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Abstract—In this paper we mathematically describe the
linear parallel interference canceller (PIC) using matrix
algebra. It is shown that the linear PIC, whether conven-
tional or weighted, can be seen as a linear matrix filter
applied directly to the received chip-matched filtered sig-
nal vector. It is then possible to get an analytical expres-
sion for the exact bit error rate and to derive necessary
conditions on the eigenvalues of the code correlation ma-
trix and the weighting factors to ensure convergence. The
close relationship between the steepest descent method
for minimising the mean squared error (MSE) and linear
PIC is demonstrated and a modified PIC structure is sug-
gested which converges to the MMSE detector rather than
the decorrelator. Following the principles of the steep-
est descent method techniques are devised for optimising
the choice of weighting factors with respect to the mean
squared error. It is shown that only K (the number of
users) PIC stages are required for the equivalent matrix
filter to be identical to the MMSE filter. For fewer stages,
m < K, one unique optimal choice of weighting factors ex-
ists which will lead to the minimum achievable MSE at the
last stage.

" 1. INTRODUCTION

Conventional single-user detection techniques are
severely affected by MAI, making such systems inter-
ference limited. Traditional matched filter receivers for
CDMA also require strict power control in order to al-
leviate the near-far problem where a high-powered user
creates significant MAT for low-powered users. More ad-
vanced detection strategies can be adopted to improve
performance. For practical implementation successive in-
terference cancellation and parallel interference cancella-
tion (PIC) schemes have been subjected to most atten-
tion. The first structure based on the principle of interfer-
ence cancellation was the parallel multi-stage detector in
[1]. A significant improvement to the PIC was suggested
by Divsalar et al in [2] where they proposed a weighted
cancellation scheme. Here the current decision statistic is
a weighted sum of the previous decision statistic and the
statistic resulting from interference cancellation based on
current tentative decisions. They considered both linear
and non-linear decisions functions based on joint ML con-
siderations. An identical approach has been suggested by
Suzuki and Takeuchi in (3] for a linear PIC,

In this paper we mathematically describe the linear PIC
scheme using matrix algebra. Assuming a symbol syn-
chronous system with short codes, we show that the lin-
ear PIC schemes correspond to linear matrix filtering that
can be performed directly on the received chip-matched
filtered signal vector. The approach applies to both con-
ventional and weighted structures. It is then possible to
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get an analytical expression for the exact bit error rate
(BER) and to derive necessary conditions on the eigen-
values of the code correlation matrix and the weighting
factors to ensure convergence. The concept of weighted
linear PIC resembles the concept of the steepest descent
method (SDM) for updating adaptive filter weights to
minimise the MSE. Here we demonstrate the close rela-
tionship between the two and present a new PIC struc-
ture which in fact is a modified version of the structures
suggested in [2] and [3]. This new structure will ensure
convergence to the performance of the MMSE detector
rather than the decorrelating detector which other PIC
structures generally converge to. Following the principles
of the SDM, we derive the corresponding one-shot can-
cellation filters and devise techniques for optimising the
choice of weighting factors (or equivalently step sizes for
the SDM) with respect to the mean squared error (MSE).
The case of having a fixed weighting factor was consid-
ered in [4]. It is here shown that only K PIC stages are
required for the equivalent one-shot filter to be identical
to the minimum MSE (MMSE) filter. For fewer stages,
m < K, one unique optimal choice of step sizes exists
which will lead to the minimum achievable MSE. Finally
we demonstrate that for long codes, it is possible to find
a set of weighting factors that will provide significant per-
formance improvement for the linear PIC scheme as com-
pared to the conventional structure.

The paper is organised as follows. In Section II, the up-
link model is briefly described. The algebraic description
of the conventional PIC scheme is presented in Section III
together with performance analysis. The close connection
to the SDM is explained in detail in Section IV and in
Section V the optimisation of the step sizes is described
and powerful techniques for obtaining these parameters
devised. Numerical examples are presented in Section VI
and the paper is completed by some concluding remarks.

II. SYSTEM MODEL

In this section, the model for the uplink of the CDMA
communication system considered throughout this paper
is briefly described. The uplink model is based on a
discrete-time symbol-synchronous CDMA system assum-
ing single-path channels and the presence of complex sta-
tionary additive white Gaussian noise (AWGN) with zero
mean and variance o2 = Np.

A specific user in this K-user communication sys-
tem transmits an M-ary PSK information symbol dj €
{exp(j2r(i — 1)/M)}, i = 1,2,..,M, by multiplying
the symbol with a g-ary spreading code s, € SV, § =
{01,.-,0¢}, 0; € C of length N chips and then trans-
mitting over an AWGN channel. The spreading codes
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transmitted by each user in any. given symbol interval are
assumed to be symbol-synchronous. Note that we have
assumed that sis; = 1. To make the notation less cum-
bersome, we assume perfect power control. The output of
a chip-matched filter is then expressed as a linear combi-
nation of spreading codes, specifically, the chip matched
filtered received vector, r, is a column vector of length
N, encompassing the transmissions for all users. The
received vector r is hence described through matrix al-
gebra as r = Ad + n, where A = (s1,82, - ,8k) and
d=(dy,ds, - ,dK)T. The sampled noise corrupting the
output of the chip-matched filter is independent in each
sample since the chip waveforms are assumed to be rect-
angular. We therefore obtain a noise vector n where each
sample is circularly complex Gaussian distributed with
zero mean and variance Np. The matched filtered statis-
tic is then obtained as y = A"r = A"Ad+A"n = Rd+z,
where E {zz°} = ¢’R..

III. ALGEBRAIC DESCRIPTION OF CONVENTIONAL

PIC

In a conventional PIC structure, previous tentative de-
cisions are used to estimate the interference for cancella-
tion. The structure is described by the diagram in Fig. 1
with g% = 1 and @ = 0. The decision statistic at stage
{(m + 1) for user k is then

K
o 5
Ym+1,k stlr—> sidm;

i=1
i#k

K
sy (r -3 Sidm,i) + dm ks

i=1

where y1,; = shr = y; and Jm,k is a tentative decision for
user k at stage m. In a linear PIC structure, dm x = Ym,k,

and defining y,, = (¥m.,1,Ym.2) -» Ym, k)", the scheme is
described by
Ymir = AMr—Ayn)+¥n=Y-Ryn+¥m

I

y+ (I - R)ymi (1)

where y; = A"r = y. Using this recursion, we can ex-
press y,, as

m =3 (I-R)UVA =Ghr,

i=1

where G, = A0 (I— R)G-D. This is the equivalent
one-shot cancellation filter for conventional linear PIC.
Since G, is a linear filter, the noise in y,,, is still Gaussian
with correlation matrix E{GEan®*Gn} = 02G5Gp.
We can therefore analytically calculate the BER for user
k at stage m using the same techniques as for the con-
ventional matched filter detector. Specifically for BPSK

systems,
Q ( ) ,

where g,, ; is the k** column of Gi,.

Re{gﬁlykAd}

Py(m, k) = ol[Re{g, I

L @

=D

de{~1,1}¥
djp=1

IV. STEEPEST DESCENT METHOD vs PIC

A linear detector G is a linear matrix filter that gives
the following estimate of the transmitted data symbols,
x = Gr = G¥(Ad + n). The corresponding MSE is
given by

E{lx-d|’} =E{llG"r - d|{*}
E {r"GG"r - d"G"r — r*Gd + d"d},

JMMSE

and the gradient with respect to G, assuming that
E{dd"} = I, is [5]

8JvmsE _
8GT

The steepest descent method gives the followmg recursion -
for approaching the MMSE filter,

VJIumse = 2 [GH(AAH + 021) - AH] .

Hm1
2

where pi,,41 i8 a variable step size dependent on the cur-
rent stage. We then have that

" — H
mi1 = G = V JMMSEs

Ghp1 = Gy, = fmy1 [GR(AA" +0°T) -~ A¥],  (3)
where Go = 0. The non-recursive form is then
Zm H (I-p (R+o2l)>A“ (4)

i=l1 j=t+1

The BER performance can then be found for BPSK mod- ’
ulation formats using (2). In case we use a fixed step
size,

m~—1
Gr=p) (I-pR+0°)) A"
=0
Observe that (I — pj(R+o?1)A"AA" = R(I - p;(R+
aI)) A" and so, from (4) GZ AA" = RGE . Substituting
this expression into (3) and post—multlplymg with r gives

.(5)

For pm41 = 1 and 0% = 0, Eqns. (1) and (5) are iden-
tical'. The MMSE detector implemented using steepest
descent updates may be seen as a modified linear paral-
lel interference canceller as illustrated in Fig. 1. When
a = o2, this structure implements the algorithm of Eqn.
(5) exactly. The reason for introducing an arbitrary real-
valued weighting factor a becomes clear later on.
It is possible to write Eqn. (4) (with o replaced by )

in terms of a “steady-state” solution corrupted by some
disturbance,

ox=(1-

where (R +aI)™ A¥ is the “steady-state” filter. We
-therefore have y,, = ¥, — em Where y, is the “steady-
state”. filter output and e, is some excess transient error
related to the m* stage,

Ym+1 = PmrtAfr 4+ (T - Emir (R + 021))ym-

T10- (R + D)

i=1

) (R+al)™ A", (6)’

(H(x wi(R + o))

i=1

) (R + aI)™ ‘Aﬂr.

1For varying gm and o2 =0, (5) also describes the Structure in
[2]. For a fixed p # 1 and 62 = 0, (5) describes the structure in [3].
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Fig. 1. The modified weighted PIC structure for a 4-user case.
Stages i and (i + 1) are shown., When o = 0 and p; = 1,
the structure is identical to conventional PIC.

Based on (6) it is clear that a sufficient (but not neces-
sary) condition? for convergence is,

~“1<l—p(M+a)<1=2>0< ;< X—;z_—;a,

where Ak is the largest eigenvalue. The “steady-state”
filter in this case would be: GX% = (R + aI)™ A¥, which
in case o = 0 is the decorrelating filter and in case a = o
is the MMSE filter. For the conventional PIC, a = 0
and ¢ = 1. In this case we have convergence only if
Ak < 2 which is not true in general. This accounts for
the unstable behaviour of the conventional PIC [4].

To follow the link to the SDM and the MMSE detector,
we consider the MSE for the PIC structure. Using the
properties of the trace operator, we can write the MSE in
the m*™ stage as

M(Ax + 0?)
(A +a)?

J(p, a,m)

K 2 K
;’\k+”2+kz.?l

o2 -a
A + 02

m 2
-TIa - ww +a))| (0
=]
JMMSE + Jex (i, @, m),

where A = diag(\1, Az, ..., Ak} are the eigenvalues of R
sorted in increasing order and p = (p1, pi2, .., pm)T. In (7)
the first term on the RHS is the MMSE, while the sec-
ond term represents the degradation with respect to the
MMSE filter. For a fixed step size, we have Jex expressed
as

Ak +0?%)
(Me + @)?

>

k=1

Jox(p, 2y m)

o2 —
,\+2

V. OPTIMISATION OF WEIGHTING FACTORS

= (1= s +a))™

In this section we consider the choice of optimal step
sizes with respect to minimising the MSE given that we
only have a few stages (m < oo0). To simplify the deriva-
tions, we assume that a = o2. It is later shown that if
a = d2, the optimal weighting factors are real as opposed
to the case when o # o%, where the optimal weighting
factors can be complex.

2For a fixed p; = p, it is a necessary condition.

Consider Eqn.
Jex(p, 0 = a'zam)

(7) with @ = 0% We then have
= Jox (14, m) expressed as

Jex (18, m z O + 0,2) II ’1 I-"i(’\k + ‘72)'2 (8)

Assuming that m > K and letting ¢k = A + 02, we can
write out (8) as

Jex(p,m) =
A
;;f(ll — |1 = padha| - |1 = preda| |1 = pmepr|)?

A
+¢—:(|1 — ol = pada| |1 — uxdal |1 — pméa])?

AK .
+;S;(Il ~ méklll = padi| |l = pr oK |- |1 — pmdK])®.
Obviously we can now make Jex(1s,m) zero by selecting
the step sizes in such a way that the underlined factors
above are zero. It is therefore clear that we can reach the

MMSE solution if

1

m, i=12,.K=> Jex(p,,m) =0
i

pi = 9)
So the linear PIC needs exactly K stages to implement
the MMSE detector.

Usually the number of stages is significantly less than
K so the objective is to minimise Jex(pt,m) given this
constraint, i.e., we are seeking the global minimum of (8)
with respect to .

Since (8) is a 2m-order polynomial in u, it has at most
(2m — 1) stationary points. However, individual sum-
mands can be re-written in the following way:

A
£ Hll l‘zﬁbkl
:—1
A
ﬁ |1+ drzs + dhaa + - + ¢k"‘mm]2 ,»  (10)
where
& (D) +pe+-+ pm)
g2 £ (=1)%(uapa + paps + o me1pim)
Tm 2 (1)™pipa - fhm.

This corresponds to the following mapping where x
(-"4‘1,-"72» ’mm) 3

T: C"* -5 C™ given by x = T'(s).

This mapping is neither onto nor one-to-one since we have
m! different g for which x = T'(12). Based on (10), we can
re-write (8) as

Jex(x,m)

It
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where @y = (¢, ¢2, ..., S )T. Differentiating with respect
to x and equating to zero gives

dex(x,m)
Yalsr) - 55 mwkx+k§¢ po=0
/\k T /\k
> Z Zopppx = - Z Zo,
k=1 ¢k k=1 ¢k
= Cx=-c (11)

Since the eigenvalues of a Hermitian matrix are real, it
is clear that if C is non-singular, we have a unique real
minimum in x ag X = -—C c. Clearly, C is positive semi-
definite since x' Cx = Zk—] —h(cpkx) > 0. Furthermore,
it can be shown that C is posmve definite if and only
if m or more of the eigenvalues in A are distinct (\; #
Aj) [6]. Otherwise, C is singular and there are multiple
solutions, any of which leads to the correspondmg MMSE
solution. So when we have a valid solution X, we find the
corresponding m! equivalent minima in p, by considering
the following polynomial,

(12)
+ L.

(b= p)(p - p2) - - (1 = )
pT o™ b ™

()

which has exactly m roots. Substituting the solution to
(11) into (12) gives us a polynomial where the m roots
are the optimal step sizes, ft. Since we have m step sizes,
we then have m! different choices of f that all lead to the
same Jeyx(f1, K). The order in which the m step sizes are
applied however, has a significant 1nﬂuence on the MSE
performance at intermediate stages. Depending on the
desired behaviour for intermediate stages, different crite-
ria for the step size ordering can be adopted. In this paper
we have chosen to order the optimal step sizes according
to a recursive minimisation of Jex(u.,, i) for i = 1,2,..m
where fi; = (ft1, fi2, rs fli-1, u,) Such an ordering is ob-
tained by selecting at stage i the step size p; € M; which
is closest to ji;, where M; denotes the set of (m — i+ 1)
elements of fi which have not been used in the first i — 1
stages, and fi; = argmin,, Jex(£;,1). The closest step
size to fi; is the best choice since Jex(i2;,1), given that all
previous fi; is already chosen, is a quadratic function in
;. It can be shown that if @ = o2, the m roots must be
real and hence g has only real elements[6]. For a # o2,
both negative and complex elements can occur in .

So far in this section, we have assumed that o = o
and based the derivations on (8).-The derivations pre-
sented here can also be done based on (7) for a gen-
eral o. In this case, the global minimum %(a), which
satisfies 8Jex(x,2,m)/0z; =0 for.1. £ i < m, must
be a function of . We can therefore express the min-
imum achievable MSE, Jexmin, 8 a function of o as
Jex,min{@) = Jex(%(a), a,m). After some manipulations
we can express the derivative of Jex (x, @, m) with respect
to a as

2

BT ( x, OJex(x,0,m) BJex(x, a, m)

82:_,‘_1

E(J:

=2

)

which is obviously zero at x = %(a). So the specific a-
value has no influence on the minimum achievable MSE.
For any o we can find a corresponding p that will give
us the achievable MMSE for any m-stage PIC. It can be

shown that for @ = 02 it is always true that the corre-
sponding weighting factors are real [6]. For a # o2 it
is however not always true. As briefly mentioned earlier,
the optimal weighting factors can now be both negative
and complex. This is not a serious problem since the
structure in Fig. 1 can easily accommodate negative or
complex weighting factors.

Regardless of a, the optimal step sizes, whether real
or complex, are still dependent on o2. The sensitivity
of the performance of the PIC to a mismatch in o2 is
investigated through simulations in the following section.

VI. NUMERICAL RESULTS

The numerical examples considered in this section are
based on a symbol-synchronous system with 15 equal-
power users. BPSK modulation and spreading formats
are assumed and only short codes with processing gain
31 are considered. The performance of the detector is il-
lustrated as a function of the number of PIC stages at a
noise level of 7 dB.

Fig. 2 shows the performance of PIC. w1th optlmlsed
weighting factors. A randomly selected set of short codes

l’ T Y T 13 T - T
e

N

e

A
v S

conventional PIC detector

4 a—b  3ust, PIC, a=0
3-8 PIC, 0me?
581, PIC, 0=0
5-st. PIC, =0
15-61, PIC, a=0
15-8t PIC, 0=0" |

4 E~ot, PIC @eo?, WF sorted
In decieasing order

L
12 -

Fig. 2. Stage-by-stage performance of PIC detector with optimal
weighting factors (WF) using short codes.

is used where the corresponding correlation matrix has the
eigenvalues (0.15236, 0.22025, 0.26652, 0.35013, 0.57906,
0.63268, 0.77314, 0.88426, 0.93251, 1.1702, 1.4478, 1.5469,
1.6528, 1.8221, 2.5693). Since the largest eigenvalue is
greater than 2, the condition for convergence [4] for the
conventional PIC is violated and in Fig. 2 we observe
divergence as well as the well-known ping-pong effect.
For the right choice of weighting factors however, it is
clear that a 15-stage PIC can achieve exactly the MMSE
performance no matter what « is chosen in the struc-
ture. 5-stage PIC gives close to MMSE performance and
even 3-stage PIC shows considerable improvement over
the conventional detector®. The weighting factors are or-
dered according to the criterion described in Section V,
forcing the MSE to decrease the most, stage-by-stage. It
is observed that the BER decreases monotonically when
a = o2, but not necessarily so for @ # o2. When the
weighting factors are sorted in decreasing order, the BER
performance fluctuates around 0.50 for all but the first

3The perfonnance of the conventional detecter is identical to the
PIC perfonnance in the first stage.
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and last stage. After the last stage, the BER is of course
identical for all orderings. This is illustrated for a 5-stage
PIC with @ = 02 in Fig. 2. Obviously the ordering of the
weighting factors is vital for performance in the interme-
diate stages.

The weighting factors are determined based on a spe-
cific working SNR. The sensitivity of the detector perfor-
mance at all SNRs (0-14 dB), to the choice of the working
SNR is illustrated in Fig. 3 and 4. The same set of short

b
b

n
L

Bit-armror—rate

3-st. PIC, 0:=0.1, 7dB WF
3-st. PIC, o=0?, opt WF
§-st. PIC, 0:=0.1, 7dB WF
5-8t. PIC, a=0?, opt WF
9-st. PIC, 0=0.1, 7dB WF
9-st. PIC, a=0”, opt WF
15-st, PIC, 0=0.1, 70B WF
15-st. PIC, 0=0%, opt WF

MMSE datector

w-’ L I L 1 " i
2 4 6 8 10 12 14
SN (dB)

Fig. 3. BER performance and sensitivity vs. SNR using short codes.
Weighting factors (WF) optimised for 7 dB and a = 0.099763
(simplified to & = 0.1 in the figure) are used for 0-14 dB, in
comparison to when weighting factors are optimised for each
working SNR and corresponding a.

codes as for Fig. 2 is used. In Fig. 3 the weighting factors
optimised for SNR of 7 dB and o = 0.099763 (which cor-
responds to a o2 at 7 dB) are used for various SNRs from
0 to 14 dB. It is compared to the case when the weight-
ing factors are optimised and a chosen for the SNR under
which the system is supposed to be working. The BER
performance of the MMSE detector is also shown. Sim-
ilar tests are done in Fig. 4, where « is assumed to be
0. The system is observed to be practically insensitive

3-st. PIC, =0, 7dB WF
3-st. PIC, =0, opt WF
§-st. PIC, =0, 7dB WF
5-st. PIC, a=0, opt WF
9-st, PIC, =0, 7dB WF
9-st. PIC, 0=0, opt WF
15-st. PIC, a=0, 7dB WF
15-st. PIC, a=0, opt WF

MMSE detector

0 2 4 6 8
SNR (dB)

Fig. 4. BER performance and sensitivity vs. SNR using short codes.
Weighting factors (WF) for 7 dB are used for 0-14 dB, in com-
parison to when weighting factors are optimised for each working
SNR. & = 0 is assumed in all cases.

to SNR variation when « is chosen to be 0. The set of
weighting factors optimised for an SNR of 7 dB can virtu-
ally be used for any working SNR. When o = o2 is used,
the sensitivity increases substantially when the number
of stages increases beyond 5. A PIC detector with more
than 9 stages and 7 dB weighting factors will perform
poorly for any working SNR other than 7 dB. This result
implies that « = 0 instead of @ = o2 should be used in
a short-code PIC detector with a large number of stages.
Using @ = 0 obviates estimation of the noise level but
on the other hand increases detector complexity since the
weighting factors would in general be complex.

VII. CONCLUDING REMARKS

In this paper, we have developed a matrix algebraic ap-
proach to linear PIC. It is shown that linear PIC is equiv-
alent to a one-shot linear matrix filtering. A modified
weighted PIC structure is suggested which has a perfor-
mance that converges to the performance of the MMSE
detector.

For an optimal choice of weighting factors, it is shown
that for short codes, only K (the number of users) stages
are necessary to exactly achieve the MMSE performance.
For any number of stages, an analytical approach is de-
rived for finding the optimal weighting factors that will
obtain the achievable MMSE. An ordering of the weight-
ing factors which will ensure the largest decrease in the
MSE, stage by stage, is suggested and shown to provide
a monotonically decreasing BER for the weighting factor
o = o2. The optimal weighting factors are dependent on
the working SNR. It is demonstrated however, that for
a = 0, the detector performance is practically insensitive
to a design mismatch. For a = 62, the detector is how-
ever, quite sensitive when a large number of stages are
used.
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