MMSE-Based Linear Parallel Interference Cancellation in Long-Code CDMA

Dongning Guo[†], Lars K. Rasmussen[‡] and Teng Joon Lim^{*}

[†]Princeton University, Princeton NJ 08544, USA

[‡]Chalmers University of Technology, SE-412 96 Göteborg, Sweden

*CWC, 20 Science Park Road, #02-34/37 Teletech Park, Singapore 117674

Abstract

Parallel interference cancellation (PIC) is a promising detection technique for multiuser code-division multiple access (CDMA) systems. It has previously been shown that weighted multistage PIC can be seen as a realisation of the steepest descent method for minimising the mean squared error (MSE). Following this interpretation, a unique set of weights, based on the eigenvalues of the correlation matrix, leads to the minimum achievable MSE for a shortcode CDMA system. In this paper, we develop a method for finding a set of fixed weights, minimising the ensemble average of the MSE over all code-sets. Exact expressions of the ensemble averaged moments of the eigenvalues are derived. Simulation results show that a few stages can be sufficient for near-MMSE performance.

1 Introduction

In a code-division multiple access (CDMA) system, all frequency and time resources are allocated to all users simultaneously. To distinguish between users, each user is assigned a user-specific spreading code (signature) sequence for transmission. In short-code CDMA, the period of such a spreading code sequence spans a symbol interval, i.e., the spreading code for consecutive symbol intervals remains the same. In long-code CDMA, the spreading code has a period which is many times longer than a symbol interval. Consecutive segments of this long sequence, each spanning exactly one symbol interval, are then used for spreading consecutive symbols. The statistical properties of such segments of the long spreading code resemble those of randomly selected sequences. Long-code CDMA is therefore also referred to as random-code CDMA. The wideband CDMA proposals for third-generation cellular mobile communication, as well as IS-95, are all based on long-code CDMA [1, 2, 3].

By selecting mutually orthogonal codes for all users, the conventional matched-filter detector achieves single-user performance for each user. It is however not possible to maintain orthogonality in a mobile environment, hence multiple access in-

terference (MAI) may degrade the performance of a CDMA system severely. Moreover, the conventional detector suffers from a near-far problem in which the signal component from a weak user may disappear in the MAI from a strong user [4].

In [6] Verdù developed the optimal (0,1)constrained maximum-likelihood (ML) detector. This ML problem corresponds to a combinatorial quadratic minimisation which is known to be NPhard [5]. It can only be solved by an exhaustive search, leading to a detection complexity that grows exponentially with the number of users. To address this complexity problem, a variety of sub-optimal detectors have been proposed [7]. For example, the linear decorrelating detector in [8] applies the inverse of the correlation matrix in order to decouple the data. It is known to be near-far resistant, but also causes noise enhancement [9]. The linear MMSE detector minimises the mean squared error (MSE) between detector output and the transmitted symbol [10]. This detector takes the background noise as well as the correlation between users into account and therefore generally performs better than the decorrelator in terms of bit-error-rate (BER). Both the decorrelating detector and the MMSE detector require matrix inversion which can be prohibitively complex for a large number of users. A number of strategies have been developed for approximating these detectors. Adaptive detectors based on algorithms such as the LMS algorithm [11], the RLS algorithm [12] and Kalman filtering [13] have been suggested while iterative techniques such as the steepest descent and the conjugate gradient iterations have been proposed in [14, 15].

For practical implementation interference cancellation schemes have been subject to most attention. These techniques rely on simple processing elements constructed around the matched filter concept. Varanasi and Aazhang proposed a multi-stage parallel interference cancellation (PIC) structure in [16]. The linear version of this structure has been shown by Elders-Boll et al. to be equivalent to the Jacobi iteration for solving a set of linear equations [15]. A linear PIC therefore represents an efficient way of implementing linear detectors. A significant improvement to PIC was suggested by Divsalar et al.

in [17] where they proposed a weighted cancellation scheme for both linear and non-linear PIC. An identical approach has been suggested in [18] while linear detectors are realised through polynomial expansion in [19]. This is however, equivalent to a Jacobi overrelaxation iteration and therefore in the same family as the structures suggested in [15, 17, 18]. The linear PIC approach has been further described and analysed in detail in [20] and [21] where it was demonstrated that weighted linear PIC can be seen as a realisation of the steepest descent optimisation method [22] for minimising the MSE. This is in turn also equivalent to the steepest decent iteration for solving a set of linear equations [23]. It was shown in [21] that for a short-code system with a given fixed number of cancellation stages, a unique choice of weights exists which leads to the minimum achievable MSE. These weighting parameters are dependent on the eigenvalues of the channel correlation matrix.

In long-code CDMA, the spreading codes change for every symbol interval. Hence the optimal set of weights that leads to the minimum achievable MSE must be computed symbol by symbol. Unfortunately the eigenvalue decomposition involved is prohibitively complex for symbol-by-symbol implementation. Alternatively we consider using a fixed set of weights designed to compromise over all codesets. This works well since the eigenvalues of large randomly selected correlation matrices are clustered around certain values. As N and K increase, the clustering gets increasingly tight [24]. Ensemble averaged moments of the eigenvalues are therefore adequate for determining a fixed set of weights that introduces practically no loss of performance.

Several criteria for determining the fixed set of weights can be adopted. In this paper we minimise the ensemble averaged MSE over all possible channel matrices. This strategy has been shown to be very close to minimising the bit-error-rate [25]. Also, since the MSE is always a quadratic function of the weights, a unique global minimum exists [26], which leads to the minimum achievable ensemble averaged MSE at stage m for an m-stage weighted PIC.

For an m-stage PIC, the weights depend on the first 2m moments of the eigenvalues of the channel correlation matrix. An asymptotic analysis of the eigenvalue distribution as the size of the multiuser system goes to infinity has been presented in [24, 27]. Here, we demonstrate a method for deriving the exact expressions for the moments of the eigenvalues. The moments are found to be polynomials of the processing gain, the number of active users and the received signal energies. The computational complexity of calculating the weights increases only linearly with the number of users. Hence, it can be implemented on-line given a moderate number of PIC stages. It should be noted that weight updates are only required if the number of users or the received signal energies change.

The paper is organised as follows. The follow-

ing section briefly introduces the CDMA uplink model. Section 3 describes the PIC structure and presents the proposed method for obtaining the optimal weights. The moments of the correlation matrix are considered in Section 4 where exact expressions are derived. Simulation results are shown in Section 5 and Section 6 concludes the paper.

2 Uplink Model

A specific user in a K-user communication system transmits an M-ary PSK information symbol $d_k \in$ $\{\exp(j(2p-1)\pi/M)\}, p = 1, 2, ..., M, \text{ by multiply-}$ ing the symbol with a q-ary PSK spreading code s_k of length N chips and then transmitting over an AWGN channel, i.e., $s_k = (s_{1k}, s_{2k}, \dots, s_{Nk})^{\top} / \sqrt{N}$, where $s_{ik} \in \{\exp(j(2p-1)\pi/q)\}, p = 1, 2, \dots, q.$ The spreading codes transmitted by each user in any given symbol interval are assumed to be symbolsynchronous. Note that we have assumed that $\mathbf{s}_{k}^{H}\mathbf{s}_{k}=1$. Also denote the received signal energy of user k by w_k . The output of a chip-matched filter is then expressed as a weighted linear combination of spreading codes, $\mathbf{r} = \mathbf{Ad} + \mathbf{n} \in \mathbb{C}^N$, where $\mathbf{A} =$ $(\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_K) = (\sqrt{w_1} \mathbf{s}_1, \sqrt{w_2} \mathbf{s}_2, \cdots, \sqrt{w_K} \mathbf{s}_K),$ $\mathbf{d} = (d_1, d_2, \cdots, d_K)^\mathsf{T}$, and \mathbf{n} is a noise vector where each sample is independently, circularly complex Gaussian distributed with zero mean and variance σ^2 . The received signal-to-noise ratio (SNR) of each user can then be defined as $\beta_k = w_k/(2\sigma^2)$.

3 Linear Weighted Parallel Interference Cancellation

The general structure for an m-stage PIC is illustrated in Fig. 1. The detailed structure of one PIC stage with weighting parameter μ_i is depicted in Fig. 2, where α is a non-negative parameter to be discussed later on. Note that all thick lines in both figures represent a vector of length N.

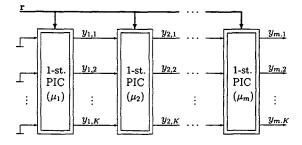


Figure 1: A general structure for a K-user, m-stage PIC.

It was pointed out in [21] that the weighted PIC structure is essentially a realisation of the steepest descent optimisation method (SDOM) for iteratively

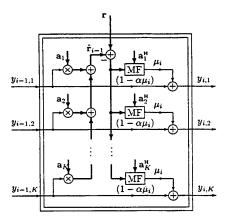


Figure 2: The *i*th stage PIC, employing weight μ_i . MF — matched filtering.

approaching the MMSE estimate. The weights in the structure then correspond to the variable step sizes in the SDOM. Consider one particular symbol interval, where the spreading codes used are randomly chosen from all possible code-sets. Here, the output decision statistic of each stage is a weighted sum of the previous-stage decision statistic and the statistic resulting from interference cancellation based on current tentative decisions. It has been shown that the set of output decision statistics for all K users at stage i is determined recursively by [21]:

$$\mathbf{y}_i = (\mathbf{I} - \mu_i(\mathbf{R} + \alpha \mathbf{I})) \, \mathbf{y}_{i-1} + \mu_i \mathbf{A}^{\mathsf{H}} \mathbf{r}, \tag{1}$$

where $\mathbf{R} = \mathbf{A}^H \mathbf{A}$ is the correlation matrix of the received spreading waveform. Assuming \mathbf{y}_0 to be 0, this relationship can also be described by a one-shot linear matrix filter as $\mathbf{y}_m = \mathbf{G}_m^H \mathbf{r}$, where

$$\mathbf{G}_{m}^{\mathrm{H}} = \left[\mathbf{I} - \prod_{i=1}^{m} (\mathbf{I} - \mu_{i}(\mathbf{R} + \alpha \mathbf{I}))\right] (\mathbf{R} + \alpha \mathbf{I})^{-1} \mathbf{A}^{\mathrm{H}}.$$

Note that if the product term can be reduced to (close to) 0, the detector would be (approximately) $G^{H} = (R + \alpha I)^{-1} A^{H}$. We can thus realise the decorrelator by making $\alpha = 0$, or the MMSE detector with $\alpha = \sigma^{2}$.

Assume that $\lambda_1, \lambda_2, ..., \lambda_K$ are the eigenvalues¹ of \mathbf{R} and $\boldsymbol{\mu} = (\mu_1, \mu_2, ..., \mu_m)^{\mathsf{T}}$ is a vector with the m weights for an m-stage PIC. It is then possible to get a closed-form expression for the corresponding MSE as a function of the weighting parameters of the structure:

$$J^{(m)}(\boldsymbol{\mu}, \boldsymbol{\alpha}) = \mathbb{E} \left\{ \|\mathbf{G}_{m}^{\mathsf{H}}\mathbf{r} - \mathbf{d}\|^{2} \right\}$$
$$= J_{\mathsf{MMSE}} + J_{\mathsf{ex}}^{(m)}(\boldsymbol{\mu}, \boldsymbol{\alpha}),$$

where

$$J_{\text{MMSE}} = \sum_{k=1}^{K} \frac{\sigma^2}{\lambda_k + \sigma^2}$$
 (2)

is the minimum mean squared error which can be achieved only by the MMSE filter and does not depend on the weights. The second term, denoted the excess MSE, represents the degradation with respect to the MMSE detector. It can be expressed as

$$J_{\text{ex}}^{(m)}(\mu,\alpha) =$$

$$\sum_{k=1}^{K} \frac{\lambda_k(\lambda_k + \sigma^2)}{(\lambda_k + \alpha)^2} \left| \frac{\sigma^2 - \alpha}{\lambda_k + \sigma^2} - \prod_{i=1}^{m} (1 - \mu_i(\lambda_k + \alpha)) \right|^2$$

In [21], the value of μ that minimises $J_{\rm ex}^{(m)}(\mu,\alpha)$ was found to be unique and a function of α as well as the eigenvalues of R. However, the value of α has no effect on the minimum value of $J_{\rm ex}^{(m)}(\mu,\alpha)$. For long-code systems, it is not feasible to compute the optimal set of weights for every symbol interval. Instead we consider using a fixed set of parameters that will minimise the ensemble average of the excess MSE over random codes. This is described by

$$\mathcal{J}_{\rm ex}^{(m)}(\mu,\alpha) = E\left\{J_{\rm ex}^{(m)}(\mu,\alpha)\right\},\tag{4}$$

where the expectation is taken over the probability density function of the spreading code matrix A.

Given the number of stages, which is usually significantly less than K due to limitations on the overall receiver complexity, our objective is to find the global minimum of $\mathcal{J}_{\rm ex}^{(m)}(\mu,\alpha)$ with respect to μ and α . We first assume that α is given and minimise (4) with respect to μ . For notational simplicity, we define $\phi_k = \lambda_k + \sigma^2$, $\gamma_k = \lambda_k + \alpha$, and $\gamma_k = \left(1, \gamma_k, ..., \gamma_k^{m-1}\right)^{\rm T}$ for k = 1, 2, ..., K. We also introduce the following mapping,

$$T: \mathbb{C}^m \to \mathbb{C}^m \text{ given by } \mathbf{x} = T(\boldsymbol{\mu})$$
where $\mathbf{x} = (x_1, x_2, ..., x_m)^{\mathsf{T}}$ and
$$x_1 \stackrel{\triangle}{=} (-1)(\mu_1 + \mu_2 + \cdots + \mu_m)$$

$$x_2 \stackrel{\triangle}{=} (-1)^2(\mu_1 \mu_2 + \mu_1 \mu_3 + \cdots + \mu_{m-1} \mu_m)$$

$$\vdots \qquad \cdots \qquad \vdots \qquad (5)$$

$$x_m \stackrel{\triangle}{=} (-1)^m \mu_1 \mu_2 \cdots \mu_m.$$

This mapping is known as the elementary symmetric polynomial transform, or equivalently as the disjunctive normal form [28, pg. 371]. Clearly it is not one-to-one since we have in general m! different μ 's that lead to the same x. Note that the product component in (3) can now be written as

$$\prod_{i=1}^{m} (1 - \mu_i(\lambda_k + \alpha)) = 1 + \sum_{i=1}^{m} x_i(\lambda_k + \alpha)^i$$
$$= 1 + \gamma_k \cdot \gamma_k^{\mathsf{T}} \mathbf{x}. \tag{6}$$

 $^{^{1}}$ They are obviously non-negative real since ${\bf R}$ is positive semi-definite.

Based on (6), we can then express the excess MSE as a quadratic function of x as

$$\mathcal{J}_{\text{ex}}^{(m)}(\mathbf{x}, \alpha) = \mathbb{E}\left\{\sum_{k=1}^{K} \lambda_k \phi_k \left| \frac{1}{\phi_k} + \gamma_k^{\mathsf{T}} \mathbf{x} \right|^2 \right\}. (7)$$

Differentiating with respect to x^* , we have the gradient of the excess MSE as

$$\frac{\partial \mathcal{J}_{\text{ex}}^{(m)}(\mathbf{x}, \alpha)}{\partial \mathbf{x}^*} = \mathbf{E} \left\{ \sum_{k=1}^K \lambda_k \phi_k \gamma_k \left(\frac{1}{\phi_k} + \gamma_k^{\mathsf{T}} \mathbf{x} \right) \right\}.$$
(8)

Equating the above to zero gives the minimum of $\mathcal{J}^{(m)}_{\rm ex}(\mathbf{x},\alpha)$ as the solution to

$$\mathbf{C}\mathbf{x} = -\mathbf{p} \tag{9}$$

where

$$\mathbf{C} = \mathbf{E} \left\{ \sum_{k=1}^{K} \lambda_k \phi_k \gamma_k \gamma_k^{\mathsf{T}} \right\} \in \mathbb{R}^{(m \times m)}$$
 (10)

and

$$\mathbf{p} = \mathbf{E} \left\{ \sum_{k=1}^{K} \lambda_k \boldsymbol{\gamma}_k \right\} \in \mathbb{R}^m. \tag{11}$$

Here C is an expectation taken over a set of positive semi-definite Hermitian matrices. It is clear that C is positive definite since for any non-zero vector z,

$$\mathbf{z}^{\mathsf{T}}\mathbf{C}\mathbf{z} = \mathbf{E}\left\{\sum_{k=1}^{K} \lambda_k \phi_k (\boldsymbol{\gamma}_k^{\mathsf{T}} \mathbf{z})^2\right\} > 0.$$
 (12)

Hence the unique real minimum in x is obtained as

$$\hat{\mathbf{x}} = -\mathbf{C}^{-1}\mathbf{p}.\tag{13}$$

We can then find the corresponding equivalent minimum in μ by considering the following polynomial,

$$p(\mu) = \mu^m + \hat{x}_1 \mu^{m-1} + \hat{x}_2 \mu^{m-2} + \dots + \hat{x}_m (14)$$
$$= (\mu - \hat{\mu}_1)(\mu - \hat{\mu}_2) \dots (\mu - \hat{\mu}_m) \qquad (15)$$

which has exactly m roots, $(\hat{\mu}_1, \hat{\mu}_2, \cdots, \hat{\mu}_m)$. Note that the equivalence of (14) and (15) gives $T(\hat{\mu}) = \hat{\mathbf{x}}$. The inverse of the mapping T, disregarding the order of the elements of μ , then essentially corresponds to the solution of the polynomial in (14). Therefore, any vector $\hat{\mu} = (\hat{\mu}_1, \hat{\mu}_2, \cdots, \hat{\mu}_m)^{\mathsf{T}}$ consisting of the m roots of (14) leads to the global minimum of $\mathcal{J}_{\mathrm{ex}}^{(m)}(\mu, \alpha)$. Furthermore, it can be shown that no other minima exist.

It can be shown that the parameter α has no influence on the minimum achievable MSE, i.e., for any $\alpha \geq 0$, there exists a unique set of weights, which depends on α , that will give the same minimum of $\mathcal{J}_{\rm ex}^{(m)}(\mu,\alpha)$ [29]. However, if $\alpha=\sigma^2$, the optimal weights are always real; otherwise they can be complex numbers. This affects the implementation complexity.

Considering (13), good numerical estimates can be found for C and p based on Monte Carlo averaging over random codes. Such an approach however, is very complex and can only be carried out off-line. Instead an analytical approach based on statistical moments of the eigenvalues can be used.

4 Moments of the Correlation Matrix

It is helpful here to define the r^{th} order moment of the correlation matrix as

$$M_r = \mathbf{E}\left\{\frac{1}{K}\sum_{k=1}^K (\lambda_k)^r\right\}. \tag{16}$$

Expanding (9) and dividing both sides by K, we get

$$\begin{bmatrix} c_{2} & c_{3} & \cdots & c_{m+1} \\ c_{3} & c_{4} & \cdots & c_{m+2} \\ \vdots & \vdots & & \vdots \\ c_{m+1} & c_{m+2} & \cdots & c_{2m} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{m} \end{bmatrix} = \begin{bmatrix} p_{1} \\ p_{2} \\ \vdots \\ p_{m} \end{bmatrix}, (17)$$

where

$$c_{i} = \mathbb{E}\left\{\frac{1}{K}\sum_{k=1}^{K}\lambda_{k}\phi_{k}\gamma_{k}^{i-2}\right\}$$
$$= \sum_{r=2}^{i} \binom{i-2}{r-2}\alpha^{i-r}\left(M_{r}+\sigma^{2}M_{r-1}\right), (18)$$

where $i = 2, 3, \ldots, 2m$ and

$$p_{i} = \mathbb{E}\left\{\frac{1}{K}\sum_{k=1}^{K}\lambda_{k}\gamma_{k}^{i-1}\right\}$$
$$= \sum_{r=1}^{i} \binom{i-1}{r-1}\alpha^{i-r}M_{r}, \qquad (19)$$

where now $i=1,2,\ldots,m$. Obviously the coefficients of C and p are determined by the first 2m moments of the correlation matrix. It is difficult, if not impossible, to get a close form expression for M_r , where r is an integer variable. In fact there is no known general expression. However, for a given integer value of r, M_r can be derived as follows.

4.1 Deriving the Moments

Consider chip n of spreading waveform for user k as a random variable, denoted by S_{nk} . For a long-code system all the chips S_{nk} , $n=1,2,\cdots,N$, $k=1,2,\cdots,K$, are mutually independent random variables, each uniformly distributed over the q-ary constellation. The corresponding chip sample observed at the receiver may be expressed as $A_{nk} = \sqrt{w_k} S_{nk}$.

Then the following properties obviously hold,

$$\begin{split} & E\left\{A_{n_1k_1}^* A_{n_2k_2}\right\} \\ & = \frac{\sqrt{w_{k_1}w_{k_2}}}{N} \delta(n_1 - n_2) \cdot \delta(k_1 - k_2) \\ & = \begin{cases} w_{k_1}/N & \text{if } n_2 = n_1 \text{ and } k_2 = k_1, \\ 0 & \text{otherwise,} \end{cases} \end{aligned} \tag{20}$$

and

$$E\{(A_{nk})^r\} = \left(\frac{w_k}{N}\right)^{\frac{r}{2}} \sum_{m=0}^{q-1} e^{2\pi m r/q}$$

$$= \begin{cases} \left(\frac{w_k}{N}\right)^{\frac{r}{2}} & \text{if } r/q \in \mathbb{Z}, \\ 0 & \text{otherwise.} \end{cases} (21)$$

The correlation between user i and user j is also a random variable

$$R_{ij} = \mathbf{a}_i^{\mathsf{H}} \mathbf{a}_j = \sum_{n=1}^{N} A_{ni}^* A_{nj}, \tag{22}$$

which is the element of row i, column j of \mathbf{R} . Considering the definition of the r^{th} order moment, we have

$$M_r = \mathbb{E}\left\{\frac{1}{K}\sum_{k=1}^K (\lambda_k)^r\right\}$$
$$= \frac{1}{K}\mathbb{E}\left\{\operatorname{tr}\left\{\Lambda^r\right\}\right\} = \frac{1}{K}\mathbb{E}\left\{\operatorname{tr}\left\{\mathbb{R}^r\right\}\right\}, (23)$$

in which the trace of \mathbf{R}^r can be expressed as

$$\operatorname{tr} \left\{ \mathbf{R}^r \right\} = \sum_{k_1=1}^K \sum_{k_2=1}^K \cdots \sum_{k_r=1}^K R_{k_1 k_2} R_{k_2 k_3} \cdots R_{k_{r-1} k_r} R_{k_r k_1} (24)$$

Therefore,

Here, A_{nk} are independent random variables selected from a scaled q-ary PSK² constellation with equal probability. Based on the above statistical properties of the code-sets given in (20) and (21), only terms containing all complex conjugate pairs and/or q-powers of the variables A_{nk} are relevant. It is therefore possible to obtain M_r through evaluation

of the expectation over all combinations of indices. This involves a grouping of the indices into equivalence classes. Details of this grouping and evaluation can be found in [29]. As the expectation is taken over all code-sets, M_r only depends on N, K, and the received signal energies and not on specific spreading codes. In fact M_r is shown to be a polynomial in N and K as well as the first r moments of the received signal energies. Here the $r^{\rm th}$ order moment of the energies is defined as

$$\mathcal{E}_r = \sum_{k=1}^K (w_k)^r. \tag{27}$$

In the Appendix we list the exact expressions for the first 6 moments obtained by computer-aided symbolic manipulations assuming BPSK spreading.

4.2 Ordering the Weights

Since we have m weights, we have m! different orderings that all lead to the same MSE at the last stage. The order in which the m weights are applied however, has a significant influence on the MSE performance at intermediate stages. Following the approach in [26], we have chosen to order the optimal weights according to a recursive minimisation of $\mathcal{J}_{\rm ex}^{(i)}(\hat{\mu}_i,\alpha)$ for i=1,2,...,m where $\hat{\mu}_i=(\hat{\mu}_1,\hat{\mu}_2,...,\hat{\mu}_{i-1},\mu_i)^{\sf T}$. Such an ordering is obtained by selecting at stage i the weight $\mu_i\in\mathcal{V}_i$ which is closest to $\tilde{\mu}_i$. Here, \mathcal{V}_i denotes the set of (m-i+1) elements of $\hat{\mu}$ which have not been used in the first i-1 stages, and

$$\tilde{\mu}_i = \arg\min_{\mu_i} \mathcal{J}_{\text{ex}}^{(i)}(\hat{\mu}_i, \alpha). \tag{28}$$

The closest weight to $\bar{\mu}_i$ is the best choice since $\mathcal{J}_{\rm ex}^{(i)}(\hat{\mu}_i, \alpha)$, given that all previous $\hat{\mu}_j$ is already chosen, is a quadratic function in μ_i . It has been found that $\tilde{\mu}_i$ can also be determined based on the first 2i moments of the correlation matrix [29].

4.3 Computational Complexity

Assuming that the received signal energies, the noise variance as well as N and K are known, then the computational complexity of calculating the set of weights is of the order of $(2mK+6m^3+19m^2)$ floating point operations. The complexity of updating the weights is therefore independent of the processing gain and only linear in the number of active users. The complexity is in fact negligible in comparison to O(mKN), which is the complexity of performing code-matched filtering for all K users in an m-stage interference canceller. It follows that weight-updating can be done on-line and does not noticeably increase the overall system complexity.

²This approach is not confined to PSK spreading only. It is applicable for arbitrary spreading schemes, provided that the statistical property of the spreading codes are known. Furthermore, influences of asynchronism and multi-path fading can also be incorporated here.

5 Numerical Results

The numerical examples considered in this section are based on a symbol-synchronous system with K=15 users. BPSK modulation and spreading formats are assumed and randomly generated long codes with a processing gain of N=31 are considered. The parameter α is set to 0 in all examples.

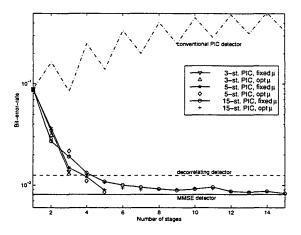


Figure 3: BER performance as a function of the number of stages. Both the cases of a fixed set of weights as well as optimal weights for each symbol interval are included. Here, SNR=7 dB, N=31 and K=15.

Fig. 3 shows the stage-by-stage BER performance of a PIC and the loss incurred by ensemble averaging over random codes, as compared to exact selection of parameters for each symbol interval. An SNR of 7 dB is assumed for all users, i.e., $\beta_k = 7$ dB for $k=1,\cdots,K$. We observe that the conventional PIC scheme diverges since the largest eigenvalue of ${f R}$ for a K = 15, N = 31 system, is almost always greater than 2 [29]. The eigenvalue criterion for divergence $\lambda_{\rm max} < 2$ have been shown in [20]. Divergence can be overcome by a proper choice of weights, optimised for an SNR of 7 dB and ordered as described in section 4. The BER performance of a PIC using this fixed set of weights are represented by the solid lines in Fig. 3. Significant improvement over the conventional detector can be achieved using merely 3 stages. A 5-stage detector performs much better than the decorrelator and gives close to average MMSE performance while 15-stage PIC gives virtually MMSE performance. The performance of a PIC that makes use of the set of weights corresponding to the instantaneous spreading codes in each symbol interval is also shown in the figure for comparison. It is clear that the penalty of making a compromise over all code-sets is negligible.

Fig. 4 shows the BER performance of a weighted PIC detector in a near-far environment, as compared with that of the conventional detector, the decorrelator and the MMSE detector. The SNR of the first

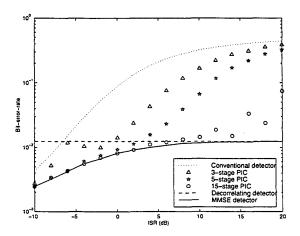


Figure 4: Near-far ability of the weighted linear PIC for a long-code system. N=31, K=15 and the SNR for user 1 is $\beta_1=7$ dB while for all other users $\beta_k=7+$ ISR. The performance of user 1 is shown.

user is $\beta_1=7$ dB while the remaining 14 users have an SNR of $\beta_k=\beta_1+$ ISR, for $k=2,\cdots,K$ where ISR denotes the interference-to-signal ratio in dB. The curves show the BER of user 1 only. It is observed that the PIC performs better than the conventional detector but worse than the MMSE detector. As the number of stages increases, the ability to combat the near-far environment improves.

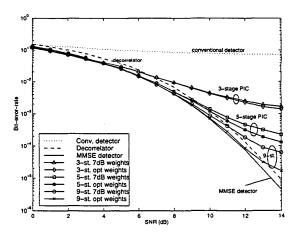


Figure 5: BER performance and sensitivity versus SNR using long codes. Weights optimised for 7 dB are used for 0-14 dB, in comparison to when the weights are optimised for the exact SNR. Here, N=31 and K=15.

The set of weights depends on the received signal energies and the noise variance. It is therefore of interest to investigate the sensitivity of the BER-performance to correct estimates of the SNR. This

sensitivity is illustrated in Fig. 5. Perfect power control is assumed, i.e., $\beta_k = \beta$ for all k's. The weights determined for an SNR of 7 dB are used for SNR's from 0 to 14 dB. It is compared to the case where the weights are optimised for the encountered SNR. As the number of stages increases, the sensitivity also increases slightly. For 3-stage, 5-stage and 9-stage PIC structures, a set of weighting factors determined for 7 dB works well for a range of SNR.

6 Concluding Remarks

In this paper, we have proposed a weighted linear parallel interference cancellation structure for multiuser detector in long-code CDMA. Using a set of fixed weights, the detector achieves close to MMSE performance for only a few stages. The weights are obtained by averaging the coefficients in a matrix equation over all code-sets. These coefficients depend on the moments of the eigenvalues of the code correlation matrix. Exact expressions for the moments are found to be polynomials of N, K and all users' received signal energies. In a dynamic system, the weights can be updated on-line as either the number of users or the received energies change. The involved complexity increases only linearly with the number of active users and is independent of the processing gain. Significant performance improvements are observed and the near-far problem is substantially alleviated as compared to the conventional PIC. For as few as 3 stages, it is possible to get close to the MMSE performance.

The First Six Moments

It is possible to derive moments of any order by evaluating the expectation in (26) over all combination of indices. Assuming BPSK spreading, the expressions for the first 6 moments are listed below. These moments are sufficient for computing the fixed weights for a 3-stage PIC. More moments can be found in [29].

$$M_1 = \frac{1}{K} \mathcal{E}_1; \tag{29}$$

$$M_2 = \frac{1}{KN} [\mathcal{E}_1^2 + \mathcal{E}_2(N-1)];$$
 (30)

$$M_3 = \frac{1}{KN^2} [\mathcal{E}_1^3 + \mathcal{E}_1 \mathcal{E}_2 (3N - 3) + \mathcal{E}_3 (N^2 - 3N + 2)]; \tag{31}$$

$$\begin{split} M_4 = & \frac{1}{KN^3} [\mathcal{E}_1^4 + \mathcal{E}_1^2 \mathcal{E}_2 (6N-6) \\ & + \mathcal{E}_1 \mathcal{E}_3 (5N^2 - 13N + 8) \\ & + \mathcal{E}_2^2 (N^2 - 2N + 1) \\ & + \mathcal{E}_4 (N^3 - 6N^2 + 9N - 4)]; \end{split}$$
 (32)

$$\begin{array}{lll} + & \mathcal{E}_{1}^{2}\mathcal{E}_{3}(14N^{2}-34N+20) \\ + & \mathcal{E}_{1}\mathcal{E}_{2}^{2}(6N^{2}-11N+5) \\ + & \mathcal{E}_{1}\mathcal{E}_{4}(8N^{3}-36N^{2}+48N-20) \\ + & \mathcal{E}_{2}\mathcal{E}_{3}(2N^{3}-9N^{2}+7N) & (33) \\ + & \mathcal{E}_{5}(N^{4}-10N^{3}+25N^{2}-20N+4)]; \\ \\ M_{6} = & \frac{1}{KN^{5}}[\mathcal{E}_{1}^{6}+\mathcal{E}_{1}^{4}\mathcal{E}_{2}(15N-15) \\ + & \mathcal{E}_{1}^{3}\mathcal{E}_{3}(30N^{2}-70N+40) \\ + & \mathcal{E}_{1}^{2}\mathcal{E}_{2}^{2}(20N^{2}-35N+15) \\ + & \mathcal{E}_{1}^{2}\mathcal{E}_{4}(30N^{3}-121N^{2}+151N-60) \\ + & \mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{3}(19N^{3}-61N^{2}+40N+2) \\ + & \mathcal{E}_{1}\mathcal{E}_{5}(12N^{4}-79N^{3} \\ + & 163N^{2}-118N+22) \\ \end{array}$$

 $M_5 = \frac{1}{KN^4} [\mathcal{E}_1^5 + \mathcal{E}_1^3 \mathcal{E}_2 (10N - 10)]$

+
$$\mathcal{E}_3^2(N^4 - 4N^3 + 2N^2 + 7N - 6)$$

+ $\mathcal{E}_6(N^5 - 15N^4 + 55N^3)$

 $+ \mathcal{E}_{2}^{3}(N^{3}-6N^{2}+8N-3)$

$-61N^2 + 8N + 12)]. (34)$

+ $\mathcal{E}_2\mathcal{E}_4(2N^4-22N^3+34N^2-6N-8)$

References

- F. Adachi, M. Sawahashi, and H. Suda, "Wideband DS-CDMA for next-generation mobile communications systems," *IEEE Communica*tion Magazine, vol. 36, pp. 56-69, Sept. 1998.
- [2] E. H. Dinan and B. Jabbari, "Spreading codes for direct sequence CDMA and wideband CDMA cellular networks," *IEEE Communica*tion Magazine, vol. 36, pp. 48-54, Sept. 1998.
- [3] TIA/EIA IS-95A: Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System, Max. 95.
- [4] R. Lupas and S. Verdú, "Near-far resistance of multiuser detectors in asynchronous channels," *IEEE Trans. Commun.*, vol. 38, pp. 496-508, April 1990.
- [5] S. Verdú, "Computational complexity of optimum multiuser detection," Algorithmica, vol. 4, pp. 303-312, 1989.
- [6] S. Verdú, "Minimum probability of error for asynchronous Gaussian multiple-access channels," *IEEE Trans. Inform. Theory*, vol. 32, pp. 85-96, Jan. 1986.
- [7] S. Verdú, Multiuser detection. Cambridge University Press, 1998.
- [8] R. Lupas and S. Verdú, "Linear multiuser detectors for synchronous code-division multiple-access channels," *IEEE Trans. Inform. Theory*, vol. 35, pp. 123-136, Jan. 1989.

- [9] T. J. Lim, D. Guo, and L. K. Rasmussen, "Noise enhancement in the family of decorrelating detectors for multiuser CDMA," in Proc. IEEE Asia-Pac. Conf. Comms./Int'l Conf. Comm. Systems (APCC/ICCS), pp. 401-405, Singapore, Nov. 1998.
- [10] Z. Xie, R. T. Short, and C. K. Rushforth, "A family of suboptimum detector for coherent multiuser communications," *IEEE J. Selected Areas Commun.*, vol. 8, pp. 683-90, May 1990.
- [11] U. Madhow and M. Honig, "MMSE Interference Supression for Direct Sequence Spread Spectrum CDMA" IEEE Trans. on Comms., Vol. 42, No. 12, Dec 1994. pp 3178-3188.
- [12] T. J. Lim and S. Roy, "Adaptive filters in multiuser (MU) CDMA detection," Wireless Networks., vol. 4, no. 4, pp. 307-318, 1998.
- [13] T. J. Lim, L. K. Rasmussen, and H. Sugimoto, "An adaptive asynchronous multiuser CDMA detector based on the Kalman filter," *IEEE J. Selected Areas Commun.*, vol. 16, pp. 1711– 1722, Dec. 1998.
- [14] M. J. Juntti, B. Aazhang, and J. O. Lilleberg, "Iterative implementation of linear multiuser detection for dynamic asynchronous CDMA systems," *IEEE Trans. Commun.*, vol. 46, pp. 503– 508, April 1998.
- [15] H. Elders-Boll, H. D. Schotten, and A. Busboom, "Efficient implementation of linear multiuser detectors for asynchronous CDMA systems by linear interference cancellation," European Transactions on Telecommunications, vol. 9, pp. 427-438, Sept-Oct 1998.
- [16] M. K. Varanasi and B. Aazhang, "Multistage detection in asynchronous code-division multiple-access communications," *IEEE Trans. Commun.*, vol. 38, pp. 509-519, April 1990.
- [17] D. Divsalar, M. Simon, and D. Raphaeli, "Improved parallel interference cancellation for CDMA," *IEEE Trans. Commun.*, vol. 46, pp. 258-268, Feb. 1998.
- [18] T. Suzuki and Y. Takeuchi, "Real-time decorrelation scheme with multi-stage architecture for asynchronous DS/CDMA," Technical Report of the IEICE, vol. SST96-10, SAT96-24, RCS96-34, 1996. (in Japanese).
- [19] S. Moshavi, E. G. Kanterakis, and D. L. Schilling, "Multistage linear receivers for DS-CDMA systems," International Journal of Wireless Information Networks, vol. 3, no. 1, pp. 1-17, 1996.

- [20] L. K. Rasmussen, D. Guo, T. J. Lim, and Y. Ma, "Aspects on linear parallel interference cancellation in CDMA," in Proceedings 1998 IEEE International Symposium on Information Theory, p. 37, MIT, Cambridge, MA USA, Aug. 1998.
- [21] D. Guo, L. K. Rasmussen, S. Sun, T. J. Lim, and C. Cheah, "MMSE-based linear parallel interference cancellation in CDMA," in Proceedings IEEE Fifth International Symposium on Spread Spectrum Techniques and Applications, vol. 3, pp. 917-921, Sun City, South Africa, Sept. 1998.
- [22] R. Fletcher, Practical Methods of Optimization. John Wiley, 1987.
- [23] O. Axelsson, Iterative Solution Methods. Cambridge University Press, 1994.
- [24] A. J. Grant and P. D. Alexander, "Random sequence multisets for synchronous code-division multiple-access channels," *IEEE Trans. Inform. Theory*, vol. 44, pp. 2832-2836, Nov. 1998.
- [25] H. V. Poor and S. Verdú, "Probability of error in MMSE multiuser detection," *IEEE Trans. Inform. Theory*, vol. 43, pp. 858-871, May 1997.
- [26] D. Guo, L. K. Rasmussen, S. Sun, and T. J. Lim, "A matrix-algebraic approach to linear parallel interference cancellation in CDMA," to appear in *IEEE Trans. Commun.*, Jan. 2000.
- [27] D. N. C. Tse and S. V. Hanly, "Linear multiuser receivers: effective interference, effective bandwidth and user capacity," *IEEE Trans. Inform. Theory*, vol. 45, pp. 622-640, March 1999.
- [28] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. North-Holland Publ. Company, 1978.
- [29] D. Guo, "Linear parallel interference cancellation in CDMA," M.Eng. thesis, National University of Singapore, 1998.