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Mutual Information and Minimum Mean-square
Error in Gaussian Channels

Dongning GuoMember, IEEE Shlomo Shamai (Shitzkellow, IEEE,and Sergio Verd, Fellow, IEEE

Abstract— This paper deals with arbitrarily distributed finite-  monotone function given the value of another (e.g., by simply
power input signals observed through an additive Gaussian composing the inverse of the latter function with the former);
noise channel. It shows a new formula that connects the input- \yhat s quite surprising here is that the overall transformation
output mutual information and the minimum mean-square error . o . . .

(MMSE) achievable by optimal estimation of the input given the ,(1) not 9”'}’ 'S_ strikingly Slmple but ',S aIS(_) mdepgndent. OT the
output_ That is’ the derivative of the mutual information (nats) Input dIStl’IbutIOI’]. In faCt, thIS re|atI0nShIp and Its variations
with respect to the signal-to-noise ratio (SNR) is equal to half the hold under arbitrary input signaling and the broadest settings
MMSE, regardless of the input statistics. This relationship holds of Gaussian channels, including discrete-time and continuous-
for both scalar and vector signals, as well as for discrete-time time channels, either in scalar or vector versions.

and continuous-time noncausal MMSE estimation. In a wider context, the mutual information and mean-square
This fundamental information-theoretic result has an unex- ! . . . !
pected consequence in continuous-time nonlinear estimation: For €ror are at the core of information theory and estimation
any input signal with finite power, the causal filtering MMSE theory respectively. The input-output mutual information is
aChie\t/ﬁ(:] a:vli/leRE izci?élva;(;?/v }Pheaagre];i%% IVVé\\/Ll]J;sngEhﬁaT?anaoligan indicator of how much coded information can be pumped
smoothi -to- ; ; o ; ;
ratio is cr?osen uniformly distributed between 0 and gSNR. through a channel reliably given a certain input Sl.gngl!ng,
whereas the MMSE measures how accurately each individual
_ Index Terms—Mutual information, Ggussian channel, n_1in- input sample can be recovered using the channel output.
imum mean-square error (MMSE), Wiener process, optimal | arastingly, (1) shows the strong relevance of mutual infor-
estimation, nonlinear filtering, smoothing. . . . . . .
mation to estimation and filtering and provides a non-coding
operational characterization for mutual information. Thus not
|. INTRODUCTION only is the significance of an identity like (1) self-evident, but
This paper is centered around two basic quantities in ithe relationship is intriguing and deserves thorough exposition.
formation theory and estimation theory, namely, thetual At zero SNR, the right hand side of (1) is equal to one
information between the input and the output of a channehalf of the input variance. In that special case the formula,
and theminimum mean-square errqfMMSE) in estimating and in particular, the fact that at low-SNR mutual information
the input given the output. The key discovery is a relationship insensitive to the input distribution has been remarked
between the mutual information and MMSE that holds regarbiefore [1], [2], [3]. Relationships between the local behavior
less of the input distribution, as long as the input-output padf mutual information at vanishing SNR and the MMSE of
are related through additive Gaussian noise. the estimation of the output given the input are given in [4].
Take for example the simplest scalar real-valued GaussiarFormula (1) can be proved using the new “incremental
channel with an arbitrary and fixed input distribution. Le¢hannel” approach which gauges the decrease in mutual in-
the signal-to-noise ratio (SNR) of the channel be denoté@rmation due to an infinitesimally small additional Gaussian
by snr. Both the input-output mutual information and thenoise. The change in mutual information can be obtained as the
MMSE are monotone functions of the SNR, denoted bynr)  input-output mutual information of a derived Gaussian channel
and mmse(snr) respectively. This paper finds that the mutuavhose SNR is infinitesimally small, a channel for which the
information in nats and the MMSE satisfy the followingmutual information is essentially linear in the estimation error,

relationship regardless of the input statistics: and hence relates the rate of mutual information increase to
d 1 the MMSE.
OlsnrI(snr) = 5mmse(snr). (1) Another rationale for the relationship (1) traces to the geom-

. . . . etry of Gaussian channels, or, more tangibly, the geometric
Simple as it is, the identity (1) was unknown before thi§.oherties of the likelihood ratio associated with signal de-
work. It is trivial that one can compute the value of ONfection in Gaussian noise. Basic information-theoretic notions
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discrete-time setting [8]. In fact, Esposito [9] and Hatsell In the discrete-time setting, identity (1) still holds, while the
and Nolte [10] noted simple relationships between conditionadlationship between the mutual information and the causal
mean estimation and the gradient and Laplacian of the IOMSEs takes a different form: We show that the mutual
likelihood ratio respectively, although they did not imporinformation is sandwiched between the filtering error and the
mutual information into the picture. Indeed, the likelihoogbrediction error.
ratio bridges information measures and basic quantities inThe remainder of this paper is organized as follows. Section
detection and estimation, and in particular, the estimatidh gives the central result (1) for both scalar and vector
errors (e.g., [11]). channels along with four different proofs and discussion of
In continuous-time signal processing, both the causal (filtexpplications. Section 1l gives the continuous-time channel
ing) MMSE and noncausal (smoothing) MMSE are importamiounterpart along with the fundamental nonlinear filtering-
performance measures. Suppose for now that the inputsigoothing relationship (2), and a fifth proof of (1). Discrete-
a stationary process with arbitrary but fixed statistics. Léiime channels are briefly dealt with in Section IV. Section V
cmmse(snr) and mmse(snr) denote the causal and noncausaltudies general random transformations observed in additive
MMSEs respectively as a function of the SNR. This papeaussian noise, and offers a glimpse at feedback channels.
finds that formula (1) holds literally in this continuous-timeSection VI gives new representations for entropy, differential
setting, i.e., the derivative of the mutual information rate isntropy, and mutual information for arbitrary distributions.
equal to half the noncausal MMSE. Furthermore, by using this
new information-theoretic identity, an unexpected fundamental
result in nonlinear filtering is unveiled. That is, the filtering
MMSE is equal to the mean value of the smoothing MMSEA. The Scalar Channel

Il. SCALAR AND VECTOR GAUSSIAN CHANNELS

cmmse(snr) = E {mmse(I")} (2)  Consider a pair or real-valued random variable$,Y')
whereTI is chosen uniformly distributed between 0 asd. related by
In fact, stationarity of the input is not required if the MMSEs Y =+VsnrX+N ©)
are defined as time averages. wheresnr > 0 and thel¥ ~ A’(0,1) s & standard Gaussian

Relationships between the causal and noncausal eStimaPQHdom variable independent df. Then X andY can be
errors have been studied for the particular case of I'nelfygarded as the input and output respectively of a single use of

estimation (or Gaussian inputs) in [12], where a bound on't Escalar Gaussian channel with a signal-to-noise ratimot

loss due to the causality constraint is quantified. Capitalizinlq1e input-output conditional probability density is described
on earlier research on the “estimator-correlator” principle

Kailath and others (see [13]), Duncan [14], [15], Z&kai
and Kadotaet al. [17] pioneered the investigation of rela-
tions between the mutual information and causal filtering of Py |Xssne(y|; snr) = Vor
continuous-time signals observed in white Gaussian noise. ) )
In particular, Duncan showed that the input-output mutu}ﬂpon th_e obseryatlon Of th_e outpt, one WO_UId Ilke_to
information can be expressed as a time-integral of the caugg?r the mformatl(_)n bearing inpiX". Themutual information
MMSE [15]. Duncan’s relationship has proven to be useful fetweenX andY is:
many applications in information theory and statistics [17],

I(X;Y) = E{log

exp {—; (v — \/ﬁm)z} . @)

®)

[18], [19], [20]. There are also a number of other works
in this area, most notably those of Liptser [21] and Mayer- ] ] -
Wolf and Zakai [22], where the rate of increase in the mutu#in€re py:snr denotes the well-defined marginal probability
information between the sample of the input process at tHgNSity function of the output:

current time and the entire past of the output process is
expressed in the causal estirgation error andp cesain Fisher Py s (:501) = E {pyxonr (y| X 00)} ©6)
informations. Similar results were also obtained for discretehe mutual information is clearly a function efr, which we

time models by Bucy [23]. In [24] Shmelev devised a generaglenote by

albeit complicated, procedure to obtain the optimal smoother I(snr) = 1 (X- Janr X + N) _ @)

from the optimal filter. ’

The new relationship (1) in continuous-time and Duncan®he error of an estimatef,(Y), of the inputX based on the
Theorem are proved in this paper using the incremenighservationy” can be measured in mean-square sense:
channel approach with increments in additional noise and ad-
ditional observation time respectively. Formula (2) connecting E {(X — f(Y))Q} . (8)
filtering and smoothing MMSEs is then proved by comparing
(1) to Duncan’s theorem. A non-information-theoretic proof is 2In this paper, random objects are denoted by upper-case letters and their

not yet known for (2). values denoted by lower-class letters. The expectdi¢r} is taken over the
joint distribution of the random variables within the brackets.
1Duncan’s Theorem was independently obtained by Zakai in the moredlf EX2 = 1 thensnr complies with the usual notion of signal-to-noise
general setting of inputs that may depend causally on the noisy outputpower ratio; otherwisenr can be regarded as the gain in the output SNR due
a 1969 unpublished Bell Labs Memorandum (see [16, ref. [53]]). to the channel. Results in this paper do not reqi’é? = 1.

pY\X;snr(Y|X§ snr) }
pY;snr(Y; snr)



It is well-known that the minimum value of (8), referred tog 5
as theminimum mean-square errar MMSE, is achieved by

the conditional mean estimator: 1 Gaussian

N nmse (snr)

X(Y;snr) =E{X|Y;snr}. (9 o 8l

. . L I (snr) __binary __
The MMSE is also a function aofnr, which is denoted by 0.6 \ - T
' —~
mmse(snr) = mmse (X |v/snrX + N) . (10) o 4 N\
To start with, consider the special case when the input \

distribution Px is standard Gaussian. The input-output mutudl- 2| S Gaussian
information is then the well-known channel capacity under binary ——____
input power constraint [25]: 2 4 6 8 10 "

1
I(snr) = = log(1 + snr). 11y ) o )
2 Fig. 1. The mutual information (in nats) and MMSE of scalar Gaussian

Meanwhile, the conditional mean estimate of the Gaussi&ll‘x?nnel with Gaussian and equiprobable binary inputs, respectively.

input is merely a scaling of the output:

S 1/ snr
X(Yisnr) = T Y, (12) respectively. Appendix | verifies that (17) and (18) satisfy (15).
For illustration purposes, the MMSE and the mutual infor-

and hence the MMSE Is: mation are plotted against the SNR in Figure 1 for Gaussian

mmse(snr) = 1 ) (13) @and equiprobable binary inputs.
1+ snr
An immediate observation is
B. The Vector Channel

4 I ! 1 14

dsnr (snr) = §mmse(5”r) 08¢ 14) Multiple-input multiple-output (MIMO) systems are fre-
where the base of logarithm is consistent with the mutugHently described by the vector Gaussian channel:
information unit. To avoid numerousg e factors, henceforth Y = eonr HX + N (19)

we adopt natural logarithms and use nats as the unit of all

information measures. It turns out that the relationship (1here H is a deterministicl. x KX matrix and the noisa@V
holds not only for Gaussian inputs, but for any finite-powefonsists of independent standard Gaussian entries. The input

input. X (with distribution Px) and the outpul” are column vectors
Theorem 1:Let N be standard Gaussian, independent @f appropriate dimensions.
X. For every input distributionPy that satisfiesEX> < oo, The input and output are related by a Gaussian conditional
d 1 robability density:
3 I(X;\/san—&-N)zimmse(X\\/san—i—N). P Y y
snr

(15) . x:snr) = (27 -3 ex [—1 —vsnr Hx 2
Proof: See Section II-C. m Py |xone (Y23 snr) = (27) P QHy I}

The identity (15) reveals an intimate and intriguing connection ) (20)
between Shannon’s mutual information and optimal estimatiéf{’€re|-|| denotes the Euclidean norm of a vector. The MMSE
in the Gaussian channel (3), namely, the rate of the mutd@|estimatingH X is

information increase as the SNR increases is equal to half — 2

the MMSE achieved by the optimal (in general nonlinear) =~ mmse(snr) = E{HHX —HX(Y;SN)H }7 (21)
estimator.

In addition to the special case of Gaussian inputs, Theorgere X (Y';snr) is the conditional mean estimate. A gener-
1 can also be verified for another simple and important inpgfization of Theorem 1 is the following:

signaling: =1 with equal probability. The conditional mean Theorem 2:Let N be a vector with independent standard

estimate for such an input is given by Gaussian components, independent Xt For every Px
X(Y;snr) = tanh (vsnrY) . (16) Ssatisfying E[| X |* < oo,

The MMSE and the mutual information are obtained as: i[ (X;v/snrHX +N) = }mmse(snr). (22)

o e—ﬁ Prggg: See Section II-C. ]

mmse(snr) = 1 — > tanh(snr — /snry) dy, (17) A verification of (22) in the special case of Gaussian input
> with positive definite covariance matriX is straightforward.

and (e.g., [26, p. 274] and [27, Problem 4.22]) The covariance of the conditional mean estimation error is

I(snr) = snr — /jo i/;logCOSh(sm Vsnry) dy (18) E{(X —5(\) (X —X\)T} - (271 +SnrHTH)_17 (23)
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o1N1 02N Proof: [Theorem 1] Fix arbitrarysnr > 0 and§ > 0.

Consider a cascade of two Gaussian channels as depicted in
X Yl Y- .
2 Figure 2:
bsnr +4 4 J
‘ snr ! i = X+o01Ny, (30a)
Yo = Y1+ 02No, (30b)

Fig. 2. An SNR-incremental Gaussian channel. whereX is the input, andV; and N, are independent standard

Gaussian random variables. Let, o5 > 0 satisfy:

from which one can calculate: o2 = 1+ - (31a)
—~ 2 1 snr
_ —1 T T
E{HH(X—X)H}_tr{H(z +swH'H) H'|. 2y = L (31b)
(24) - - -snr - .
The mutual information is [28]: so that the signal-to-noise ratio of the first channel (30a) is
snr+4 and that of the composite channekis. Such a system
I(X;Y) = llogdet (IJr san%HTHE%) : (25) s referred to as aSNR-incremental channedince the SNR
2 increases by from Y, to Y;.
where 7 is the }mique positive semi-definite symmetric Theorem 1 is equivalent to that, 8s- 0,
matrix such tha{X2)? = . Clearly, I(X;Y)) - I(X;Ys) = I(snr+48)—1I(snr) (32)
)
d I(X;Y) = 5 mmse(snr) + o(d). (33)
dsnr ’ _ . .
_ %tr { (I N San%HTHEé)_l S HTHS: }(26) Noting thatX—Y;—Y> is a Markov chain,
1 2 I(X;1) - 1(X3Ye) = I(X;Y1,Ys) — I(X;Y2) (34)
= 3F {HH (x-%)| } 27) = I(X;%[Ya), (35)
where (35) is the mutual information chain rule [29]. A linear
C. Incremental Channels combination of (30a) and (30b) erIdS
The central relationship given in Sections ll-F-Aand lI-Bcan  (snr+6)Y7 = snr(Ys —09N2) + 6 (X + 01N1) (36)
be proved in various, rather different, ways. The most enlight- — s Yo+ X +VON (37)

ening proof is by considering what we call an incremental .

channel. A proof of Theorem 1 using the SNR-increment#here we have defined

channel is given next, while its generalization to the vector 1

version is omitted but straightforward. Alternative proofs are N = Nz (601 Ny —snrop Ny). (38)

relegated to later sections. Clearly, the incremental channel (30) is equivalent to (37)

The key to the in_crem(_antal—channel approach is to redl_J §ired with (30b). Due to (31) and mutual independence of
the proof of the relationship for all SNRs to that for the speci N1, Na), N is a standard Gaussian random variable inde-

case of vanishing SNR, a domain in which we can capitali eer71dent ofX . Moreover,(X, N, o1 N + a5 N,) are mutually
on the following result: independent since

Lemma 1:As § — 0, the input-output mutual information )

of the canonical Gaussian channel: E{N(01N; + 02N2)} = % (5 o2 — Snm§> =0, (39)
Y =V6Z+U, (28) also due to (31). Therefor® is independent of X,Y>) by
whereEZ2 < oo andU ~ N(0,1) is independent ofZ, is  (30). From (37), it is clear that
given by 5 I(X;Y1|Y2 = yo)
I(Y;2) = 5 E(Z = EZ)* + 0(9). (29) - I(X;snryg+5x+\/51\f’ Ygzyz) (40)
Essentially, Lemma 1 states that the mutual information is
half the SNR times the variance of the input at the vicinity of =1 (X; VX + N‘ Yy = yz) : (41)

zero SNR, but insensitive to the shape of the input distributi(?_? nce divery, — (37) is equivalent to a Gaussian channel
otherwise. Lemma 1 has been given in [2, Lemma 5.2.1] an 9 2 = Y2 q

[3, Theorem 4] (also implicitly in [1]f Lemma 1 is the special W'thlsir’:IRLeecr‘]:Jﬂ;? :’ghsel;shtgec'r:‘;#;;'ig':(;ggg8'3; g;i:yz-
case of Theorem 1 at vanishing SNR, which, by means of tﬁ‘é)py 9 Y2,
. one obtains

incremental-channel method, can be bootstrapped to a proo

of Theorem 1 for all SNRs. I(X;Y1|Ys = y2) =
) 2 (42)
4A proof of Lemma 1 is given in Appendix Il for completeness. ) E { (X —E{X|Y2=1y2}) ‘ Y, = 312} + 0(d).
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D. Applications and Discussions

X .
] I I 1) Some Applications of Theorems 1 and Phe newly
! ' ' discovered relationship between the mutual information and
i Y2 Y5 ... MMSE finds one of its first uses in relating CDMA channel

spectral efficiencies (mutual information per dimension) under
joint and separate decoding in the large-system limit [30], [31].
Under an arbitrary finite-power input distribution, Theorem 1
Taking the expectation ovér; on both sides of (42) yields is invoked in [30] to show that the spectral efficiency under
5 9 joint decoding is equal to the integral of the spectral efficiency

I(X;n|Y2) = 5 E {(X -E{X|Y2}) } +0(3),  (43) under separate decoding as a function of the system load. The
which establishes (33) by (35) together with the fact that pra_ctical Iesson_ther_ein is the optima_lity in_ the Iarge-s_ystem
limit of successive single-user decoding with cancellation of

E {(X —E{X]| Yz})z} = mmse(snr). (44) interference from already decoded users, and an individually

optimal detection front end against yet undecoded users. This
fé a generalization to arbitrary input signaling of previous
results that successive cancellation with a linear MMSE front

end achieves the CDMA channel capacity under Gaussian

I(X;Yh...,yn)=iI<X;m|m+1,...,m. (45) Inputs [32], [33], [34], [35]

Fig. 3. A Gaussian pipe where noise is added gradually.

Hence the proof of Theorem 1. [ ]
Underlying the incremental-channel proof of Theorem 1
the chain rule for information:

=1 Relationships between information theory and estimation

When X—Y,— - . —Y,, is a Markov chain, (45) becomes theory have peen identified occasionally, yielding results in
n one area taking advantage of known results from the other.

I(X;Y)) = ZI(X'Yf | Yii1) (46) This is exemplified by the classical capacity-rate distortion

relations, that have been used to develop lower bounds on
estimation errors [36]. The fact that the mutual information
the MMSE determine each other by a simple formula
o provides a new means to calculate or bound one quantity
using the other. An upper (resp. lower) bound for the mutual

=1
where we letY,,,; = 0. This applies to a train of outputs
tapped from a Gaussian pipe where noise is added graduz?i
until the SNR vanishes as depicted in Figure 3. The s

in (46) converges to an integral &%;} becomes a finer oo . , h ; I
and finer sequence of Gaussian channel outputs. To see fjarmation is immediate by bounding the MMSE for al

note from (43) that each conditional mutual information it VRS USing a suboptimal (resp. genie aided) estimator. Lower

(46) corresponds to a low-SNR channel and is essentiangunds on the MMSE, e.g., [37], lead to new lower bounds

proportional to the MMSE times the SNR increment. Thi€" the mutual information. o
viewpoint leads us to an equivalent form of Theorem 1: An important example of such relationships is the case of
. Gaussian inputs. Under power constraint, Gaussian inputs are

snr
I(snr) = ,/ mmse(y) dy. (47) most favorable for Gaussian channels in information-theoretic
0 sense (they maximize the mutual information); on the other
Therefore, as is illustrated by the curves in Figure 1, the mutd@nd they are least favorable in estimation-theoretic sense
information is equal to an accumulation of the MMSE a@ghey maximize the MMSE). These well-known results are
a function of the SNR due to the fact that an infinitesimaleen to be immediately equivalent through Theorem 1 (or
increase in the SNR adds to the total mutual information &fheorem 2 for the vector case). This also points to a simple
increase proportional to the MMSE. proof of the result that Gaussian inputs achieve capacity by
The infinite divisibility of Gaussian distributions, namelyobserving that the linear estimation upper bound for MMSE
the fact that a Gaussian random variable can always igeachieved for Gaussian inputs.
decomposed as the sum of independent Gaussian randomnother application of the new results is in the analysis of
variables of smaller variances, is crucial in establishing tkg@arse-graph codes, where [38] has recently shown that the
incremental channel (or, the Markov chain). This propero-called generalized extrinsic information transfer (GEXIT)
enables us to study the mutual information increase due ftmction plays a fundamental role. This function is defined for
an infinitesimal increase in the SNR, and thus obtain thgbitrary codes and channels as minus the derivative of the
differential equations (15) and (22) in Theorems 1 and 2. input-output mutual information per symbol with respect to a
The following corollaries are immediate from Theorem thannel quality parameter when the input is equiprobable on
together with the fact thahmse(snr) is monotone decreasing.the codebook. According to Theorem 2, in the special case of
Corollary 1: The mutual information/(snr) is a concave the Gaussian channel the GEXIT function is equal to minus

function insnr. one half of the average MMSE of individual input symbols
Corollary 2: The mutual information can be bounded as given the channel outputs. Moreover, [38] shows that (1) leads
E{var{X|[V;snr}} = mmse(snr) (48) 1o asimple interpretation of the “area property” for Gaussian
9 channels (cf. [39]). Inspired by Theorem 1, [40] also advocated
< —1I(snr) (49)

snr ) ' ' )
2 5The observations here are also relevant to continuous-time Gaussian
< mmse(0) =var{X"}.  (50) channels in view of results in Section IIl.



using the mean-square error as the EXIT function for Gaussiar3) Derivative of the DivergenceConsider an input-output

channels. pair (X,Y’) connected through (3). The mutual information
As another application, the central theorems also provide &40X;Y) is the average value over the inpit of the diver-
intuitive proof of de Bruijn’s identity as is shown next. genceD (Py|x—.||Py). Refining Theorem 1, it is possible to

2) De Bruijn’s Identity: An interesting insight is that The- directl){ obtain the derivative of the divergence given any value
orem 2 is equivalent to the (multivariate) de Bruijn identit@f the input:

[41], [42]: Theorem 3:For every input distributionPx that satisfies
d ) EX? < oo,
h (HX+\/£N) 2tr{J(HX+ﬁN)} (51) %D(PY\X:m\IPy) :%E{|X—X’|2| X—s)
where N is a vector with independent standard Gaussian a 1 , (59)
entries, independent & . Here,h(+) stands for the differential - 2\/sTrE {X'N| X =z},
entropy andJ(-) for Fisher's information matrix [43], which ) - _ o
is defined a% whereX' is an auxiliary random variable which is independent
identically distributed (i.i.d.) withX conditioned onY =
() = E{[Viogpy(y)] [Viogpy (u)] }. (62 vEwX +N.
The auxiliary random variabl&’’ has an interesting physi-
Letsnr =1/t andY = /snr H X + N. Then cal meaning. It can be regarded as the output of the “retrochan-
nel” [30], [31], which takesY as the input and generates a
h (HX + \/gN) =I(X;Y) - L log snr (53) random variable according to the posterior probability distri-
2 7 2me bution px|y .nr- The joint distribution of(X, Y, X”) is unique
Meanwhile, although the choice oK’ is not.
4) Multiuser Channel:A multiuser system in which users
J (HX + \/EN) =snrJ(Y). (54) may transmit at different SNRs can be modelled by:
Note that Y=HIX+N (60)

a(ysnr) = E{ (Y] X;500)) (55) WhereH is deterministicL x K matrix known to the receiver,
PY;snrlY; PY|Xisnr (Y125 ’ I = diag{,/snr7,. .., /snrx} consists of the square-root of
Wherepy | x.enr(y]2; snr) is a Gaussian density (20). It can pdhe SNRs of tth users, andV cons!sts of independent
shown that standard Gaussian entries. The following theorem addresses
the derivative of the total mutual information with respect to
V 10g Py ssnr(y; snr) = v/snr HX (y; snr) — y. (56) an individual user's SNR.
Theorem 4:For every input distributionPx that satisfies

Plugging (56) into (52) and (54) gives E[| X < oo,
_ %) (x - %) Vo 0 x
J(Y) _I—snrHE{(X—X) (X—X) }H. 67) G (XY

K (61)
Now de Bruijn’s identity (51) and Theorem 2 prove each other 1 Z [ T H E {Cov { Xy, XY T,

by (53) and (57). Noting this equivalence, the incremental- 2\ snry,

channel approach offers an intuitive alternative to the con—h C denot ditional .
ventional technical proof of de Bruijn’s identity obtained by""€'® ov{,|} denotes conditional covariance.

integrating by parts (e.g., [29]). Although equivalent to d% The de‘l’\‘; of gh_eorem. 4df0”1(')r\1NS that 0{ Thzorzem 2 ig
Bruijn’s identity, Theorem 2 is important since mutual infor- ppendix and is _omitted. eorems L an can be
§overed from Theorem 4 by settingr;, = snr for all k.

mation and MMSE are more canonical operational measuré
than differential entropy and Fisher’s information.
The Crangr-Rao bound states that the inverse of Fishers, Alternative Proofs of Theorems 1 and 2

gﬂforrzqnon AS fa lower POU”E on Fstlmhatmn .acr:]cu,raf:y]; The |, this subsection, we give an alternative proof of Theorem
ound is tig tdoLGaussg;m c anfne S'd‘,’v_ erel Fisher's Informa-, vich is based on the geometric properties of the likelihood
tion matrix and the covariance of conditional mean estimatiQQyi, penyeen the output distribution and the noise distribution.

err1ror delztermine each other by (57). In particular, for a Scal?his proof is a distilled version of the more general result of
channel, Zakai [44] (follow-up to this work) that uses the Malliavin
calculus and shows that the central relationship between the

J(vsnrX + N) =1—snr- mmse(snr). 58 . . . - .
( + ) (snr) (58) mutual information and estimation error holds also in the ab-
- stract Wiener space. This alternative approach of Zakai makes
6The gradient operator can be written ds= [i i] symbol- f relati hi b diti | i i d
By Bu use of relationships between conditional mean estimation an
ically. For any differentiable functiorf : R” — R, its gradient atany is  ikelihood ratios due to Esposito [9] and Hatsell and Nolte
a column vectolV f(y) = [%(y), s ganL(y)] . [10].



As mentioned earlier, the central theorems also admit sev- Proof: [Theorem 5] Note that the likelihood ratio can be
eral other proofs. In fact, a third proof using the de Bruijexpressed as

identity is already evident in Section II-D. A fourth proof
y 4 P E{pY\X;snr(y‘X§snr)}

of Theorems 1 and 2 by taking the derivative of the mutual I(y) = (72)
information is given in Appendices Il and IV. A fifth proof pN(Y)
taking advantage of results in the continuous-time domain is = E {exp [\/ﬁyTX — %HXM } (73)

relegated to Section Ill.
It suffices to prove Theorem 2 assumiRyto be the identity Also, for any functionf(-),
matrix since one can always regaid X as the input. Let

snr
Z = y/snr X. Then the channel (19) is represented by the E{f(X) exp [V snry' X — THXH} (74)
canonicalL-dimensional Gaussian channel: =y E{f(X)|Y =y}.
Y=Z+N. (62) Hence,

The mutual information, which is a conditional divergence, d _ 1 1 4 _
admits the following decomposition [1]: dsnrl(y) N 2l(y) NGTad E{XIY =y}

I(Y;Z) = D(Pyz|Py|Pz) (63) ~E{IX]?| Y=y}} (75)

= D (Pyz||Py/|Pz) — D(Py|/Py’) (64) 1 . )
= — |l Vlogl —V*<logl 76

where Py is an arbitrary distribution as long as the two 2snr [ W)y ogl(y) °8 (y)]( )

divergences on the right hand side of (64) are well-define@here (76) is due to Lemmas 2 and 4. Note that the order of
Choose)_” = N. Then the mutual information can be €xexpectation with respect t8x and the derivative with respect
pressed in terms of the divergence between the unconditiofthe SNR can be exchanged as long as the input has finite

output distribution and the noise distribution: power by Lebesgue’s (Dominated) Convergence Theorem [45],
1 [46] (see also Lemma 8 in Appendix 1V).
2
1(Y;Z) = JE||Z|]° - D (Py | PN). (65)  The divergence can be written as
Hence Theorem 2 is equivalent to the following: o Py (y)
Theorem 5:For everyPx satisfying E|| X||? < oo, D(PyliPn) = /py(y) log N (Y) dy (77)
45 p 7] = E{I(N)logI(N)}, (78)
snr N
dsnr~ \ VEMXEN (66) and its derivative

zlE{y|E{X|\/sr7X+N}||2}. d

Theorem 5 can %e proved using geometric properties of the dsnr
likelihood ratio

D (Py|Py)=E {logl(N)dsdnrl(N)} . (79)

py (y) Again, the order of derivative and expectation can be ex-
l(y) = n(y) (67) changed by the Lebesgue Convergence Theorem. By (76), the
. ) derivative (79) can be evaluated as
The following lemmas are important steps.
Lemma 2 (Esposito [9]):The gradient of the log-likelihood LE {I(N)logl(N)N - Vlogl(N)}
ratio gives the conditional mean estimate: 2snr 1
- 2
Viegl(y)=E{Z|Y =y}. (68) 25an {log I(N) VZUN) }

Lemma 3 (Hatsell and Nolte [10])The log-likelihood ra-

1
. L . . = —E{V - [I(N)logl(N)Viogl(N
tio satisfies Poisson’s equatién: 2snr { [{(N)log [{(N)V log [(N)]

—logl(N) V2I(NN) (80)
Vlogl(y) =E{|1Z|”| Y =u} - [E{Z| Y = y}|’. 1 2}
(69) = S E{UN) [V logI(N)]*} (81)
From Lemmas 2 and 3, 1 )
2 : : ~ 5EIViogl(Y)] (62)
E{I1ZI’| Y =y} = V’logl(y) + [Viegl(y)|*. (70) 2snr
_ 1 2
The following result is immediate. - QEHE{X‘ Y3, (83)
Lemma 4: where to write (80) we used the following relationship (which
E { 12|12 ’ Yy — y} = 1" (y)V2i(y). (71) can be checked by integration by parts) satisfied by a standard
A proof of Theorem 5 is obtained by taking the derivativ&aussian vectoiv:
directly E{NTF(N) | = E{V - F(N)} (84)

7 ifferentiablef : RE —» RE. V- f = L 00 f £i . -
For any differentiablef : R™ —R™, V-f = 3212, 5, If fisdoubly g5 eyery vector-valued functiorf : RE — RL that satisfies

differentiable, its Laplacian is defined 882 f = V- (Vf) = >.&; 2275- fi(n)e_%"? —0asn; —oo,i=1,...,L. [ |
1



F. Asymptotics of Mutual Information and MMSE The asymptotic properties carry over to the vector channel

In the following, the asymptotics of the mutual informatiodnodel (19) for finite-power inputs. The MMSE of a real-
and MMSE at low and high SNRs are studied mainly for théalued vector channel is obtained to the second order as:

scalar Gaussian channel. mmse(snr) =tr {HEHT}
The Lebesgue Convergence Theorem guarantees continuity (93)
of the MMSE estimate: —snr-tr {HZHTHEHT} + O(snr?)
Jim E{X|Y;snr} =EX, (85) where > is the covariance matrix of the input vector. The
and hence input-output mutual information is straightforward by Theo-

rem 2 (see also [4]). The asymptotics can be refined to any
lim mmse(snr) = mmse(0) = 0% (86) order of the SNR using the Taylor series expansion.
snr=0 At high SNRs, the mutual information is upper bounded
whereo?, denotes the variance of a random variable. It hagr finite-alphabet inputs such as the binary one (18), whereas
been shown in [3] that symmetric (proper-complex in thg can increase at the rate dflogsnr for Gaussian inputs.
complex case) signaling is second-order optimal in terms Bf, Shannon’s entropy power inequality [25], [29], given any
mutual information for in the low SNR regime. symmetric input distribution with a density, there exists.ag

A more refined study of the asymptotics is possible by, 1] such that the mutual information of the scalar channel
examining the Taylor series expansion of a family of wells hounded:
defined functions: 1 : , 1 : o1

) —log(1l 4+ asnr) < I(snr) < —log(1 + snr).

¢i(y;snr) = E{ X py|xene(y| Xssnr)}, i =0,1,... (87) g logll +asr) < Ism) < glog(l+sm). (54)

The MMSE behavior at high SNR depends on the input
distribution. The decay can be as slow &X1/snr) for
Gaussian input, whereas for binary input, the MMSE decays as
E{X|Y = ysnr} = (h(y;snr). (88) 6*25'"._ In fact, the MMSE can be made to decay faster than

qo(y;snr) any given exponential for sufficiently skewed binary inputs

Meanwhile, by definition (5) and noting thaty |y, is [31].
Gaussian, one has

Clearly, pysnr(y;snr) = qo(y; snr), and the conditional mean
estimate is expressed as

IIl. CONTINUOUS-TIME GAUSSIAN CHANNELS

1
I(snr) = —§1og(2ﬂ'e) —/qo(y?snr) logqo(yssnr) dy. (89)  The success in the discrete-time Gaussian channel setting
in Section Il can be extended to more technically challenging

As snr — 0, continuous-time models. Consider the following continuous-
qi(y;snr) time Gaussian channel:
2 2
:\/12?6—% E{Xi {1 + Xysnrz + %@2 —1)snr Ry =+/snr X, + N, te€l0,T], (95)
3 s X4, 5 ) where{X.,} is the input process, andV;} a white Gaussian
+ ?(y —3)ysnrz + ﬂ(y — 6y~ + 3)snr (90) noise with a flat double-sided power spectrum density of unit
X5 . height. Since{V;} is not second-order, it is mathematically
+ m(15y — 10y 4 ¢°)snr2 more convenient to study an equivalent model obtained by
X6 . . ) X . integrating the observations in (95). In a concise form, the
+ %(y — 15y* + 45y° — 15)snr° + O(san)] } input and output processes are related by a standard Wiener
process{W;} independent of the input [47], [48]:
Without loss of generality, it is assumed that the inpat
has zero mean and unit variance. Using (88)—(90), a finer dv; = V/snr X, dt + dW;, t€[0,7]. (96)
ggf‘;ﬁ]‘ggriﬁ:ﬂon of the MMSE and mutual information is, known as Brownian motion{W,} is a continuous

) Gaussian process that satisfies
2
mmse(snr) =1 — snr + snr? — = (EX*)” — GEX* 1) E{W,W,} = min(t,s), Vt,s. (97)

2
-2 (EX®)" + 15}snr3 + O (snrt), Instead of scaling the Brownian motion (as is customary in
the literature), we choose to scale the input process so as to

and . . . .
minimize notation in the analysis and results.

1 1 1 . 1
I(snr) =gsnr — anr2 + gsnr‘3 & [(EX‘L)2

4 32 4 5 (92) " A. Mutual Information and MMSEs
~ 6EX* 2 (EX?)” +15]snr* + O (snr”) _ y _ ,

We are concerned with three quantities associated with the
respectively. It is interesting to note that that higher ordenodel (96), namely, the causal MMSE achieved by optimal
moments than the mean and variance have no impact on fittering, the noncausal MMSE achieved by optimal smooth-

mutual information to the third order of the SNR. ing, and the mutual information between the input and output



processes. As a convention, & denote the procesgX;} although, interestingly, this connection escaped Yovits and
in the interval [a,b]. Also, let ux denote the probability Jackson [53].

measure induced byX, } in the interval of interest, which, for  In fact, these relationships are true not only for Gaussian
concreteness we assume to[Bgl’]. The input-output mutual inputs.

information is defined by [49], [50]: Theorem 6:For every input proces§X;} to the Gaussian
channel (96) with finite average power, i.e.,
1(sv]) = [1og® duxy (98)
T
2
if the Radon-Nikodym derivative /0 EX7 df < oo, (108)
= M (99) the input-output mutual information rate and the average
dux duy noncausal MMSE are related by
exists. The causal and noncausal MMSEs at any timé0, T'] d 1
are defined in the usual way: ——I(snr) = —mmse(snr). (109)
snr
Proof: See Section IlI-C. ]
tsnr) =E{ (X, — E{X,| Y{;snr})? 100 . N
cmmse(, snr) {< ¢ = E{Xe| Y5;snr}) }’ (100) Theorem 7 (Duncan [15])For any input process with fi-
and nite average power,
2
mmse(t, snr) = E{(Xt —-E {Xt ‘ Y()T3S”r}> } . (101) I(snr) = %cmmse(snr). (110)

Together, Theorems 6 and 7 show that the mutual informa-
tion, the causal MMSE and the noncausal MMSE satisfy a
triangle relationship. In particular, using the information rate

I(snr) = lI(Xg5%T)~ (102) as a bridge, the causal MMSE is found to be equal to the
T noncausal MMSE averaged over SNR.
Similarly, the average causal and noncausal MMSEs (per unitrheorem 8:For any input process with finite average

Recall themutual information ratgmutual information per
unit time) defined as:

time) are defined as power,
T 1 snr
cmmse(snr) = %/ cmmse(t, snr) dt (103) cmmse(snr) = Q/o mmse(y) dy. (111)
0 Equality (111) is a surprising fundamental relationship be-
and T tween causal and noncausal MMSEs. It is quite remarkable
mmse(snr) = l/ mmse(t, snr) dt (104) considering the fact that nonlinear filtering is usually a hard
0 problem and few analytical expressions are known for the
respectively. optimal estimation errors.

To start with, letT” — co and assume that the input to the Although in general the optimal anti-causal filter is different
continuous-time model (96) is a station&i@aussian process from the optimal causal filter, an interesting observation that
with power spectrun®x (w). The mutual information rate wasfollows from Theorem 8 is that for stationary inputs the

obtained by Shannon [51]: average anti-causal MMSE per unit time is equal to the average
1 dw causal one. To see this, note that the average noncausal MMSE
I(snr) = f/ log (1 +snrSx(w)) o (105) remains the same in reversed time and that white Gaussian

—o0 T noise is reversible.

With Gaussian input, both optimal filtering and smoothing are It is worth pointing out that Theorems 6-8 are still valid if

linear. The noncausal MMSE is due to Wiener [52], the time averages in (102)—(104) are replaced by their limits as
mmse(snr) — / * Sx(w) dw (106) T — oc. This is particularly relevant to the case of stationary
~J_oo 14 snrSx(w) 27’ Inputs.

Besides Gaussian inputs, another example of the relation in

and the causal MMSE is due to Yovits and Jackson [53]: Theorem 8 is an input process called the random telegraph
1 [ dw waveform, where{X;} is a stationary Markov process with

cmmse(snr) = Q/ log (1 + snr Sx (w)) o (107)  two equally probable states\{ = 41). See Figure 4 for an

- __illustration. Assume that the transition rate of the input Markov
From (105) and (106), it is easy to see that the de“Vat'\fﬁ'ocess i9, i.e., for sufficiently small,

of the mutual information rate is equal to half the noncausal

MMSE, i.e., the central formula (1) holds literally in this case. P{Xiin =X} =1—vh+o(h), (112)
Moreover, (105) and (107) show that the mutual information

rate is equal to the causal MMSE scaled by half the SNEe expressions for the MMSEs achieved by optimal filtering

and smoothing are obtained as [54], [55]:
8For stationary input it would be more convenient to sHiit 7] to

[~T/2,T/2] and then lefl’ — oo so that the causal and noncausal MMSEs foc w3 (u— 1)7%67 2 du
at any timet € (—oo, o0) is independent ot. We stick to[0, 7] in this cmmse(snr) = 1OC . — , (113)
paper for notational simplicity in case of general inputs. fl uz2 (u —1)"2e 5w du
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Fig. 4. Sample path of the input and output processes of an additive white
Gaussian noise channel, the output of the optimal causal and anti-causal filters,

as well as the output of the optimal smoother. The inpi; } is a random
telegraph waveform with unit transition rate. The SNR is 15 dB.
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Fig. 5.
channel with the random telegraph waveform input. The vate 1. The two
shaded regions have the same area due to Theorem 8.

and

(I4ay)exp| -2 ( 2z +1s
ey p[ ( zhy 1/2))] dxdy

11
I —(A—2)°(1—y)?(1+=)(1+y
1 1 vu 2

[floo uz(u—1)"ze 5 du}

mmse(snr) =

(114)

The causal and noncausal MMSEs of continuous-time Gaussian

where

X =E{X,|Y{}. (116)

The anti-causal filter is merely a time reversal of the filter of
the same type. The smoother is due to Yao [55]:

E{X:| Y{}+E{X;| Y/}
T+E{X, | VI E{X, | VT}

E{X:| YOT} = (117)
B. Low- and High-SNR Asymptotics

Based on Theorem 8, one can study the asymptotics of the
mutual information and MMSE under low SNRs. The causal
and noncausal MMSE relationship implies that

mmse(0) — mmse(snr)

=2 11
snr—0 cmmse(0) — cmmse(snr) (118)

where

T
cmmse(0) = mmse(0) = %/ EX? dt. (119)
0
Hence the initial rate of decrease (withr) of the noncausal
MMSE is twice that of the causal MMSE.

In the high-SNR regime, there exist inputs that make
the MMSE exponentially small. However, in case of Gauss-
Markov input processes, Steinbextjal. [56] observed that the
causal MMSE is asymptotically twice the noncausal MMSE,
as long as the input-output relationship is described by

dv; = vsnrh(X,) dt + dW; (120)

whereh(-) is a differentiable and increasing function. In the
special case wherke(X;) = X, Steinberget al’s observation
can be justified by noting that in the Gauss-Markov case, the
smoothing MMSE satisfies [57]:

mmse(snr) = \/% +o0 (sr11r> , (121)
which implies according to (111) that
i Smmse(snr) _ (122)

snr— oo mmse(snr)

Unlike the universal factor of 2 result in (118) for the low SNR
regime, the 3 dB loss incurred by the causality constraint fails
to hold in general in the high SNR asymptote. For example,
for the random telegraph waveform input, the causality penalty
increases in the order abgsnr [55].

respectively. The relationship (111) is verified in Appendix Vic. The SNR-Incremental Channel

The MMSEs are plotted in Figure 5 as functions of the SNR

for unit transition rate.
Figure 4 shows experimental results of the filtering al

Theorem 6 can be proved using the SNR-incremental chan-
nel approach developed in Section Il. Consider a cascade of

htgvo Gaussian channels with independent noise processes:

smoothing of the random telegraph signal corrupted by ad-

ditive white Gaussian noise. The optimal causal filter follows

Wonham [54]:
dx; = — {21/)@ +snr X, (1 — )A(f” dt

+ \/enr (1 - )?E) dv;, (19

10

dyy,
dYs,

X dt + o dW/,
dYi; + oo dWy,

(123a)
(123b)

where {WW;;} and {W5,} are independent standard Wiener
processes also independen{df, }, ando; ando, satisfy (31)
so that the signal-to-noise ratios of the first channel and the



composite channel arar + 6 andsnr respectively. Following  Duncan’s Theorem is equivalent to
steps similar to those that lead to (37), it can be shown that 7 (Xé*é; YOH‘S) 7 (Xé; Yot)

(snr+0) dYy, = snr dYa, + 6 X, dt + V6 Wy,  (124) _ 5% E {(Xt CE{X,| Y&})Q} to(6), (132)
where{WW;} is a standard Wiener process independedt®f} wnhich is to say the mutual information increase due to the

and{Y3,}. Hence conditioned on the procegey } in [0,7], extra observation time is proportional to the causal MMSE.
(124) can be regarded as a Gaussian channel with an SNRrg§ |eft hand side of (132) can be written as

0. Similar to Lemma 1, the following result holds. S s s
Lemma 5:As 6 — 0, the input-output mutual information 1 (Xo Yo ) -1 (X();Yo)

of the following Gaussian channel: = T(X5XO VY — 1(X5 YY) (133)
_ t+48. v t+46 t t.yt+d t+48 t
dY; = V3 Z, dt + dw,, ¢ e [0,T), (125) = T(XYY) + 1 (X Y| XL YG)
. . . +1 (X6, X0 Yg) = (X5 Y) (134)
where {WW,} is standard Wiener process independent of the T (XU Yo | Y 4 T (xt e | xtte vt
input {Z,}, which satisfies = T(GTHYYS) + 1 (X6 YT X Y)
- +I (XY XY). (135)
/ EZ{ dt < oo, (126) Since Y{—X{—X{"°—Y/!*? is a Markov chain, the last
o 0 two mutual informations in (135) vanish due to conditional
is given by the following: independence. Therefore,
1 1 T t+6 .y t+0 _ t. t — t+4., t+9 t
(}ir%gl(ZoT;YOT) = 5/ E(Z,—EZ)” dt.  (127) TGT5Y0™) =1 (Xos¥p) = T(X5 YY) (136)

i.e., the increase in the mutual information is the conditional

drir)utual information between the input and output during the
extra time interval given the past observation. Note that
conditioned onY{, the probability law of the channel in

Proof: See Appendix \?I. ]
Applying Lemma 5 to the Gaussian channel (124) con
tioned on{Y2:} in [0,T], one has

I(Xg: Y/ 0[Y5) (t,t + &) remains the same but with different input statistics
s [T ) (128) due to conditioning orYj. Let us denote this new channel by
_0 _ T ~ ~
- 2/0 E{(Xt E{Xi| 20} } gt + o(9)- dY; = snr X, dt + dW;, te[0,4], (137)

Since { X }—{Y1;:}—{Y2:} is a Markov chain, the left hand where the time duration is shifted t,4], and the input

side of (128) is recognized as the mutual information increaggocessX] has the same law a§f+5 conditioned onY(.

Instead of looking at this new problem of an infinitesimal time

T.yT T _ T.yT T.yT ) .

I(X, Yio |Y2,o) = I(Xq;Y1,) —1(Xg ’Yz,o)(lzg) interval [0, 4], we can convert the problem to a familiar one by
= T[I(snr+ &) — I(snr)]. (130) an expansion in the time axis. Sing& W, s is also a standard

_ Wiener process, the channel (137)[ih4d] is equivalent to a
By (130) and definition of the noncausal MMSE (101), (128Aew channel described by

can be rewritten as - .
dy, = Vésnr X, dr + dW., 7 €]0,1], (138)

) T
I(snr+6)—I(snr :—/ mmse(t,snr) dt +o(J). (131 = - ) ]
( )~ I(snn) 2T Jo ( ) o(0). (131) where X, = X,5, and {W/} is a standard Wiener process.

The channel (138) is of (fixed) unit duration but a diminishing

The property that independent Wiener processes sum up ﬁ%ﬂa:]-to-nmsefz ratio 05“5_”r' Its';éqteres“;]g to goteL that th%
Wiener process is essential in the above proof. The incremerlf4ix nere Ip_e; orms a _tlme- transform. By Lemma S,
channel device is very useful in proving integral equatiorﬁ%'e mutual information is

Hence the proof of Theorem 6.

such as in Theorem 6. T (Xtt+5;ytt+5|y0t)
— 7 (f(g;ffol) (139)
D. The Time-Incremental Channel 5 1
snr z z

Note Duncan’s Theorem (Theorem 7) that links the mutual = — / E(X, — EX;)? dr + 0(d) (140)
information and the causal MMSE is also an integral equation, 5 01
although implicit, where the integral is with respect to time = snr/ E{(XHT(; —E{ Xiirs| Yot;snr})Q} dr
on the right hand side of (110). Analogous to the SNR- 2 Jo
incremental channel, one can investigate the mutual informa- 5 +o(6) (141)
o S " : snr
tion increase due to an mfl.nltestmal qddltlonal observatlop _ E{(Xt —E{X,| Yot;snr})Q} +o(d), (142)
time of the channel output using a “time-incremental channel”. 2

This approach leads to a more intuitive proof of Duncanishere (142) is justified by the continuity of the MMSE. The
Theorem than the original one in [15], which relies on intricateelation (132) is then established by (136) and (142), and hence
properties of likelihood ratios and stochastic calculus. the proof of Duncan’s Theorem.

11



Similar to the discussion in Section II-C, the integrainterval of the continuous-time channel output, the SNR of
equations in Theorems 6 and 7 proved by using the SNfRe desired signal against noise is accumulated over time. The
and time-incremental channels are also consequences ofitliegral over time and the integral over SNR are interchange-
mutual information chain rule applied to a Markov chain oéble in this case. This is another example of the “time-SNR”
the channel input and degraded versions of channel outpatansform which appeared in Section IlI-D.

The independent-increment properties of Gaussian processeRegarding the above proof, note that the constant input can
both SNR-wise and time-wise are quintessential in establishibg replaced by a general form of h(¢), where h(t) is a
the results. deterministic signal.

E. A Fifth Proof of Theorem 1 IV. DISCRETETIME GAUSSIAN CHANNELS

A fifth proof of the mutual information and MMSE relationA- Mutual Information and MMSE
in the random variable/vector model can be obtained usingConsider a real-valued discrete-time Gaussian-noise channel
continuous-time results. For simplicity Theorem 1 is proveof the form
using Theorem 7. The proof can be easily modified to show
Theorem 2, using the vector version of Duncan’s Theorem
[15]. where the noisg N;} is a sequence of independent standard
A continuous-time counterpart of the model (3) can b@aussian random variables, independent of the input process
constructed by lettingX; = X for ¢t € [0,1] where X is a {X;}. Let the input statistics be fixed and not dependent on

Y=+snr X; +N;, i=1,2,..., (151)

random variable independent af snr.
dY, — /anr X di + dW,. (143) The finite-horizon version of (151) corresponds to the

vector channel (19) withH being the identity matrix. Let
For everyu € [0,1], Y, is a sufficient statistic of the X" = [Xy,...,X,]T, Y" = [Vi,....Y,]], and N" =
observationYy* for X (and X¥). This is because that the[Ny,...,N,]". The relation (22) between the mutual infor-
process{Y; — (t/u)Y,}, t € [0,u], is independent o (and mation and the MMSE holds due to Theorem 2.

XY). Therefore, the input-output mutual information of the Corollary 3: If > | EX? < oo, then

scalar channel (3) is equal to the mutual information of the

; _ |
continuous-time channel (143): dd [ (X" aFX" 4 N™) — ! Z mmse(i,snr), (152)
snr c
I(snr) = I(X; Y1) =1(Xg;Yy). (144) =1
where

Integrating both sides of (143), one has

Y.=+vsnruX+W,, wue]0,1], (145)
. _ is the noncausal MMSE at timegiven the entire observation
where W,, ~ N(0,u). Note that (145) is a scalar GaussiaR,n

channel with a time-varying SNR which grows linearly from ; js 4150 interesting to consider optimal filtering and pre-

0 to snr. Due to the sufficiency oft,, the MMSE of the jction in this setting. Denote the filtering MMSE as
continuous-time model given the observatidf’, i.e., the

causal MMSE at timeu, is equal to the MMSE of a scalar cmmse(i,snr) = E{(Xi —E{X,] Yi;snr})z}, (154)
Gaussian channel with an SNR o@&nr:

mmse(i,snr) = E {(Xl —E{X;|Y"™; snr})2} (153)

and one-step prediction MMSE as
cmmse(u, snr) = mmse(usnr). (146) - 9
pmmse(i, snr) = E{(XT; —E{X;| Y F;snr}) } . (155)
By Duncan’s Theorem, the mutual information can be written

as Theorem 9:The input-output mutual information satisfies:
snr ! snr -
I(Xg;Yg) = = [ cmmse(u,snr) du  (147) D cmmse(i,snr) < 1(X™Y") (156a)
0 i
_ s [ d 148 o snr
T2 mmse(usnr) du (148) < 5 pmmse(i, snr)(156b)
snr =1
= 1/ mmse(y) d. (149) Proof: We study the increase in the mutual information
2 Jo due to an extra sample of observation by considering a concep-
Thus Theorem 1 follows by also noticing (144). tual time-incremental channel. Sindé&'—X"'—X,;1—Y; 11

Note that for constant input applied to a continuous-timie a Markov chain, the mutual information increase is equal
Gaussian channel, the noncausal MMSE at any #nj&01) to
is equal to the MMSE of a scalar channel with the same SNRJ; (X”l; Yi“) 7 (Xi; Yi) g (Xz'+1; Vi |Yi) (157)
mmse(t, usnr) = mmse(usnr), vt € [0, 7], (150) using an argument similar to the one that leads to (136). This
Together, (146) and (150) yield (111) for constant input bgonditional mutual information can be regarded as the input-
averaging over time:. Indeed, during any observation timeoutput mutual information of the simple scalar channel (3)
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where the input distribution is replaced by the conditional

distribution Py, ,|y+. By Corollary 2, N
, 2 ,

E{var{Xia[Y s} < ST (XY | YY) (158) X — Pyx < Y

< E{var{X,;1|Y"snr}}, (159

< E{var{X;;1] 1, (159) e
or equivalently,
%cmmse(i,snr) <IJ (Xi+1;Yi+1 |Y2) < ﬂpmmse(i,snr). Fig. 6. General additive-noise channel.

(160)
Finally, we obtain the desired bounds in Theorem 9 summing| et X be a random object jointly distributed with a real-
(160) overn and using (157). B  yalued random variableZ. The channel output is expressed
Corollary 3 and Theorem 9 are still valid if all sides argg

normalized byn and we then take the limit of — co. As a Y = \/snrZ + N, (162)

result, the derivative of the mutual information rate (average ) o
mutual information per sample) is equal to half the averagéhere the noiseV ~ A(0,1) is independent ofX’ and Z.
noncausal MMSE per symbol. Also, the mutual informatiohhe preprocessor can be regarded as a channel with arbitrary
rate is sandwiched between half the SNR times the avergggditional probability distribution;| x . SinceX—Z—Y"is
causal and prediction MMSEs per symbol. a Markov chain,
I(X;Y)=1(Z;Y) - I(Z;Y | X). (163)

B. Discrete-time vs. Continuous-time

In previous sections, the mutual information and the e
.t|m;t|t(r)]nd.errorts havg beetn show? to sat::'jsfy similar reIaug e the following:
Ilnd 0 q (]|I§cre f' ?n continuous- m:je rant. om profcess MOO€SThaorem 10:Let X—Z—Y be a Markov chain and” =
ndeed, discrete-time processes and continuous-time proces\%erﬁz 4N If EZ2 < oo, then
are related fundamentally. For example, discrete-time proce'ss
can be regarded a_s the result of integrate-and-dump samplingd I(X:Y) :}E {(Z —E{Z] Y;snr})Q}
of the continuous-time one. dsnr 2

It is straightforward to recover the discrete-time results — EE (Z—E{Z]| Y, X;snr})?}.

using the continuous-time ones by considering an equwalent.l-he special case of this result for vanishing SNR is given

OT the d_iscrete-time r_nodel (151) as a continuous-time one W‘gi'/ Theorem 1 of [4]. As a simple illustration of Theorem 10,
plecewise constant input: consider a scalar channel whexe~ \ (0,0%) and Py x is a
dy; = \/SHXM dt + dW;, te€[0,00). (161) Gaussian channel with noise variance Then straightforward

. L ) . . ) calculations yield
During the time intervali — 1, 4] the input to the continuous-

time model is equal to the random variable. The samples I(X;Y) = llog (1 snro%; ) (165)
of {Y;} at natural numbers are sufficient statistics for the ’ 2 1+4snro2)’

input process{X,,}. Thus, Corollary 3 follows directly from the derivative of which is equal to half the difference of the
Theorem 6. Analogously, Duncan’s Theorem can be usedtgy MMSEs:

prove Theorem 9 [31]. 1 { o2 + o2 o2
: |

Note that given(X, Z7), the channel output” is Gaussian.
o applications of Theorem 1 to the right hand side of (163)

(164)

Conversely, for sufficiently smooth input processes, the -
continuous-time results (Theorem 6 and Duncan’s Theorem) 2
can be derived from the discrete-time ones (Corollary 3 andin the special case where the preprocessor is a deterministic
Theorem 9). This can be accomplished by sampling tlienction of the input, e.gZ = g(X) whereg(-) is an arbitrary
continuous-time channel outputs and taking the limit of atleterministic mapping, the second term on the right hand
sides of (156) with vanishing sampling interval. Howeveside of (164) vanishes. If, furthermore(-) is a one-to-one
in their full generality, the continuous-time results are ndtansformation, thed(X;Y) = I(¢(X);Y), and
a simple extension of the discrete-time ones. A complete
analysis of the continuous-time model involves stochastic ~———I(X;+/snrg(X)+ N)

calculus as developed in Section IlI. dsnr L i
= §E {(Q(X) —E{g(X)]| Y;snr}) } )

N i Hence (15) holds verbatim where the MMSE in this case is
A. General Additive-noise Channel defined as the minimum error in estimatingX). Indeed, the
Consider a general setting where the input is preprocessedtor channel in Theorem 2 is merely a special case of the
arbitrarily before contamination by additive Gaussian noiseector version of this general result.
The scalar channel setting as depicted in Figure 6 is firstOne of the many scenarios in which the general result can be
considered for simplicity. useful is the intersymbol interference channel. The irguto

— 166
1+snr(o% +02) 1+snro? (166)

(167)

V. GENERALIZATIONS
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the Gaussian channel is the desired sym¥ptorrupted by a and consequently the transmitted signal itself. We give two
function of the previous symbolsX;_;, X;_»,...). Theorem examples to show that in general the derivative of the mutual
10 can possibly be used to calculate (or bound) the mutuaformation with respect to the SNR has no direct connection
information given a certain input distribution. Another domaito the noncausal MMSE, and, in particular,

of applications of Theorem 10 is the case of fading channels

T
known or unknown at the receiver, e.g., the channel ifpat ~ ——1 (X; V() ;él/ E{(Z (t, Yy, X)
AX where A is the multiplicative fading coefficient. dsnr 2Jo (172)
Using similar arguments as in the above, nothing prevents —E{Z(t.Yy,X) | Y(]T;snr})Q} dt.
us from generalizing Theorem 6 to a much broader family of

Having access to feedback allows the transmitter to deter-
dy, — 7. dt + dW 16g) Mine the SNR as Qccurate as _des_lred by transmitting known
e= s Zydi+ div, (168) signals and observing the realization of the output for long
where {Z,} is a random process jointly distributed witki, enough® Once the SNR is known, one can choose a patho-
and {IW;} is a Wiener process independentXfand{Z;}.  logical signaling:

Theorem 11:As long as the inpuf Z; } to the channel (168)

models:

has finite average power, Z(8,Y5, X) = X/ /snr. (173)
d 1 /T ) Clearly the output of channel (170) remains the same re-
I(X;Yy) = / E{(Zt —E{Z| Y ;snr}) } gardless of the SNR. Hence the mutual information has zero
dsnr 2T Jo derivative, while the MMSE is nonzero. In fact, one can choose
- E {(Zt —E{Z| YOT,X;snr})Q} dt. to encode the SNR in the channel input in such a way that

(169) the derivative of the mutual information is arbitrary (e.g.,
In caseZ; = g;(X), whereg(-) is an arbitrary deterministic negative).
one-to-one time_varying mapping’ Theorems 6-8 hold Verba-The same conclusion can be drawn from an alternative
tim except that the finite-power requirement now applies ¥€wpoint by noting that feedback can help to achieve essen-
¢:(X), and the MMSEs in this case refer to the minimurfially symbol error-free communication at channel capacity
errors in estimatingy (X). by using a signaling specially tailored for the SNR, e.g.,
capacity-achieving error-control codes. More interesting is the
. variable-duration modulation scheme of Turin [58] for the
B. Gaussian Channels With Feedback infinite-bandwidth continuous-time Gaussian channel, where
Duncan’s Theorem (Theorem 7) can be generalized to tffe capacity-achieving input is an explicit deterministic func-
continuous-time additive white Gaussian noise channel wifian of the message and the feedback. From this scheme, we
feedback [17]: can derive a suboptimal noncausal estimator of the channel
_ t input by appending the encoder at the output of the decoder.
dv = Vsnr Z (1,Yg, X) di + dWW, £ €[0,T], (170) Since arbitrarily low block error rate can be achieved by the
where X is any random message (including a random processding scheme of [58] and the channel input has bounded
indexed byt) and the channel inpufZ;} is dependent on power, the smoothing MMSE achieved by the suboptimal
the message and past output only. The input-output mutuaincausal estimator can be made as small as desired. On the
information of this channel with feedback can be expressedater hand, achieving channel capacity requires that the mutual
the time-average of the optimal filtering mean-square errorinformation be nonnegligible.
Theorem 12 (Kadota, Zakai and Ziv [17])f the power of Note that a fundamental proviso for our mutual information-

the input{Z;} to the channel (170) is finite, then MMSE relationship is that the input distribution not be allowed
T to depend on SNR. However, in general, feedback removes
Ty  Snr ¢ e
I(X;Y9) :7/ E{(Z (t, Y], X) such restrictions.
2 Jo ) (171)
—E{Z(t,Y§,X)| Y§; snr}g } dt. C. Generalization to Vector Models
Theorem 12 is proved by showing that Duncan’s proof of Just as Theorem 1 obtained under a scalar model has its

Theorem 7 remains essentially intact as long as the changelinterpart (Theorem 2) under a vector model, all the results in
input at any time is independent of the future noise proceSgctions Il and IV can be generalized to vector models, under
[17]. A new proof can be conceived by considering the timeither discrete- or the continuous-time setting. For example,
incremental channel, for which (136) holds literally. Naturallythe vector continuous-time model takes the form of

the counterpart of the discrete-time result (Theorem 9) in the

presence of feedback is also feasible. dY', = Vsnr X di + W, (174)

One is tempted to also generalize the relationship betweghere{W} is anm-dimensional Wiener process, afX; }

the mutual information and smoothing error (Theorem 6) tand {Y';} are m-dimensional random processes. Theorem 6
channels with feedback. Unfortunately, it is not possible to

- ) - 9 . . . . .
construct a meaninaful SNR-incremental channel like (123) jn The same technique applles_ to discrete-time channels with feedback. If
9 ( )llns ead the received signal is in the form ofid= Z:(t,Y{, X)dt +

this Case’_smce ghanging the SNR aﬁe.Cts not only the amo‘ﬂp \/snr) diW;, then the SNR can also be determined by computing the
of Gaussian noise, but also the statistics of the feedbagkadratic variation of; during an arbitrarily small interval.
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holds literally, while the mutual information rate, estimation It is interesting to note that the integral on the right hand

errors, and power are now defined with respect to the vecgde of (176) is not dependent on the choicey0f, which is

signals and their Euclidean norms. In fact, Duncan’s Theoremt evident from estimation-theoretic properties alone.

was originally given in vector form [15]. It should be noted The “non-Gaussianness” of a random variable (divergence

that the incremental-channel devices are directly applicablelietween its distribution and a Gaussian distribution with the

the vector models. same mean and variance) and, thus, the differential entropy
In view of the above generalizations, the discrete- arwhn also be written in terms of MMSE. To that end, we need

continuous-time results in Sections V-A and V-B also exterttie following auxiliary result.

straightforwardly to vector models. Lemma 7:Let X be any real-valued random variable and
Furthermore, colored additive Gaussian noise can be treafétlbe Gaussian with the same mean and varianc¥ ase.,

by first filtering the observation to whiten the noise and recovef’ ~ NV (EX, 0% ). LetY andY” be the output of the channel

the canonical model of the form (162). (3) with X and X’ as the input respectively. Then

b. Compl wed Channel D (Px|[|Px:) = _lim D(Py|Py). (177)
- Lomplex-value annels Proof: By monotone convergence and the fact that data
The results in the discrete-time regime (Theorems 1-5 apgbcessing reduces divergence. m

Corollaries 1-3) hold verbatim for complex-valued channgiote that in case the divergence betweBg and P is
and signaling if the noise samples are i.i.d. circularly symmekfinity, the divergence betweeR, and Py also increases
ric complex Gaussian, whose real and imaginary compone@ighout bound. Since

have unit variance. In particular, the factor of 1/2 in (15),

(22), (152) and (156) remains intact. However, with the more D(Py|Py)=1(X"Y") - I(X;Y), (178)
common definition ofnr in complex-valued channels where

the complex noise has real and imaginary components WFH? following result is straightforward by Theorem 1.

. H i 2
variance 1/2 each, the factor of 1/2 in the formulas disappears] "€orem 14:For every random variabl& with o < oo,

The above principle holds also under continuous-time mol® non-Gaussianness is given by

els as long as the complex-valued Wiener process is appropri- Dx =D (PXHN(EX a§<)) (179)

ately defined. This is straightforward by noting that in general 1 52 '

complex-valued models can be regarded as two independent :7/% — mmse (X\\/sanJrN) dsnr(180)
0 snroy

uses of the real-valued ones (with possibly correlated inplﬁséte that2

in the two uses). the integrand in (179) is always positive since for

the same variance, Gaussian inputs maximize the MMSE.

Also, Theorem 14 holds even if the divergence is infinity, for

VI. NEW REPRESENTATION OFINFORMATION MEASURES  example in the case thaf is a discrete random variable. In
The relationship between mutual information and MMSHght of Theorem 14, the differential entropy of can be

enables other information measures such as entropy and&fpressed as:

vergence to be expressed as a function of MMSE as well.

Consider a discrete random variabl. Assume N ~ h(X)Z%IOg (2meo%) — Dx (181)
N (0, 1) independent of the input throughout this section. The 1 )
mutual information betweeX and its observation through a =§1Og (277@ UX)
Gaussian channel converges to the entropyoés the SNR 1 [ 42
of the channel goes to infinity. —3 /17)(2 — mmse (X|/snrX+N) dsnr(182)
. . . ol +snrox
Lemma 6:For every discrete real-valued random variable
X, According to (179);yx = e~ Px is a parameter that measures
H(X)= lim I(X;vsnrX+N). (175) the difficulty of estimatingX when observed in Gaussian
Proof: See Appendix VII. m nhoise across the full range of SNRs. Note that vx < 1

Note that if H(X) is infinity then the mutual information in With the upper bound attained whe¥ is Gaussian, and the
(175) also increases without boundsas — cc. Moreover, the lower bound attained wheR is discrete. Adding independent
result holds ifX is Subject to an arbitrary one-to-one mappin@ndom variables results in a random variable that is harder to
g(-) before going through the channel. In view of (167) an@Stimate in the sense of the following inequality:

(175), the following theorem is immediate.

- ) . 2 _ 2 < 2
Theorem 13:For any discrete random variabl€ taking o, T (1= )7, < Vx4x (183)
values inA, the entropy ofX is given by (in nats) where X; and X, are independent random variables anés
H(X) the ratio of the variance aX; to the sum of the variances of

X, and X,. Of course, (183) is nothing but Shannon’s entropy

:1/ E{(g(X) —E{g(X)| Vsnrg(X) + N})2} dsnr  power inequality [25]. It would be interesting to see if (183)
2 Jo (176) can be proven from estimation-theoretic principles.
Another observation is that Theorem 10 provides a new
for any one-to-one mapping: A — R. means of representing the mutual information between an
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arbitrary random variabl&” and a real-valued random variable APPENDIXI

7z VERIFICATION OF (15): BINARY INPUT
1 [ ) Proof: From (17) and (18), it can be checked that
1(X; 2) :7/ E{(E{Z] vanrZ + N, x})
2 Jo (184) d
— (E{z| VanrZ+ N})*} denr. 25 —I(snr) — mmse(snr)
= 1—/ ! e—éyz<1— i >
An arbitrary discrete valued can be handled as in Theorem —oo V2 vsnr
13 by means of an adequate one-to-one mapping. x tanh (snr — v/snry) dy (185)
The above results can be generalized to continuous-time - 11— 1 / 1 e~ 3 (z—v/5nn)?
models and vector channels. It is remarkable that the entropy, snrJ_oo V27
differential entropy, divergence and mutual information in xztanh (v/snrz) dz, (186)

fairly general settings admit expressions in pure estimation-
theoretic quantities. It remains to be seen whether such repsgere from (185) to (186)\/snr — y is replaced byz.
sentations lead to new insights and applications. The integral in (186) can be regarded as the expectation of
Ztanh (y/snrZ) where Z ~ N(y/snr,1). The expectation
remains the same if is replaced byZ’ ~ N (—+/snr, 1) due
to symmetry. Hence the integral can be rewritten by averaging
VII. CONCLUSION over the two cases as:

1 [ 1 2 1 2 dz

— = (z—+/snr — 5 (z++/snr —

This paper reveals that the input-output mutual information /_Oo [e 2(EmVET ez eV } ztanh (V/snr z) N
and the (noncausal) MMSE in estimating the input given

the output determine each other by a simple formula under= f/ [e’%(z*\/smz - 67%(”@)1 zi (187)
both discrete- and continuous-time, scalar and vector Gaussian - Vor
channel models. A consequence of this relationship is the= —(EZ - EZ’) (188)
coupling of the MMSEs achievable by smoothing and filtering

with arbitrary signals corrupted by Gaussian noise. Moreover,— Vsnr. (189)
new expressions in terms of MMSE are found for information )

measures such as entropy and divergence. Therefore, (186) vanishes by (189), and (15) holds. =

The idea of incremental channels is the underlying basis
for the most streamlined proof of the main results and for
their interpretation. The white Gaussian nature of the noise
is key to this approach: 1) The sum of independent Gaussian
variates is Gaussian; and 2) the Wiener process has indepen-
dent increments. In fact, the relationship between the mutt*g,
information and the noncausal estimation error holds in even
more general settings of Gaussian channels. In a follow-up
to this work, Zakai has recently extended formula (1) to the

abstract Wiener space [44], which generalizes the classical , 9 i
dimensional Wiener process. whereY’ ~ N (EY, 0% ). Let the variance ofZ be denoted

v. The first term on the right hand side of (190) is equal
a divergence between two Gaussian distributions, which is
und as

APPENDIXII
PROOF OFLEMMA 1

Proof: By (64), the mutual information admits the
lowing decomposition:

I(Y;Z) =D (Pyz|Pv'|Pz) =D (Py|Py),  (190)

The incremental-channel technique in this paper is relevqbgvt
for an entire family of channels the noise of which h
independent increments, i.e., that is characterized byyL 1 s
processes [59]. A particular interesting case, which is reported ~log(1+ dv) = — + o(9) (191)
in [60], is the Poisson channel, where the corresponding 2 2
mutual information-estimation error relationship involves By using the general formula:
error measure quite different from mean-square error.

Applications of the relationships revealed in this paper areD (N (mq,07) [N (mo, 03))

abundant. In addition to the application in [30] to multiuser 1. o2 1 ((mi—mo)? 2 (192)
channels, [38] shows applications to key results in EXIT charts = 5 log 52 + 5 (02 + i 1) loge.
1 0 0

for the analysis of sparse-graph codes. Other applications
as well as counterparts to non-Gaussian channels will he&;ffices then to show that
published in the near future. In all, the relations shown in this
paper illuminate intimate connections between information
theory and estimation theory.

D (Py||Py/) =E {log ﬁ:(g/)) } = 0(4), (193)
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which is straightforward to check by plugging in the densitwhere (203) follows by integrating by parts. Noting that the

functions: fraction in (204) is exactly the conditional mean estimate
py(v) (et 88))
Py (y) d 1
——I(snr) = ——EJE{X | Y;snr}
_ log[ 1 E{exp{ ( \[Z) }H dsnr 2,/snr {
v2n x [V = onrE{X| Y;snr}]} (205)
1 (y —EY)?
—log l exp [— (194) (XY . 2
2r(0v + 1) 2(6v + 1) =3 E NG (E{X | Y;snr})” 7 (206)
(y—VOoEZ)? 1 ) 1 2
= T T (y— = -EJ(X -E{X]|Y; 207
1ogE{exp R URACE % {(Xx—E{x v} @07)
1 = — .
+§ log(1 + 0v) (195) 5 mmse(snr) (208)
[ |
= log E{l +Voy(Z —EZ) + g(yQ(Z —EZ)? — vy?
1 APPENDIX IV
2 2
-Z°+(EZ)?) + 0(5)} +5 log(1 + 6v) (196) PROOE OFTHEOREM 2
— log (1 3 5@) n llog(l +60) + 0(6) (197)  Proof: It suffices to prove the theorem assumibg= I
2 2 since one can always regadd X as the input. The vector
= 0(9). (198) channel (19) has a Gaussian conditional density (20). The

unconditional density of the channel output is given by (55),

The limit and the 2expectation can be exchanged to obtqif;-p, is strictly positive for ally. The mutual information can
(197) as long a& 7 < oo due to the Lebesgue Convergenc%e written as (cf. (89))
. .

Theorem.
It is interesting to note that the proof relies on the fact that (

L
. SR ; =— —log(2
the divergence between the output distributions of a Gaussian nr) 2 0g(2me)

. . S . . . 209
channel under different input distributions is sublinear in the _ /p (3 501) 10g py-anr (313 517 dy (209)
SNR when the noise dominates. Visned Yisnrl '
Hence,
APPENDIX I
d
A FOURTH PROOF OFTHEOREM 1 . I(snr) = — / [log Py ssnr (33 snr) + 1]
Proof: For simplicity, it is assumed that the order snr
qf expectation. and derivative can bg exchanged freely. A Xdistm(y;snr) dy (210)
rigorous proof is relegated to Appendix IV where every such snr
assumption is validatgd in the. more general vector model. N / [log Py .snr (y; snr) + 1]
Let ¢;(y;snr) be defined as in (87). It can be checked that g
for all 2, xE{ S Py e (91X snr)} dy{(211)

d
——ai(y;snr) . . .
dsnr where the derivative penetrates the integral in (210) by the

Lebesgue Convergence Theorem, and the order of taking the
derivative and expectation in (211) can be exchanged by
1 d ) (200) Lemma 8, which is shown below in this Appendix. It can

5 /anr dy L1 (isnn)- be checked that (cf. (199) and (200))

The derivative of the mutual information, expressed as (89), d
can be obtained as

1 1
= ENCT: Y qi1(y;snr) — 3 qiv2(y;snr)  (199)

pY|X snr(y|m snr)

dsnr
d
dsnrI(snr) = 2\/sT acT(y—\/snrx) Py | X;snr(Y| 25 s0r) (212)
d
= —/[logqo(y;snr)+1] dsnrQo(y§5”r) dy (201) = 2\/57 TV Dy | x snr (Y23 501). (213)

= ;/10 ( 'snr)i (y;snr)d (202) Using (213), th ht hand side of (211 b i
NG g qo(Y; dyql Y; Y sing (213), the right hand side of (211) can be written as

q1(y;snr) d 1 T/
= 2 ——EJ{ X 1 snr (Y5 1
2\/57/(]0 (g 5n1) dyqo(y,snr)dy (203) NG { [log pyisnr (y; snr) + 1] o1
— q1(y;snr)
= 2\/snir/q1(y;snr) |:y_ snr qo(y;snr) dyv(204) X VpY|X;snr(y|)(;Snr) dy}
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The integral in (214) can be carried out by parts to obtain Then (226) holds by the Lebesgue Convergence Theorem since

—/pmx;sm(yIX;snr)V[logpy;sm(y;snr)+1] dy,
(215)
since for allx, as||y|| — oo,

pY|X;snr(y|m; Snr) UngY;snr(y; snr) + 1] — 0. (216)

Hence, the expectation in (214) can be further evaluated as

snr(Y| X ;8N
pY;snr(ya Snr)
(217)

where we have changed the order of the expectation Wm‘e
respect taX and the integral (i.e., expectation with respect to
Y). By (213) and Lemma 9 (shown below in this Appendix),

(217) can be written as

/E{XT‘ Y :y;Snr}
X E{(y o \/SnirX) pY\X;snr(y‘X;snr)} dy.
Therefore, (211) can be rewritten as

(218)

d
dnr I(snr)

__ 1 Ty — o
72ﬁ/E{X ‘ny,snr}
xE{y — \/san|Y = y; Snr}pyene (Y5 snr) dy(219)
Y

—E {E{XT|Y;snr}E{2m - ;X’Y;snr}}(ZZO)

1 1
e - e vt e
1 2
_§E{||X—E{X|Y,snr}|| } (222)
Hence the proof of Theorem 2. ]

The following two lemmas were needed to justify the

exchange of derivatives and expectation with respeétaoin
the above proof.
Lemma 8:1f E||X]|]? < oo, then

d

dSan {pY\X;snr(y‘X; Snr)}

d (223)
- E{ dsnerX;snr(’yX;snr)} )
Proof: Let
1
fs(x,y,snr) zg[pY\X;snr(y\X;Snr+5) 24
— Py|x:snr (Y] X 07)]
and ;

f(sc,y,snr) = EPYIX;snr(yLT;Snr), (225)

Then,Vx,y,snr, fs(x,y,snr) — f(x,y,snr) asd — 0.
Lemma 8 is equivalent to

;ig(l)/fg(m,y,snr)PX(dm) = /f(ac,y,snr)PX(da;).
(226)

Suppose we can show that for everye, y andsnr,

1

snr

| fs (@, y,snr)| < ||loo||* + ly'x|. (227)

18

the right hand side of (227) is integrable with respect’tg
by the assumption in the lemma. Note that

fo(e.y.sm) ~(2m) ¢ 5 (o0 [~y - Vo 5l
—exp 31y~ vanral?]).

(228)
If
Ll + —=ly"a (229)
o~ Vsnr vzl
n (227) holds trivially. Otherwise,
‘f5(w7yasnr)|
1 1
<5|exp {2|y —Venrz|?
) -

—5lly = Vsnr+dz|?| —1 (230)

<% [exp ‘5||a:|\2 - (m—@)y%( - 1}(231)

1 , 1 4
<2§ [exp {5 <||m|| + \/ﬁ|y a:|) - 1_ )
The inequality (227) holds for alt, y, snr due to the fact that

(232)

el —1<2t, VO<t<l. (233)
[ |
Lemma 9:If EX exists, then fori =1,..., L,
0
87E {pY\X;snr(Y|X;Snr)}
vi (234)

0
= E{aypy|x;sm(Y|X;snr) .
Proof: The proof is similar to that for Lemma 8. Let

1
95(217, Y, Snr) =3 [pY\X;snr(y +6 ei|X; snr)

5 (235)

- pY\X',snr(y|X; Snr)]

wheree; is a vector with all zero except on ti€ entry, which
is 1. ThenVx,y,snr,

. 0
gli]%gg(w,yﬁnr) = @PY|X;snr(y|w;5nr)~ (236)
We show that
lgs (2, y,snr)| < |y;| + 1+ v/snr |z, (237)

so that (234) holds by the Lebesgue Convergence Theorem
(cf. (226)). Note that

gs(@vysnn) =(2m) 4§ (exp [~ Sy + e — vl
1
— exp [—2||y - \/snrcc||2} )
(238)
i
T I I ey (239)
6 - yZ \/Snil’ 119



then (237) holds trivially. Otherwise, APPENDIX VI
PROOF OFLEMMA 5

95 (2, y, snr)| Lemma 5 can be regarded as a consequence of Duncan’s
1 (exp lHy — Venrz||? Theorem. The mutual information can be expressed as a time-
26 2 integral of the causal MMSE:
1
Ly +se - vanr —1) (240) 5 (7 )
2 I(Z5:Y)) = 5/0 E(Z—E{Z|Yy;6}) dt, (251)
1 ]
Y <eXp 2 (2y; +0 = 2/5nra;) | — 1) + (24D a5 the SNRY — 0, the observatiofy;| becomes inconsequen-
tial in estimating the input signal. Indeed, the causal MMSE
and (237) holds by (233). B estimate converges to the unconditional mean in mean-square
sense:
APPENDIXV E{Z:|Y(;0} — EZ. (252)

VERIFICATION OF (111): RANDOM TELEGRAPHINPUT Putting (251) and (252) together proves Lemma 5.

Let ¢ = — 22 and define In parallel with the proof of Lemma 1, another reasoning
snr of Lemma 5 from first principles without invoking Duncan’s
Theorem is presented in the following. In fact, Lemma 5 is
established first in this way so that a more intuitive proof of
Duncan’s Theorem is given in Section IlI-D using the idea of
time-incremental channels.
Proof: [Lemma 5] By definition (98), the mutual informa-

£ 5) = /100 b (u— 1) 3 e du. (242)

It can be checked that

q fl.g) = f+2,5) = fi.5+2), (243) tion is the expectation of the logarithm of the Radon-Nikodym
dig (i,7) = [f(i+2,7), (244) derivative (99), which can be obtained by the chain rule as
-1
o T, N T duy z duyz ( duy )
_ - Zf(i— s — o = = . 253
EF) = Li-2i)+dfG0-2). (@49 Gz e (S @53)

where verifying (245) entails integration by parts. Then (113) First assume tha{Z;} is a bounded uniformly stepwise
can be rewritten as process, i.e., there exists a finite subdivision|@fT], 0 =
to <t <---<t, =T, and a finite constant/ such that

cmmse(snr) = f(—1,—-1)/f(1,—-1 (246)
( ) ( )/ ( ) Zt(w) = Zti(w)7 te [ti7ti+l)> i=0,...,n—1, (254)
and hence and Z,(w) < M, YVt € [0,T]. Let Z = [Zu,....Z0.],
d _ Y = [Yy,..., Y], and W = [W,,,..., W, ] be (n +
dsnr[snr'cmmse(sm)] = [/(=1, =010, -1 (247) 1)-dimensional vectors formed by the samples of the ran-
— &L, -1+ EF(-1, 1) F(3,-1)] /£2(1, -1). dom processes. Then, the input-output conditional density is

Gaussian:
With the change of variables= (1 — 2?)~! andu = (1 —

y?)~1, (114) can also be rewritten:

Py|z ylz H \/71:)
i=0 z+1 -

mmse(snr) = f~2(1, -1

~—

2 255
et+w)é L (248) y1+1 Yi — V6 zi(tip1 — tq)) (255)
/ / t2 5(t—1)75(u—1)77 dt du. X exp
tru—1' 2ti1 — 1)
The denominator in (248) prevents the double integral froEn ily
being separated. This can be circumvented by taking derivat asty
with respect taf. Noting that pyz(b,z)  py|z(blz) (256)
d pwz(b,z)  pw(b)
et & [e_5f2(17 —1) mmse(snr)] = f2(1,-1), (249) n—1 57t
f =exp [ﬁ Z Zi(bi+1 7b1) - 5 Z Z? (ti—&-l tl)](257)
the identity (111) is equivalent to i=0 i=0

Thus the Radon-Nikodym derivative can be established as

d. _
et Gl UL =D - — g2 -

(250) duy 2 V5 /T B /T )
— = 0 Zy dWy — — Z; dt 258
(L -DFG.-1)] = (1 -1) duwy O[O, AWy | Ad) o (298)
since both sides of (111) tend to 0 @&s—~ —oco. With the help using the finite-dimensional likelihood ratios (257). It is clear

of (243)—(245), verifying (250) is a matter of algebra. that iy 7z < pw z.
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For the case of a general finite-power process (not ne@ences of &, by dV; = /06 Z; + diW;:
essarily bounded)Z,;}, a sequence of bounded uniformly
stepwise processes which converge to {fig} in L?(dtdP) & = 1+ \/5/ Zy — EZ, dY;
can be obtained. The Radon-Nikodym derivative (258) of the 0

- T 2
sequence of processes also converges. Absolute continuity +5 [(/ 7 _EZ dY)
a t t t
0

is preserved. Therefore, (258) holds for all such processes 2
{Z}.1° T 2
The derivative (258) can be rewritten as —E,, ( / Z; — EZ, dYt>
0
T
vz _ V5 / Z, dW, — / Z2 —EZ? dt| + o(6) (264)
duw z 0
T 2 T (259) T
§ = Vo | Z,—EZ, dw,
+3 Z dw, ) — [ Z2dt| + o(9). L+ A ¢ AWy
0 0 5 T 5
+= (/ Z, —EZ, th)
By the independence of the procesq@8;} and {Z;}, the 2 0
measureuy z = pw tz. Thus integrating on the measuyig T 2 T
gives E.. (/ Z; —EZ; th> +/ (Z; — EZy)? dt
0 0
T T
duy _ 1+\/5/ EZ, dWW, +/ E(Z, — EZ,)? dt| + o(0) (265)
duw 0 0
5 T 2 T (260) T _
+5 EHZ</ thwt) —/ EZ? dt| + o(d). =1+\/5/0 Z, AW
0 0 5 T ) 9 T i 9
([ zan) e ([ zam)
Using (259), (260) and the chain rule (253), the Radon- 2 0 0

Nikodym derivatived® exists and is given by
+ 0(9) (266)

T T
+/ Zfdt+/ EZ? dt
T 2 0 0
(/0 Zy th> where Z, = Z, — EZ,. Hence
T T T " i
_/ ZtQ dt—2/ EZ, th/ Z, — EZ, dW, log ®’ \[/ Zt div; + uz(/o Zy th)
0 0 0

T
o = 1+\/3/ thEthWt+g
0

. ) . . (267)
—E,., ( / Z th> + / EZ? dt| + o(5) (261) + / Z% dt + / EZ? dt| + o(9).
0 0 0 0
T Therefore, the mutual information is
= 1+\/5/ Zy — EZ; AW,
0 E log ®’
s ? 5T T, ’
t3 /0 Zy — BZ, dW; =3 [2/ EZ?dt — E(/ Z th> + 0(5)(268)
0 0
T 2 5 T T
—E., (/0 Zy —EZ, th> =3 [2/ EZ2 dt —/ EZ2 dt| + o(6) (269)
0 0
T
2 2 T
- 7z a) o) (262) = 5 [ Ez2 o0, (270)
0
and the lemma is proved. ]
Note that the mutual information is an expectation with respect
to the measurey 7. It can be written as APPENDIX VII
PROOF OFLEMMA 6
[(20:Y]) = /logé’ Ay 2 (263) Proof: LetY = \/snrg(X)+ N. Since
0< H(X) - I(X;Y) = H(X|Y), (271)

where ®’ is obtained from® (262) by substituting all occur- it suffices to show that the uncertainty abolit given Y’
vanishes asnr — oo:

10A shortcut to the proof of (258) is by the Girsanov Theorem [47]. lim H(X|Y) =0. (272)

snr—oo
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Assume first thatX takes a finite numbern{ < oo) of
distinct values. Givert, let X be the decision forX that
achieves the minimum probability of error, which is denoted!!

H(X|Y) < H(X|X) < p log(m

— 1)+ Ha(p), (273)

[3]
where Hy(-) stands for the binary entropy function, and thepy
second inequality is due to Fano [29]. Singe» 0 assnr —

0, the right hand side of (273) vanishes and (272) is proved®
In case X takes a countable number of values and thaj;
H(X) < oo, for every natural numbefn, let U,, be an
indicator which takes the value of 1 X takes one of then
most likely values and O otherwise. Léf,, be the function
of Y which minimizesP {X #+ )?,,,L|Um = 1}. Then for every

m,

(7]

(8]

El

H(X|Y)

< H(X|Xn) (274) 1

= H(X,Un|X.) ) @75) .,

= H(X|Xpm,Un)+ HUpn|X,) (276)

< P{Up = 1JH(X|X,, Up = 1) [12]
+P{U,, = 0YH(X| X, U = 0) + H(U,,)(277)

< P{U, = 1}H(X|Xp,Up = 1) [13]
+P{Unm = 0}H(X) + Hy(P{Um = 0}).  (278) 14

The conditional probability of erroP {X 4 Xon|Up = (15]

vanishes asnr — oo and so doesH (X |X,,,U, = 1) by
Fano’s inequality. Therefore, for every,

(16]
(17]

snr—oo

)+ Ho(P{U,, = 0}).
(279)
The limit in (279) must be 0 sinc®{U,, = 0} — 0 as
m — oo. Thus (272) is also proved in this case.
In caseH (X) = oo, H(X|U,, =1) — oo asm — oo. For
every m, the mutual information (expressed in the form of a
divergence) converges:

(18]

(19]

[21]
H(X|U, =1).
(280) [22]
Therefore, the mutual information increases without bound as
snr — oo by also noticing

lim D (Pyx.u,,=1Pyv,.=1|Px |, =1) =

snr—oo

[23]
I(X;Y) "
> 1(X; Y |U) (281)
>P{Usn = 13D (Py|x.0,,=1Py v, =1 Px|v,,=1(282) 25

We have thus proved (175) in all cases. 26
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