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Abstract—This paper establishes new information–estimation
relationships pertaining to models with additive noise of arbitrary
distribution. In particular, we study the change in the relative
entropy between two probability measures when both of them
are perturbed by a small amount of the same additive noise.
It is shown that the rate of the change with respect to the
energy of the perturbation can be expressed in terms of the mean
squared difference of the score functions of the two distributions,
and, rather surprisingly, is unrelated to the distribution of the
perturbation otherwise. The result holds true for the classical
relative entropy (or Kullback–Leibler distance), as well as two of
its generalizations: Rényi’s relative entropy and the f -divergence.
The result generalizes a recent relationship between the relative
entropy and mean squared errors pertaining to Gaussian noise
models, which in turn supersedes many previous information–
estimation relationships. A generalization of the de Bruijn iden-
tity to non-Gaussian models can also be regarded as consequence
of this new result.

I. INTRODUCTION

To date, a number of connections between basic information
measures and estimation measures have been discovered. By
information measures we mean notions which describe the
amount of information, such as entropy and mutual infor-
mation, as well as several closely related quantities, such
as differential entropy and relative entropy (also known as
information divergence or Kullback–Leibler distance). By es-
timation measures we mean key notions in estimation theory,
which include in particular the mean squared error (MSE) and
Fisher information, among others.

An early such connection is attributed to de Bruijn [1] which
relates the differential entropy of an arbitrary random variable
corrupted by Gaussian noise and its Fisher information:

d
dδ
h
(
X +

√
δ N
)

=
1
2
J
(
X +

√
δ N
)

(1)

for every δ ≥ 0, where X denotes an arbitrary random
variable and N ∼ N (0, 1) denotes a standard Gaussian
random variable independent of X throughout this paper.
Here J(Y ) denotes the Fisher information of its distribution
with respect to (w.r.t.) the location family. The de Bruijn
identity is equivalent to a recent connection between the input–
output mutual information and the minimum mean-square
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error (MMSE) of a Gaussian model [2]:

d
dγ
I (X;

√
γ X +N) =

1
2
mmse

(
PX , γ

)
(2)

where X ∼ PX and mmse
(
PX , γ

)
denotes the MMSE of

estimating X given
√
γ X + N . The parameter γ ≥ 0 is

understood as the signal-to-noise ratio (SNR) of the Gaussian
model. By-products of formula (2) include the representation
of the entropy, differential entropy and the non-Gaussianness
(measured in relative entropy) in terms of the MMSE [2]–[4].
Several generalizations and extensions of the previous results
are found in [5]–[7]. Moreover, the derivative of the mutual
information and entropy w.r.t. channel gains have also been
studied for non-additive-noise channels [7], [8].

Among the aforementioned information measures, relative
entropy is the most general and versatile in the sense that it
is defined for distributions which are discrete, continuous, or
neither, and all the other information measures can be easily
expressed in terms of relative entropy. The following rela-
tionship between the relative entropy and Fisher information
is known [9]: Let {pθ} be a family of probability density
functions (pdfs) parameterized by θ ∈ R. Then

D(pθ+δ‖pθ) =
(
δ2/2

)
J(pθ) + o

(
δ2
)

(3)

where J(pθ) is the Fisher information of pθ w.r.t. θ.

In a recent work [10], Verdú established an interesting
relationship between the relative entropy and mismatched
estimation. Let mseQ(P, γ) represent the MSE for estimating
the input X of distribution P to a Gaussian channel of SNR
equal to γ based on the channel output, with the estimator
assuming the prior distribution of X to be Q. Then

2
d

dγ
D
(
P ∗ N

(
0, γ−1

)
‖Q ∗ N

(
0, γ−1

))
= mseQ(P, γ)−mmse(P, γ)

(4)

where the convolution P ∗N
(
0, γ−1

)
represents the distribu-

tion of X + N/
√
γ with X ∼ P . Obviously mseQ(P, γ) =

mmse(P, γ) if Q is identical to P . The formula is particularly
satisfying because the left-hand side (l.h.s.) is an information-
theoretic measure of the mismatch between two distributions,
whereas the right-hand side (r.h.s.) measures the mismatch
using an estimation-theoretic metric, i.e., the increase in the



estimation error due to the mismatch.
In another recent work, Narayanan and Srinivasa [11]

consider an additive non-Gaussian noise channel model and
provide the following generalization of the de Bruijn identity:

d
dδ
h
(
X +

√
δ V
) ∣∣∣∣

δ=0+

=
1
2
J(X) (5)

where the pdf of V is symmetric about 0, twice differentiable,
and of unit variance but otherwise arbitrary. The significance
of (5) is that the derivative does not depend on the detailed
statistics of the noise. Thus, if we view the differential entropy
as a manifold of the distribution of the perturbation

√
δ V , then

the geometry of the manifold appears to be locally a bowl
which is uniform in every direction of the perturbation.

In this work, we consider the change in the relative entropy
between two distributions when both of them are perturbed by
an infinitesimal amount of the same arbitrary additive noise.
We show that the rate of this change can be expressed as
the mean-squared difference of the score functions of the
distributions. Note that the score function is an important
notion in estimation theory, whose mean square is the Fisher
information. Like formula (5), the new general relationship
turns out to be independent of the noise distribution.

The general relationship is found to hold for both the
classical relative entropy (or Kullback–Leibler distance) and
the more general Rényi’s relative entropy, as well as the
general f -divergence due to Csiszár and independently Ali and
Silvey [12]. In the special case of Gaussian perturbations, it is
shown that (1), (2), (4), (5) can all be obtained as consequence
of the new result.

II. MAIN RESULTS

Theorem 1: Let Ψ denote an arbitrary distribution with zero
mean and variance δ. Let P and Q be two distributions whose
respective pdfs p and q are twice differentiable. If P � Q and

lim
z→∞

d
dz

[
p(z) log

p(z)
q(z)

]
= 0 (6)

then
d
dδ
D(P ∗Ψ‖Q ∗Ψ)

∣∣∣∣
δ=0+

= −1
2

∫ ∞
−∞

p(z)
(
∇ log

p(z)
q(z)

)2

dz (7)

= −1
2
EP
{

(∇ log p(Z)−∇ log q(Z))2
}

(8)

where the expectation in (8) is taken with respect to Z ∼ P .
The classical relative entropy (Kullback-Leibler distance) is

defined for two probability measures P � Q as

D(P‖Q) =
∫

log
(

dP
dQ

)
dP. (9)

When the corresponding densities exist, it is also customary
to denote the relative entropy by D(p‖q).

The notation d/ dδ in Theorem 1 can be understood as
taking derivative w.r.t. the variance of the distribution Ψ with

its shape fixed, i.e., Ψ is the distribution of
√
δ V with the

random variable V fixed. We note that the r.h.s. of (8) does
not depend on the distribution of V , i.e., the change in the
relative entropy due to small perturbation is proportional to
the variance of the perturbation but independent of its shape.
Thus the notation d/ dδ is not ambiguous.

For every function f , let ∇f denote its derivative f ′ for
notational convenience. For every differentiable pdf p, the
function ∇ log p(x) = p′(x)/p(x) is known as its score
function, hence the r.h.s. of (8) is the mean squared difference
of two score functions. As the previous result (4), this is
satisfying because both sides of (8) represent some error due
to the mismatch between the prior distribution q supplied to
the estimator and the actual distribution p. Obviously, if p and
q are identical, then both sides of the formula are equal to
zero; otherwise, the derivative is negative (i.e., perturbation
reduces relative entropy).

Consider now the Rényi relative entropy, which is defined
for two probability measures P � Q and every α > 0 as

Dα(P‖Q) =
1

α− 1
log
∫ (

dP
dQ

)α−1

dP (10)

where D1(P‖Q) is defined as the classical relative entropy
D(P‖Q) because limα→1Dα(P‖Q) = D(P‖Q).

Theorem 2: Let the distributions P , Q and Ψ be defined
the same way as in Theorem 1. Let δ denote the variance of
Ψ. If P � Q and

lim
z→∞

d
dz
[
pα(z) q1−α(z)

]
= 0 (11)

then
d
dδ
Dα(P ∗Ψ‖Q ∗Ψ)

∣∣∣∣
δ=0+

= −α
2

∞∫
−∞

(
∇ log

p(z)
q(z)

)2
pα(z)q1−α(z)∫∞

−∞ pα(u)q1−α(u) du
dz.

(12)

Note that as α → 1, the r.h.s. of (12) becomes the r.h.s.
of (7). We also point out that, similar to that in (7), the outer
integral in (12) can be viewed as the mean square difference
of two scores (∇ log p(Z) − ∇ log q(Z)) with the pdf of Z
being proportional to pα(z)q1−α(z).

Theorems 1 and 2 are quite general because conditions (6)
and (11) are satisfied by most distributions of interest. For
example, if both p and q belong to the exponential family, then
the derivatives in (6) and (11) also vanish exponentially fast.
Not all distributions satisfy those conditions. This is because
that although the functions p(z) and p(z) log(p(z)/q(z)) inte-
grate to 1 and D(P‖Q) respectively, they need not vanish. For
example, p(z) may consist of narrower and narrower Gaussian
pulses of the same height as z → ∞, so that not only p(z)
does not vanish, but p′(z) is unbounded.

Another family of generalized relative entropy, called the f -
divergence, was introduced by Csiszár and independently by



Ali and Silvey (see e.g., [12]). It is defined for P � Q as

If (P‖Q) =
∫
f

(
dP
dQ

)
dQ. (13)

Theorem 3: Let the distributions P , Q and Ψ be defined
the same way as in Theorem 1. Let δ denote the variance of
Ψ. Suppose the second derivative of f(·) exists and is denoted
by f ′′(·). If P � Q and

lim
z→∞

d
dz

[
q(z)f

(
p(z)
q(z)

)]
= 0 (14)

then
d
dδ
If
(
P ∗Ψ

∥∥Q ∗Ψ
) ∣∣∣∣
δ=0+

= −1
2

∫ ∞
−∞

q(y)f ′′
(
p(y)
q(y)

)(
∇p(y)
q(y)

)2

dy .
(15)

The integral in (15) can still be expressed in terms of the
difference of the score functions because

∇(p(y)/q(y)) = (p(y)/q(y))[∇ log p(y)−∇ log q(y)]. (16)

Note that the special case of f(t) = t log t corresponds to
the Kullback–Leibler distance, whereas the case of f(t) =
(t − tq)/(q − 1) corresponds to the Tsallis relative entropy
[13]. Indeed, Theorem 1 is a special case of Theorem 3.

III. PROOF

The key property that underlies Theorems 1–3 is the fol-
lowing observation of the local geometry of an additive-noise-
perturbed distribution made in [11]:

Lemma 1: Let the pdf p(·) of a random variable Z be twice
differentiable. Let pδ denote the pdf of Z +

√
δ V where V

is of zero mean and unit variance, and is independent of Z.
Then for every y ∈ R, as δ → 0+,

∂

∂δ
pδ(y)

∣∣∣∣
δ=0+

=
1
2

d2

dy2
p(y). (17)

Formula (17) allows the derivative w.r.t. the energy of the
perturbation δ to be transformed to the second derivative of
the original pdf. In Appendix we provide a brief proof for
Lemma 1 which is slightly different than that in [11]. Note that
Lemma 1 does not require the distribution of the perturbation
to be symmetric as is required in [11].

In the following we first prove Theorem 3, which implies
Theorem 1 as a special case, and then prove Theorem 2.

A. Proof for Theorem 3

Let V be a random variable with fixed distribution PV .
For convenience, we use a shorthand pδ to denote the pdf
of the random variable Y = Z +

√
δ V with (Z, V ) ∼ P ×

PV . Similarly, let qδ denote the pdf of Y = Z +
√
δ V with

(Z, V ) ∼ Q× PV . Clearly,

d
dδ
If
(
P ∗Ψ

∥∥Q ∗Ψ
)

=
d
dδ
If (pδ‖qδ). (18)

For any single-variable function g, let g′ and g′′ denote its
first and second derivative respectively. Consider now

d
dδ
If (pδ‖qδ)

=
d
dδ

∫ ∞
−∞

qδ(y)f
(
pδ(y)
qδ(y)

)
dy (19)

=
∫ ∞
−∞

∂qδ(y)
∂δ

f

(
pδ(y)
qδ(y)

)
+ qδ(y)

∂

∂δ
f

(
pδ(y)
qδ(y)

)
dy (20)

=
∫ ∞
−∞

∂qδ(y)
∂δ

[
f

(
pδ(y)
qδ(y)

)
− pδ(y)
qδ(y)

f ′
(
pδ(y)
qδ(y)

)]
+
∂pδ(y)
∂δ

f ′
(
pδ(y)
qδ(y)

)
dy. (21)

Invoking Lemma 1 on (21) yields

d
dδ
If (pδ‖qδ)

∣∣∣∣
δ=0+

=
1
2

∫ ∞
−∞

p′′(y)f ′
(
p(y)
q(y)

)
+ q′′(y)

[
f

(
p(y)
q(y)

)
− p(y)
q(y)

f ′
(
p(y)
q(y)

)]
dy.

(22)

To proceed, we reorganize the integrand in (22) to the
desired form. The key technique is integration by parts, which
we carry out implicitly with the help of a modest amount of
foresight. For convenience, we use p and q as shorthand for
p(y) and q(y) respectively. We use the fact g′h = (gh)′− gh′
to rewrite the integrand in (22) as

p′′f ′
(
p

q

)
+ q′′

[
f

(
p

q

)
− p

q
f ′
(
p

q

)]
=
[
p′f ′

(
p

q

)
+ q′

[
f

(
p

q

)
− p

q
f ′
(
p

q

)]]′
− p′

[
f ′
(
p

q

)]′
− q′

[
f

(
p

q

)
− p

q
f ′
(
p

q

)]′
.

(23)

Combining the first two terms and simplifying the last term
on the r.h.s. of (23) yield[

qf

(
p

q

)]′′
− p′

[
f ′
(
p

q

)]′
+
q′p

q

[
f ′
(
p

q

)]′
. (24)

The first term in (24) integrates to zero by assumption (14).
The last two terms in (24) can be combined to obtain

−q
(
p

q

)′ [
f ′
(
p

q

)]′
= −q

(
∇p
q

)2

f ′′
(
p

q

)
. (25)

Collecting the results from (22) to (25), we have

dIf (Pδ‖Qδ)
dδ

∣∣∣∣
δ=0+

= −1
2

∫ ∞
−∞

q(y)
(
∇p(y)
q(y)

)2

f ′′
(
p(y)
q(y)

)
dy

(26)

which is equivalent to (15). Hence the proof of Theorem 3.

We note that the preceding calculation is tantamount to two
uses of integration by parts. The treatment here, however,
requires the minimum regularity conditions on the densities
p and q.



B. Proof for Theorem 2

Consider now
d
dδ
Dα(pδ‖qδ)

=
1

α− 1
d
dδ

log
∫ ∞
−∞

pαδ (y)qα−1
δ (y) dy (27)

=
1

α− 1

∞∫
−∞

∂
(
pαδ (y)qα−1

δ (y)
)

∂δ
dy

/ ∞∫
−∞

pαδ (y)qα−1
δ (y) dy.

(28)

By Lemma 1, the integral in the numerator in (28) can be
written as∫ ∞
−∞

α

(
pδ(y)
qδ(y)

)α−1
∂pδ(y)
∂δ

+ (1− α)
(
pδ(y)
qδ(y)

)α
∂qδ(y)
∂δ

dy

=
∫ ∞
−∞

α

2

(
p(y)
q(y)

)α−1

p′′(y) +
1− α

2

(
p(y)
q(y)

)α
q′′(y) dy

(29)

at δ = 0+. Note that (11) implies that

α

(
p(y)
q(y)

)α−1

p′(y) + (1− α)
(
p(y)
q(y)

)α
q′(y) (30)

vanishes as y → ∞. Using integration by parts, we further
equate the integral on the r.h.s. of (29) to∫ ∞

−∞
−α

2
p′

d
dy

(
p

q

)α−1

+
α− 1

2
q′

d
dy

(
p

q

)α
dy. (31)

The integrand in (31) can be written as

α(1− α)
2

(
p′
(
p

q

)α−2

− q′
(
p

q

)α−1
)(

p

q

)′
. (32)

In the following we omit the coefficient α(1− α)/2 to write
the remaining terms in (32) as(

p′
(
p

q

)α−2

− q′
(
p

q

)α−1
)
p′q − pq′

q2

= (p′)2 pα−2q1−α − 2p′q′pα−1q−α + pαq−1−α (q′)2 (33)

= (∇ log p−∇ log q)2 pαq1−α. (34)

Collecting the preceding results from (28) to (34), we have
established (12) in Theorem 2.

IV. RECOVERING EXISTING INFORMATION–ESTIMATION
RELATIONSHIPS USING THEOREM 1

A. Mutual information and MMSE

We first use Theorem 1 to recover formula (2) established
in [2]. For convenience, consider the following alternative
Gaussian model:

Z = X + σW (35)

where X and W ∼ N (0, 1) are independent so that σ2

represents the noise variance. It suffices to show the following

result, which is equivalent to (2),

d
d(σ2)

I(X;X + σW ) = − 1
2σ4

mmse

(
PX ,

1
σ2

)
. (36)

For any x ∈ R, let PZ|X=x denote the distribution of Z as the
output of the model (35) conditioned on X = x. The mutual
information can be expressed as

I(X;X + σW ) = I(X;Z) = D(PZ|X‖PZ |PX) (37)

which is the average of D(PZ|X=x‖PZ) over x according
to the distribution PX , which does not depend on σ2. Let
N ∼ N (0, 1) be independent of Z. Consider the derivative
of D(PZ|X=x‖PZ) w.r.t. σ2, or equivalently, by introducing
a small perturbation,

d
dδ
D
(
PZ+

√
δN |X=x

∥∥∥PZ+
√
δN

) ∣∣∣∣
δ=0+

= −1
2
E
{(
∇ log pZ|X=x(Z)−∇ log pZ(Z)

)2} (38)

due to Theorem 1, where the expectation is over PZ|X=x,
which is a Gaussian distribution centered at x with variance
σ2. The first score is easy to evaluate: ∇ log pZ|X=x(Z) =
(x−Z)/σ2. The second score is determined by the following
simple variation of a result due to Esposito [14] (see also
Lemma 2 in [2]):

Lemma 2: ∇ log pZ(z) = (E {X | Z = z} − z)/σ2.
Clearly, the r.h.s. of (38) becomes

−EPZ|X=x

{
(x− E {X | Z})2

}
/(2σ4), (39)

the average of which over x is equal to the r.h.s. of (36).
Thus (36) is established, and so is (2).

B. Differential Entropy and MMSE

Consider again the model (35). It is not difficult to see

D(PZ+
√
δ N‖N (0, σ2 + δ))

=
1
2

log
(
2πe

(
σ2 + δ

))
+

EX2/2
σ2 + δ

− h
(
Z +
√
δ N
)
.

(40)

By Theorem 1 and Lemma 2, we have

d
dδ
D
(
PZ+

√
δ N‖N (0, σ2 + δ)

) ∣∣∣∣
δ=0+

= −1
2
E

{(
E {X | Z} − z

σ2
+

z

σ2

)2
}

(41)

= −E
{

(E {X | Z})2
}/

(2σ4). (42)

Plugging into (40), we have

d
d(σ2)

(
h(Z)− 1

2
log(2πe(1 + σ2))

)
=

1
2

1
(1 + σ2)σ2

− EX2 − (E {X | Z})2

2σ4
.

(43)

Note that EX2 − (E {X | Z})2 = mmse(PX , 1/σ2). More-
over, h(X) = h(Z)|σ=0, and h(Z) − 1

2 log(2πe(1 + σ2))
vanishes as σ2 →∞. Therefore, by integrating w.r.t. σ2 from



0 to ∞, we obtain

h(X) =
1
2

log (2πe) +
1
2

∞∫
0

1
s2

mmse

(
PX ,

1
s

)
− 1
s(s+ 1)

ds

(44)
which is equivalent to the integral expression in [2], in which
we use the SNR as the integral variable.

C. Relative Entropy and MMSE
The connection between relative entropy and MMSE (4)

can also be regarded as a special case of Theorem 1. Consider
again the model (35) and apply Theorem 1. We have

− 2
d
dδ
D
(
PX+

√
δ N‖QX+

√
δ N

)
= EP

{(
∇log pZ(X +

√
δ N)−∇log qZ(X +

√
δ N)

)2
}
.

(45)

By Lemma 2, the r.h.s. of (45) can be rewritten as

EP
{

(EP {X | Z} − EQ {X | Z})2
}

= EP
{

[(X − EQ {X | Z})− (X − EP {X | Z})]2
}

(46)

= EP
{

(X − EQ {X | Z})2
}

+ EP
{

(X − EP {X | Z})2
}

− 2EP {(X − EQ {X | Z})(X − EP {X | Z})} . (47)

Using the orthogonality of (X − EP {X | Z}) and every
function of Z under probability measure P , we can replace
EQ {X | Z} in the last term by EP {X | Z} (which are both
functions of Z), and continue the equality as

EP
{

(X − EQ {X | Z})2
}

+ EP
{

(X − EP {X | Z})2
}

− 2EP {(X − EP {X | Z})(X − EP {X | Z})}
= EP

{
(X − EQ {X | Z})2

}
− EP

{
(X − EP {X | Z})2

}
(48)

= mse
QX

(PX , γ)−mmse (PX , γ) (49)

where γ = 1/δ. Hence yields the desired formula (4).

D. Differential Entropy and Fisher Information
The generalized de Bruijn identity (5) can be recovered

basically by inspection of (8). Consider a distribution QZ
which is uniform on [−m,m] with m being a large number and
vanishes smoothly outside the interval (e.g., a raised-cosine
function with roll-off). Then QZ+σN remains essentially uni-
form, so that ∇ log qZ(z) ≈ 0 over almost all the probability
mass of PZ . As m→∞, (8) reduces to (5).

V. CONCLUDING REMARKS

The relationships connecting the score function and various
forms of relative entropy shown in this paper are the most gen-
eral for additive-noise models to this date. It is by now clear
that such derivative relationships between basic information-
and estimation-theoretic measures rely on neither the normal-
ity of the additive perturbation, nor the logarithm functional in
classical information measures. The results, however, do not
directly translate into integral relationships unless the noise is
Gaussian, which has the infinite divisibility property.
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APPENDIX

PROOF OF LEMMA 1
Proof: Recall that pδ denotes the distribution of Y =

X +
√
δ V . Denote the characteristic function of pδ as

ϕ(u, δ) = E
{
eiuY

}
. (50)

Due to independence of X and V ,

ϕ(s, δ) = E
{
eiuX

}
E
{
eiu
√
δ V
}

(51)

= ϕ(s, 0) E

{ ∞∑
k=0

(
iu
√
δ V
)k

k!

}
(52)

= ϕ(s, 0)

[
1 +

δ(iu)2

2
+
∞∑
k=3

(
iu
√
δ
)k

k!
EV k

]
(53)

where we have used the assumptions that V has zero mean and
unit variance. Note also that the series sum in (53) vanishes
as o(δ). Taking the inverse Fourier transform on both sides
of (53) yields

pδ(y) = p0(y) +
1
2
δ
∂2

∂y2
p0(y) + o(δ). (54)

Hence Lemma 1 is proved as p0(y) = p(y).
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