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Abstract

Parallel interference cancellation (PIC) is a promis-
ing detection technique for multiuser code-division
multiple access (CDMA) systems. It has previously
been shown that weighted multistage PIC can be
seen as a realisation of the steepest descent method
for minimising the mean squared error (MSE). Fol-
lowing this interpretation, a unique set of weights,
based on the eigenvalues of the correlation matrix,
leads to the minimum achievable MSE for a short-
code CDMA system. In this paper, we develop a
method for finding a set of fixed weights, minimising
the ensemble average of the MSE over all code-sets.
Exact expressions of the ensemble averaged moments
of the eigenvalues are derived. Simulation results
show that a few stages can be sufficient for near-
MMSE performance.

1 Introduction

In a code-division multiple access (CDMA) system,
all frequency and time resources are allocated to all
users simultaneously. To distinguish between users,
each user is assigned a user-specific spreading code
(signature) sequence for transmission. In short-code
CDMA, the period of such a spreading code sequence
spans a symbol interval, i.e., the spreading code for
consecutive symbol intervals remains the same. In
long-code CDMA, the spreading code has a period
which is many times longer than a symbol inter-
val. Consecutive segments of this long sequence, each
spanning exactly one symbol interval, are then used
for spreading consecutive symbols. The statistical
properties of such segments of the long spreading
code resemble those of randomly selected sequences.
Long-code CDMA is therefore also referred to as
random-code CDMA. The wideband CDMA propos-
als for third-generation cellular mobile communica-
tion, as well as IS-95, are all based on long-code
CDMA [1, 2, 3].

By selecting mutually orthogonal codes for all
users, the conventional matched-filter detector
achieves single-user performance for each user. It
is however not possible to maintain orthogonality
in a mobile environment, hence multiple access in-
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terference (MAI) may degrade the performance of a
CDMA system severely. Moreover, the conventional
detector suffers from a near-far problem in which the
signal component from a weak user may disappear in
the MAI from a strong user [4].

In [6] Verdu developed the optimal (0,1)-
constrained maximum-likelihood (ML) detector.
This ML problem corresponds to a combinatorial
quadratic minimisation which is known to be NP-
hard [5]. It can only be solved by an exhaustive
search, leading to a detection complexity that grows
exponentially with the number of users. To address
this complexity problem, a variety of sub-optimal de-
tectors have been proposed [7]. For example, the lin-
ear decorrelating detector in [8] applies the inverse of
the correlation matrix in order to decouple the data.
It is known to be near-far resistant, but also causes
noise enhancement [9]. The linear MMSE detector
minimises the mean squared error (MSE) between
detector output and the transmitted symbol [10].
This detector takes the background noise as well as
the correlation between users into account and there-
fore generally performs better than the decorrelator
in terms of bit-error-rate (BER). Both the decorre-
lating detector and the MMSE detector require ma-
trix inversion which can be prohibitively complex for
a large number of users. A number of strategies
have been developed for approximating these detec-
tors. Adaptive detectors based on algorithms such
as the LMS algorithm [11], the RLS algorithm [12]
and Kalman filtering {13] have been suggested while
iterative techniques such as the steepest descent and
the conjugate gradient iterations have been proposed
in [14, 15].

For practical implementation interference cancel-
lation schemes have been subject to most atten-
tion. These techniques rely on simple processing el-
ements constructed around the matched filter con-
cept. Varanasi and Aazhang proposed a multi-stage
parallel interference cancellation (PIC) structure in
[16]. The linear version of this structure has been
shown by Elders-Boll et al. to be equivalent to the
Jacobi iteration for solving a set of linear equations
[15]. A linear PIC therefore represents an efficient
way of implementing linear detectors. A significant
improvement to PIC was suggested by Divsalar et al.



in [17] where they proposed a weighted cancellation
scheme for both linear and non-linear PIC. An iden-
tical approach has been suggested in [18] while linear
detectors are realised through polynomial expansion
in [19]. This is however, equivalent to a Jacobi over-
relaxation iteration and therefore in the same family
as the structures suggested in [15, 17, 18]. The linear
PIC approach has been further described and anal-
ysed in detail in [20] and [21] where it was demon-
strated that weighted linear PIC can be seen as a re-
alisation of the steepest descent optimisation method
[22] for minimising the MSE. This is in turn also
equivalent to the steepest decent iteration for solv-
ing a set of linear equations [23]. It was shown in [21]
that for a short-code system with a given fixed num-
ber of cancellation stages, a unique choice of weights
exists which leads to the minimum achievable MSE.
These weighting parameters are dependent on the
eigenvalues of the channel correlation matrix.

In long-code CDMA, the spreading codes change
for every symbol interval. Hence the optimal set
of weights that leads to the minimum achievable
MSE must be computed symbol by symbol. Un-
fortunately the eigenvalue decomposition involved is
prohibitively complex for symbol-by-symbol imple-
mentation. Alternatively we consider using a fixed
set of weights designed to compromise over all code-
sets. This works well since the eigenvalues of large
randomly selected correlation matrices are clustered
around certain values. As N and K increase, the
clustering gets increasingly tight [24]. Ensemble av-
eraged moments of the eigenvalues are therefore ad-
equate for determining a fixed set of weights that
introduces practically no loss of performance.

Several criteria for determining the fixed set of
weights can be adopted. In this paper we minimise
the ensemble averaged MSE over all possible chan-
nel matrices. This strategy has been shown to be
very close to minimising the bit-error-rate [25]. Also,
since the MSE is always a quadratic function of the
weights, a unique global minimum exists [26], which
leads to the minimum achievable ensemble averaged
MSE at stage m for an m-stage weighted PIC.

For an m-stage PIC, the weights depend on the
first 2m moments of the eigenvalues of the channel
correlation matrix. An asymptotic analysis of the
eigenvalue distribution as the size of the multiuser
system goes to infinity has been presented in [24, 27].
Here, we demonstrate a method for deriving the ex-
act expressions for the moments of the eigenvalues.
The moments are found to be polynomials of the
processing gain, the number of active users and the
received signal energies. The computational com-
plexity of calculating the weights increases only lin-
early with the number of users. Hence, it can be im-
plemented on-line given a moderate number of PIC
stages. It should be noted that weight updates are
only required if the number of users or the received
signal energies change.

The paper is organised as follows. The follow-
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ing section briefly introduces the CDMA uplink
model. Section 3 describes the PIC structure and
presents the proposed method for obtaining the opti-
mal weights. The moments of the correlation matrix
are considered in Section 4 where exact expressions
are derived. Simulation results are shown in Sec-
tion 5 and Section 6 concludes the paper.

2 Uplink Model

A specific user in a K-user communication system
transmits an M-ary PSK information symbol d; €
{exp(j(2p — 1)7/M)}, p = 1,2,..., M, by multiply-
ing the symbol with a g-ary PSK spreading code
sk of length N chips and then transmitting over an
AWGN channel, i.e., s = (S1k, S2ky - - ,st)T/\/JV,
where six € {exp(j(2p — 1)7/q)}, p = 1,2,... ,q.
The spreading codes transmitted by each user in any
given symbol interval are assumed to be symbol-
synchronous. Note that we have assumed that
sisg = 1. Also denote the received signal energy
of user k by wi. The output of a chip-matched filter
is then expressed as a weighted linear combination
of spreading codes, r = Ad +n € CV, where A =
(alya21"' aaK) = (\//w_lsla \/—19—252y"' 1\/@51()’
d = (dy,ds,--- ,dK)T, and n is a noise vector where
each sample is independently, circularly complex
Gaussian distributed with zero mean and variance
o2. The received signal-to-noise ratio (SNR) of each
user can then be defined as 8 = wi/(202).

3 Linear Weighted Parallel In-
terference Cancellation

The general structure for an m-stage PIC is illus-
trated in Fig. 1. The detailed structure of one PIC
stage with weighting parameter u; is depicted in
Fig. 2, where « is a non-negative parameter to be
discussed later on. Note that all thick lines in both
figures represent a vector of length N.
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Figure 1: A general structure for a K-user, m-stage
PIC.

It was pointed out in [21] that the weighted PIC
structure is essentially a realisation of the steepest
descent optimisation method (SDOM) for iteratively
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Figure 2: The i*® stage PIC, employing weight p;.
MF — matched filtering.

approaching the MMSE estimate. The weights in the
structure then correspond to the variable step sizes
in the SDOM. Consider one particular symbol inter-
val, where the spreading codes used are randomly
chosen from all possible code-sets. Here, the output
decision statistic of each stage is a weighted sum of
the previous-stage decision statistic and the statis-
tic resulting from interference cancellation based on
current tentative decisions. It has been shown that
the set of output decision statistics for all K users at
. stage i is determined recursively by [21):

yi= - pm®+al))yi1 + p A%, 1)

where R = A¥A is the correlation matrix of the
received spreading waveform. Assuming yo to be 0,
this relationship can also be described by a one-shot
linear matrix filter as y,, = GE r, where

GE = |1- ﬁ(l — pi(R+al))| (R +oI)™ A,

i=1

Note that if the product term can be reduced to
(close to) O, the detector would be (approximately)
GH = (R + o)™ A¥. We can thus realise the decor-
relator by making o = 0, or the MMSE detector with
a=o2.

Assume that Az, M2, ..., \x are the eigenvalues® of
Rand £t = ([L],uz,...,ﬂm)T is a vector with the m
weights for an m-stage PIC. It is then possible to
get a closed-form expression for the corresponding
MSE as a function of the weighting parameters of
the structure:

I (p, )

E{lIGhr - 4|’}
JMMSE + Je(;n) (I—’-, a)1

1They are obviously non-negative real since R is positive
semi-definite.

where

K 2
g
JMMSE = E i o? (2)
k=1

is the minimum mean squared error which can be
achieved only by the MMSE filter and does not de-
pend on the weights. The second term, denoted the
excess MSE, represents the degradation with respect
to the MMSE detector. It can be expressed as

I (p,a) = (3)
2
MO+ |o?—-a 1
- 1— (e +
Sapeale fuoa

In [21], the value of p that minimises J& (i, )
was found to be unique and a function of o as well
as the eigenvalues of R. However, the value of «
has no effect on the minimum value of J&™ (p, ).
For long-code systems, it is not feasible to compute
the optimal set of weights for every symbol interval.
Instead we consider using a fixed set of parameters
that will minimise the ensemble average of the excess
MSE over random codes. This is described by

I =E{IP (e}, @

where the expectation is taken over the probability
density function of the spreading code matrix A.

Given the number of stages, which is usually sig-
nificantly less than K due to limitations on the over-
all receiver complexity, our objective is to find the
global minimum of J&™ (i, a) with respect to p
and . We first assume that a is given and min-
imise (4) with respect to . For notational sim-
plicity, we define ¢r = A\ + 0%, vk = Ae + @, and
Yo = (L7 7Y for k=1,2,...,K. We also
introduce the following mapping,

T: C" —» C™ given by x = T(ps)

-
where x = (21, 22, ...,Zm) and

21 & (=1 2o+ )

g2 2 (—1)%(papz + papa oo+ ot fim)
5

Tm 2 (=)™ppz-e e

This mapping is known as the elementary symmet-
ric polynomial transform, or equivalently as the dis-
junctive normal form [28, pg. 371]. Clearly it is
not one-to-one since we have in general m! different
w’s that lead to the same x. Note that the product
component in (3) can now be written as

ﬁ(l—p;()\k+a)) 1+ix‘-()\k +a)t

i=1 i=1

= 1+9- ')'Ix. (6)




Based on (6), we can then express the excess MSE
as a quadratic function of x as

2

} -(7)

K
E {Z Ak
k=1

Differentiating with respect to x*, we have the gra-
dient of the excess MSE as

0T (x0) _ o [ (1 T )
pe =E ;M@ﬂk . +vex) -
(8)

Equating the above to zero gives the minimum of
T&m )(x, a) as the solution to

1

.
+ viX
o K

T (xe) =

Cx=-p (9)

where

K
C=E {Z Akmnl} € R™*™)  (10)

k=1

and

K
p=E{Z,\k—yk}eR'". (11)

k=1

Here C is an expectation taken over a set of positive
semi-definite Hermitian matrices. It is clear that C
is positive definite since for any non-zero vector z,

K

2 Cz=E {Z Ak¢k(~,;z)2} >0.  (12)
k=1

Hence the unique real minimum in x is obtained as

% = ~C-'p. (13)

We can then find the corresponding equivalent min-
imum in p by considering the following polynomial,

plp) = pmF+Ep™ T+ Fu™ T+ +E(14)
= (u—p)p—pe) - (p—pm) (15
which has exactly m roots, (&1, fi2,--- , fim). Note

that the equivalence of (14) and (15) gives T(z) = %.
The inverse of the mapping T, disregarding the or-
der of the elements of y, then essentially corresponds
to the solution of the polynomial in (14). There-
fore, any vector i = (fi1, 2, , fim)" consisting of
the m roots of (14) leads to the global minimum of
J&™) (u,a). Furthermore, it can be shown that no
other minima exist.

It can be shown that the parameter o has no influ-
ence on the minimum achievable MSE, i.e., for any
a > 0, there exists a unique set of weights, which
depends on «, that will give the same minimum of
T&m) (1, @) [29]. However, if o = o?, the optimal
weights are always real; otherwise they can be com-
plex numbers. This affects the implementation com-
plexity.
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Considering (13), good numerical estimates can be
found for C and p based on Monte Carlo averaging
over random codes. Such an approach however, is
very complex and can only be carried out off-line.
Instead an analytical approach based on statistical
moments of the eigenvalues can be used.

4 Moments of the Correlation
Matrix

It is helpful here to define the rt® order moment of
the correlation matrix as

1&, .,
M,=E{Ek§;_:l(,\k) }

Expanding (9) and dividing both sides by K, we get

(16)

[ C3 Cm+1 I p1
c: c c z
T T =17, an
Cm+l Cm+2 Com Tm Pm
where

1 K
i—2

¢ =
S fi-2\
=Y, ( )w-f (M, +0*M,_), (18)
r—2
r=2
where 1 = 2,3,...,2m and
1 K
— Bl i—~1
pi = E { K ZAk7k }
k=1
- i—1 i-r
= M., (19)
r—1
r=1
wherenowi = 1,2,...,m. Obviously the coefficients

of C and p are determined by the first 2m moments
of the correlation matrix. It is difficult, if not impos-
sible, to get a close form expression for M,, where 7
is an integer variable. In fact there is no known gen-
eral expression. However, for a given integer value of
T, M, can be derived as follows.

4.1 Deriving the Moments

Consider chip n of spreading waveform for user k
as a random variable, denoted by S,x. For a long-
code system all the chips Spr, n =1,2,--- N, k =
1,2,.--, K, are mutually independent random vari-
ables, each uniformly distributed over the g-ary con-
stellation. The corresponding chip sample observed
at the receiver may be expressed as Apx = /Wi Sni-



Then the following properties obviously hold,

E {A:ukxAnzkz}
= ———V“”J‘V’w"’a(n1 —n2) - 6(k1 — ka)

_ wi, /N
10

if’nz =n and /Cz = kl, (20)

otherwise,

and

E{(An)"}

il
N
2|§
SN—

L)

- {(0%& ifr/qgeZ, (21)

otherwise.

The correlation between user 7 and user j is also a
random variable

ZA Anj,

which is the element of row ¢, column j of R.
Considering the definition of the r*" order mo-

ment, we have
1 K
_ T
E { I kzﬂ()‘k) }

1 U ,
7 E{tr{A}} = ZE{r {R"}}, (23)

,J-a a; =

(22)

M,

in which the trace of R" can be expressed as

tr{R"} =
K K K
Z Z o Z Rk1k2Rk2k3 T er—ik'Rk’kl '(24)
k1=1kz=1 kr=1
Therefore,
1 K K K
YERES SDIEDS
k=1 ko=1 kr=1
E Rk;szkzks er—lkrRk kl} (25)

E {Amk :1. Aﬂzsz . Aﬂrkr nrky } (26)

1k2 nzks "’

Here, A,,; are independent random variables selected
from a scaled g-ary PSK? constellation with equal
probability. Based on the above statistical prop-
erties of the code-sets given in (20) and (21), only
terms containing all complex conjugate pairs and/or
g-powers of the variables A,; are relevant. It is
therefore possible to obtain M, through evaluation

2This approach is not confined to PSK spreading only. It is
applicable for arbitrary spreading schemes, provided that the
statistical property of the spreading codes are known. Fur-
thermore, influences of asynchronism and multi-path fading
can also be incorporated here.

of the expectation over all combinations of indices.
This involves a grouping of the indices into equiva-
lence classes. Details of this grouping and evaluation
can be found in [29]. As the expectation is taken over
all code-sets, M, only depends on N, K, and the re-
ceived signal energies and not on specific spreading
codes. In fact M, is shown to be a polynomial in N
and K as well as the first  moments of the received
signal energies. Here the r*® order moment of the
energies is defined as

(27)

K
&= Z (w)".
k=1

In the Appendix we list the exact expressions for the
first 6 moments obtained by computer-aided sym-
bolic manipulations assuming BPSK spreading.

4.2 Ordering the Weights

Since we have m weights, we have m! different or-
derings that all lead to the same MSE at the last
stage. The order in which the m weights are ap-
plied however, has a significant influence on the
MSE performance at intermediate stages. Follow-
ing the approach in [26], we have chosen to order
the optimal weights according to a recursive min-
imisation of Je(;)(ﬁi,a) for i = 1,2,...,m where
f; = (f1, P2y -ony flic1, pi) - Such an ordering is ob-
tained by selecting at stage ¢ the weight u; € V;
which is closest to ji;. Here, V; denotes the set of
(m — i+ 1) elements of i which have not been used
in the first ¢ — 1 stages, and

i = argmin I (f1;, @)- (28)

The closest weight to ; is the best choice since
T (&;, @), given that all previous fi; is already cho-
sen, is a quadratic function in y;. It has been found
that fi; can also be determined based on the first 2i
moments of the correlation matrix [29].

4.3 Computational Complexity

Assuming that the received signal energies, the noise
variance as well as N and K are known, then the
computational complexity of calculating the set of
weights is of the order of (2mK +6m® + 19m?) float-
ing point operations. The complexity of updating
the weights is therefore independent of the processing
gain and only linear in the number of active users.
The complexity is in fact negligible in comparison
to O(mKN), which is the complexity of perform-
ing code-matched filtering for all K users in an m-
stage interference canceller. It follows that weight-
updating can be done on-line and does not noticeably
increase the overall system complexity.
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5 Numerical Results

The numerical examples considered in this section
are based on a symbol-synchronous system with K =
15 users. BPSK modulation and spreading formats
are assumed and randomly generated lorg codes with
a processing gain of N = 31 are considered. The
parameter «a is set to 0 in all examples.

N7 N
“tonventional PiC detector

R ‘ — 3-st. PIC, fixedp
10" k4 N s 3-st. PIC, opty | |
' N/ —*—  5-st PIC, fixedp
2 4 5-st. PIC, opty
2 —6—  15-st. PIC, fixedp
s + 15-st. PIC, opty
I
z

MMSE datector
2

z P 0 s I 2 n
Number of stages

Figure 3: BER performance as a function of the num-

ber of stages. Both the cases of a fixed set of weights

as well as optimal weights for each symbol interval
are included. Here, SNR=7dB, N = 3l and K = 15.

Fig. 3 shows the stage-by-stage BER performance
of a PIC and the loss incurred by ensemble averaging
over random codes, as compared to exact selection
of parameters for each symbol interval. An SNR of
7 dB is assumed for all users, i.e., Br = 7 dB for
k=1,---,K. We observe that the conventional PIC
scheme diverges since the largest eigenvalue of R for
a K =15, N = 31 system, is almost always greater
than 2 [29]. The eigenvalue criterion for divergence
Amax < 2 have been shown in [20]. Divergence can
be overcome by a proper choice of weights, optimised
for an SNR of 7 dB and ordered as described in sec-
tion 4. The BER performance of a PIC using this
fixed set of weights are represented by the solid lines
in Fig. 3. Significant improvement over the conven-
tional detector can be achieved using merely 3 stages.
A 5-stage detector performs much better than the
decorrelator and gives close to average MMSE per-
formance while 15-stage PIC gives virtually MMSE
performance. The performance of a PIC that makes
use of the set of weights corresponding to the instan-
taneous spreading codes in each symbol interval is
also shown in the figure for comparison. It is clear
that the penalty of making a compromise over all
code-sets is negligible.

Fig. 4 shows the BER performance of a weighted
PIC detector in a near-far environment, as compared
with that of the conventional detector, the decorre-
lator and the MMSE detector. The SNR of the first
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Figure 4: Near-far ability of the weighted linear PIC
for a long-code system. N = 31, K = 15 and the
SNR for user 1is B; = 7 dB while for all other users
Br = 7T+ISR. The performance of user 1 is shown.

user is 8; = 7 dB while the remaining 14 users have
an SNR of B = S1+ISR, fork = 2,--- , K where ISR
denotes the interference-to-signal ratio in dB. The
curves show the BER of user 1 only. It is observed
that the PIC performs better than the conventional
detector but worse than the MMSE detector. As the
number of stages increases, the ability to combat the
near-far environment improves.
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Figure 5: BER performance and sensitivity ver-
sus SNR using long codes. Weights optimised for
7 dB are used for 0-14 dB, in comparison to when
the weights are optimised for the exact SNR. Here,
N =31 and K = 15.

The set of weights depends on the received sig-
nal energies and the noise variance. It is therefore
of interest to investigate the sensitivity of the BER-
performance to correct estimates of the SNR. This



sensitivity is illustrated in Fig. 5. Perfect power con-
trol is assumed, i.e., Bx = B for all k’s. The weights
determined for an SNR of 7 dB are used for SNR’s
from 0 to 14 dB. It is compared to the case where the
weights are optimised for the encountered SNR. As
the number of stages increases, the sensitivity also in-
creases slightly. For 3-stage, 5-stage and 9-stage PIC
structures, a set of weighting factors determined for
7 dB works well for a range of SNR.

6 Concluding Remarks

In this paper, we have proposed a weighted linear
parallel interference cancellation structure for mul-
tiuser detector in long-code CDMA. Using a set of
fixed weights, the detector achieves close to MMSE
performance for only a few stages. The weights are
obtained by averaging the coefficients in a matrix
equation over all code-sets. These coefficients de-
pend on the moments of the eigenvalues of the code
correlation matrix. Exact expressions for the mo-
ments are found to be polynomials of N, K and all
users’ received signal energies. In a dynamic sys-
tem, the weights can be updated on-line as either
the number of users or the received energies change.
The involved complexity increases only linearly with
the number of active users and is independent of the
processing gain. Significant performance improve-
ments are observed and the near-far problem is sub-
stantially alleviated as compared to the conventional
PIC. For as few as 3 stages, it is possible to get close
to the MMSE performance.

The First Six Moments

It is possible to derive moments of any order by eval-
uating the expectation in (26) over all combination of
indices. Assuming BPSK spreading, the expressions
for the first 6 moments are listed below. These mo-
ments are sufficient for computing the fixed weights
for a 3-stage PIC. More moments can be found in
(29].

1
M, = ?51; (29)
1
M, = ﬁ[‘ff +&(N - 1) (30)
1
M; = W[&f +&1E(3N - 3)
+ &3(N? ~3N +2)]; (31)
1
My = W[é‘f + 51252(61\7 - 6)
+ £ E&3(5N? —13N +8)
+ EZ(N%?-2N +1)
+ E4(N®~6N2+9N —4); (32)

K—}V-;[ef + E36,(10N — 10)

£2£5(14N?% — 34N + 20)

E1E2(6N% ~ 11N + 5)

£1E4(8N% — 36N2 + 48N — 20)
E2E3(2N% ~9N? - 7N) (33)
Es(N* —10N3 +25N% — 20N + 4)];

+ + + 4+

Mg

X,—l]ﬁ[sf + ELEL (15N — 15)

E363(30N% — 70N + 40)
E2EZ(20N? — 35N + 15)
E2£4(30N% —121N2 + 151N — 60)
£162E3(19N? — 61N2 + 40N +2)
£, Es(12N* — T9N3

163N2 — 118N + 22)

E3(N® —6N? +8N ~3)
EE4(2N* — 22N3 + 34N? — 6N — 8)
EZ(N* —4AN® +2N? + 7N - 6)
E¢(N® — 15N* + 55N3

61N2 + 8N +12)].

T

(34)
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