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Linear Parallel Interference Cancellation in
Long-code CDMA Multiuser Detection

Dongning Guo, Lars K. Rasmussen and Teng Joon Lim

Abstract—Parallel interference cancellation (PIC) is a promis-
ing detection technique for code-division multiple access (CDMA)
systems. It has previously been shown that the weighted
multistage PIC can be seen as an implementation of the
steepest descent algorithm used to minimise the mean squared
error (MSE). Following this interpretation, a unique set of
weights, based on the eigenvalues of the correlation matrix,
was found to lead to the minimum achievable MSE for a
given number of stages in a short-code system. In this pa-
per, we introduce a method for finding an appropriate set
of time-invariant weights for systems using long codes. The
weights are dependent on moments of the eigenvalues of the
correlation matrix, exact expressions of which can be de-
rived. This set of weights is optimal in the sense that it
minimises the ensemble averaged MSE over all code-sets.
The loss incurred by averaging rather than using the opti-
mal, time-varying weights is practically negligible, since the
eigenvalues of sample correlation matrices are tightly clus-
tered in most cases of interest. The complexity required for
computing the weights increases linearly with the number
of users but is independent of the processing gain, hence on-
line weight-updating is possible in a dynamic system. Simu-
lation results show that a few stages is usually sufficient for
near-MMSE performance.

I. Introduction

In a code-division multiple access (CDMA) system, all
frequency and time resources are allocated to all users si-
multaneously. To distinguish between users, each user is as-
signed a user-specific spreading code (signature) sequence
for transmission. In short-code CDMA, the period of such a
spreading code sequence spans a symbol interval, i.e., each
user’s spreading code remains the same for all symbols. In
long-code CDMA, the spreading code has a period which
is many times longer than a symbol interval. Consecutive
segments of this long sequence, each spanning exactly one
symbol interval, are then used for spreading consecutive
symbols. The statistical properties of such segments of the
long spreading code resemble those of randomly selected
sequences. Long-code CDMA is therefore also referred to
as random-code CDMA. The wideband CDMA proposals
for third-generation cellular mobile communication, as well
as IS-95, are all based on long-code CDMA [1], [2], [3].
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By selecting mutually orthogonal codes for all users, the
conventional matched-filter detector achieves single-user per-
formance for each user. It is however not possible to main-
tain orthogonality in a mobile environment, hence the mul-
tiple access interference (MAI) that results may degrade
the performance of a CDMA system severely. Moreover,
the conventional detector suffers from a near-far problem
in which the signal component from a weak user may be
buried in the MAI from a strong user [4]. It is known that
advanced detection techniques may be used in the uplink
receiver in order to alleviate the MAI and thereby increase
overall capacity and loosen the requirements for strict and
fast power control.

In [5], Verdù developed the optimal (0,1)-constrained
maximum-likelihood (ML) detector. This ML problem cor-
responds to a combinatorial quadratic minimisation which
is known to be NP-hard [6]. It can only be solved by an
exhaustive search, leading to a detection complexity that
grows exponentially with the number of users. To address
this complexity problem, a variety of sub-optimal detectors
have been proposed [7]. For example, the linear decorre-
lating detector in [8] applies the inverse of the correlation
matrix in order to decouple the data. It is known to be
near-far resistant, but also to cause noise enhancement [9].
Another type of linear detector, the MMSE detector min-
imises the mean squared error (MSE) between detector out-
put and the transmitted symbol [10]. This detector takes
the background noise as well as the correlation between
users into account and therefore generally performs bet-
ter than the decorrelator in terms of bit-error-rate (BER)
[11]. Both the decorrelating detector and the MMSE de-
tector face the task of matrix inversion which can be pro-
hibitively complex for a large number of users. A number
of strategies have been developed for approximating these
detectors. Adaptive detectors based on algorithms such
as the LMS algorithm [12], the RLS algorithm [13] and
Kalman filtering [14] have been suggested while iterative
techniques such as the steepest descent and the conjugate
gradient iterations have been proposed in [15], [16].

For practical implementation, interference cancellation
schemes have been subject to most attention. These tech-
niques rely on simple processing elements constructed around
the matched filter concept. Varanasi and Aazhang pro-
posed a multi-stage parallel interference cancellation (PIC)
structure in [17]. The linear version of this structure has
been shown by Elders-Boll et al. to be equivalent to the
Jacobi iteration for solving a set of linear equations [16].
A linear PIC therefore represents an efficient way of im-
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plementing linear detectors. A significant improvement to
PIC was suggested in [18] and [19] independently where a
weighted cancellation scheme was proposed for both linear
and non-linear PIC. In [20] the MMSE detector is approxi-
mated by a polynomial of the correlation matrix. This ap-
proach is in fact equivalent to a bit-level implementation of
a weighted linear PIC. The linear PIC approach has been
further described and analysed in detail in [21] and [22]
where it was demonstrated that weighted linear PIC can
be seen as a realisation of the steepest descent optimisa-
tion method [23] for minimising the MSE. This is in turn
also equivalent to the steepest decent iteration for solving
a set of linear equations [24]. It was shown in [22] that
for a short-code system with a given number of cancella-
tion stages, a unique choice of weights exists which leads to
the minimum achievable MSE. These weighting parameters
are dependent on the eigenvalues of the channel correlation
matrix.

In long-code CDMA, the spreading codes change for ev-
ery symbol interval. Hence the optimal set of weights that
leads to the minimum achievable MSE for each symbol in-
terval must be re-computed and updated symbol by sym-
bol. Unfortunately the eigenvalue decomposition involved
is prohibitively complex for implementation. Instead we
consider using a fixed set of weights designed to give the
best average performance. This is feasible since the eigen-
values of randomly selected correlation matrices are seen
to be clustered around certain values. As the system be-
comes larger, the clustering gets increasingly tight [25]. In
fact the penalty of averaging rather than using the optimal,
time-varying weights is negligible in most cases of interest.

Different optimality criteria in averaging over all code-
sets can be adopted. In this paper we minimise the en-
semble averaged MSE over all possible channel matrices.
This strategy is in general very close to minimising the bit-
error-rate [11]. Moreover, the MSE is a quadratic function
of the filter tap weights and therefore has a unique global
minimum. Following the approach in [26], we demonstrate
that given the number of stages, a unique optimal set of
weights exists, which leads to the minimum achievable en-
semble averaged MSE at the last stage of a weighted PIC.

For an m-stage PIC, the weights depend on the first 2m
moments of the eigenvalues of channel correlation matrix.
Previously, asymptotic analysis of the eigenvalue distribu-
tion as the size of the multiuser system goes to infinity
has been presented in [25], [27]. Here, we demonstrate a
method for deriving the exact expressions for the moments
of the eigenvalues, which is also known as the moments of
the correlation matrix [28]. The moments are found to be
polynomials of the processing gain, the number of active
users and the received signal energies. The computational
complexity of calculating the weights increases only linearly
with the number of users. Hence, it can be implemented
on-line given a moderate number of PIC stages. It should
be noted that weight updates are only required if the num-
ber of active users or the received signal energies change.

The paper is organised as follows. The following section
briefly introduces the CDMA uplink model. Section III de-
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Fig. 1. General structure for a K-user, m-stage PIC.

scribes the PIC structure and presents the proposed method
for obtaining the optimal weights. The moments of the cor-
relation matrix are considered in Section IV where exact
expressions are derived. Simulation results are shown in
Section V and Section VI concludes the paper.

II. Uplink Model

A specific user in a K-user communication system trans-
mits an M -ary PSK information symbol dk ∈ {exp(j(2p−
1)π/M)}, p = 1, 2, ...,M , by multiplying the symbol with
a q-ary PSK spreading code sk of length N chips and
then transmitting over an AWGN channel, i.e., sk = [s1k,
s2k, · · · , sNk]>/

√
N , where snk ∈ {exp(j(2p− 1)π/q)}, p =

1, 2, . . . , q. The spreading codes transmitted by each user
in any given symbol interval are assumed to be symbol-
synchronous. Note that we have assumed that sH

ksk = 1.
Also denote the received signal energy of user k by wk.
The output of a chip-matched filter is then expressed as a
weighted linear combination of spreading codes, r = Ad +
n ∈ CN , where A = (a1,a2, · · · ,aK) =

(√
w1s1,

√
w2s2,

· · · ,
√

wKsK

)
, d = (d1, d2, · · · , dK)>, and n is a noise vec-

tor where each sample is independently, circularly com-
plex Gaussian distributed with zero mean and variance
σ2 = N0

2 . The received signal-to-noise ratio (SNR) of user
k can then be defined as βk = wk/N0.

III. Linear Weighted Parallel Interference
Cancellation

The general structure for an m-stage PIC is illustrated
in Fig. 1. The detailed structure of one PIC stage with
weighting parameter µi is depicted in Fig. 2, where α is a
non-negative parameter to be discussed later on. Note that
all thick lines represent vectors of length N .

It was pointed out in [22] that the weighted PIC struc-
ture is essentially a realisation of the steepest descent opti-
misation method (SDOM) for iteratively approaching the
MMSE estimate. The weights in the structure then cor-
respond to the variable step sizes in the SDOM. Consider
one particular symbol interval, where the spreading codes
used are randomly chosen from all possible code-sets. It
has been shown that the set of output decision statistics
for all K users at stage i is determined recursively by [22]:

yi = (I− µi(R + αI))yi−1 + µiAHr, (1)
= (1− αµi)yi−1 + µiAH(r−Ayi−1). (2)
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Fig. 2. The structure for stage i, employing weight µi. MF —
matched filtering.

where R = AHA is the correlation matrix of the received
spreading waveform. Note that (2) essentially corresponds
to the weighted interference cancellation structure depicted
by Fig. 1, in which the interference is reconstructed and
cancelled in each stage to improve the decision statistics.

Assuming y0 to be 0, this relationship can also be de-
scribed by a one-shot linear matrix filter as ym = GH

mr,
where

GH
m =

[
I−

m∏
i=1

(I− µi(R + αI))

]
(R + αI)−1 AH. (3)

Note that if the product term can be reduced to (close to) 0,
the detector would be (approximately) GH = (R + αI)−1 AH.
We can thus realise the decorrelator by making α = 0, or
the MMSE detector with α = σ2.

Assume that λ1, λ2, ..., λK are the eigenvalues1 of R and
µ = (µ1, µ2, ..., µm)> is a vector formed by the m weights
for an m-stage PIC. It is then possible to get a closed-
form expression for the MSE as a function of the weighting
parameters of the PIC structure:

J (m)(µ, α) = E
{
‖GH

mr− d‖2
}

= JMMSE + J (m)
ex (µ, α),

where the expectation is taken over the probability density
function (pdf) of the noise and that of the data vector d.
Here

JMMSE =
K∑

k=1

σ2

λk + σ2
(4)

is the minimum mean squared error which can be achieved
only by the MMSE filter and does not depend on the weights.

1They are obviously non-negative real since R is positive semi-
definite.

The second term, called the excess MSE, represents the
degradation with respect to the MMSE detector. It can be
expressed as

J (m)
ex (µ, α)

=
K∑

k=1

λk(λk + σ2)
(λk + α)2

∣∣∣∣∣ σ2 − α

λk + σ2
−

m∏
i=1

(1− µi(λk + α))

∣∣∣∣∣
2

.(5)

In [22], the value of µ that minimises J
(m)
ex (µ, α) was

found to be unique and a function of α as well as the
eigenvalues of R. For long-code systems, however, it is
not feasible to compute the optimal set of weights for ev-
ery symbol interval. Instead we consider using a fixed set
of parameters that will minimise the ensemble average of
the excess MSE over random codes. This excess MSE is
described by

J (m)
ex (µ, α) = E

{
J (m)

ex (µ, α)
}

, (6)

where the expectation is now taken over the pdf of the
spreading code matrix A.

Given a number of stages, m, which is smaller than K
due to limitations on the overall receiver complexity, our
objective is to find the global minimum of J (m)

ex (µ, α) with
respect to µ and α. We first assume that α is given and
minimise (6) with respect to µ. For notational simplic-
ity, we define φk = λk + σ2, γk = λk + α, and γk =(
1, γk, ..., γm−1

k

)>
for k = 1, 2, . . . , K. We also introduce

the following mapping,

T : Cm → Cm given by x = T (µ)

where x = (x1, x2, ..., xm)> and

x1
4
= (−1)(µ1 + µ2 + · · ·+ µm)

x2
4
= (−1)2(µ1µ2 + µ1µ3 + · · ·+ µm−1µm)

... · · ·
... (7)

xm
4
= (−1)mµ1µ2 · · ·µm.

This mapping is known as the elementary symmetric poly-
nomial transform, or equivalently as the disjunctive normal
form [29, pg. 371]. Clearly it is not one-to-one since we
have in general m! different µ’s that lead to the same x.
Note that the product component in (5) can now be written
as
m∏

i=1

(1− µi(λk + α)) = 1 +
m∑

i=1

xi(λk + α)i = 1 + γk · γ>kx. (8)

Based on (8), we can then express the excess MSE as a
quadratic function of x as

J (m)
ex (x, α) = E

{
K∑

k=1

λkφk

∣∣∣∣ 1
φk

+ γ>kx
∣∣∣∣2

}
. (9)
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Differentiating with respect to x∗, we have the gradient of
the excess MSE as

∂J (m)
ex (x, α)
∂x∗

= E

{
K∑

k=1

λkφkγk

(
1
φk

+ γ>kx
)}

. (10)

Equating the above to zero gives the minimum of J (m)
ex (x, α)

as the solution to

Cx = −p (11)

where

C = E

{
K∑

k=1

λkφkγkγ>k

}
∈ R(m×m) (12)

and

p = E

{
K∑

k=1

λkγk

}
∈ Rm. (13)

Here C is an expectation taken over a set of positive semi-
definite Hermitian matrices. It is clear that C is positive
definite since for any non-zero vector z,

z>Cz = E

{
K∑

k=1

λkφk(γ>kz)
2

}
> 0. (14)

Hence the unique real minimum in x is obtained as

x̂ = −C−1p. (15)

We can then find the corresponding equivalent minimum
in µ by considering the following polynomial,

p(µ) = µm + x̂1µ
m−1 + x̂2µ

m−2 + · ·+x̂m (16)
= (µ− µ̂1)(µ− µ̂2) · · · (µ− µ̂m) (17)

which has exactly m roots, (µ̂1, µ̂2, · · · , µ̂m), that are re-
lated to x̂ through the elementary symmetric polynomial
transform. It can be easily shown that the set of all per-
mutations of these roots gives the complete set of solutions
to the problem T (µ̂) = x̂. In other words, any vector
µ̂ = (µ̂1, µ̂2, · · · , µ̂m)> consisting of a permutation of the
m roots of (16) leads to the global minimum of J (m)

ex (µ, α),
and no other minimum exists.

It can be shown that the parameter α has no influence
on the minimum achievable MSE, i.e., for any α ≥ 0, there
exists a unique set of weights (dependent on α) that will
give the same minimum of J (m)

ex (µ, α). However, if α = σ2,
the optimal weights are always real; otherwise they can be
complex numbers [30]. This affects the implementation
complexity.

The problem that remains is the computation of C and
p. Good numerical estimates can be found for C and p
based on Monte Carlo averaging over random codes. Such
an approach however, is very complex and can not be car-
ried out on-line for a dynamic system. Instead an analytical
approach based on statistical moments of the eigenvalues
can be used.

IV. Moments of the Correlation Matrix

It is helpful here to define the rth order moment of the
correlation matrix as

Mr = E

{
1
K

K∑
k=1

(λk)r

}
. (18)

Expanding (11) and dividing both sides by K, we get
c2 c3 · · · cm+1

c3 c4 · · · cm+2

...
...

...
cm+1 cm+2 · · · c2m




x1

x2

...
xm

 =


p1

p2

...
pm

 , (19)

where

ci = E

{
1
K

K∑
k=1

λkφkγi−2
k

}

=
i∑

r=2

(
i− 2
r − 2

)
αi−r

(
Mr + σ2Mr−1

)
,

i = 2, 3, . . . , 2m, (20)

and

pi = E

{
1
K

K∑
k=1

λkγi−1
k

}
=

i∑
r=1

(
i− 1
r − 1

)
αi−rMr, i = 1, 2, . . . , m.

(21)

Obviously the elements of C and p are determined by the
first 2m moments of the correlation matrix. It is diffi-
cult, if not impossible, to get a closed-form expression for
Mr, where r is an integer variable. In fact there is no
known general expression. However, given a particular in-
teger value of r, Mr can be derived as follows.

A. Deriving the Moments

Consider chip n of spreading waveform for user k as a
random variable, denoted by Snk, to distinguish it from a
realisation snk. For a long-code system all the chips Snk,
n = 1, 2, · · · , N , k = 1, 2, · · · ,K, are mutually independent
random variables, each uniformly distributed over the q-ary
constellation. The corresponding chip sample observed at
the receiver may be expressed as Ank =

√
wkSnk. Then

the following properties obviously hold,

E
{
A∗n1k1

An2k2

}
=

√
wk1wk2

N
δ(n1 − n2) · δ(k1 − k2)

=

{
wk1/N if n2 = n1 and k2 = k1,

0 otherwise,
(22)

and

E {(Ank)r} =
(wk

N

) r
2

q−1∑
m=0

e2πmr/q =

{ (
wk

N

) r
2 if r/q ∈ Z,

0 otherwise.
(23)
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The correlation between user i and user j’s spreading codes
is also a random variable

Rij = aH
iaj =

N∑
n=1

A∗niAnj , (24)

which is the element of row i, column j of R.
Considering the definition of the rth order moment, we

have

Mr = E

{
1
K

K∑
k=1

(λk)r

}
=

1
K

E {tr {Λr}} =
1
K

E {tr {Rr}} ,

(25)

where the trace of Rr can be expressed as

tr {Rr} =
K∑

k1=1

K∑
k2=1

· · ·
K∑

kr=1

Rk1k2Rk2k3 · · ·Rkr−1kr
Rkrk1 .

(26)

It then follows that

Mr =
1
K

K∑
k1=1

K∑
k2=1

· · ·
K∑

kr=1

E
{
Rk1k2Rk2k3 · · ·Rkr−1kr

Rkrk1

}
(27)

=
1
K

K∑
k1=1

K∑
k2=1

· · ·
K∑

kr=1

·
N∑

n1=1

N∑
n2=1

· · ·
N∑

nr=1

E
{
An1k1A

∗
n1k2

An2k2A
∗
n2k3

· · ·Anrkr
A∗nrk1

}
.(28)

Here, Ank are independent random variables selected from
a scaled q-ary PSK2 constellation with equal probability.
Based on the statistical properties of the code-set given
in (22) and (23), only terms containing all complex conju-
gate pairs and/or q-powers of the variables Ank are relevant
[28]. It is therefore possible to obtain Mr through evalu-
ation of the expectation over all combinations of indices.
This involves a grouping of the indices into equivalence
classes. Details of this grouping and evaluation can be
found in [30]. As the expectation is taken over all code-
sets, Mr only depends on N , K, and the received signal
energies and not on specific spreading codes. In fact Mr is
shown to be a polynomial in N and K as well as the first r
moments of the received signal energies. Here the rth order
moment of the energies is defined as

Er =
K∑

k=1

(wk)r. (29)

In the Appendix we list the exact expressions for the first
6 moments obtained by computer-aided symbolic manipu-
lations assuming BPSK spreading.

2This approach is not confined to PSK spreading only. It is appli-
cable for arbitrary spreading schemes, provided that the statistical
property of the spreading codes are known. Furthermore, influences
of asynchronism and multi-path fading can also be incorporated here.

B. Determining the Order of the Weights

Since we have m weights, we have m! different permu-
tations that all lead to the same MSE at the last stage.
The order in which the m weights are applied however, has
a significant influence on the MSE performance at inter-
mediate stages. Following the approach in [26], we have
chosen to order the optimal weights according to a recur-
sive minimisation of J (i)

ex (µ̂i, α) for i = 1, 2, ...,m where
µ̂i = (µ̂1, µ̂2, ..., µ̂i−1, µi)

>. Such an order is obtained by
selecting at stage i the weight µi ∈ Vi which is closest to
µ̃i. Here, Vi denotes the set of (m − i + 1) elements of µ̂
which have not been used in the first i− 1 stages, and

µ̃i = arg min
µi

J (i)
ex (µ̂i, α). (30)

The closest weight to µ̃i is the best choice since J (i)
ex (µ̂i, α),

given that all previous µ̂j have already been chosen, is a
quadratic function in µi. It has been found that µ̃i can
also be determined based on the first 2i moments of the
correlation matrix [30].

C. Computational Complexity

Assuming that the received signal energies, the noise
variance as well as N and K are known, the procedure
of computing the weights includes evaluation of the en-
gergy moments, E1, E2, · · · , E2m, the eigenvalue moments,
M1,M2, · · · ,M2m, and then C and p. x̂ is then solved from
(15) and the weights are obtained as the roots of (16). Fi-
nally an appropriate order of the weights is determined.
The total computational complexity of weight updating is
of the order of (4mK + 6m3 + 19m2) floating point oper-
ations. It is obviously independent of the processing gain
and linear in the number of active users. This complexity is
in fact negligible in comparison to O(mKN), which is the
complexity of performing code-matched filtering for all K
users in an m-stage interference canceller. It follows that
weight-updating can be done on-line and does not notice-
ably increase the overall system complexity.

V. Numerical Results

The numerical examples considered in this section are
based on a symbol-synchronous system with K = 15 users.
BPSK modulation and spreading formats are assumed and
randomly generated long codes with a processing gain of
N = 31 are considered. The parameter α is set to 0 in all
examples.

Fig. 3 shows the stage-by-stage BER performance of a
PIC and the loss incurred by ensemble averaging over ran-
dom codes, as compared to exact selection of parameters
for each symbol interval. An SNR of 7 dB is assumed
for all users, i.e., βk = 7 dB for k = 1, · · · ,K. We ob-
serve that the conventional PIC scheme diverges since the
largest eigenvalue of R for a K = 15, N = 31 system, is
almost always greater than 2 [30]. The eigenvalue criterion
for convergence (λmax < 2) has been shown in [21]. Di-
vergence can be overcome by a proper choice of weights,
optimised for an SNR of 7 dB and ordered as described
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Fig. 3. BER performance as a function of the number of stages.
Both the cases of a fixed set of weights as well as optimal weights
for each symbol interval are included. Here, SNR=7 dB, N = 31
and K = 15.
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Fig. 4. Near-far ability of the weighted linear PIC for a long-code
system. N = 31, K = 15 and the SNR for user 1 is β1 = 7 dB
while for all other users βk = 7+ISR dB. The performance of
user 1 is shown.

in section IV. The BER performance of a PIC using this
fixed set of weights are represented by the solid lines in Fig.
3. Significant improvement over the conventional detector
can be achieved using merely 3 stages. A 5-stage detector
performs much better than the decorrelator and gives close
to average MMSE performance while 15-stage PIC gives
virtually MMSE performance. The performance of a PIC
that makes use of the optimal set of weights corresponding
to the instantaneous spreading codes in each symbol inter-
val is also shown in the figure for comparison. It is clear
that the penalty of making a compromise over all code-sets
is negligible.

Fig. 4 shows the BER performance of a weighted PIC de-
tector in a near-far environment, as compared with that of
the conventional detector, the decorrelator and the MMSE
detector. The SNR of the first user is β1 = 7 dB while the
remaining 14 users have the same SNR of βk = β1+ISR, for
k = 2, · · · ,K where ISR denotes the interference-to-signal
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Fig. 5. BER performance and sensitivity versus SNR using long
codes. Weights optimised for 7 dB are used for 0-14 dB, in com-
parison to when the weights are optimised for the actual SNR.
Here, N = 31, K = 15 and βk = β (perfect power control) is
assumed.

ratio in dB. The curves show the BER of user 1 only. It
is observed that the PIC performs better than the conven-
tional detector but worse than the MMSE detector. As
the number of stages increases, the ability to combat the
near-far environment improves.

The set of weights depends on the received signal ener-
gies (wk) and the noise variance (σ2), or equivalently, the
SNRs (βk). It is therefore of interest to investigate the sen-
sitivity of the BER-performance to correct estimates of the
SNR. This sensitivity is illustrated in Fig. 5. Perfect power
control is assumed, i.e., βk = β for all k’s. The weights de-
termined for an assumed SNR of 7 dB are used for actual
SNR’s from 0 to 14 dB. It is compared to the case where
the weights are optimised for the encountered SNR. As the
number of stages increases, the sensitivity also increases
slightly. For 3-stage, 5-stage and 9-stage PIC structures, a
set of weighting factors determined for 7 dB works well for
a wide range of SNR.

VI. Concluding Remarks

In this paper, we have proposed a weighted linear parallel
interference cancellation structure for multiuser detection
in long-code CDMA. Using a set of fixed weights found
by averaging over the ensemble of (random) long codes,
the detector achieves close to the MMSE performance in
a few stages. The penalty of averaging rather than using
the optimal, time-varying weights is virtually negligible.
The weights depend on the moments of the eigenvalues of
the code correlation matrix. Exact expressions for the mo-
ments are found to be polynomials in N , K and all users’
received signal energies. In a dynamic system, the weights
can be updated on-line as either the number of users or
the received energies change. The involved complexity in-
creases only linearly with the number of active users and
is independent of the processing gain. Significant perfor-
mance improvements are observed and the near-far prob-
lem is substantially alleviated as compared to the conven-
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tional PIC. For as few as 3 stages, it is possible to get close
to the MMSE performance.
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Appendix

The First Six Moments

It is possible to derive moments of any order by evaluat-
ing the expectation in (28) over all combination of indices.
Assuming BPSK spreading, the expressions for the first
6 moments are listed below. These moments are sufficient
for computing the time-invariant weights for a 3-stage PIC.
Detailed derivation as well as 4 higher order moments can
be found in [30].

M1 =
1
K
E1 (31)

M2 =
1

KN
[E2

1 + E2(N − 1)] (32)

M3 =
1

KN2
[E3

1 + E1E2(3N − 3) + E3(N2 − 3N + 2)] (33)

M4 =
1

KN3
[E4

1 + E2
1E2(6N − 6) + E1E3(5N2 − 13N + 8)

+ E2
2 (N2 − 2N + 1) + E4(N3 − 6N2 + 9N − 4)] (34)

M5 =
1

KN4
[E5

1 + E3
1E2(10N − 10) + E2

1E3(14N2 − 34N + 20)

+ E1E2
2 (6N2 − 11N + 5) + E1E4(8N3 − 36N2 + 48N − 20)

+ E2E3(2N3 − 9N2 + 7N)
+ E5(N4 − 10N3 + 25N2 − 20N + 4)] (35)

M6 =
1

KN5
[E6

1 + E4
1E2(15N − 15)

+ E3
1E3(30N2 − 70N + 40) + E2

1E2
2 (20N2 − 35N + 15)

+ E2
1E4(30N3 − 121N2 + 151N − 60)

+ E1E2E3(19N3 − 61N2 + 40N + 2)
+ E1E5(12N4 − 79N3 + 163N2 − 118N + 22)
+ E3

2 (N3 − 6N2 + 8N − 3)
+ E2E4(2N4 − 22N3 + 34N2 − 6N − 8)
+ E2

3 (N4 − 4N3 + 2N2 + 7N − 6)
+ E6(N5 − 15N4 + 55N3 − 61N2 + 8N + 12)]. (36)
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