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A Matrix-Algebraic Approach to Linear Parallel
Interference Cancellation in CDMA
Dongning Guo, Lars K. Rasmussen, Sumei Sun and Teng Joon Lim

Abstract— In this paper linear parallel interference can-
cellation (PIC) schemes are described and analysed using
matrix algebra. It is shown that the linear PIC, whether
conventional or weighted, can be seen as a linear matrix
filter applied directly to the chip-matched filtered received
signal vector. An expression for the exact bit error rate is
obtained and conditions on the eigenvalues of the code cor-
relation matrix and the weighting factors to ensure conver-
gence are derived. The close relationship between the linear
multistage PIC and the steepest descent method (SDM) for
minimising the mean squared error (MSE) is demonstrated.
A modified weighted PIC structure that resembles the SDM
is suggested which approaches the MMSE detector rather
than the decorrelator. It is shown that for a K-user system
only K PIC stages are required for the equivalent matrix fil-
ter to be identical to the the MMSE filter. For fewer stages,
techniques are devised for optimising the choice of weights
with respect to the mean squared error. One unique optimal
choice of weights is found which will lead to the minimum
achievable MSE at the final stage. Simulation results show
that a few stages is sufficient for near-MMSE performance.

Index Terms—Code-division multiaccess, linear algebra,
multiuser channels, signal detection.

I. Introduction

In a mobile communications system multiple access to
the common channel resources is vital. In a system based
on spread-spectrum transmission techniques direct sequence
(DS) code division provides simultaneous access for multi-
ple users [1], [2]. By selecting mutually orthogonal spread-
ing codes for all users, they each achieve interference free
single-user performance. It is however not possible in a
mobile environment to maintain orthogonality of the codes
at the receiver and thus multiple-access interference (MAI)
arises. Conventional single-user detection is severely af-
fected by the MAI, and a system using conventional detec-
tion is interference limited [3]. Strict power control is also
required to alleviate the near-far problem where a high-
powered user creates overwhelming MAI for low-powered
users.

Advanced multiuser detection strategies can be adopted
to improve overall performance of a CDMA system [4]. In
[5], Verdú developed the optimal {0,1}-constrained maximum-
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likelihood (ML) detector. The inherent complexity how-
ever increases exponentially with the number of users, ren-
dering this optimal detector impractical. Two types of lin-
ear detectors have also been suggested, namely the decor-
relating detector (or the decorrelator) [6] and the MMSE
detector [7]. They are near-far resistant [8] and the com-
plexity is linear in the number of users.

For practical implementation successive interference can-
cellation (SIC) and parallel interference cancellation (PIC)
schemes have been subject to most attention. These tech-
niques rely on simple processing elements constructed around
the matched filter concept. The detector makes use of ten-
tative decisions to estimate all interference for a certain
user and purifies the decision statistic by subtracting the
estimated interference before matched filtering to reach a
better decision. The first structure based on the principle of
interference cancellation was the parallel multistage detec-
tor proposed by Varanasi and Aazhang in [9]. A significant
improvement to the PIC was suggested by Divsalar et al.
in [10] where they proposed a weighted (or partial) can-
cellation scheme. They studied both linear and non-linear
decisions functions based on joint ML considerations. Lin-
ear interference cancellation schemes have been further ex-
ploited by many authors. In [11], Elders-Boll et al. pointed
out that linear SIC and PIC correspond to the Gauss-Seidel
and Jacobi iteration [12], respectively, for approximating
matrix inversion. The linear SIC has been analysed by
Rasmussen et al. in [13]. In [14] Moshavi et al. developed
a weighted matrix expansion detector which is very similar
to the weighted linear PIC.

In this paper we mathematically describe linear PIC schemes
using matrix algebra. Assuming a symbol synchronous
system1 using short codes, we show that the linear PIC
schemes correspond to linear matrix filtering that can be
performed directly on the received chip-matched filtered
signal vector. The approach applies to both conventional
and weighted structures. This matrix filter is referred to
as the equivalent one-shot cancellation filter (a similar de-
scription has been made for linear SIC in [13]). It is then
possible to get an analytical expression for the exact bit er-
ror rate (BER) and to derive conditions on the eigenvalues
of the code correlation matrix and the weighting factors,
or weights, to ensure convergence. The weighted linear
multistage PIC is found to resemble the steepest descent
method (SDM) for updating adaptive filter tap-weights to
minimise the MSE. Here we demonstrate the close rela-
tionship between the two and present a new PIC structure

1The principles apply equally well to an asynchronous system. For
notational ease, we will focus on the symbol synchronous case here.
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which in fact is a modified version of the structures sug-
gested in [10] and [15]. Through multistage processing, this
new structure ensures convergence to the performance of
the MMSE detector rather than the decorrelating detec-
tor which other linear interference cancellation structures
generally converge to. Following the principles of the SDM,
we derive the corresponding one-shot cancellation filter and
devise techniques for optimising the choice of weights (or
equivalently the step sizes for the SDM) with respect to
the mean squared error (MSE). For a K-user system, only
K PIC stages are required for the equivalent one-shot fil-
ter to be identical to the MMSE filter. For fewer stages, it
is shown that one unique optimal choice of weights exists
which will lead to the minimum achievable MSE at the fi-
nal stage. This approach has also been applied to the case
of long codes in [16].

The paper is organised as follows. In Section II, the up-
link model is briefly described. The algebraic description
of the conventional PIC scheme is presented in Section III
together with convergence analysis. The close connection
between weighted PIC and the SDM is then explained and
a new structure is proposed in Section IV. In Section V
the optimisation of the weights is described and powerful
techniques for obtaining these parameters devised. Numer-
ical examples are presented in Section VI and the paper is
completed by some concluding remarks.

Throughout this paper scalars are lower-case, vectors are
bold face lower-case, and matrices are bold face upper-case
unless otherwise stated. All vectors are defined as column
vectors with row vectors represented by transposition. The
following notation is used for the product of matrices,

n2∏
i=n1

Xi =

{
Xn2Xn2−1 · · ·Xn1+1Xn1 if n1 ≤ n2,

I if n1 > n2.
(1)

Subscripting is done according to the following conven-
tions. Variables independent of the detector stage are,
when needed, subscripted with a user index, e.g., xk. The
first subscript on variables dependent on the detector stage,
e.g., xi,k, denotes the current stage, the second subscript
the user index.

II. System Models

The discrete-time model for the uplink of a CDMA com-
munication system considered throughout this paper is de-
scribed here. It is based on a symbol-synchronous system
assuming single-path channels and the presence of station-
ary additive white Gaussian noise (AWGN).

A specific user in this K-user CDMA system transmits
an M -ary PSK information symbol dk ∈ {exp(j2π(i −
1)/M)}, i = 1, 2, ...,M , by multiplying the symbol with
a q-ary spreading code sk ∈ {%1, ..., %q}N , %j ∈ C of length
N chips and then transmitting over an AWGN channel. All
users’ codes can be written concisely as an N ×K matrix
S = (s1, s2, · · · , sK) and we assume that sH

ksk = 1. The
received signal energy per symbol of user k is denoted by
wk. The received chip matched filtered signal vector, r,
encompassing one symbol interval for all users, is then ex-
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Fig. 1. The conventional PIC structure for a 3-user case. Stages i
and (i + 1) are shown. Assume that r̂0 = 0 and y0,k = 0 for all
k’s.

pressed as a weighted linear combination of the spreading
codes, i.e.,

r =
K∑

k=1

√
wkskdk + n = Ad + n ∈ CN , (2)

where A = (a1,a2, · · · ,aK) =
(√

w1s1,
√

w2s2, · · · ,
√

wKsK

)
,

d = (d1, d2, · · · , dK)>, and n is a noise vector where each
sample is independently, circularly complex Gaussian dis-
tributed with zero mean and variance E {nnH} = σ2I.

III. Algebraic Description of Conventional PIC

In a conventional PIC structure, previous tentative de-
cisions are used to estimate the interference for full cancel-
lation. The structure is depicted by the diagram in Fig. 1.
The decision statistic at stage (i + 1) for user k is then

yi+1,k = sH
k

r−
K∑

j=1

j 6=k

sj d̂i,j

 = sH
k

r−
K∑

j=1

sj d̂i,j

+ d̂i,k,

where d̂i,k is a tentative decision for user k at stage i,
which is equal to yi,k for a linear PIC structure. Also
define the vector of decision statistics at the ith stage as
yi = (yi,1, yi,2, ..., yi,K)>. We then have

yi+1 = SH(r− Syi) + yi = SHr + (I− SHS)yi, (3)

where y0 = 0. Using this recursion, we can express the soft
decision output of an m-stage PIC as ym = GH

mr where

GH
m =

m∑
i=1

(I− SHS)(i−1)SH.

This is the equivalent one-shot cancellation filter for the
conventional linear PIC. It is not difficult to see that all
eigenvalues of SHS must be less than 2 for GH

m to converge
as m goes to infinity. This can hardly be guaranteed for
most spreading codes, hence the unstable performance of
the conventional PIC (See e.g. [17]).
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Since GH
m is a linear filter, the noise component in ym is

still Gaussian but with colored correlation matrix

E {GH
mnnHGm} = σ2GH

mGm.

We can therefore analytically calculate the BER for any
user at any stage using the same techniques as for the con-
ventional matched filter detector [6] and the linear succes-
sive canceller [13]. Specifically for BPSK data modulation,
the BER of user k at stage m is

Pb(m, k) =
1

2K−1

∑
d∈{−1,1}K

dk=1

Q

(<{gH
m,kAd}

σ‖<{gm,k}‖

)
, (4)

where gm,k is column k of Gm.

IV. Steepest Descent Method vs PIC

In this section we first show the resemblance of the steep-
est descent method for approaching the MMSE detector
to a multistage PIC. A modified multistage PIC structure
is then proposed which converges to the MMSE detector.
Conditions for its convergence are also discussed.

A linear detector GH is a K × N linear matrix filter
applied to the chip matched received signal vector that
gives the following estimate of all users’ transmitted data
symbols,

y = GHr = GH(Ad + n).

The corresponding MSE is a scalar defined as

J = E
{
‖y − d‖2

}
= E

{
‖GHr− d‖2

}
= E {rHGGHr− dHGHr− rHGd + dHd} . (5)

Its gradient with respect to GH, assuming that E {ddH} = I
for independent users, is [18]

∇J =
∂J

∂G>
= GHE {rrH} − E {drH} = GH(AAH + σ2I)−AH.

The steepest descent method [18] gives the following recur-
sion for approaching the MMSE filter,

GH
i = GH

i−1 − µi∇J = GH
i−1 − µi

[
GH

i−1(AAH + σ2I)−AH
]
,

(6)

where µi is a variable step size dependent on the current
stage. Assuming G0 = 0 for obvious reasons, the non-
recursive form is then obtained as

GH
i =

i∑
l=1

µlAH

i∏
j=l+1

(I− µj(AAH + σ2I)). (7)

Observe that AH(I − µi(AAH + σ2I))AAH = RAH(I −
µi(AAH+σ2I)) where R = AHA, and so from (7) GH

iAAH =
RGH

i . Substituting this expression into (6) we get

GH
i =

[
I− µi(R + σ2I)

]
GH

i−1 + µiAH. (8)

Post-multiplying with r gives the update equation of the
decision statistic vector,

yi = (I− µi(R + σ2I))yi−1 + µiAHr. (9)

The MMSE detector implemented using this steepest de-
scent updating equation may be seen as a new parallel in-
terference cancellation structure as illustrated in Fig. 2 [19].
Here we introduce a non-negative real parameter α in re-
place of σ2, so that the update is expressed as

yi = (I− µi(R + αI))yi−1 + µiAHr. (10)

When α is set to σ2, the structure implements the steepest
descent method exactly. The reason for introducing this α
is because σ2 is in general not known at the receiver. The
effect of α will be discussed later.

Interestingly, this new structure can be customised to
most other linear PIC detectors that have been suggested.
For µi = 1, α = 0 and equal power users2, Eqns. (10)
and (3) are identical, hence the structure may be tuned
to the conventional PIC. Also assuming α = 0 and equal
power users but varying µi, (10) describes the structure in
[10]. For a fixed µi = µ, (10) describes the structure in
[15]. It is also obvious that a 1-stage PIC is equivalent to
the conventional single-user detector.

Based on the update equation (10), a non-recursive ex-
pression for the soft detector output of an m-stage PIC can
be obtained as

ym =

(
I−

m∏
i=1

(I− µi(R + αI))

)
(R + αI)−1 AHr = GH

mr.

(11)

It is clearly a linear matrix filtering of the received signal r.
The BER performance can then be determined analytically
using similar techniques as (4).

We may also write the detector output in terms of a
“steady-state” solution corrupted by some disturbance, i.e.,
ym = y∞−em where y∞ is the “steady-state” filter output
and em is some excess transient error related to stage m,

em =

(
m∏

i=1

(I− µi(R + αI))

)
(R + αI)−1 AHr. (12)

Based on (12) it is clear that a sufficient (but not neces-
sary) condition3 for convergence is,

−1 < 1− µi(λk + α) < 1 for all k’s ⇔ 0 < µi <
2

λmax + α
,

where λ1, λ2, · · · , λK are the eigenvalues of the Hermitian
positive semi-definite matrix R, and λmax denotes the largest
one. The “steady-state” filter in this case would be:

GH
∞ = (R + αI)−1 AH. (13)

2All users have the same SNR at the receiver. A = S and hence
R = SHS.

3For an identical weight to be used in all stages (µi = µ), it is also
a necessary condition.
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Fig. 2. The modified weighted PIC structure for a 3-user case. Stages i and (i + 1) are shown. Assume that r̂0 = 0 and y0,k = 0 for all k’s.

Therefore, given a sufficiently large number of stages and
an appropriate choice of weights, the “steady-state” filter
is identical to the decorrelator when α = 0, and identical
to the MMSE detector when α = σ2. For the conventional
PIC, α = 0, µ = 1 and λ1, λ2, · · · , λK are the eigenvalues of
SHS. In this case we have convergence to the decorrelator
if and only if λmax < 2 which is not true in general. As
mentioned in the previous section, this accounts for the
unstable behaviour of the conventional PIC.

V. Optimisation of The Weights

In this section we consider the problem of determining a
good set of weights for the PIC given that we only have a
few stages (m �∞). Our approach is to seek the optimal
set of weights according to the MSE criterion. This is a
natural choice since the PIC is designed as an analogy of the
SDM which reduces the MSE stage by stage. Furthermore,
the MSE is a quadratic function of the filter tap-weights
and hence leads to a tractable optimisation problem. In
addition, the MSE criterion has been verified to lead close
to the minimum BER for linear detectors [20] and hence
is a good choice. For notational simplicity, we first assume
that α = σ2 and derive the optimal weights. The effect of
setting α to some other value is accounted for later on.

As shown in Appendix A, the MSE of the PIC output at
stage m is obtained as

J (m)(µ, α) = JMMSE + J (m)
ex (µ, α)

=
K∑

k=1

σ2

λk + σ2
+

K∑
k=1

λk(λk + σ2)
(λk + α)2

·

∣∣∣∣∣ σ2 − α

λk + σ2
−

m∏
i=1

(1− µi(λk + α))

∣∣∣∣∣
2

,

(14)

where µ
4
= (µ1, µ2, ..., µm)>. The first term on the right

hand side is the MMSE, which is achieved only by the
MMSE filter, while the second term, called the excess MSE
hereafter, represents the degradation with respect to the
MMSE filter.

In [17] we considered the simple case where α = σ2 and
an identical real weight, µ, is used for all stages. The excess

MSE is reduced to a 2mth order polynomial,

J (m)
ex (µ) =

K∑
k=1

λk

λk + σ2
(1− µ(λk + σ2))2m.

The global minimum can be easily found as a root of the
derivative polynomial. This results in a (2m− 1)th order
polynomial and (2m−1) potential solutions arise. However,
the reader may easily verify that the second order deriva-
tive of J

(m)
ex (µ) is always positive and therefore a unique

real solution exists, which is the desired real-valued weight.
This also enables various searching methods to be employed
in locating this weight.

In the following we consider a more general case of using
different weights in each stage, while assuming that α = σ2.
Following Eqn. (14) we have J

(m)
ex (µ)

4
= J

(m)
ex (µ, α = σ2)

expressed as

J (m)
ex (µ) =

K∑
k=1

λk

(λk + σ2)

m∏
i=1

|1− µi(λk + σ2)|2. (15)

Assuming that m ≥ K and letting φk
4
= λk + σ2, we can

write out (15) as

J (m)
ex (µ) =

λ1

φ1
|1− µ1φ1|2|1− µ2φ1|2 · · · |1− µKφ1|2 · · · |1− µmφ1|2

+
λ2

φ2
|1− µ1φ2|2|1− µ2φ2|2 · · · |1− µKφ2|2 · · · |1− µmφ2|2

... · · ·
...

+
λK

φK
|1− µ1φK |2|1− µ2φK |2 · · · |1− µKφK |2 · · · |1− µmφK |2.

Obviously we can make J
(m)
ex (µ) zero by selecting the weights

in such a way that all the above underlined terms are
zero. It is therefore clear that the MMSE solution can
be achieved if

µi =
1

λi + σ2
, i = 1, 2, ...K. (16)
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So the linear PIC needs at most K stages to implement the
MMSE detector.

In practice, however, the number of PIC stages is usually
less than K so we do not have enough weights to make the
excess MSE zero. The objective is then to seek the global
minimum of J

(m)
ex (µ) with respect to µ, subject to a given

number of stages m < K.
Note that the individual summands in (15) can be rewrit-

ten in the following way:

λk

φk

m∏
i=1

|1− µiφk|2 =
λk

φk

∣∣1 + φkx1 + φ2
kx2 + · · ·+ φm

k xm

∣∣2 ,

(17)

where

x1 , (−1)(µ1 + µ2 + · · ·+ µm)

x2 , (−1)2(µ1µ2 + µ1µ3 + · · ·+ µm−1µm)
... · · ·

...

xm , (−1)mµ1µ2 · · ·µm.

(18)

This corresponds to the elementary symmetric polynomial
transform defined as follows.

Definition 1: Mapping T : Cm → Cm is given by x =
T(µ), where x = (x1, x2, · · · , xm)> and for i = 1, 2, · · · ,m,

xi = (−1)i
∑

1≤j1<j2<···<ji≤m

µj1µj2 · · ·µji . (19)

This mapping is not one-to-one since we have in general m!
permutations of the same set of µ1, µ2, · · · , µm for which
x = T(µ). Based on (17), we can rewrite (15) as a quadratic
function of x with a slight abuse of notation,

J (m)
ex (x) =

K∑
k=1

λk

φk

∣∣∣∣∣1 +
m∑

i=1

φi
kxi

∣∣∣∣∣
2

=
K∑

k=1

λkφk

∣∣∣∣ 1
φk

+ ϕ>kx
∣∣∣∣2 ,

where ϕk
4
=
(
1, φk, · · · , φm−1

k

)>
. Differentiating with re-

spect to x and equating to zero yields the minimum in x,

∂J
(m)
ex (x)
∂x

=
K∑

k=1

λkφkϕkϕ>kx +
K∑

k=1

λkϕk = 0

⇔
K∑

k=1

λkφkϕkϕ>kx = −
K∑

k=1

λkϕk

⇔ Cx = −p. (20)

Clearly, C is positive semi-definite since for any z ∈ Rm,
z>Cz =

∑K
k=1 λkφk(ϕ>kz)

2 ≥ 0. Furthermore, it is shown
in Appendix B that C is positive definite if and only if m or
more of the eigenvalues of R are distinct (λi 6= λj). Oth-
erwise, C is singular and multiple solutions to (20) arise.
Assuming that C is non-singular throughout this paper,
which is almost always true in our cases of interest, we
have a unique solution as x̂ = −C−1p, which is obviously
real-valued since φk and λk are real.

Recall that the corresponding minimum in µ (i.e., the
set of optimal weights) satisfies T(µ) = x̂. Consider the
following mth-order polynomial with x̂ as coefficients,

p(µ) = (µ− µ1)(µ− µ2) · · · (µ− µm)
= µm + x̂1µ

m−1 + x̂2µ
m−2 + · · ·+ x̂m. (21)

It has m roots, which form exactly the set of optimal
weights. The reason is that the solution to this polyno-
mial, disregarding the ordering of the roots, essentially cor-
responds to the inverse of the symmetric polynomial trans-
form. Since the optimal weights are the roots of a real
coefficient polynomial, they are either real or in complex
conjugate pairs.

Now that we have m weights, we have m! different choices
of µ̂ as permutations of the weights that all lead to the
same J

(m)
ex (µ̂) at the final stage. The order in which the m

weights are applied however, has a significant influence on
the MSE performance at intermediate stages. For a practi-
cal system, the intermediate decisions may be important for
channel estimation. Depending on the desired behaviour
for intermediate stages, different criteria for weight order-
ing can be adopted. In this paper we choose to arrange
the weights according to a recursive minimisation of the
excess MSE stage-by-stage. Such an ordering is obtained
by selecting at stage i the weight µi ∈ Mi which is closest
to µ̃i, where Mi denotes the set of (m− i + 1) elements of
µ̂ which have not been used in the first (i− 1) stages, and

µ̃i = arg min
µi

J (i)
ex (µi) (22)

where µi = (µ̂1, µ̂2, · · · , µ̂i−1, µi)
>. The closest remaining

weight to µ̃i is the best choice since J
(i)
ex (µi), given that all

previous µ̂j is already chosen, is a quadratic function in µi.
So far in this section, we have assumed that α = σ2

and based all derivations on (15). The derivations pre-
sented here can also be done based on (14) for an arbitrary
α. Interested readers are referred to [21] for a detailed
derivation. In this case, the global minimum can be found
similarly to (20). It is a function of α, x̂(α), where the
derivative of J

(m)
ex (x(α), α) with respect to xi is zero for all

i, i.e.,

∂J
(m)
ex (x(α), α)

∂xi
= 0, i = 1, 2, · · · ,m. (23)

Interestingly, the parameter α has no effect on the mini-
mum excess MSE as stated in the following theorem.

Theorem 1: The minimum excess MSE, J
(m)
ex (x̂(α), α),

is independent of α.
Proof: It is not difficult to show that

∂J
(m)
ex (x, α)

∂α
=

m−1∑
j=1

jxj+1
∂J

(m)
ex (x, α)
∂xj

(24)

holds for all x and α. At the global minimum, x̂(α), the
derivative terms on the right hand side are all zero from
Eqn. (23). Hence dJ

(m)
ex (x̂(α), α)/dα = 0.
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So, the specific value of α has no influence on the mini-
mum achievable MSE. For any α we can find an x̂(α) and
hence a corresponding set of weights, µ̂(α), that will give us
the MMSE for an m-stage PIC. In Appendix C, Theorem 2
states that for α = σ2 it is always true that the correspond-
ing weights are real. For α 6= σ2 it is in general not true.
As briefly mentioned earlier, the optimal weights can now
be complex numbers. This is not a serious problem since
the structure in Fig. 2 can easily accommodate any complex
weights, although complex processing increases complexity.

If the optimal weights are found to be complex numbers,
but for implementation simplicity only real parameters are
wanted, they can be determined as a solution to a group of
m real multi-variate polynomials,

∂J
(m)
ex (µ, α)
∂µj

= 0, j = 1, 2, · · · ,m, (25)

each with a degree of (2m− 1). Multiple solutions may ex-
ist. It is also found that the optimal set of weights should be
located in the constrained set Bµ

4
= { µ | ∃ 1 ≤ i < j ≤ m,

µi = µj , µ ∈ Rm}, i.e., at least two out of the m weights
are equal. This is formally proved as Theorem 3 in Ap-
pendix D. In fact Bµ is the set of all µ described by the
limit where potential complex conjugate pairs become real.
Since there is less freedom in selecting the weights (a pair
of them are forced to be equal), there will be some MSE
degradation in comparison to allowing complex parame-
ters. It is possible to locate the minimum through various
searching methods such as Newton’s method, but this is
unfortunately too complicated to be practical.

Regardless of α, the optimal weights, whether real or
complex, are dependent on σ2. The sensitivity of the per-
formance of the PIC to a mismatch in σ2 is investigated
through simulations in Section VI.

In a system using long codes, the optimal weights depen-
dent on instantaneous eigenvalues of the channel correla-
tion matrix will have to be recomputed for every symbol
interval. This is not very practical, so instead a set of time-
invariant weights that minimises the ensemble average of
the MSE over random codes can be used. This problem is
investigated in detail in [16]

VI. Numerical Results

The numerical examples considered in this section are
based on a symbol-synchronous system with 15 users. BPSK
modulation and spreading formats are assumed where short
codes with a processing gain of 31 are considered. When
the performance of the detector is illustrated as a function
of the number of PIC stages, the SNR is 7 dB for all users.

Fig. 3 shows the performance of PIC with optimised
weights. A randomly selected set of short codes is used
where the corresponding correlation matrix has the eigen-
values (0.152, 0.220, 0.267, 0.350, 0.579, 0.633, 0.773, 0.884,
0.933, 1.17, 1.45, 1.55, 1.65, 1.82, 2.57). Since the largest
eigenvalue is greater than 2, the condition for convergence
for the conventional PIC is violated and in Fig. 3 we ob-
serve divergence. For the right choice of weights however, it
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Fig. 3. Stage-by-stage performance of PIC detector with optimal
weighting factors (WF) using short codes.
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Fig. 4. Near-far ability of the weighted PIC using short codes.

is clear that a 15-stage PIC can achieve exactly the MMSE
performance no matter which α is chosen in the structure.
A 5-stage PIC gives close to MMSE performance and even
a 3-stage PIC shows considerable improvement over the
conventional detector4. The weights are ordered according
to the criterion described in Section V, forcing the MSE
to decrease the most, stage-by-stage. It is observed that
the BER decreases monotonically when α = σ2, but not
necessarily so for α 6= σ2. When the weights are not ar-
ranged properly, the BER performance can be very poor
for all but the first and the last stage. This is illustrated in
Fig. 3 through an example of a 5-stage PIC with α = σ2,
of which the weights are sorted in decreasing order. Obvi-
ously the ordering of the weights is vital for performance
in the intermediate stages.

Fig. 4 demonstrates the ability of a PIC to combat near-
far effects. The SNR of the first user is 7 dB while the
remaining 14 users have the same SNR of 7+β dB. The
weighted PIC is shown to behave better than the conven-
tional detector in a near-far environment. The more num-

4The performance of the conventional detector is identical to the
PIC performance in the first stage.
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Fig. 5. BER performance and sensitivity vs. SNR using short codes.
Weighting factors (WF) optimised for 7 dB and α = 0.0998 (sim-
plified to α = 0.1 in the legend) are used for 0-14 dB, in com-
parison to when the weights are optimised for each working SNR
and corresponding α.
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Fig. 6. BER performance and sensitivity vs. SNR using short codes.
Weights (WF) for 7 dB are used for 0-14 dB, in comparison to
when the weights are optimised for each working SNR. α = 0 is
assumed in all cases.

ber of stage deployed, the higher the MAI a PIC can resist.
Since a 15-stage weighted PIC achieves the MMSE detector
exactly, it is at least as good as the decorrelating detector
in combating near-far effect. However a PIC with fewer
stages is not near-far resistant in the sense that when the
MAI becomes extremely strong, i.e., β = ∞, the detector
fails to detect the signal from the desired user.

The weights are determined based on a specific work-
ing SNR. The sensitivity of the detector performance at all
SNRs (0-14 dB), to the choice of the working SNR is illus-
trated in Fig. 5 and 6. The same set of short codes as for
Fig. 3 is used. In Fig. 5 the weights optimised for SNR of
7 dB and α = 0.0998 (which corresponds to a σ2 at 7 dB)
are used for various actual SNRs from 0 to 14 dB. It is
compared to the case when the weights are optimised and
α chosen for the encountered SNR under which the system
is supposed to be working. The BER performance of the

MMSE detector is also shown. Similar tests are done in
Fig. 6, where α is assumed to be 0. The system is observed
to be practically insensitive to SNR variation when α is
chosen to be 0. The set of weights optimised for an SNR
of 7 dB can virtually be used for any working SNR. When
α = σ2 is used, the sensitivity increases substantially when
the number of stages increases beyond 5. A PIC detector
with more than 9 stages and 7 dB weights will perform
poorly for any working SNR other than 7 dB. An intuitive
explanation is provided as follows. The weights are depen-
dent on the choice of α and σ2 and found at the minimum
of the excess MSE where the derivatives with respect to the
weights as well as α are zero. If α is set to zero5, then the
MSE is relatively stable to a mismatch in the SNR, since α
is fixed, i.e., only the mismatch in σ2 affects the weights. If
α = σ2, then both parameters are affected by the mismatch
and thus the weights are carried further from their optimal
values. As every 3 dB difference in the SNR corresponds to
an additional factor of 2 in mismatch, the effect increases
with increasing mismatch. This result implies that α = 0
instead of α = σ2 should be used in a short-code PIC de-
tector with a large number of stages. Using α = 0 obviates
estimation of the noise level but on the other hand increases
detector complexity since the weights would in general be
complex.

VII. Concluding Remarks

In this paper, we have developed a matrix algebraic ap-
proach to linear parallel interference cancellation schemes.
It is shown that both the conventional and the weighted
linear PIC are equivalent to a one-shot linear matrix fil-
tering. A new weighted PIC structure is suggested which
approaches the performance of the MMSE detector with
correctly selected weights.

Weight optimisation of the PIC is studied based on the
MSE criterion. It is shown that for short-code systems,
only K (the number of users) stages are necessary for the
PIC to be identical to the MMSE detector. For a smaller
number of stages, an analytical approach is derived for
finding the optimal weights that will obtain the achiev-
able MMSE. An ordering of the weights which will ensure
the largest decrease in the MSE, stage by stage, is sug-
gested and shown to provide a monotonically decreasing
BER for α = σ2. The optimal weights are dependent on
the assumed SNR. It is demonstrated that for α = 0, the
detector performance is insensitive to deviation from the
true SNR. For α = σ2, the detector is however, quite sen-
sitive when a large number of stages are used.

Appendices

A. Derivation of the MSE

The MSE at the output of an m-stage PIC is

J (m)
ex (µ, α) = E

{
‖GH

mr− d‖2
}

= E {rHGmGH
mr− 2<{dHGH

mr}+ dHd} ,

5Or any other fixed value.
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where GH
m is described by (11) and <{·} stands for the real

part of a complex number or matrix. Since J
(m)
ex (µ, α) is a

scalar, we can apply the trace operator to the right hand
side directly. Utilizing the fact that tr {AB} = tr {BA},
we have

J (m)
ex (µ, α)

=tr {E {rHGmGH
mr− 2<{dHGH

mr}+ dHd}}
=tr {GH

mE {rrH}Gm − 2<{GH
mE {rdH}}+ E {ddH}}

=tr
{
GH

m(AAH + σ2I)Gm − 2<{GH
mA}+ I

}
.

Let R = UΛUH be the eigenvalue decomposition of R.
Then all matrices in the last equation has eigenvectors de-
termined by U, and we can therefore derive (14) as follows,

J (m)
ex (µ, α)

= tr

{(
I−

m∏
i=1

(I− µi(R + αI))

)
(R + αI)−1 R(R + σ2I)

× (R + αI)−1
(

I−
m∏

i=1

(I− µi(R + αI))

)H

−2<

{(
I−

m∏
i=1

(I− µi(R + αI))

)
(R + αI)−1 R

}
+ I

}

=
K∑

k=1

λk(λk + σ2)
(λk + α)2

∣∣∣∣∣1−
m∏

i=1

(1− µi(λk + α))

∣∣∣∣∣
2

−2<

{
λk

(λk + α)

(
1−

m∏
i=1

(1− µi(λk + α))

)}
+ 1

=
K∑

k=1

σ2

λk + σ2
+

K∑
k=1

λk(λk + σ2)
(λk + α)2

·

∣∣∣∣∣ σ2 − α

λk + σ2
−

m∏
i=1

(1− µi(λk + α))

∣∣∣∣∣
2

.

B. Positive Semi-Definite C

The matrix C is singular if and only if there exists an
x 6= 0 such that ϕ>kx = 0 for k = 1, 2, · · · ,K, i.e.,

(ϕ1,ϕ2, ...,ϕK)>x = 0. (26)

This constitutes K equations in m unknowns. If m or more
of the K equations are linearly independent, then there is
no non-zero solutions to (26). If we have less than m lin-
early independent equations, there are multiple solutions.
For m = K, (26) is a Vandermonde system [12] which is
non-singular if and only if φi 6= φj for all 1 ≤ i < j ≤ K, or
equivalently, C is non-singular if and only if R has K dis-
tinct eigenvalues. Similarly, for m ≤ K, C is non-singular
if and only if R has m or more distinct eigenvalues.

C. Real Optimal Weights for α = σ2

Theorem 2: The vector µ that minimises

J (m)
ex (µ)

4
= J (m)

ex (µ, α = σ2)

is real-valued.
Proof: Let µ ∈ Cm be the global minimum of J

(m)
ex (µ)

in µ. It is clear that

J (m)
ex (µ) =

K∑
k=1

λk

φk

m∏
i=1

|1− µiφk|2

=
K∑

k=1

λk

φk

m∏
i=1

|1−<{µi} · φk − j={µi} · φk|2

=
K∑

k=1

λk

φk

m∏
i=1

[
(1−<{µi} · φk)2 + (={µi} · φk)2

]
≥

K∑
k=1

λk

φk

m∏
i=1

(1−<{µi} · φk)2

= J (m)
ex (µ(r)). (27)

Therefore the excess MSE achieved by µ is no less than
that achieved by <{µ}. For µ to be the global minimum,
equality must hold in (27). It is obvious that ={µi} = 0
for all i’s, i.e., µ ∈ Rm.
If α 6= σ2, the above approach is not applicable and the
optimal weights can be complex.

D. Locating the Real Suboptimal Weights for α 6= σ2

Theorem 3: If the global minimum of J
(m)
ex (µ, α) in µ

is not real, its real-constraint minimum must be found in
Bµ

4
= { µ | ∃ 1 ≤ i < j ≤ m, µi = µj , µ ∈ Rm}.

To prove this theorem, we need the following lemmas.
Lemma 1: Define the following set

Dx
4
= T(Rm) = {x | ∃ µ ∈ Rm, x = T(µ)} .

If the global minimum of J
(m)
ex (x, α) in x is not in Dx, its

Dx-constraint minimum must be found in the boundary set
of Dx.

Proof: As shown in Section V, J
(m)
ex (x, α) has a

unique minimum as x̂ = C−1p. If x̂ /∈ Dx, the constraint
minimum in Dx must be in the boundary set of Dx since
no local minimum exists within Dx.

Lemma 2: The boundary set of Dx in Rm, denoted by
Bx, is determined by Bx = T(Bµ).

Proof: In the following we assume that all variables
or series in x are real. Since Bx is the boundary set of Dx,

∀x ∈ Bx, ∀δ > 0, ∃x(1) ∈ Dx, x(2) /∈ Dx,

so that ‖x(1) − x‖ < δ, ‖x(2) − x‖ < δ.
(28)

Therefore, for any x ∈ Bx, two series exist,

∃
{
x(1)

n ∈ Dx

}
and

{
x(2)

n /∈ Dx

}
,

lim
n→∞

x(1)
n = lim

n→∞
x(2)

n = x.
(29)

By solving a polynomial with x as coefficients, we can find
corresponding series in µ,

∃
{

µ(1)
n ∈ Rm

}
and

{
µ(2)

n /∈ Rm
}

,

lim
n→∞

T(µ(1)
n ) = lim

n→∞
T(µ(2)

n ) = x.
(30)
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It is clear that
{

µ
(1)
n

}
and

{
µ

(2)
n

}
are bounded series, oth-

erwise T(µ(1)
n ) and T(µ(2)

n ) will not converge. From theory
of limitation, bounded series must have sub-series that con-
verge. Therefore,

∃
{

µ(1)
nk
∈ Rm

}
, lim

k→∞
µ(1)

nk
= µ(1);

∃
{

µ(2)
nk

/∈ Rm
}

, lim
k→∞

µ(2)
nk

= µ(2).
(31)

Since real vector series will converge only to a real vector,
µ(1) ∈ Rm, which has corresponding x = T(µ(1)) ∈ Dx.
Since µ(2) is a solution to T(µ(2)) = x, µ(2) ∈ Rm. x ∈ Dx

implies that Bx ⊆ Dx. In the following we use the fact that
µ(2) ∈ Rm to prove that Bx = T(Bµ).

Rewriting µ
(2)
nk as νk =

(
ν

(k)
1 , ν

(k)
2 , · · · , ν

(k)
m

)>
and µ(2)

as ν, then

∀ k > 0, ν(k) /∈ Rm, ν ∈ Rm, and lim
k→∞

ν(k) = ν. (32)

Since ν(k) /∈ Rm but T(ν(k)) ∈ Rm, there must have at
least one complex conjugate pair among ν

(n)
1 , ν

(n)
2 , · · · , ν

(n)
m ,

which are the m roots of an mth-order real coefficient poly-
nomial. It is not difficult to deduce that there exist i and
j, 1 ≤ i < j ≤ m, so that a sub-series of ν(k), denoted as{

ξ(l) = ν(kl) | l = 1, 2, · · ·
}

, satisfies <{ξ(l)
i } = <{ξ(l)

j } for
all l. Therefore

νi = lim
l→∞

<{ξ(l)
i } = lim

l→∞
<{ξ(l)

j } = νj . (33)

Equivalently, µ
(2)
i = µ

(2)
j , i.e., µ(2) ∈ Bµ. In conclusion,

Bx = T(Bµ).
Proof: (Theorem 3) From Lemma 1, Dx is the set of

x that corresponds to real weights. If the global minimum
of J

(m)
ex (µ, α) in µ, denoted by µ̂, is not real, then the

corresponding x̂ = T(µ̂) /∈ Dx. It follows that its real-
constraint minimum, denoted as µ̂r, corresponds to the
Dx-constraint minimum of J

(m)
ex (x, α), which is found to

be within T(Bµ) by Lemma 2. Consequently, µ̂r ∈ Bµ.
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