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Abstract — Following the recent discovery of
new connections between information and estima-
tion in Gaussian channels, this paper reports par-
allel results in the Poisson regime. Both scalar
and continuous-time Poisson channels are consid-
ered. It is found that, regardless of the statistics
of the input, the derivative of the input-output
mutual information with respect to the dark cur-
rent can be expressed in the expected difference
between the logarithm of the input and the loga-
rithm of its conditional mean estimate (noncausal
in case of continuous-time). The same is true for
the derivative with respect to input scaling, but
with the logarithmic function replaced by x log x.

I. Introduction

Some fundamental relationships between input-output
mutual information and conditional mean estimation
have recently been discovered for additive Gaussian noise
channels with arbitrary input [1, 2]. This paper develops
parallel results for Poisson channels, the output of which
is a Poisson random variable or process conditioned on
the input. Such a channel occurs in direct-detection op-
tical communication systems, in which incident radiation
is intercepted by means of photon-sensitive devices to re-
sult a doubly Poisson point process, the rate of which
is typically the intensity of the incident radiation plus a
“dark current”.

Reference [3] presents a review of major developments
of communications theory in the Poisson regime. Signal
detection in Poisson channels has been studied since 1960s
and the general “Poisson matched filter” which yields op-
timal detection was found in 1969 [4]. Stochastic integra-
tion with Poisson point process observations was devel-
oped for various filtering problems in 1970s (e.g., [5]). In
particular, the likelihood ratio for signal detection has
been found as such an stochastic integral. Using mar-
tingale theory, the likelihood ratio for detection based
solely on the observation is shown to be an “estimator-
correlator” type of formula (e.g., [6], cf. [7]). Further-
more, the mutual information, which is the average of the
log-likelihood ratio, can be expressed using the Liptser-
Shiryaev formula as an integral of the expectation of the
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difference between the logarithm of the input and the log-
arithm of the causal conditional mean estimate [8, 5]. The
capacity of Poisson channels under peak- and average-
power limit was found [9, 10], where infinite bandwidth
signaling is required to achieve the capacity. The reliabil-
ity function at all rates below capacity is also known [11].
Bounds on the capacity are found under bandwidth-like
constraints [12]. More recently, the high signal-to-noise
ratio (SNR) asymptotic capacity of a peak and average
power limited discrete-time Poisson channel is derived in
[13] making use of an observation that the entropy of the
output is lower bounded by the differential entropy of the
input. Poisson multiple-access channels, Poisson broad-
cast channels, and Poisson arbitrarily varying channels
are studied in references [14], [15] and [16] respectively.

Equipped with known likelihood ratios and stochas-
tic integration techniques, this paper studies the input-
output mutual information of Poisson channels in either
scalar or continuous-time settings. A key result in this
paper is that, regardless of the statistics of the input,
the derivative of the input-output mutual information of
a Poisson channel with respect to (the intensity of) the
dark current is equal to the average error between the log-
arithm of the actual input and the logarithm of its con-
ditional mean estimate (noncausal in case of continuous-
time). In other words, the mutual information can be ex-
pressed as an integral of such an error as a function of the
dark current. Unlike in the Gaussian channel case, scal-
ing of the input cannot be absorbed into the dark current.
The derivative of the mutual information with respect to
the scaling can also be expressed in some error associated
with the conditional mean estimate. In the continuous-
time setting, together with the Liptser-Shiryaev formula
[8], our results complete the triangle relationship of the
mutual information and causal and noncausal conditional
mean estimation.

The problem of Poisson channels studied in this pa-
per is more involved than its counterpart in the Gaussian
regime. Some of the difficulties are inherent to Poisson
channels: 1) The dark current and scaling cannot be con-
solidated into one parameter; and 2) The channel condi-
tioned on a degraded version of the output is no longer
Poisson. Other difficulties are due to the fact that less is
known about Poisson channels. For example, the hybrid
continuous-discrete nature of the input-output pair ap-



pears harder to deal with; simple closed form expressions
for conditional mean estimate and mutual information
are known for few special cases; and little is known about
“natural” metrics for measuring estimation errors.

In a wider context, this work reveals new connections
between information theory and estimation theory as long
as the input and output are related through conditional
Poisson probability laws. The likelihood ratio plays a
central role in linking mutual information and conditional
mean estimation. The results allow certain information
measures to be expressed using solely estimation errors
and vice versa.

The rest of the paper is organized as follows. Section II
studies scalar Poisson channels. Section III studies their
continuous-time counterparts, and the paper is concluded
in Section IV.

II. Scalar Poisson Channel

In a canonical Poisson random transformation, given a
positive (≥ 0) input random variable X, the output Y is
a Poisson random variable with its mean value equal to
X:

PY |X(y|x) =
1
y!

xye−x, y = 0, 1, . . . (1)

Such a transformation defines a canonical Poisson chan-
nel in the natural way. A general Poisson channel is simi-
larly defined by a transformation whose output is a Pois-
son random variable conditioned on the input X with its
mean equal to (αX + λ) with α, λ ≥ 0, i.e., X scaled
by α plus a dark current λ. Given an arbitrary input
random variable X, let P(αX + λ) denote a condition-
ally Poisson random variable with its mean value equal
to (αX + λ). This setting has a direct counterpart in the
Gaussian regime where α is the scaling and λ corresponds
to the Gaussian noise variance. Note that in the Gaus-
sian case the scaling and the noise consolidate to a single
degree of freedom—the SNR, whereas in the Poisson case
they do not.

For future convenience, define an angle bracket opera-
tor for an arbitrary random variable X as the conditional
mean estimate given P(X):

〈X〉 = E {X | P(X)}

Note that 〈X〉 denotes in fact a class of random variables
(depending on the choice of Y = P(X)). For all purposes
it suffices to consider an arbitrary version of it since we
will always consider the expected value of some function
of 〈X〉. It is important to note that 〈·〉 is far from a linear
operator: In general 〈αX + λ〉 has different probability
law from that of α 〈X〉+ λ for all α 6= 0, 1 and λ > 0.

Using the “incremental channel” device introduced in
[2], one can study the change in mutual information due
to an extra infinitesimal dark current and arrive at the
following result.1

1For convenience, the unit of mutual information is nats
throughout the paper.

Lemma 1 For every PX with E log X < ∞, and λ → 0+,

I (X;P(X + λ))− I (X;P(X))
= λ E {log X − log 〈X〉}+ o(λ).

(2)

Proof: See Appendix A.

Lemma 1 essentially states that the decrease in mutual
information due to an infinitesimal dark current is equal
to the dark current times the mean error between the
logarithm of the actual input and that of its conditional
mean estimate (or, the expected value of the logarithm
of the ratio of the actual input and its estimate). As
a sanity check, the expectation in (2) is always negative
due to Jensen’s inequality; so is the derivative in (2) since
adding dark current causes degradation. For a general
Poisson channel, the following is true.

Theorem 1 For every PX with E log X < ∞ and every
α, λ ≥ 0,

∂

∂λ
I (X;P(α X + λ)) = E {log(α X + λ)− log 〈α X + λ〉} .

Proof: Treating (α X +λ) as a new random variable X ′

and applying Lemma 1 prove the theorem.

Note that Theorem 1 resembles the central theorem in
[1, 2] for Gaussian channels, which states that the deriva-
tive of the mutual information with respect to the SNR
is equal to half the minimum mean-square error achieved
by conditional mean estimation (the derivative with re-
spect to the scaling or the noise level is immediate). The
differential variable in the Poisson channel problem is the
dark current, and the approximation quality is measured
by the average error between the logarithm of the actual
input and that of its conditional mean estimate.

Unlike in Gaussian channels, scaling of the input can-
not be absorbed into the additive dark current in a Pois-
son channel. Taking both scaling and dark current into
account, we have the following result.

Lemma 2 For every PX with E {(X + 1) log X} < ∞,
and every δ → 0 and λ → 0+,

I(X;P((1 + δ)X + λ))− I(X;P(X))
=λ E {log X − log 〈X〉}+ o(λ)

+ δ E {X log X − 〈X〉 log 〈X〉}+ o(δ).

Proof: See Appendix B.

For a general Poisson channel, the derivative of the
mutual information with respect to the scaling can also
be expressed in some conditional mean estimation error.

Theorem 2 For every PX with E {X log X} < ∞, and
every α > 0 and λ ≥ 0,

∂

∂α
I(X;P(αX + λ)) = E

{
X log(αX + λ)

− 1
α

(〈αX + λ〉 − λ) log 〈αX + λ〉
}

.

(3)



Proof: Note that for α > 0,

I(X;P((α + ε)X + λ))− I(X;P(αX + λ))
=I (X;P ((1 + ε/α) (αX + λ)− ελ/α))

− I(X;P(αX + λ))
(4)

For ε → 0−, applying Lemma 2 to the right hand side
of (4) establishes (3). The same is true for ε → 0+ by
the smoothness of the mutual informations with respect
to scaling.

The expectation in (3) is positive due to Jensen’s in-
equality since (x−λ) log x is a convex function. Note that
(3) does not apply directly to the special case of α = 0,
which describes the mutual information that corresponds
to a very small input. In particular, at α = 0 but λ > 0,
the derivative of I(X;P(αX + λ)) with respect to α is
found to be 0 by taking the limit α → 0+. At the point
α = λ = 0, the derivative can be obtained from Theorem
2 by noting that

lim
α→0

1
α
〈αX〉 = EX.

Therefore,

Corollary 1 For every PX with E {X log X} < ∞ and
every α → 0,

I (X;P(αX)) = α E {X log X − EX log EX}+ o(α).

It is interesting to note the similarity of the above results
to those under Gaussian channels [2].

Theorems 1–2 and Corollary 1 give the two directional
derivatives of the mutual information for all α, λ ≥ 0.
Thus the Taylor expansion of the mutual information to
the first order in the scaling and dark current is known
at the vicinity of every (α, λ).

Clearly, the mutual information can be regarded as an
integral of the estimation errors as a function of the dark
current. For example,

Corollary 2 For every PX with E log X < ∞,

I (X;P(X)) =
∫ ∞

0

E {log 〈X + ξ〉 − log(X + ξ)} dξ.

Alternatively, the mutual information can be expressed
as an integral of the estimation errors as a function of the
scaling.

Corollary 3 For every PX with E {X log X} < ∞,

I (X;P(X)) =
∫ 1

0

E

{
X log(αX)− 〈αX〉

α
log 〈αX〉

}
dα.

One can regard the mutual information I(X;P(αX +
λ)) as a potential field on the 2-dimensional plain
{(α, λ) |α, λ ≥ 0}. It is clear that the mutual infor-
mation vanishes for α → 0 or λ → ∞. Thus the mu-
tual information at any (α, λ) pair can be regarded as a
path integral of some estimation errors from any point
(α0, λ0) ∈ {(a, b) | a = 0 or b = ∞} to the point (α, λ).

Entropy also admits a similar expression [17].

III. Continuous-time Poisson Channels

A canonical continuous-time Poisson channel is de-
scribed as the following. Given a positive input process
{Xt} during a given time interval [0, T ], the output is a
realization of a Poisson point process {Yt} whose time-
varying expectation at any time t is equal to the integral
of the “rate function” Xt. Precisely, for all 0 ≤ t ≤ s ≤ T ,

P {Ys − Yt = k | {Xt}} =
1
k!

Λke−Λ

where
Λ =

∫ s

t

Xξ dξ.

A more general Poisson channel can be regarded as the
canonical channel with its input replaced by the rate func-
tion αXt + λ. Let its output at time t be denoted by
Pt(αXt + λ), and the output process in the interval [r, s]
by Ps

r (αXt + λ). Also, define the conditional mean oper-
ator for an arbitrary process {Xt} as

〈Xt〉s = E {Xt | Ps
0(Xt)} .

Note that the superscript s dictates the amount of ob-
servation available to the conditional mean estimator. In
particular, 〈Xt〉t is referred to as causal (filtering) con-
ditional mean estimate, and 〈Xt〉T is referred to as non-
causal (smoothing) conditional mean estimate.

The input-output mutual information is related to the
optimal causal estimate of the input via the following
theorem, which takes a similar form as Duncan’s result
for Gaussian channels [18].

Theorem 3 (Liptser and Shiryaev [8]) For every
input with E

∫ T

0
Xt log Xt dt < ∞,

I
(
XT

0 ;PT
0 (Xt)

)
=

∫ T

0

E {Xt log Xt − 〈Xt〉t log 〈Xt〉t} dt.
(5)

By virtue of the infinite divisibility of Poisson distri-
butions, the “incremental channel” idea developed in [19]
can be applied to study the decrease in mutual informa-
tion due to an increase in dark current. The derivative of
the mutual information with respect to the dark current
is thus found.

Theorem 4 For every input with E
∫ T

0
log Xt dt < ∞,

∂

∂λ
I

(
XT

0 ;PT
0 (α Xt + λ)

)
=

∫ T

0

E {log(α Xt + λ)− log 〈α Xt + λ〉T } dt.

Theorem 4 can also be proved by examining the likeli-
hood ratio as in the proof of Lemma 1 (Appendix A).
Note that since probability density functions no longer
exist in the continuous-time setting, one has to resort to



the Radon-Nikodym derivative. Consider two hypothe-
ses. Let P1 denote the probability measure under input
{Xt}, and P0 denote the probability measure under zero
input, where the dark current is λ0 in both cases. The
following Radon-Nikodym derivative [5, p. 180] between
the two probability measures is the key:

log
dPXY

1

dPXY
0

=
∫ T

0

log
(

1 +
Xt

λ0

)
dYt −

∫ T

0

Xt dt. (6)

From (6) one can also derive the Radon-Nikodym deriva-
tive when only the observation {Yt} is accessible only. In
fact the “estimator-correlator” principle found in Gaus-
sian channels is also relevant here. That is, the result-
ing log-likelihood ratio log dPY

1 / dPY
0 is given by (6)

only with Xt replaced by the causal estimate E {Xt | Y t
0 }.

Note that expectation in this case is in general a stochas-
tic integral with respect to a counting process. Detailed
proof of all continuous-time results is omitted. Interested
readers are referred to [17].

Similar to that under scalar channels in Section II, the
derivative with respect to scaling can be obtained from
known likelihood ratios.

Theorem 5 For every input with E
∫ T

0
Xt log Xt dt <

∞,

∂

∂α
I

(
XT

0 ;PT
0 (α Xt + λ)

)
=

∫ T

0

E

{
Xt log(α Xt + λ)

− 1
α

(〈α Xt + λ〉T − λ) log 〈α Xt + λ〉T

}
dt.

Proof: See [17].

As a counterpart to Corollary 1, the mutual information
under a small scaling is immediate.

Corollary 4 For every input with E
∫ T

0
Xt log Xt dt <

∞,

I
(
XT

0 ;PT
0 (α Xt)

)
= α

∫ T

0

E {Xt log Xt − EXt log EXt} dt + o(α).

In fact, the Liptser-Shiryaev formula (5) admits a new
intuitive proof using Corollary 4 and the incremental
channel idea. The mutual information due to an infinites-
imal extra observation time interval (t, t + α) is equal to
the conditional mutual information of the same Poisson
channel during the extra time interval given the past ob-
servation. By expanding the small interval to unit length,
this conditional mutual information can be regarded as
the mutual information of a channel with diluted input
with a scaling of α, which, by Corollary 4, is obtained
essentially as

α

∫ 1

0

E {Xt+αs log Xt+αs − 〈Xt+αs〉t log 〈Xt+αs〉t} ds.

Theorem 3 is then established by continuity assuming
that {Xt} is continuous:

lim
α→0

〈Xt+αs〉t = 〈Xt〉t .

The mutual information as a function of the scaling
and dark current also allows a Taylor expansion at the
vicinity of every (α, λ). Informed with the two derivatives
with respect to the scaling and dark current respectively,
one can regard the mutual information as a potential field
and calculate I

(
XT

0 ;PT
0 (α Xt + λ)

)
as a path integral.

The continuous-time counterparts of Corollaries 2 and 3
are immediate from Theorems 4 and 5, and are omitted
here (see [17]).

Combining the Liptser-Shiryaev formula and the new
results that link the mutual information and noncausal
estimate, one establishes the following curious relation-
ships between causal and noncausal estimation errors:

I
(
XT

0 ;PT
0 (Xt)

)
=

∫ T

0

E {Xt log Xt − 〈Xt〉t log 〈Xt〉t} dt

=
∫ ∞

0

∫ T

0

E {log(Xt + λ)− log 〈Xt + λ〉T } dt dλ

=
∫ 1

0

∫ T

0

E

{
Xt log(α Xt)

−
〈α Xt〉T

α
log 〈α Xt〉T

}
dt dα.

Note that the results under scalar Poisson channels
in Section II can be obtained by considering the special
case of time-invariant input in the continuous-time set-
ting. For example, the increase of the mutual information
due to the scaling (1 + δ) is an outcome of the Liptser-
Shiryaev formula (Theorem 3). Let Xt ≡ X. By (5),

d
dt

I(X;Y t
0 ) = E {X log X − 〈X〉t log 〈X〉t}

where 〈X〉t = E {X | Y t
0 }. Clearly,

I
(
X;P1

0 ((1 + δ)X)
)
− I

(
X;P1

0 (X)
)

= δ E {X log X − 〈X〉 log 〈X〉}+ o(δ).

The desired result is obtained once we note that increas-
ing the observation time from 1 to 1 + δ is equivalent
to keeping the observation time to [0, 1] but scaling the
intensity of the input by 1 + δ.

IV. Conclusion

New relationships between the input-output mutual
information and conditional mean estimation in Poisson
channels have been identified in this paper. By studying
the change in mutual information due to an infinitesimal
increase in dark current and/or input scaling, the deriva-
tives of the mutual information with respect to dark cur-
rent and scaling are expressed in the expected difference



in a function (log x or x log x) evaluated at the actual in-
put and the same function evaluated at its conditional
mean estimate. The general relationships hold for both
scalar and continuous-time Poisson channels. In particu-
lar, the results for scalar channels can be obtained from
their respective continuous-time counterparts by consid-
ering time-invariant inputs. The results extend connec-
tions between estimation and information theory to the
Poisson regime. It would be very interesting to see if
these results lead to new applications.

Underlying the analysis and results in both [2] and
this paper are common properties of Gaussian and Pois-
son distributions, namely, 1) infinite divisibility of Gaus-
sian and Poisson distributions; and 2) independent incre-
ments of Gaussian and Poisson processes. In fact, the
entire class of processes with independent increments is
known as Lévy processes and can be characterized by not
much more than a mixture of Wiener and Poisson pro-
cesses [20]. It is even speculated in [2] that information
and estimation satisfy similar relationships as long as the
output is a Lévy process conditioned on the input.

A. Proof of Lemma 1

With some abuse of notation, we use P(αX + λ) and
Y α,λ interchangeably, i.e., Y α,λ stands for a Poisson ran-
dom variable conditioned on X with its mean value equal
to αX + λ.

Proof: [Lemma 1] Since unit scaling is assumed, let the
notation be shortened: Y 0 = Y 1,0 and Y λ = Y 1,λ. Then,

I(X;Y 0)− I(X;Y λ) = E
{
log L(X, Y 0, Y λ)

}
(7)

where the expectation is over the joint probability mea-
sure of X, Y 0 and Y λ, and the likelihood ratio is

L(x, y0, yλ) =
PY 0|X(y0|x)PY λ(yλ)
PY 0(y0)PY λ|X(yλ|x)

.

Here the conditional Poisson distribution PY 0|X is given
by (1) and its marginal is

PY 0(y) =
1
y!

E
{
Xye−X

}
.

Also, PY λ|X(y|x) and PY λ(y) are similarly defined with x
and X replaced by x + λ and X + λ respectively. Easily,
the log-likelihood ratio is

log L(X, Y 0, Y λ) = Y 0 log X − Y λ log(X + λ)

+ log
E

{
(X ′ + λ)Y λ

e−X′
∣∣∣ Y λ

}
E

{
(X ′)Y 0e−X′

∣∣ Y 0
} (8)

where X ′ is identically distributed as X but independent
of all other random variables. Let Nλ = Y λ − Y 0. Then
Nλ ∼ P(λ) is independent of X. The expectation of the
log-likelihood ratio (8) can be further evaluated as

−λE log X − E {(X + λ) log(X + λ)}+ EU1 + EU2 + o(λ)
(9)

where

U1 = log
E

{
(X ′ + λ)Nλ

(X ′)Y 0
e−X′

∣∣∣ Y 0, Nλ
}

E
{

(X ′)Y 0e−X′
∣∣ Y 0

}
U2 = λ

E
{

Y 0(X ′ + λ)Nλ

(X ′)Y 0
e−X′

∣∣∣ Y 0, Nλ
}

E
{

(X ′ + λ)Nλ(X ′)Y 0e−X′
∣∣ Y 0, Nλ

} .

Note that Nλ takes the value of 1 with probability λ+o(λ)
and zero value with probability 1− λ + o(λ). Then

EU1 =λ E

log
E

{
(X ′ + λ)(X ′)Y 0

e−X′
∣∣∣ Y 0

}
E

{
(X ′)Y 0e−X′

∣∣ Y 0
}

 + o(λ)

=λ E log 〈X〉+ o(λ). (10)

Meanwhile,

EU2 = λ E

E
{

Y 0(X ′)Y 0−1e−X′
∣∣∣ Y 0

}
E

{
(X ′)Y 0e−X′

∣∣ Y 0
}

 + o(λ)

= λ + o(λ). (11)

Putting (9), (10) and (11) together yields

E
{
log L(X, Y 0, Y λ)

}
= λ E {log 〈X〉 − log X}+ o(λ),

and hence (2) by (7).

B. Proof of Lemma 2

We first prove the following result.

Lemma 3 For every PX with E {X log X} < ∞, and
δ → 0,

I(X;P((1 + δ)X)− I(X;P(X))
= δ E {X log X − 〈X〉 log 〈X〉}+ o(δ).

(12)

Proof: Consider first the case δ → 0+. Let Y = P(X)
and ∆ = P(δX) be independent conditioned on X. Let
also Y δ = Y + ∆. Then, the left hand side of (12) is

I
(
X;Y δ

)
− I(X;Y )

= E

{
log

pY δ|X
(
Y δ|X

)
pY δ (Y δ)

− log
pY |X(Y |X)

pY (Y )

}
= E

{
∆ log X − δX + log E

{
(X ′)Y e−X′

∣∣∣ Y
}

− log E
{

(X ′)Y δ

e−(1+δ)X′
∣∣∣ Y δ

}}
= E

{
δX log X − δX + log E

{
(X ′)Y e−X′

∣∣∣ Y
}

− log E
{

(X ′)Y (X ′)∆ e−X′
e−δX′

∣∣∣ Y,∆
}}

,(13)

where X ′ takes the same distribution as X but indepen-
dent of X, Y and ∆. Since we are interested in the ex-
pansion of (13) in the first order of δ, it is harmless to



replace ∆ by a random variable that takes the value of 1
with probability δX conditioned on X and 0 otherwise.
Hence

E
{

log E
{

(X ′)Y (X ′)∆e−X′
e−δX′

∣∣∣ Y,∆
}}

= E
{

(1− δX) log E
{

(X ′)Y e−X′
e−δX′

∣∣∣ Y
}

+δX log E
{

(X ′)Y +1e−X′
e−δX′

∣∣∣ Y
}}

+ o(δ)

= E
{

(1− δX) log E
{

(X ′)Y e−X′
∣∣∣ Y

}
+δ

E
{

(X ′)Y +1e−X′
∣∣∣ Y

}
E { (X ′)Y e−X′ | Y }

+δX log E
{

(X ′)Y +1e−X′
∣∣∣ Y

}}
+ o(δ)

Plugging into (13) yields (12).
The case of δ → 0− can be similarly proved by letting

Y δ = P((1 + δ)X), ∆ = P(−δX), Y = Y δ + ∆, and
essentially repeating the above.

Proof: [Lemma 2] Applying Lemmas 1 and 3, the change
of the mutual information due to δ and λ can be written
as

I(X;P((1 + δ)X + λ))− I(X;P(X))
= I(X;P((1 + δ)X + λ))− I(X;P((1 + δ)X))

+I(X;P((1 + δ)X))− I(X;P(X))
= λ E {log((1 + δ)X)− log 〈(1 + δ)X〉}

+ δ E {X log X − 〈X〉 log 〈X〉}+ o(λ) + o(δ).

It remains to express Elog 〈(1 + δ)X〉 in terms of Elog 〈X〉
and the conditional mean estimates. Let Y = P(X) and
∆ = P(δX) be independent conditioned on X. Then

〈(1 + δ)X〉 = (1 + δ)
E

{
(X ′)Y +∆+1e(1+δ)X′

∣∣∣ Y,∆
}

E
{

(X ′)Y +∆e(1+δ)X′
∣∣ Y,∆

} .

(14)
Again, it is harmless to replace ∆ by a random variable
that takes the value of 1 with probability δX conditioned
on X and 0 otherwise. Some algebra leads to

E {log 〈(1 + δ)X〉} = E {log((1 + δ)X)}

+ δE

{
X log

〈
X2

〉
〈X〉2

+ X −
〈
X2

〉
〈X〉

}
+ o(δ).

(15)

Plugging (15) into (14) proves the lemma since also

|δλ| ≤ (max(|δ|, |λ|))2 ≤ max
(
|δ|2, |λ|2

)
= o(δ) + o(λ).
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[3] S. Verdú, “Poisson communication theory,” Invited talk,
March 25 1999. The International Technion Communi-
cation Day in honor of Israel Bar-David. Available at
http://www.princeton.edu/∼verdu/.

[4] I. Bar-David, “Communication under the Poisson regime,”
IEEE Trans. Inform. Theory, vol. 15, pp. 31–37, Jan.
1969.
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