A.5, (3.111) is evaluated to obtain

G(u)(Q) = −1
2

log det(I + ΣQ)− 1
2

log
(
1 +

u

σ2

)
− u

2
log
(
2πσ2

)
(3.119)

where Σ is a (u + 1)× (u + 1) matrix:5

Σ =
β

σ2 (σ2 + u)



uσ2 −σ2 −σ2 . . . −σ2

−σ2 σ2 + u− 1 −1 . . . −1

−σ2 −1 σ2 + u− 1
. . .

...

...
...

. . . . . . −1

−σ2 −1 . . . −1 σ2 + u− 1


. (3.120)

Note that the lower right u× u block of the matrix in (3.120) is (σ2 + u)Iu −Eu where Iu

denotes the u×u identity matrix and Eu denotes a u×u matrix whose entries are all 1. It
is clear that Σ is invariant if two nonzero indexes are interchanged, i.e., Σ is symmetric in
the replicas.

5For convenience, the index number of all (u + 1)× (u + 1) matrices in this chapter starts from 0.
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By (3.115)–(3.119), one has

lim
K→∞

1
K

log E {Zu(Y ,S)}

= sup
Q

{
β−1 G(u)(Q)− sup

Q̃

[
tr
{

Q̃Q
}
− log M (u)(Q̃)

]}
(3.121)

= sup
Q

inf
Q̃

T (u)(Q, Q̃) (3.122)

where

T (u)(Q, Q̃) =− 1
2β

log det(I + ΣQ)− tr
{

Q̃Q
}

+ log E
{

exp
[
snrX>Q̃X

]}
− 1

2β
log
(
1 +

u

σ2

)
− u

2β
log
(
2πσ2

)
.

(3.123)

For an arbitrary Q, we first seek the point of zero gradient with respect to Q̃ and find that
for a given Q, the extremum in Q̃ satisfies

Q =
E
{

snrXX>exp
[
snrX>Q̃X

]}
E
{

exp
[
snrX>Q̃X

]} . (3.124)

Let Q̃
∗
(Q) be a solution to (3.124), which is a function of Q. Assuming that Q̃

∗
(Q)

is sufficiently smooth, we then seek the point of zero gradient of T (u)
(
Q, Q̃

∗
(Q)

)
with

respect to Q.6 By virtue of the relationship (3.124), one finds that the derivative of Q̃
∗

with respect to Q is inconsequential, and the extremum in Q satisfies

Q̃ = − 1
β

(Σ−1 + Q)−1 . (3.125)

It is interesting to note from the resulting joint equations (3.124)–(3.125) that the order
in which the supremum and infimum are taken in (3.122) can be exchanged without harm.
The solution

(
Q∗, Q̃

∗)
is in fact a saddle point of T (u). Notice that (3.124) can also be

expressed as
Q = E

{
snrXX>

∣∣∣ Q̃
}

(3.126)

where the expectation is over an appropriately defined measure pX,snr|Q̃ dependent on Q̃.
Solving joint equations (3.124) and (3.125) directly is prohibitive except in the simplest

cases such as qX being Gaussian. In the general case, because of the symmetry in the matrix
Σ (3.120), we postulate that the solution to the joint equations satisfies replica symmetry,
namely, both Q∗ and Q̃

∗
are invariant if two nonzero replica indexes are interchanged. In

6The formula in footnote 2 on page 10 and the following identity is useful:

∂Q−1

∂x
= −Q−1 ∂Q

∂x
Q−1.
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other words, the extremum can be written as

Q∗ =


r m m . . . m
m p q . . . q

m q p
. . .

...
...

...
. . . . . . q

m q . . . q p

 , Q̃
∗

=


c d d . . . d
d g f . . . f

d f g
. . .

...
...

...
. . . . . . f

d f . . . f g

 (3.127)

where r, m, p, q, c, d, f, g are some real numbers.
It can be shown that replica symmetry holds in case that the postulated prior qX is Gaus-

sian. Under equal-power binary input and individually optimal detection, Tanaka showed
also the stability of the replica-symmetric solution against replica-symmetry-breaking (RSB)
if it is a “stable” solution (i.e., when the parameters satisfies certain condition) [96]. Thus,
the replica-symmetric solution is at least a local maximum in such cases. In other cases,
stability of replica symmetry can be broken [51]. Unfortunately, there is no known general
condition for replica symmetry to hold. In this work we assume replica symmetry to hold
and limit ourselves to replica-symmetric solution. We believe that in case replica symmetry
is not a valid assumption, such solutions are a good approximation to the actual one. A
justification of the replica symmetry assumption is relegated to future work.

Under replica symmetry, (3.119) is evaluated in Appendix A.5 to obtain

G(u) (Q∗) =− u

2
log
(
2πσ2

)
− u− 1

2
log
[
1 +

β

σ2
(p− q)

]
− 1

2
log
[
1 +

β

σ2
(p− q) +

u

σ2
(1 + β(r − 2m + q))

]
.

(3.128)

The moment generating function (3.116) is evaluated as

M (u)(Q̃
∗
)

= E

{
exp

[
snr

(
2d

u∑
a=1

X0Xa + 2f

u∑
0<a<b

XaXb + cX2
0 + g

u∑
a=1

X2
a

)]}
(3.129)

= E

exp

snr

(
d√
f

X0 +
√

f

u∑
a=1

Xa

)2

+
(

c− d2

f

)
snrX2

0 + (g − f)snr
u∑

a=1

X2
a

]}
, (3.130)

where X0 takes the actual input distribution pX while X takes the postulated input distri-
bution qX . The expectation (3.130) with respect to X0, . . . , Xu can be decoupled using a
variant of the Hubbard-Stratonovich transform [47]:

ex2
=
√

η

2π

∫
exp

[
−η

2
z2 +

√
2η xz

]
dz, ∀x, η. (3.131)

Using (3.131) with η = 2d2/f ,

M (u)(Q̃
∗
) =E

{√
d2

fπ

∫
exp

[
−d2

f
z2 + 2

√
snr

(
d2

f
X0 + d

u∑
a=1

Xa

)
z

+
(

c− d2

f

)
snrX2

0 + (g − f)snr
u∑

a=1

X2
a

]
dz

}
.

(3.132)
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Since X0, . . . , Xu and snr are independent, the rate of the measure (3.118) under replica
symmetry is obtained as

I(u) (Q∗) =rc + upg + 2umd + u(u− 1)qf

− log E

{∫ √
d2

fπ
E

{
exp

[
−d2

f

(
z −

√
snrX0

)2 + c snrX2
0

] ∣∣∣∣ snr

}
×
[
Eq

{
exp

[
2d
√

snrXz + (g − f)snrX2
] ∣∣ snr

}]u dz

} (3.133)

by also noticing that

tr
{

Q̃
∗
Q∗
}

= rc + upg + 2umd + u(u− 1)qf. (3.134)

The free energy is then found by (3.93) and (3.115):

F = − lim
u→0

∂

∂u

[
β−1G(u) (Q∗)− I(u) (Q∗)

]
. (3.135)

The eight parameters (r, m, p, q, c, d, f, g) are the solution to the joint equations (3.124)–
(3.125) under replica symmetry that minimizes F . It is interesting to note that as functions
of u, the derivative of each of the eight parameters with respect to u vanishes as u → 0. Thus
for the purpose of the free energy (3.135), it suffices to find the extremum of

[
β−1G(u) − I(u)

]
at u = 0. Using (3.125), it can be shown that at u = 0,

c = 0, (3.136a)

d =
1

2[σ2 + β(p− q)]
, (3.136b)

f =
1 + β(r − 2m + q)
2[σ2 + β(p− q)]2

, (3.136c)

g = f − d. (3.136d)

The parameters r, m, p, q can be determined from (3.126) by studying the measure pX,snr|Q̃
under replica symmetry and u → 0. For that purpose, define two useful parameters:

η =
2d2

f
, (3.137a)

ξ = 2d. (3.137b)

Noticing that c = 0, g − f = −d, (3.132) can be written as

M (u)(Q̃
∗
) =E

{√
η

2π

∫
exp

[
−η

2
(
z −

√
snrX0

)2]
×
[
Eq

{
exp

[
−ξ

2
z2 − ξ

2
(
z −

√
snrX

)2] ∣∣∣∣ snr

}]u

dz

}
.

(3.138)

It is clear that
lim
u→0

M (u)(Q̃
∗
) = 1. (3.139)

Hence by (3.124), as u → 0,

Q∗
ab = E

{
snrXaXb | Q̃

∗}→ E
{

snrXaXb exp
[
X>Q̃

∗
X
]}

. (3.140)
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We now give a useful representation for the parameters r, m, p, q defined in (3.127). Note
that as u → 0,

E
{

snrX0X1 exp
[
X>Q̃

∗
X
]}

=E

{
snrX0

∫ √
η

2π
exp

[
−η

2
(
z −

√
snrX0

)2]

×
X1

√
ξ
2π exp

[
− ξ

2

(
z −

√
snrX1

)2]
Eq

{√
ξ
2π exp

[
− ξ

2

(
z −

√
snrX1

)2] ∣∣∣∣ snr

} dz

 .

(3.141)

Let two scalar Gaussian channels be defined as in Section 3.2.4, i.e., pZ|X,snr;η is given by
(3.19) and similarly,

qZ|X,snr;ξ(z|x, snr; ξ) =

√
ξ

2π
exp

[
−ξ

2
(
z −

√
snrx

)2]
. (3.142)

Assuming that the input distribution to the channel qZ|X,snr;ξ is qX , a posterior probability
distribution qX|Z,snr;ξ is induced. The retrochannel is then characterized by qX|Z,snr;ξ. The
posterior mean with respect to the measure q is therefore given by (3.37). The scalar
Gaussian channel pZ|X,snr;η, the retrochannel qX|Z,snr;ξ and the PME are depicted in Figure
3.6. Then, (3.141) can be simplified to obtain

Q∗
01 = E

{
snrX0X1 exp

[
X>Q̃

∗
X
]}

(3.143)

= E
{

snr X0 〈X〉q
}

(3.144)

where 〈X〉q, defined in (3.37), is the generalized posterior mean estimate under the posterior
probability distribution qX|Z,snr;ξ. Similarly, (3.140) can be evaluated for all indexes (a, b)
yielding together with (3.127):

r = Q∗
00 = E

{
snr X2

0

}
= E {snr} , (3.145a)

m = Q∗
01 = E

{
snr X0 〈X〉q

}
, (3.145b)

p = Q∗
11 = E

{
snr

〈
X2
〉
q

}
, (3.145c)

q = Q∗
12 = E

{
snr (〈X〉q)

2
}

. (3.145d)

In summary, under replica symmetry, the parameters c, d, f, g are given by (3.136) as func-
tions of r, m, p, q, which are in turn determined by the statistics of the two channels (3.19)
and (3.142) parameterized by η = 2d2/f and ξ = 2d. It is not difficult to see that

r − 2m + q = E

{
snr

(
X0 − 〈X〉q

)2
}

, (3.146a)

p− q = E

{
snr

(
X − 〈X〉q

)2
}

. (3.146b)

Using (3.136) and (3.137), it can be checked that

p− q =
1
β

(
1
ξ
− σ2

)
, (3.147a)

r − 2m + q =
1
β

(
1
η
− 1
)

. (3.147b)
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Thus G(u) and I(u) given by (3.128) and (3.133) can be expressed in η and ξ. Using (3.135),
the free energy is found as (3.42), where (η, ξ) satisfies fixed-point equations

η−1 = 1 + β E

{
snr
(
X0 − 〈X〉q

)2
}

, (3.148a)

ξ−1 = σ2 + β E

{
snr
(
X − 〈X〉q

)2
}

, (3.148b)

where X0 ∼ pX is the input to the scalar Gaussian channel pZ|X,snr;η, X is the output of
the retrochannel qX|Z,snr;ξ induced by a postulated channel qZ|X,snr;ξ with input distribution
qX , and 〈X〉q is the generalized posterior mean estimate according to qX|Z,snr;ξ. In case
of multiple solutions to (3.148), (η, ξ) is chosen as the solution that gives the minimum
free energy F . By defining mse(snr; η, ξ) and var(snr; η, ξ) as (3.38) and (3.39), the coupled
equations (3.136) and (3.145) can be summarized to establish the key coupled fixed-point
equations (3.41).

From (3.19), it is clear that η is the inverse noise variance of the scalar Gaussian channel
pZ|X,snr;η. In Section 3.4.2, we will show that the single-user channel seen at the output
of the multiuser detector front end is equivalent to the scalar Gaussian channel pZ|X,snr;η

concatenated with a generalized PME decision function. Therefore, the parameter η is the
degradation factor in the effective SNR due to the MAI, which is termed the multiuser
efficiency. More on this later.

In the special case where the postulated measure q is identical to the actual measure p
(i.e., qX = pX and σ = 1), we choose η = ξ as argued in Section 3.2.5. Using (3.88), the
total spectral efficiency is

Cjoint =− β E

{∫
pZ|snr;η(z|snr; η) log pZ|snr;η(z|snr; η) d z

}
− β

2
log

2πe

η
+

1
2
(η − 1− log η),

(3.149)

where η satisfies

η + η β E

{
snr

[
1−

∫
[p1(z, snr; η)]2

pZ|snr;η(z|snr; η)
d z

]}
= 1. (3.150)

Equation (3.30) in Claim 3.2 is thus established.

3.4.2 Joint Moments

Let us study the distribution of the generalized PME output

〈Xk〉q = Eq {Xk | Y ,S} (3.151)

conditioned on Xk being transmitted with signal-to-noise ratio snrk. For this purpose we
calculate the joint moments of Xk and 〈Xk〉q using the replica method. It turns out that
〈Xk〉q is as if Xk were corrupted by Gaussian noise and then mapped by a decision function.

Consider the CDMA channel, the generalized PME and a retrochannel as depicted in
Figure 3.9. Let Xa = [X1, . . . ,Xu].
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Lemma 3.1 Let X0 → (Y ,S) → Xa be the Markov chain as depicted in Figure 3.9. Then
for every k,

E
{

Xj
0k 〈Xk〉iq

}
= E

{
Xj

0k

i∏
m=1

Xmk

}
. (3.152)

Proof: Since the replicas are i.i.d., 〈Xak〉q = 〈Xk〉q for all a = 1, . . . , u. Hence,

E
{

Xj
0k 〈Xk〉iq

}
= E

{
Xj

0k

i∏
m=1

〈Xmk〉q

}
(3.153)

= E

{
Xj

0k

i∏
m=1

Eq {Xmk | Y ,S}

}
(3.154)

= E

{
Xj

0k Eq

{
i∏

m=1

Xmk

∣∣∣∣∣ Y ,S

}}
(3.155)

= E

{
Xj

0k

i∏
m=1

Xmk

}
, (3.156)

where (3.155)–(3.156) are by conditional independence of Xak due to Markov property.

The joint moments of 〈Xk〉 and X0k have now been converted into expectations under
the replicated system. The following lemma allows us to determine the expected value of
a function of the replicated symbols by considering a modified partition function akin to
(3.95).

Lemma 3.2 Given an arbitrary function f(X0,Xa), define

Z(u)(y,S,x0;h) = Eq

{
exp [h f(x0,Xa)]

u∏
a=1

qY |X,S(y|Xa,S)

∣∣∣∣∣ S

}
. (3.157)

If E {f(X0,Xa) | Y ,S,X0} is not dependent on u, then

E {f(X0,Xa)} = lim
u→0

∂

∂h
log E

{
Z(u)(Y ,S,X0;h)

}∣∣∣
h=0

. (3.158)

Proof: See Appendix A.6.

For the function f(X0,Xa) to have influence on the free energy, it must grow at least
linearly with K. Assume that f(X0,Xa) involves user 1 through K1 = α1K where 0 <
α1 < 1 is fixed as K →∞:

f(X0,Xa) =
K1∑
k=1

Xj
0k

i∏
m=1

Xmk. (3.159)

It is also assumed that user 1 through K1 take the same signal-to-noise ratio snr1. We will
finally take the limit α1 → 0 so that the constraint of equal SNR from the first K1 users is
superfluous. By Lemma 3.1, the moments can be written as

1
K1

K1∑
k=1

E
{

Xj
0k 〈Xk〉i

}
=

1
K1

E {f(X0,Xa)} . (3.160)
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Note that

E {f(X0,Xa) | Y ,S,X0} = E

{
K1∑
k=1

Xj
0k Xi

k

∣∣∣∣∣ Y ,S,X0

}
(3.161)

is not dependent on u. By Lemma 3.2, the moment (3.160) can be obtained as

lim
u→0

∂

∂h

1
α1K

log E
{

Z(u)(Y ,S,X0;h)
}∣∣∣

h=0
(3.162)

where

Z(u)(y,S,x0;h) =Eq

{
exp

[
h

K1∑
k=1

xj
0k

i∏
m=1

Xmk

]

×
(
2πσ2

)−uL
2

u∏
a=1

exp
[
− 1

2σ2
‖y − SXa‖2

]∣∣∣∣∣S
}

.

(3.163)

Consider (3.163) as a partition function and the same techniques in Section 3.4.1 can be
used to write

lim
K→∞

1
K

log E
{

Z(u)(Y ,S,X0;h)
}

= sup
Q

{
β−1G(u)(Q)− I(u)(Q;h)

}
(3.164)

where G(u)(Q) is given by (3.108) and I(u)(Q;h) is the rate of the following measure

µ
(u)
K (Q;h) = E

exp

[
h

K1∑
k=1

Xj
0k

i∏
m=1

Xmk

]
u∏

0≤a≤b

δ

(
K∑

k=1

snrkXakXbk −KQab

) . (3.165)

By the large deviations property, one finds the rate

I(u)(Q;h) = sup
Q̃

[
tr
{

Q̃Q
}
− log M (u)(Q̃)

−α1

(
log M (u)(Q̃, snr1;h)− log M (u)(Q̃, snr1; 0)

)] (3.166)

where M (u)(Q̃) is defined in (3.116), and

M (u)(Q̃, snr;h) = E

{
exp

[
h Xj

0

i∏
m=1

Xm

]
exp

[
snrX>Q̃X

] ∣∣∣∣∣ snr

}
. (3.167)

From (3.164) and (3.166), taking the derivative in (3.162) with respect to h at h = 0 leaves
us only one term

∂

∂h
log M (u)(Q̃, snr1;h)

∣∣∣∣
h=0

=
E
{

Xj
0

∏i
m=1 Xm exp

[
snr1X

>Q̃X
]}

E
{

exp
[
snr1X

>Q̃X
]} . (3.168)

Since
Z(u)(Y ,S,X0;h)

∣∣∣
h=0

= Zu(Y ,S), (3.169)
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the Q̃ in (3.168) that give the supremum in (3.166) at h → 0 is exactly the Q̃ that gives
the supremum of (3.118). Hence replica symmetry is straightforward. By introducing the
parameters (η, ξ) the same as in Section 3.4.1, (3.168) can be further evaluated as

∫ (√
2π
ξ e

ξz2

2

)u

pj(z, snr1; η) qu−i
0 (z, snr1; ξ) qi

1(Z, snr1; ξ) dz∫ (√
2π
ξ e

ξz2

2

)u

p0(z, snr1; η)qu
0 (Z, snr1; ξ) dz

(3.170)

where we have used

E

{
Xi

0 exp
[
η
√

snr X0z −
1
2
ηsnrX2

0

] ∣∣∣∣ snr

}
=

√
2π

η
e

ηz2

2 pi(z, snr; η), (3.171a)

E

{
Xi exp

[
ξ
√

snr Xz − 1
2
ξsnrX2

] ∣∣∣∣ snr

}
=

√
2π

ξ
e

ξz2

2 qi(z, ξ; η). (3.171b)

Taking the limit u → 0 in (3.170), one has

lim
K→∞

1
K1

K1∑
k=1

E
{

Xj
0k 〈Xk〉iq

}
=
∫

pj(Z, snr1; η)
[
q1(Z, snr1; ξ)
q0(Z, snr1; ξ)

]i

dz. (3.172)

Letting K1 → 1 (thus α1 → 0) so that the requirement that the first K1 users take the
same SNR becomes unnecessary, we have proved the following by noticing that the above
arguments hold for every user.

Proposition 3.2 Let the SNR of user k be snrk = snr, then for all integers i, j ≥ 0,

lim
K→∞

E
{

Xj
0k 〈Xk〉i

}
=
∫

pj(z, snr; η)
[
q1(z, snr; ξ)
q0(z, snr; ξ)

]i

dz. (3.173)

where η is the solution to (3.150).

It is easy to see from (3.173) and (3.23) that

lim
K→∞

E
{
(〈Xk〉 −X0k)i

}
=

i∑
j=0

(
i
j

)∫
pj(z, snr; η)

[
q1(z, snr; ξ)
q0(z, snr; ξ)

]i−j

dz (3.174)

=
∫ i∑

j=0

(
i
j

)
E
{

Xi pZ|X,snr;η(z |X, snr; η)
∣∣ snr

} [q1(z, snr; ξ)
q0(z, snr; ξ)

]i−j

dz (3.175)

=
∫

E

{(
q1(z, snr; ξ)
q0(z, snr; ξ)

−X

)i

pZ|X,snr;η(z |X, snr; η)

∣∣∣∣∣ snr

}
dz (3.176)

= E

{(
q1(Z, snr; ξ)
q0(Z, snr; ξ)

−X

)i
∣∣∣∣∣ snr

}
(3.177)

Since (3.177) is true for all k, we can drop the user index in further discussion on separate
decoding. Note that the moments are uniformly bounded. The distribution is thus uniquely
determined by the moments due to the Carleman’s Theorem [28, p. 227]. Thus, if we
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consider X as the input of a user with signal-to-noise ratio snr to the multiple-access channel
and 〈X〉 as the output of the generalized PME, then the error 〈X〉 − X has identical
distribution as

q1(Z, snr; ξ)
q0(Z, snr; ξ)

−X (3.178)

where (Z,X) has joint distribution qZ,X|snr;ξ = qX qZ|X,snr;ξ. By (3.43),

q1( · , snr; ξ)
q0( · , snr; ξ)

(3.179)

is the decision function associated with the generalized posterior mean estimator. Clearly,
the joint distribution of the input X to the multiple-access channel (3.4) and the output of
the generalized PME 〈X〉q is identical to the joint distribution of the input to the single-
user Gaussian channel (3.18) and the decision function (3.179) evaluated at the output Z
of (3.18). Hence the decoupling principle.

The decision function can be ignored from both detection- and information-theoretic
viewpoints due to its monotonicity:

Proposition 3.3 The decision function (3.24) is strictly monotone increasing in z for all
α.

Proof: Let (·)′ denote derivative with respect to z. One can show that

q′i(z, snr; ξ) = ξ
√

snr qi+1(z, snr; ξ)− ξz qi(z, snr; ξ) i = 0, 1, . . . (3.180)

Clearly, [
q1(z, snr; ξ)
q0(z, snr; ξ)

]′
= ξ

√
snr

q2(z, snr; ξ)q0(z, snr; ξ)− [q1(z, snr; ξ)]2

[q0(z, snr; ξ)]2
. (3.181)

The numerator in (3.181) is positive by the Cauchy-Schwartz inequality. For the numerator
in (3.181) to be 0, X must be a constant, which contradicts the assumption that X has
zero mean and unit variance. Therefore, (3.24) is strictly increasing.

Collecting relevant results in the above, the equivalent single-user channel is then an addi-
tive Gaussian noise channel with input signal-to-noise ratio snr and noise variance η−1 as
depicted in Figure 3.6. Claim 3.3 is thus proved. In the special case that the postulated
measure q is identical to the actual measure p, Claim 3.3 reduces to Claim 3.1.

The single-user mutual information is now simply that of a Gaussian channel with input
distribution pX ,

I(η snr) = −1
2

log
2πe

η
−
∫

pZ|snr;η(z|snr; η) log pZ|snr;η(z|snr; η) dz. (3.182)

The overall spectral efficiency under separate decoding is therefore

Csep = β E {I(η snr)} . (3.183)

Hence the proof of (3.26) and (3.28). Claim 3.2 is proved by comparing (3.183) to (3.149).
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3.5 Complex-valued Channels

Until now our discussion is based on a real-valued setting of the channel (3.4), namely, both
the inputs Xk and the spreading chips Snk take real values. In practice, particularly in
carrier-modulated communications where spectral efficiency is a major concern, transmis-
sion in the complex domain must be addressed. Either the input symbols or the spreading
chips or both can take values in the set of complex numbers. The channel model (3.4) is
equivalent to the following real-valued channel:[

Y (r)

Y (i)

]
=
[
S(r) −S(i)

S(i) S(r)

] [
X(r)

X(i)

]
+
[
N (r)

N (i)

]
, (3.184)

where the superscripts (r) and (i) denote real and imaginary components respectively. Note
that the previous analysis does not apply to (3.184) since the channel state matrix does not
contain i.i.d. entries in this case.

If the inputs take complex values but the spreading is real-valued (S(i) = 0), the channel
can be considered as two uses of the real-valued channel S = S(r), where the inputs X(r)

and X(i) to the two channels may be dependent. Since independent inputs maximize the
channel capacity, there is little reason to transmit dependent signals in the two subchannels.
Thus the analysis of the real-valued channel in previous sections also applies to the case
of independent in-phase and quadrature components, while the only change is that the
spectral efficiency is the sum of that of the two subchannels.

If the spreading chips are complex-valued, the analysis in the previous sections can be
modified to take this into account. For convenience it is assumed that the real and imaginary
components of spreading chips, S

(r)
nk , S

(i)
nk are i.i.d. with zero mean and unit variance. The

noise vector has i.i.d. circularly symmetric Gaussian entries, i.e., E {NNH} = 2I. Thus the
conditional probability distribution of the true and the postulated CDMA channels are

pY |X,S(y|x,S) = (2π)−L exp
[
−1

2
‖y − Sx‖2

]
, (3.185)

and

qY |X,S(y|x,S) =
(
2πσ2

)−L exp
[
− 1

2σ2
‖y − Sx‖2

]
(3.186)

respectively. Also, the true and the postulated input distributions pX and qX have both
zero-mean and unit variance, E

{
|X|2

}
= Eq

{
|X|2

}
= 1. Note that the in-phase and the

quadrature components are intertwined due to complex spreading.
The replica analysis can be carried out similarly as in Section 3.4. In the following we

highlight the major differences.
Given (Γ,X), the variables defined in (3.106),

Va =
1√
K

K∑
k=1

√
snrk SkXak, a = 0, 1, . . . , u (3.187)

have asymptotically independent real and imaginary components. Thus, G
(u)
K can be eval-

uated to be 2 times that under real-valued channels with

Qab =
1
K

K∑
k=1

snrkRe {XakX
∗
bk} , a, b = 0, . . . , u. (3.188)
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The rate I(u) of the measure µ
(u)
K of Q is obtained as

I(u)(Q) = sup
Q̃

[
tr
{

Q̃Q
}
− log E

{
exp

[
snrXHQ̃X

]}]
. (3.189)

As a result, the fixed-point joint equations for Q and Q̃ are

Q̃ = − 2
β

(Σ−1 + Q)−1 , (3.190a)

Q =
E
{

snrXXHexp
[
snrXHQ̃X

]}
E
{

exp
[
snrXHQ̃X

]} . (3.190b)

Under replica symmetry (3.127), the parameters (c, d, f, g) are found to be 2 times the
values given in (3.136), and (r, m, p, q) are found the same as (3.145) except that all squares
are replaced by squared norms. By defining two parameters (differs from (3.137) by a factor
of 2):

η =
d2

f
, (3.191a)

ξ = d, (3.191b)

we have the following result.

Claim 3.4 Let the generalized multiuser posterior mean estimate of the complex-valued
multiple-access channel (3.185) with complex-valued spreading be 〈X〉q with a postulated
input distribution qX and noise level σ. Then, in the large-system limit, the distribution of
the multiuser detection output 〈Xk〉q conditioned on Xk = x being transmitted with signal-
to-noise ratio snrk is identical to the distribution of the generalized estimate 〈X〉q of a scalar
complex Gaussian channel

Z =
√

snr X +
1
√

η
N (3.192)

conditioned on X = x being transmitted with input signal-to-noise ratio snr = snrk, where N
is circularly symmetric Gaussian with unit variance, E

{
|N |2

}
= 1. The multiuser efficiency

η and the inverse noise variance ξ of the postulated scalar channel (3.186) satisfy the coupled
equations:

η−1 = 1 + β E {snr ·mse(snr; η, ξ)} , (3.193a)
ξ−1 = σ2 + β E {snr · var(snr; η, ξ)} , (3.193b)

where the mean-square error of the generalized PME and the variance of the retrochannel
are defined similarly as that of the real-valued channel, with the squares in (3.38) and (3.39)
replaced by the squared norms. In case of multiple solutions to (3.41), (η, ξ) are chosen to
minimize the free energy:

F =− E

{∫
pZ|snr;η(z|snr; η) log qZ|snr;ξ(z|snr; ξ) d z

}
+ log

ξ

π
− ξ

η
+

σ2ξ(η − ξ)
βη

+
1
β

(ξ − 1− log ξ) +
1
β

log(2π) +
ξ

βη
.

(3.194)
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Corollary 3.3 For the complex-valued channel (3.185), the mutual information of the
single-user channel seen at the generalized multiuser PME output for a user with signal-to-
noise ratio snr is

I(η snr) = D(pZ|X,snr;η || pZ|snr;η | pX). (3.195)

where η is the multiuser efficiency given by Claim 3.4 and pZ|snr;η is the marginal proba-
bility distribution of the output of channel (3.192). The overall spectral efficiency under
suboptimal separate decoding is

Csep(β) = β E {I(η snr)} . (3.196)

The spectral efficiency under optimal joint decoding is

Cjoint(β) = β E
{
D(pZ|X,snr;η || pZ|snr;η | pX)

}
+ η − 1− log η, (3.197)

where η is the PME multiuser efficiency by postulating a measure q that is identical to p.

It is interesting to compare the performance of the real-valued channel and that of
the complex-valued channel. We assume the in-phase and quadrature components of the
input symbols are independent with identical distribution p′X which has a variance of 1

2 . By
Claim 3.4, the equivalent single-user channel (3.192) can also be regarded as two independent
subchannels. The mean-square error and the variance in (3.193) are the sum of those of
the subchannels. It can be checked that the performance of each subchannel is identical
to that of the real-valued channel with input distribution p′X normalized to unit variance.
Note, however, that the complex spreading sequences take twice the energy of their real
counterparts. In all, the efficiencies under complex-valued spreading are the same as those
under real-valued spreading. This result simplifies the analysis of complex-valued channels
such as those arise in multiantenna systems. On the other hand, if we have control over the
channel state matrix, as in CDMA systems, complex-valued spreading should be avoided
due to higher complexity with no performance gain.

We can also compare the real-valued and the complex-valued channel assuming the same
real-valued input distribution. Under the complex-valued channel,[

Y (r)

Y (i)

]
=
[
S(r)

S(i)

]
X +

[
N (r)

N (i)

]
, (3.198)

which is equivalent to transmitting the same X twice over two uses of real-valued channels.
This is equivalent to having a real-valued channel with the load β halved.

3.6 Numerical Results

In Figures 3.10–3.11 we plot the simulated distribution of the posterior mean estimate and
its corresponding “hidden” Gaussian statistic. Equal-power users with binary input are
considered. We simulate CDMA systems of 4, 8, 12 and 16 users respectively. The load
is fixed to β = 2/3 and the SNR is 2 dB. We collect the output decision statistics of the
posterior mean estimator (i.e., the soft output of the individually optimal detector, 〈Xk〉)
out of 1,000 experiments. A histogram of the statistic is obtained and then scaled to plot
an estimate of the probability density function in Figure 3.10. We also apply the inverse
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Figure 3.10: Simulated probability density function of the posterior mean estimates under
binary input conditioned on “+1” being transmitted. Systems with 4, 8, 12 and 16 equal-
power users are simulated with β = 2/3. The SNR is 2 dB.
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Figure 3.11: Simulated probability density function of the “hidden” Gaussian statistic re-
covered from the posterior mean estimates under binary input conditioned on “+1” being
transmitted. Systems with 4, 8, 12 and 16 equal-power users are simulated with β = 2/3.
The SNR is 2 dB. The asymptotic Gaussian distribution predicted by our theory is also
plotted for comparison.
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nonlinear decision function to recover the “hidden” Gaussian decision statistic (normalized
so that its conditional mean value is Xk), which in this case is

Zk =
tanh−1(〈Xk〉)

η snrk
. (3.199)

The probability density function of Zk estimated from its histogram is then compared to
the theoretically predicted Gaussian density function in Figure 3.11. It is clear that even
though the PME output 〈Xk〉 takes a non-Gaussian distribution, the equivalent statistic
Zk converges to a Gaussian distribution as K becomes large. This result is particularly
powerful considering that the “fit” to the Gaussian distribution is quite good even for a
system with merely 8 users.

In Figures 3.12–3.23, the multiuser efficiency and the spectral efficiency are plotted as
functions of the average SNR. We consider three input distributions, namely, real-valued
Gaussian and binary inputs, and (complex-valued) 8PSK inputs. Under Gaussian and
binary inputs, where real-valued spreading is considered, the multiuser efficiencies are given
by (3.54) and (3.62) respectively, and the spectral efficiencies are given by (3.58)–(3.59),
(2.17) and (3.63) respectively. Under 8PSK, where complex-valued spreading is assumed,
the multiuser efficiency and the spectral efficiency are given by Claim 3.4 and Corollary 3.3
respectively. We also consider two SNR distributions: 1) equal SNR for all users (perfect
power control), and 2) two groups of users of equal population with a power difference of
10 dB. We first assume a system load of β = 1 and then redo the experiments with β = 3.

In Figure 3.12, the multiuser efficiency under Gaussian inputs and linear MMSE detec-
tion is plotted as a function of the average SNR. The load is β = 1. We find the multiuser
efficiencies decrease from 1 to 0 as the SNR increases. The monotonicity can be easily
verified by inspecting the Tse-Hanly equation (3.54). Transmission with unbalanced power
improves the multiuser efficiency. The corresponding spectral efficiencies of the system are
plotted in Figure 3.13. Both joint decoding and separate decoding are considered. The gain
in the spectral efficiency due to joint decoding is little under low SNR but significant under
high SNR. Unbalanced SNR reduces the spectral efficiency, where under separate decoding
the loss is almost negligible.

The multiuser efficiency under binary inputs and nonlinear MMSE (individually opti-
mal) detection is plotted in Figure 3.14. The multiuser efficiency is not monotone. The
multiuser efficiency converges to 1 for both diminishing SNR and infinite SNR. While for
diminishing SNR this follows directly from the definition of multiuser efficiency, the conver-
gence to unity as the SNR goes to infinity was shown in [98] for the case of binary inputs.
A single dip is observed for the case of equal SNR while two dips are observed in the case
of two SNRs of equal population with 10 dB difference in SNR (the gap is about 10 dB).
The corresponding spectral efficiencies are plotted in Figure 3.15. The spectral efficiencies
saturate to 1 bit/s/dimension at hight SNR. The difference between joint decoding and
separate decoding is quite small for both very low and very high SNRs while it can be 25%
at around 8 dB.

The multiuser efficiency under 8PSK inputs and nonlinear MMSE detection is plotted
in Figure 3.16. The multiuser efficiency curve is slightly better than that for binary inputs.
The corresponding spectral efficiencies are plotted in Figure 3.17. The spectral efficiencies
saturate to 3 bit/s/dimension at hight SNR.

In Figures 3.18 through 3.23, we redo the previous experiments only with a different
system load β = 3. The results are to be compared with Figures 3.12 through 3.17.
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Figure 3.12: The multiuser efficiency vs. average SNR (Gaussian inputs, β = 1).
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Figure 3.13: The spectral efficiency vs. average SNR (Gaussian inputs, β = 1).
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Figure 3.14: The multiuser efficiency vs. average SNR (binary inputs, β = 1).
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Figure 3.15: The spectral efficiency vs. average SNR (binary inputs, β = 1).
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Figure 3.16: The multiuser efficiency vs. average SNR (8PSK inputs, β = 1).

−20 −15 −10 −5 0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Average SIR  E{Γ} (dB)

S
pe

ct
ra

l e
ffi

ci
en

cy
 (b

its
/s

/d
im

en
si

on
)

Equal SIR, joint decoding
Equal SIR, separate decoding
10 dB SIR difference, joint decoding
10 dB SIR difference, separate decoding

Figure 3.17: The spectral efficiency vs. average SNR (8PSK inputs, β = 1).
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Figure 3.18: The multiuser efficiency vs. average SNR (Gaussian inputs, β = 3).
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Figure 3.19: The spectral efficiency vs. average SNR (Gaussian inputs, β = 3).
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Figure 3.20: The multiuser efficiency vs. average SNR (binary inputs, β = 3).
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Figure 3.21: The spectral efficiency vs. average SNR (binary inputs, β = 3).
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Figure 3.22: The multiuser efficiency vs. average SNR (8PSK inputs, β = 3).
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Figure 3.23: The spectral efficiency vs. average SNR (8PSK inputs, β = 3).
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Under Gaussian inputs, the multiuser efficiency curves in Figure 3.18 take similar shape
as in Figure 3.12, but are significantly lower due to the higher load. The corresponding
spectral efficiencies are shown in Figure 3.19. It is clear that higher load results in higher
spectrum usage under joint decoding. Separate decoding, however, is interference limited
and saturates under high SNR (cf. [105, Figure 1]).

In Figure 3.20, we plot the multiuser efficiency under binary inputs. All solutions to
the fixed-point equation (3.22) of the multiuser efficiency are shown. Under equal SNR,
multiple solutions coexist for an average SNR of 10 dB or higher. If two groups of users
with 10 dB difference in SNR, multiple solutions are seen in between 11 to 13 dB. The
solution that minimizes the free energy is valid and is shown in solid lines, while invalid
solutions are plotted using dotted lines. An almost 0 to 1 jump is observed under equal
SNR and a much smaller jump is seen under unbalanced SNRs. This is known as phase
transition in statistical physics. The asymptotics under equal SNR can be shown by taking
the limit snr →∞ in (3.62). Essentially, if ηsnr →∞, then η → 1; while if ηsnr → τ where
τ is the solution to

τ

∫
1√
2π

e−
z2

2 [1− tanh(τ − z
√

τ)] dz =
1
β

, (3.200)

then η → 0. If β > 2.085, there exists a solution to (3.200) so that two solutions coexist for
large SNR.

The spectral efficiency under binary inputs and β = 3 is shown in Figure 3.21. As a
result of phase transition, one observes a jump to saturation in the spectral efficiency under
equal-power binary inputs. The gain due to joint decoding can be significant in moderate
SNRs. In case of two groups of users with 10 dB difference in SNR, the spectral efficiency
curve also shows one jump and the loss due to separate decoding is reduced significantly
for a small window of SNRs around the areas of phase transition (11–13 dB). Therefore,
perfect power control may not be the best strategy in such cases.

Under 8PSK inputs, the multiuser efficiency and spectral efficiency curves in Figure
3.22 and 3.23 take similar shape as the curves under binary inputs in Figure 3.20 and 3.21.
Phase transition causes jumps in both the multiuser efficiency and the spectral efficiency.

A comparison of Figures 3.19, 3.21 and 3.23 shows that under separate decoding, the
spectral efficiency under Gaussian inputs saturates well below that of binary and 8PSK
inputs. This implies that the nonlinear MMSE detector with separate decoding is not
efficient in case of dense constellation.

3.7 Summary

The main contribution of this chapter is a simple characterization of the multiuser efficiency
and spectral efficiency of CDMA multiuser detection under arbitrary input distribution and
SNR (and/or flat fading) in the large-system limit. A broad family of multiuser detectors
is studied under the name of generalized posterior mean estimators, which includes well-
known detectors such as the matched filter, decorrelator, linear MMSE detector, maximum
likelihood (jointly optimal) detector, and the individually optimal detector.

A key conclusion is the decoupling of a Gaussian CDMA channel concatenated with a
generic multiuser detector front end (Claims 3.1 and 3.3). It is found that the multiuser
detection output is a deterministic function of a hidden Gaussian statistic centered at the
transmitted symbol. Hence the single-user channel seen at the multiuser detection output
is equivalent to a Gaussian channel in which the overall effect of multiple-access interference
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is a degradation factor in the effective signal-to-interference ratio. This degradation factor,
known as the multiuser efficiency, is the solution to a set of coupled fixed-point equations,
and can be computed easily numerically if not analytically.

Another set of results, tightly related to the decoupling principle, are some general
formulas for the large-system spectral efficiency of CDMA channels expressed in terms of
the multiuser efficiency, both under joint and separate decoding (Corollaries 3.1 and 3.2).
It is found that the decomposition of optimum spectral efficiency as a sum of single-user
efficiencies and a joint decoding gain (Claim 3.2) applies under more general conditions
than shown in [85], thereby validating Müller’s conjecture [71]. A relationship between the
spectral efficiencies under joint and separate decoding (Theorem 3.1) is an outcome of the
central formula that links the mutual information and MMSE in Chapter 2.

From a practical viewpoint, this chapter presents new results on the efficiency of CDMA
communication under arbitrary input signaling such as m-PSK and m-QAM and arbitrary
power profile. More importantly, the results in this chapter allow the performance of mul-
tiuser detection to be characterized by a single parameter, the multiuser efficiency. The
efficiency of spectrum usage is also easily quantified by means of this parameter. Thus, our
results offer valuable insights in the design and analysis of CDMA systems.

The linear system in our study also models multiple-input multiple-output channels
where the channel state is unknown at the transmitter. The results can thus be used to
evaluate the output SNR or spectral efficiency of high-dimensional MIMO channels (such
as multiple-antenna systems) with arbitrary signaling and various detection techniques.

Results in this chapter have been published in part in [38, 39, 42, 41, 40] and the most
recent development has been accepted for publication (pending revision) [43]. The results
also form the basis for some other work [67, 113].



Chapter 4

Conclusion and Future Work

This thesis presents theoretical findings on information transmission and signal estimation
pertinent to additive Gaussian channels. The central quantities, the input-output mutual
information and the minimum mean-square error, are shown to be tightly related in both
single-user and multiuser settings.

A fundamental result in this thesis is that the derivative of the mutual information
(nats) between the input and output of a Gaussian channel with respect to the signal-
to-noise ratio is always equal to a half of the minimum mean-square error in estimating
the input given the output. This relationship holds for arbitrary scalar and vector input
signals, as well as for discrete-time and continuous-time noncausal MMSE estimation. Using
information-theoretic results, a one-to-one correspondence invariant to the input signaling
is also identified between the continuous-time filtering and smoothing MMSEs as functions
of the signal-to-noise ratio. That is, the filtering MMSE at any SNR is the average of
the smoothing MMSE from zero signal-to-noise ratio to SNR. In the discrete-time setting,
the relationship between the mutual information and the causal MMSEs takes the form of
inequalities, i.e., the mutual information is lower bounded by the filtering MMSE but upper
bounded by the prediction MMSE.

The incremental channel approach, which is developed to study mutual information
increase due to infinitesimal change in system parameters, is applicable to the entire family
of channels the noise of which has independent increments, i.e., that is characterized by
Lévy processes [5]. We are currently investigating the special case of Poisson channels,
whose output is a counting process the rate of which is affine in the input process [34, 35].

The mutual information-MMSE relationship applies to many objects of engineering in-
terests, including for instance random fields. Some applications of the relationship are
presented in this thesis. We hope that the central formula may help to solve some open
problems, in particular to evaluate the mutual information by way of finding the MMSE.
Particularly interesting cases are the intersymbol interference channel and fading channels.
It is also hoped that the new relationships may help to explain the ubiquitous MMSE
estimator in capacity-achieving schemes, e.g., in ISI channels [12, 13], CDMA [33, 102],
lattice codes [26], writing on dirty paper schemes [15], and diversity-multiplexing trade-off
of MIMO channels [24]. An important question yet to be answered is whether the new
relationships carry useful operational meanings.

In a multiuser setting, randomly spread code-division multiple access and multiuser de-
tection are also studied in this thesis. The analysis is conducted in the large-system limit
using the replica method developed in statistical physics. It is shown that Gaussian CDMA
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channels with a multiuser detector front end can be decoupled into scalar Gaussian chan-
nels where the multiple-access interference present in the detection outputs is effectively
summarized by a single parameter called multiuser efficiency. This decoupling principle is
true for arbitrary input distribution and flat fading. A unified framework is developed to
analyze a broad family of multiuser detectors including the matched filter, decorrelator, lin-
ear MMSE detector, and optimum detectors, etc. Spectral efficiencies under both joint and
separate decoding are also derived. The additive decomposition of optimum capacity as a
sum of single-user capacities and a joint decoding gain holds for arbitrary inputs. Numerical
results suggest that the performance of an 8-user system can be closely approximated by
the large-system limit. Based on a general linear vector channel model, these results are
also applicable to single-user MIMO channels such as in multiantenna systems.

The analysis through the replica method originally developed in statistical physics is
quite unusual in the area of communications and information theory. Interesting problems
for future research include validating the assumptions made in Chapter 3, namely, 1) the
asymptotic equipartition property in matrix channel setting, 2) the “replica trick”, and 3)
replica symmetry. It also remains to see what are the conditions for replica symmetry to
hold. Neither do we know much about the operational meanings of phase transition. It
would also be interesting to see whether the replica method can be applied to solve open
problems such as the input-output mutual information of ISI channels. A great challenge
is to investigate whether the free energy (or mutual information) admits a solution without
resorting to the replica method. A possible starter is to fix the specious interpretation in
Section 3.2.6.



Appendix A

A.1 A Fifth Proof of Theorem 2.1

Proof: For simplicity, it is assumed that the order of expectation and derivative can
be exchanged freely. A rigorous proof is relegated to Appendix A.2 where every such
assumption is validated in the case of the more general vector model. The input-output
conditional probability density function is given by (2.6). Let us define pi(y; snr) as in
(2.103). Then

I(snr) = E

{
log

pY |X;snr(Y |X; snr)
pY ;snr(Y ; snr)

}
(A.1)

= −1
2

log(2πe)−
∫

p0(y; snr) log p0(y; snr) dy. (A.2)

It is easy to check that

d
dsnr

pi(y; snr) =
1

2
√

snr
ypi+1(y; snr)− 1

2
pi+2(y; snr) = − 1

2
√

snr

d
dy

pi+1(y; snr) (A.3)

as long as pi+2(y; snr) is well-defined. Therefore, from (A.2),

d
dsnr

I(snr) = −
∫

[log p0(y; snr) + 1]
d

dsnr
p0(y; snr) dy (A.4)

=
1

2
√

snr

∫
log p0(y; snr)

d
dy

p1(y; snr) dy (A.5)

= − 1
2
√

snr

∫
p1(y; snr)
p0(y; snr)

d
dy

p0(y; snr) dy (A.6)

= − 1
2
√

snr

∫
p1(y; snr)
p0(y; snr)

[√
snr p1(y; snr)− yp0(y; snr)

]
dy (A.7)

=
1

2
√

snr

∫
p1(y; snr)
p0(y; snr)

[
y −

√
snr

p1(y; snr)
p0(y; snr)

]
p0(y; snr) dy, (A.8)

where (A.6) is by integrating by parts. Note that the fraction in (A.8) is exactly the
conditional-mean estimate:

X̂(y; snr) =
p1(y; snr)
p0(y; snr)

. (A.9)
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Therefore,

d
dsnr

I(snr) =
1

2
√

snr
E
{
E {X | Y ; snr}

[
Y −

√
snr E {X | Y ; snr}

]}
(A.10)

=
1
2

E
{

X2 − (E {X | Y ; snr})2
}

(A.11)

=
1
2

mmse(snr). (A.12)

Using the above technique, it is not difficult to find the derivative of the conditional-
mean estimate X̂(y; snr) (A.9) with respect to the SNR. In fact, one can find any derivative
of the mutual information in this way.

A.2 A Fifth Proof of Theorem 2.2

Proof: The vector channel (2.18) has a Gaussian conditional density (2.19). The uncon-
ditional density of the channel output is given by (2.73), which is strictly positive for all y.
The mutual information can be written as

I(snr) = −L

2
log(2πe)−

∫
pY ;snr(y; snr) log pY ;snr(y; snr) dy. (A.13)

Hence,

d
dsnr

I(snr) = −
∫

[log pY ;snr(y; snr) + 1]
d

dsnr
pY ;snr(y; snr) dy (A.14)

= −
∫

[log pY ;snr(y; snr) + 1] E

{
d

dsnr
pY |X;snr(y|X; snr)

}
dy, (A.15)

where the order of taking the derivative and expectation in (A.15) can be exchanged by
Lemma A.1, which is shown below in this Appendix. It is easy to check that

d
dsnr

pY |X;snr(y|x; snr) =
1

2
√

snr
(Hx)>

(
y −

√
snr Hx

)
pY |X;snr(y|x; snr) (A.16)

= − 1
2
√

snr
(Hx)>∇pY |X;snr(y|x; snr). (A.17)

Using (A.17), the right hand side of (A.15) can be written as

1√
snr

E

{
(HX)>

∫
[log pY ;snr(y; snr) + 1] ∇pY |X;snr(y|X; snr) dy

}
. (A.18)

The integral in (A.18) can be carried out by parts to obtain

−
∫

pY |X;snr(y|X; snr)∇ [log pY ;snr(y; snr) + 1] dy, (A.19)

since for ∀x,

pY |X;snr(y|x; snr) [log pY ;snr(y; snr) + 1] → 0 as ‖y‖ → ∞. (A.20)
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Hence, the right hand side of (A.18) can be further evaluated as

− 1√
snr

∫
E

{
(HX)>

pY |X;snr(y|X; snr)
pY ;snr(y; snr)

}
∇pY ;snr(y; snr) dy (A.21)

where we have changed the order of the expectation with respect to X and the integral
(i.e., expectation with respect to Y ). By (A.17) and Lemma A.2 (shown below in this
Appendix), (A.21) can be further written as

1
2
√

snr

∫
E
{

(HX)>
∣∣∣ Y = y; snr

}
E
{(

y −
√

snr HX
)

pY |X;snr(y|X; snr)
}

dy. (A.22)

Therefore, (A.15) can be rewritten as

2
d

dsnr
I(snr) =

1√
snr

∫
E
{

(HX)>
∣∣∣ Y = y; snr

}
×E
{

y −
√

snr HX
∣∣ Y = y; snr

}
pY ;snr(y; snr) dy (A.23)

=
1√
snr

E
{

E
{

(HX)>
∣∣∣ Y ; snr

}
E
{

Y −
√

snr HX
∣∣ Y ; snr

}}
(A.24)

=
1√
snr

E
{

(HX)>Y
}
− E

{
‖E {HX | Y ; snr}‖2

}
(A.25)

= E
{
‖HX‖2

}
− E

{
‖E {HX | Y ; snr}‖2

}
(A.26)

= E
{
‖H X −H E {X | Y ; snr}‖2

}
. (A.27)

The following two lemmas were needed to justify the exchange of expectation with
respect to PX and derivatives in the above proof of Theorem 2.2.

Lemma A.1 If E‖X‖2 < ∞, then

d
dsnr

E
{
pY |X;snr(y|X; snr)

}
= E

{
d

dsnr
pY |X;snr(y|X; snr)

}
. (A.28)

Proof: Let

fδ(x,y, snr) =
1
δ

[
pY |X;snr(y|X; snr + δ)− pY |X;snr(y|X; snr)

]
(A.29)

and
f(x,y, snr) =

d
dsnr

pY |X;snr(y|x; snr). (A.30)

Then, ∀x,y, snr,
lim
δ→0

fδ(x,y, snr) = f(x,y, snr). (A.31)

Lemma A.1 is equivalent to

lim
δ→0

∫
fδ(x,y, snr)PX( dx) =

∫
f(x,y, snr)PX( dx). (A.32)

Suppose we can show that for every δ,x,y and snr,

|fδ(x,y, snr)| < ‖Hx‖2 +
1√
snr

|y>Hx|. (A.33)
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Since the right hand side of (A.33) is integrable with respect to PX by the assumption in
the lemma, (A.32) holds by the Lebesgue convergence theorem [83]. Note that

fδ(x,y, snr) = (2π)−
L
2
1
δ

{
exp

[
−1

2
‖y −

√
snr + δ Hx‖2

]
− exp

[
−1

2
‖y −

√
snr Hx‖2

]}
.

(A.34)
If

1
δ
≤ ‖Hx‖2 +

1√
snr

|y>Hx|, (A.35)

then (A.33) holds trivially. Otherwise,

|fδ(x,y, snr)| <
1
δ

∣∣∣∣exp
[
1
2
‖y −

√
snr Hx‖2 − 1

2
‖y −

√
snr + δ Hx‖2

]
− 1
∣∣∣∣ (A.36)

<
1
2δ

(
exp

∣∣∣δ ‖Hx‖2 −
(√

snr + δ −
√

snr
)

y>Hx
∣∣∣− 1

)
(A.37)

<
1
2δ

(
exp

[
δ

(
‖Hx‖2 +

1√
snr

|y>Hx|
)]

− 1
)

. (A.38)

Using the fact
et − 1 < 2t, ∀ 0 ≤ t < 1, (A.39)

the inequality (A.33) holds for all x,y, snr.

Lemma A.2 If EX exists, then for i = 1, . . . , L,

∂

∂yi
E
{
pY |X;snr(Y |X; snr)

}
= E

{
∂

∂yi
pY |X;snr(Y |X; snr)

}
. (A.40)

Proof: Let

g(x,y, snr) =
∂

∂yi
pY |X;snr(y|x; snr) (A.41)

and
gδ(x,y, snr) =

1
δ

[
pY |X;snr(y + δ ei|X; snr)− pY |X;snr(y|X; snr)

]
(A.42)

where ei is a vector with all zero except on the ith entry, which is 1. Then, ∀x,y, snr,

lim
δ→0

gδ(x,y, snr) = g(x,y, snr). (A.43)

Lemma A.2 is equivalent to

lim
δ→0

∫
gδ(x,y, snr)PX( dx) =

∫
g(x,y, snr)PX( dx). (A.44)

If one can show that
|gδ(x,y, snr)| < |yi|+ 1 +

√
snr |[Hx]i|, (A.45)

then (A.44) holds by the Lebesgue convergence theorem since the right hand side of (A.45)
is integrable with respect to PX by assumption. Note that

gδ(x,y, snr) = (2π)−
L
2
1
δ

{
exp

[
−1

2
‖y + δ ei −

√
snr Hx‖2

]
− exp

[
−1

2
‖y −

√
snr Hx‖2

]}
.

(A.46)
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If
1
δ
≤ |yi|+ 1 +

1√
snr

|[Hx]i|, (A.47)

then (A.45) holds trivially. Otherwise,

|gδ(x,y, snr)| <
1
2δ

(
exp

∣∣∣∣12‖y −√snr Hx‖2 − 1
2
‖y + δ ei −

√
snr Hx‖2

∣∣∣∣− 1
)
(A.48)

=
1
2δ

(
exp

∣∣∣∣δ2 (2yi + δ − 2
√

snr [Hx]i
)∣∣∣∣− 1

)
(A.49)

<
1
2δ

(
exp

[
δ
(
|yi|+ 1 +

√
snr |[Hx]i|

)]
− 1
)

(A.50)

< |yi|+ 1 +
√

snr |[Hx]i|. (A.51)

A.3 Proof of Lemma 2.5

Lemma 2.5 can be regarded as a consequence of Duncan’s Theorem (Theorem 2.7). Consider
the interval [0, T ]. The mutual information can be expressed as a time-integral of the causal
MMSE:

I
(
ZT

0 ;Y T
0

)
=

δ

2

∫ T

0
E
(
Zt − E

{
Zt | Y t

0 ; δ
})2 dt, (A.52)

Notice that as the signal-to-noise ratio δ → 0, the observed signal Y T
0 becomes inconse-

quential in estimating the input signal. Indeed, the causal MMSE estimate converges to
the unconditional-mean in mean-square sense:

E
{

Zt | Y t
0 ; δ
}
→ EZt. (A.53)

Putting (A.52) and (A.53) together proves Lemma 2.5.
In parallel with the development in Theorem 2.1, another reasoning of Lemma 2.5 from

first principles without invoking Duncan’s Theorem is presented in the following. In fact,
Lemma 2.5 is established first in this paper so that a more intuitive proof of Duncan’s
Theorem is given in Section 2.3.3 using the idea of time-incremental channels.

Proof: [Lemma 2.5] By definition (2.1), the mutual information is the expectation of the
logarithm of the Radon-Nikodym derivative, which can be obtained by the chain rule as

Φ =
dµY Z

dµY dµZ
=

dµY Z

dµWZ

(
dµY

dµW

)−1

. (A.54)

First assume that {Zt} is a bounded uniformly stepwise process, i.e., there exists a finite
subdivision of [0, T ], 0 = t0 < t1 < · · · < tn = T , and a finite constant M such that

Zt(ω) = Zti(ω), t ∈ [ti, ti+1], i = 0, . . . , n− 1, (A.55)

and Zt(ω) < M , ∀ t ∈ [0, T ]. Let Z = [Zt0 , . . . , Ztn ], Y = [Yt0 , . . . , Ytn ], and W =
[Wt0 , . . . ,Wtn ] be (n + 1)-dimensional vectors formed by the samples of the random pro-
cesses. Then, the input-output conditional density is Gaussian:

pY |Z(y|z) =
n−1∏
i=0

1√
2π(ti+1 − ti)

exp

−
(
yi+1 − yi −

√
δzi(ti+1 − ti)

)2

2(ti+1 − ti)

 . (A.56)
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Easily,

pY Z(b,z)
pW Z(b,z)

=
pY |Z(b|z)

pW (b)
(A.57)

= exp

[
√

δ
n−1∑
i=0

zi(bi+1 − bi)−
δ

2

n−1∑
i=0

z2
i (ti+1 − ti)

]
. (A.58)

Thus the Radon-Nikodym derivative can be established as

dµY Z

dµWZ
= exp

[√
δ

∫ T

0
Zt dWt −

δ

2

∫ T

0
Z2

t dt

]
(A.59)

using the finite-dimensional likelihood ratios (A.58). It is clear that µY Z � µWZ .
For the case of a general finite-power process (not necessarily bounded) {Zt}, a sequence

of bounded uniformly stepwise processes which converge to the {Zt} in L2( dt dP ) can be
obtained. The Radon-Nikodym derivative (A.59) of the sequence of processes also converges.
Absolutely continuity is preserved. Therefore, (A.59) holds for all such processes {Zt}.

The derivative (A.59) can be re-written as

dµY Z

dµWZ
= 1 +

√
δ

∫ T

0
Zt dWt +

δ

2

[(∫ T

0
Zt dWt

)2

−
∫ T

0
Z2

t dt

]
+ o(δ). (A.60)

By the independence of the processes {Wt} and {Zt}, the measure µWZ = µW µZ . Thus
integrating on the measure µZ gives

dµY

dµW
= 1 +

√
δ

∫ T

0
EZt dWt +

δ

2

[
EµZ

(∫ T

0
Zt dWt

)2

−
∫ T

0
EZ2

t dt

]
+ o(δ). (A.61)

Clearly, µY � µW . Using (A.60), (A.61) and the chain rule (A.54), the Radon-Nikodym
derivative Φ exists and is given by

Φ = 1 +
√

δ

∫ T

0
Zt − EZt dWt +

δ

2

[(∫ T

0
Zt dWt

)2

− EµZ

(∫ T

0
Zt dWt

)2

−2
∫ T

0
EZt dWt

∫ T

0
Zt − EZt dWt −

∫ T

0
Z2

t dt +
∫ T

0
EZ2

t dt

]
+ o(δ) (A.62)

= 1 +
√

δ

∫ T

0
Zt − EZt dWt +

δ

2

[(∫ T

0
Zt − EZt dWt

)2

−EµZ

(∫ T

0
Zt − EZt dWt

)2

−
∫ T

0
Z2

t − EZ2
t dt

]
+ o(δ). (A.63)

Note that the mutual information is an expectation with respect to the measure µY Z . It
can be written as

I
(
ZT

0 ;Y T
0

)
=
∫

log Φ′ dµY Z (A.64)
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where Φ′ is obtained from Φ (A.63) by substitute all occurrences of dWt by dYt =
√

δ Zt +
dWt:

Φ′ = 1 +
√

δ

∫ T

0
Zt − EZt dYt +

δ

2

[(∫ T

0
Zt − EZt dYt

)2

−EµZ

(∫ T

0
Zt − EZt dYt

)2

−
∫ T

0
Z2

t − EZ2
t dt

]
+ o(δ) (A.65)

= 1 +
√

δ

∫ T

0
Zt − EZt dWt +

δ

2

[(∫ T

0
Zt − EZt dWt

)2

− EµZ

(∫ T

0
Zt − EZt dWt

)2

+
∫ T

0
(Zt − EZt)2 dt +

∫ T

0
E(Zt − EZt)2 dt

]
+ o(δ) (A.66)

= 1 +
√

δ

∫ T

0
Z̃t dWt +

δ

2

[(∫ T

0
Z̃t dWt

)2

−EµZ

(∫ T

0
Z̃t dWt

)2

+
∫ T

0
Z̃2

t dt +
∫ T

0
EZ̃2

t dt

]
+ o(δ) (A.67)

where Z̃t = Zt − EZt. Hence

log Φ′ =
√

δ

∫ T

0
Z̃t dWt +

δ

2

[
−EµZ

(∫ T

0
Z̃t dWt

)2

+
∫ T

0
Z̃2

t dt +
∫ T

0
EZ̃2

t dt

]
+ o(δ).

(A.68)
Therefore, the mutual information is

E log Φ′ =
δ

2

[
−E

(∫ T

0
Z̃t dWt

)2

+ 2
∫ T

0
EZ̃2

t dt

]
+ o(δ) (A.69)

=
δ

2

[
−
∫ T

0
EZ̃2

t dt + 2
∫ T

0
EZ̃2

t dt

]
+ o(δ) (A.70)

=
δ

2

∫ T

0
EZ̃2

t dt + o(δ), (A.71)

and the lemma is proved.

A.4 Asymptotic Joint Normality of {V }
A proof of asymptotic joint normality in [96, Appendix B] using the Edgeworth expansion
[66] of the probability density function is problematic since possible discrete nature of V
may not allow a density function. A simple remedy is to use the cumulative distribution
function (c.d.f.) instead. Odd order cumulants of V are all zero. The second- and fourth-
order cumulants of V are given by

κa,b = E {VaVb | Γ,X} = Qab (A.72)
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and

κa,b,c,d = E {VaVbVcVd | Γ,X} − E {VaVb | Γ,X} E {VcVd | Γ,X}
−E {VaVc | Γ,X} E {VbVd | Γ,X}
−E {VaVd | Γ,X} E {VbVc | Γ,X} (A.73)

= −2K−2
K∑

k=1

snr2kXakXbkXckXdkE
{
S4

nk

}
(A.74)

= O(K−1) (A.75)

for all a, b, c, d = 0, . . . , u. Higher order cumulants are O(K−2). Therefore, the joint c.d.f.
of V allows an Edgeworth expansion,

F (v) = F0(v) +
1

4!K

u∑
a,b,c,d=0

(
1
K

K∑
k=1

snr2kXakXbkXckXdk

)
∂4F0(v)

∂va∂vb∂vc∂vd
+ O(K−2)

(A.76)
where F0 is the c.d.f. of joint Gaussian variables with a covariance of Q [66]. In the limit
of K →∞, the distribution F converges to the Gaussian distribution F0.

A.5 Evaluation of G(u)

From (3.111),

exp
[
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]
=

(
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2 E

{∫
exp

[
−1

2

(
y −

√
β Ṽ0
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Ṽ
>
ΣṼ
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(A.80)
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where Σ is a (u + 1) × (u + 1) matrix given by (3.120). Rewriting the expectation with
respect to the Gaussian vector Ṽ as an integral, one finds that

exp
[
G(u)(Q)

]
=

(
2πσ2

)−u
2

(
1 +

u

σ2

)− 1
2 (2π)−

u+1
2 [detQ]−

1
2

×
∫

exp
[
v>(Q−1 + Σ) v

]
dv (A.81)

=
(
2πσ2

)−u
2

(
1 +

u

σ2

)− 1
2 [det(I + ΣQ)]−

1
2 , (A.82)

which is equivalent to (3.119).
Under the replica symmetry assumption (3.127), the determinant in (A.82) can be writ-

ten as

det(I + ΣQ) =
σ2

σ2 + u

[
1 +

β

σ2
(p− q)

]u−1 [
1 +

β

σ2
(p− q) +

u

σ2
(1 + β(r − 2m + q))

]
(A.83)

and (3.128) follows.

A.6 Proof of Lemma 3.2

Proof: It is easy to see that

Z(u)(Y ,S,X0;h)
∣∣∣
h=0

= Zu(Y ,S). (A.84)

By taking the derivative and letting h = 0, the right hand side of (3.158) is

1
K

lim
u→0

E

{
Eq

{
f(X0,X
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u∏
a=1

qY |X,S(Y |X ′
a,S)

∣∣∣∣∣ Y ,S,X0

}}
, (A.85)

where X ′
a has the same statistics as Xa (i.e., contains i.i.d. entries with distribution qX)

but independent of all other random variables. Also note that

qXa|Y ,S(Xa |Y ,S) = Z−u(Y ,S) qXa
(Xa)

u∏
a=1

qY |X,S(Y |Xa,S). (A.86)

One can change the expectation over the replicas X ′
a independent of (Y ,S,X0) to an

expectation over Xa conditioned on (Y ,S,X0). Hence (A.85) can be further written as

1
K

lim
u→0

E {E {f(X0,Xa)|Y ,S,X0} Zu(Y ,S)}

=
1
K

E {E {f(X0,Xa)|Y ,S,X0}} (A.87)

=
1
K

E {f(X0,Xa)} (A.88)

where Zu(Y ,S) can be dropped as u → 0 in (A.87) since the conditional expectation in
(A.87) is not dependent on u by the assumption in the lemma.
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A.7 Proof of Lemma 2.6

Proof: Let Y =
√

snr g(X) + N . Since

0 ≤ H(X)− I(X;Y ) = H(X|Y ), (A.89)

it suffices to show that the uncertainty about X given Y vanishes as snr →∞:

lim
snr→∞

H(X|Y ) = 0. (A.90)

Assume first that X takes a finite number (m < ∞) of distinct values. Given Y , let X̂m

be the decision for X that achieves the minimum probability of error, which is denoted by
p. Then

H(X|Y ) ≤ H(X|X̂) ≤ p log(m− 1) + H2(p), (A.91)

where H2(·) stands for the binary entropy function, and the second inequality is due to
Fano [17]. Since p → 0 as snr →∞, the right hand side of (A.91) vanishes.

In case X takes a countable number of values and that H(X) < ∞, for every natu-
ral number m, let Um be an indicator which takes the value of 1 if X takes one of the
m most likely values and 0 otherwise. Let X̂m be the function of Y which minimizes
P
{

X 6= X̂m|Um = 1
}

. Then for every m,

H(X|Y ) ≤ H(X|X̂m) (A.92)
= H(X, Um|X̂m) (A.93)
= H(X|X̂m, Um) + H(Um|X̂) (A.94)
≤ P{Um = 1}H(X|X̂, Um = 1)

+P{Um = 0}H(X|X̂, Um = 0) + H(Um) (A.95)
≤ P{Um = 1}H(X|X̂, Um = 1)

+P{Um = 0}H(X) + H2(P{Um = 0}). (A.96)

Conditioned on Um = 1, the probability of error P
{

X 6= X̂m|Um = 1
}

vanishes as snr →∞
by Fano’s inequality. Therefore, for every m,

lim
snr→∞

H(X|Y ) ≤ P{Um = 0}H(X) + H2(P{Um = 0}). (A.97)

The limit in (A.97) must be 0 since limm→∞ P{Um = 0} = 0. Thus (A.90) is also proved in
this case.

In case H(X) = ∞, H(X|Um = 1) → ∞ as m → ∞. For every m, the mutual
information (expressed in the form of a divergence) converges:

lim
snr→∞

D
(
PY |X,Um=1‖PY |Um=1|PX|Um=1

)
= H(X|Um = 1). (A.98)

Therefore, the mutual information increases without bound as snr →∞ by also noticing

I(X;Y ) ≥ I(X;Y |Um) ≥ P{Um = 1}D
(
PY |X,Um=1‖PY |Um=1|PX|Um=1

)
. (A.99)

We have thus proved (2.196) in all cases.
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[15] M. H. M. Costa, “Writing on dirty paper,” IEEE Trans. Inform. Theory, vol. 29,
pp. 439–441, May 1983.

[16] M. H. M. Costa, “A new entropy power inequality,” IEEE Trans. Inform. Theory,
vol. 31, pp. 751–760, Nov. 1985.

[17] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York : Wiley,
1991.

[18] J. L. Doob, Stochastic Processes. New York: Wiley, 1990.

[19] V. Dotsenko, The Theory of Spin Glasses and Neural Networks. World Scientific,
1994.

[20] T. E. Duncan, “Evaluation of likelihood functions,” Information and Control, vol. 13,
pp. 62–74, 1968.

[21] T. E. Duncan, “On the calculation of mutual information,” SIAM Journal of Applied
Mathematics, vol. 19, pp. 215–220, July 1970.

[22] S. F. Edwards and P. W. Anderson, “Theory of spin glasses,” Journal of Physics F:
Metal Physics, vol. 5, pp. 965–974, May 1975.

[23] Y. C. Eldar and A. M. Chan, “On the asymptotic performance of the decorrelator,”
IEEE Trans. Inform. Theory, vol. 49, pp. 2309–2313, Sept. 2003.

[24] H. ElGamal, G. Caire, and M. O. Damen, “Lattice coding and decoding achieve
the optimal diversity-multiplexing tradeoff of MIMO channels,” IEEE Trans. Inform.
Theory, vol. 50, pp. 968–985, June 2004.

[25] R. S. Ellis, Entropy, Large Deviations, and Statistical Mechanics. Vol. 271 of A series
of comprehensive studies in mathematics, Springer-Verlag, 1985.

[26] U. Erez and R. Zamir, “Lattice decoding can achieve 1
2 log(1 + SNR) on the AWGN

channel using nested codes,” IEEE Trans. Inform. Theory, 2001. submitted.

[27] R. Esposito, “On a relation between detection and estimation in decision theory,”
Information and Control, vol. 12, pp. 116–120, 1968.

[28] W. Feller, An Introduction to Probability Theory and Its Applications. Vol. II, John
Wiley & Sons, Inc., 2nd ed., 1971.

[29] G. J. Foschini, “Layered space-time architecture for wireless communication in a fad-
ing environment when using multiple antennas,” Bell Labs Technical Journal, vol. 1,
no. 2, pp. 41–59, 1996.

[30] R. G. Gallager, Information Theory and Reliable Communication. New York, Wiley,
1968.



103

[31] M. Gastpar and M. Vetterli, “On the capacity of wireless networks: The relay case,”
in Proceedings 2002 IEEE Infocom, New York, 2002.

[32] A. J. Grant and P. D. Alexander, “Random sequence multisets for synchronous code-
division multiple-access channels,” IEEE Trans. Inform. Theory, vol. 44, pp. 2832–
2836, Nov. 1998.

[33] T. Guess and M. K. Varanasi, “An information-theoretic framework for deriving
canonical decision-feedback receivers in Gaussian channels,” IEEE Trans. Inform.
Theory, 2004. To appear.

[34] D. Guo, S. Shamai, and S. Verdú, “Mutual information and conditional mean estima-
tion in Poisson channels,” in to be presented at IEEE Information Theory Workshop,
San Antonio, TX, USA, Oct. 2004.
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[100] A. M. Tulino and S. Verdú, “Random matrix theory and wireless communications,”
Foundations and Trends in Communications and Information Theory, vol. 1, no. 1,
2004.

[101] J. van Mourik, D. Saad, and Y. Kabashima, “Critical noise levels for LPDC decoding,”
Physics Review E, vol. 66, no. 2, pp. 026705:1–8, 2002.

[102] M. K. Varanasi and T. Guess, “Optimum decision feedback multiuser equalization
with successive decoding achieves the total capacity of the Gaussian multiple-access
channel,” in Proc. Asilomar Conf. on Signals, Systems and Computers, pp. 1405–1409,
Monterey, CA, Nov. 1997.
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[106] S. Verdú, “Minimum probability of error for asynchronous multiple access communica-
tion systems,” in Proceedings of IEEE Military Communications Conference, pp. 213–
219, Nov. 1983.
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[111] S. Verdú, “On channel capacity per unit cost,” IEEE Trans. Inform. Theory, vol. 36,
pp. 1019–1030, Sept. 1990.
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