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CHAPTER 1

GENERIC MULTIUSER DETECTION
AND
STATISTICAL PHYSICS

DONGNING GUO (NORTHWESTERN UNIVERSITY)
AND
TOSHIYUKI TANAKA (KYOTO UNIVERSITY)

This chapter presents a tutorial of the general framework for the analysis and design of
large multiuser systems using statistical physics techniques. For that purpose, multiuser
signal detection is first cast as a general problem of Bayesian inference. In particular,
generic suboptimal detection is regarded as “optimal” detection for some (probably
mismatched) postulated system model. The large-system performance of a broad family
of generic detectors is then obtained using the replica method, a powerful tool developed
in statistical physics. The central result is a single-user characterization of the multiuser
systems, which we call the decoupling principle: The virtual subchannel between the
input symbol and the detection output for each individual user in the multiuser system
is essentially equivalent to a single-user Gaussian channel, where the aggregate effect of
the multiaccess interference from all other users is tantamount to a degradation in the
signal-to-noise ratio. This degradation, known as the multiuser efficiency, can be found
by solving a fixed-point equation. The error probability and spectral efficiency of the
multiuser system are thus obtained. The decoupling principle applies to well-known
linear detectors including the single-user matched filter, decorrelator, linear MMSE
detector, linear interference cancelers, as well as nonlinear ones such as the jointly and
individually optimal detectors. Relationships to practical detection schemes using belief
propagation are also discussed. For simplicity, the analysis is limited to synchronous
systems with additive Gaussian noise.

To be published in Advances in Multiuser Detection. By Michael L. Honig (Ed.)
ISBN ??? c©2008 John Wiley & Sons, Inc.
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1.1 INTRODUCTION

Fuelled by the advent and rapid development of cellular telephony, the problem
of multiuser signal detection (or separation) has received great attention since the
mid-1980s as one of the major avenues towards optimal error performance and
spectrum usage in wireless communications. This chapter introduces the concept
of generic multiuser detection and summarizes some recent advances in the analysis
and design of generic detectors using statistical physics techniques.

1.1.1 Generic Multiuser Detection

Consider a multidimensional communication system in which each user randomly
generates a “signature vector” and modulates its own (usually error-control coded)
symbols onto the signature for transmission. The received signal is the superposi-
tion of all users’ signals corrupted by Gaussian noise. With knowledge of all signa-
ture vectors, the goal of a multiuser receiver is to reliably recover the information
intended for all or a subset of the users. The multiuser channel, best described by a
vector model, is very versatile and is widely used in applications that include code-
division multiple access (CDMA) as well as certain multiple-input multiple-output
(MIMO) systems.

The maximum information rate through a multiuser channel is achieved by
jointly optimal decoding, which is prohibitively complex for all but a small user
population and codeword length. Hence the tasks of untangling the mutually inter-
fering streams and exploiting the redundancy in the error-control codes are often
separated. Oftentimes, the multiuser detector plays the role of a front end, which
provides individual stream of (hard or soft) decision statistics to independent single-
user decoders.

The simplest meaningful detector ignores the presence of multiaccess interference
(MAI) and carries out single-user matched filtering (SUMF), whose error perfor-
mance is generally very poor. The best probability of error of an uncoded system
is achieved by solving a hypothesis testing problem with an exponential number of
hypotheses in the number of interfering users [1,2], which is in general NP-hard [3].
Optimal error performance in asynchronous channels is achieved by more involved
sequence detection [4]. A large gap has been demonstrated between the probabil-
ity of error of the näıve SUMF and that of individually optimal (IO) and jointly
optimal (JO) detection. In order to explore the trade-offs between performance
and computational complexity, numerous suboptimal detection schemes have been
proposed, such as the decorrelator, linear minimum mean-square error (LMMSE)
detector, and various interference cancelers.

All of the aforementioned detectors can be derived as some form of optimal
detection with heuristic (but untrue) assumptions based on conventional wisdom
and practical considerations. For example, the SUMF is optimal assuming the MAI
to be Gaussian or absent; the decorrelator provides optimal detection assuming
that there is no background noise; and the LMMSE detector maximizes the output
signal-to-interference-and-noise ratio (SINR) assuming a Gaussian input. With
the exception of decorrelating receivers, the multiuser detector outputs are still
contaminated by MAI.

The viewpoint taken in this chapter is that, in general, every suboptimal de-
tector can be regarded as computing an “optimally” detected output given some
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“mismatched” system model. This perspective has its origin in the general the-
ory of statistical inference or learning, where a “student” may adopt a probability
model that is different from that of the “teacher” (see e.g., [5], for a discussion of
such cases). In particular, the so-called generic multiuser detector computes the
posterior mean of the transmitted symbols given the observation based on a pos-
tulated probability law of the system. More on this viewpoint will be discussed in
Section 1.2.

1.1.2 Single-user Characterization of Multiuser Systems

Using techniques and methodologies originating in statistical physics, two funda-
mental questions about multiuser systems and generic detection are addressed in
this chapter: 1) Given a multiuser detector, how to characterize the (single-user)
subchannel between the input and output of each user? 2) Given a multiuser
system, what are the achievable information rates by optimal joint decoding and
suboptimal single-user decoding, respectively?

The preceding questions have been well studied for linear detection schemes.
In fact, the analysis of multiuser communication systems is to a large extent the
pursuit of a single-user characterization of the performance. A key performance
measure, the multiuser efficiency, was introduced in [4, 6] to refer to the signal-to-
noise ratio (SNR) degradation of the multiuser detection output relative to single-
user performance. The multiuser efficiencies of the SUMF, decorrelator, LMMSE
detector and linear interference cancelers at any given SNR were found as functions
of the correlation matrix of the spreading sequences (i.e., the signature vectors),
which can also be written explicitly in terms of the eigenvalues of the matrix.

The performance of finite-size multiuser systems is often not easy to evaluate, in-
cluding when averaged over random sequences (e.g., [7–9]). An alternative paradigm
for the analysis is to take the large-system limit instead, namely, to study the case
where the number of users and the dimension of the channel both tend to infin-
ity with a fixed ratio. A key consequence is that the dependence of performance
measures on the spreading sequences vanishes as the system size increases. In the
special case of linear detection, the output converges to a Gaussian statistic, which
allows the performance to be solely quantified using the output SINR (e.g., [10–12]).
It appears that the users are decoupled in such a way that each user experiences a
single-user channel with SNR degradation in lieu of MAI.

A major spate of success of large-system analysis is achieved by using random
matrix theory, the central dictate of which is that the empirical distributions of the
eigenvalues of a random matrix converge to a deterministic distribution as its di-
mension increases [13,14]. As a result, the multiuser efficiency of a sufficiently large
system can be obtained as an integral with respect to the limiting eigenvalue dis-
tribution. Indeed, this random matrix technique is applicable to any performance
measure that can be expressed as a function of the eigenvalues, e.g., the multiuser
efficiency of the decorrelator [15–17] and the large-system capacity of CDMA chan-
nels [18, 19] (see also [20, 21]). Moreover, the large-system multiuser efficiency of
the LMMSE detector is found to be the unique solution to the Tse-Hanly fixed-
point equation [11] (see also [15] for the special equal-power case). The multiuser
system with LMMSE detection admits a single-user characterization, as is also in-
dicated by the notion of effective interference in [11]. It is important to note that
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such large-system results are often quite representative of the performance with a
moderate to large user population.

Few explicit expressions of the efficiencies in terms of eigenvalues are available
beyond the above cases. Little success has been reported in the application of
random matrix theory when the detector is nonlinear. It was not until statistical
physics techniques were applied to the analysis of multiuser detection that a major
breakthrough became possible. Using the so-called replica method, the large-system
uncoded minimum bit-error-rate (BER) (hence the optimal multiuser efficiency)
and spectral efficiency (the input–output mutual information per dimension) with
equal-power binary inputs were first obtained in [22–26] and generalized to the
case of arbitrary inputs and powers in [17, 27]. Reference [28] studied the channel
capacity under separate decoding and noted that the additive decomposition of the
optimum spectral efficiency in [19] holds also for binary inputs. The same formula
was conjectured to be valid regardless of the input distribution [29]. The most
general framework to date is developed in [27, 30–32], where both joint decoding
and generic multiuser detection followed by separate decoding are studied assuming
an arbitrary input distribution and flat fading.

The main results of the chapter are presented in Section 1.3. The centerpiece
is a single-user characterization of the multiuser system, called the “decoupling
principle”, which states that the multiuser channel followed by generic detection
is essentially equivalent to a bank of single-user channels, one for each user. The
conjecture in [29] is also validated. The decoupling principle carries great practical-
ity and finds convenient uses in finite-size systems where the analytical asymptotic
results are a good approximation. It is also found to be applicable to multirate and
multicarrier CDMA [33,34].

1.1.3 On the Replica Method

The replica method, which underlies most of the results in this chapter, was invented
in 1975 by S. F. Edwards and P. W. Anderson to study the free energy of disordered
magnetic systems, called spin glasses [35]. It has since become a standard technique
in statistical physics [36]. Analogies between statistical physics and neural networks,
image processing, and communications have gradually been noticed (e.g., [37,38]),
on the basis of which the range of application of the replica method has been
expanding. There have been many recent activities applying statistical physics
wisdom and the replica method to sparse-graph error-control codes (e.g., [39–43]).
The same techniques have also been used to study the capacity of MIMO channels
[44, 45]. Among other techniques, mean field theory is used to derive iterative
detection algorithms [46,47].

For the purpose of analytical tractability, we will invoke several assumptions
crucial to the replica method and common in the statistical physics literature (see
Section 1.4.1.2). Unfortunately, these assumptions have not been fully justified.
Thus although there has been some recent progress [48,49], the mathematical rigor
of the general results in this chapter is pending on breakthroughs in those problems.
Note, however, that the key results have been rigorously proved in the special case
of relatively small load and where the spreading matrix is sparse in some sense by
showing the optimality of belief propagation (BP) [50–52]. The technique paves a
new avenue for the interpretation and justification of the general results. The replica
analysis of generic detection is presented in Section 1.4. Some further discussions
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Figure 1.1. A bipartite factor graph describing the probability law of a multiuser system.

on the replica method is found in Section 1.5. Useful statistical physics concepts
and methodologies are introduced in Section 1.6.

1.1.4 Statistical Inference Using Practical Algorithms

The input-output relationship of a multiuser systems can in general be fully de-
scribed (probabilistically) using a bipartite factor graph. As the example shown in
Figure 1.1., each edge connects a symbol node which represents an input symbol
and a chip node which represents a component of the output signal. The problem of
multiuser detection can be regarded as a statistical inference problem on the graph.
As mentioned earlier, performing the inference exactly, e.g., in order to obtain the
posterior mean, is computationally hard.

An important family of iterative algorithms for performing the computation
approximately is known as belief propagation, the formulation of which is attributed
to Pearl [53]. In fact, all multiuser detection algorithms discussed in this chapter can
be regarded as BP on the factor graph with appropriate heuristic postulates. BP
or its variations with linear complexity are especially appealing in practice. Section
1.7 discusses how to design low-complexity algorithms based on BP. In particular,
it is shown that parallel interference cancellation (PIC) can be understood as a
further simplification of BP.

1.1.5 Statistical Physics and Related Problems

This chapter can be regarded not only as an application of statistical physics ideas
and techniques to the communication problem at hand, but also as progress in a
much broader research trend, where large-scale problems in various fields are for-
mulated using probability theory and analyzed using statistical physics. The trend
can be traced back to the 1980s, where researchers of spin glasses, whose primary
objective is to obtain macroscopic characterizations of large disordered systems on
the basis of their microscopic specifications, became aware that their methodologies
can also be applicable to problems outside statistical physics, such as constraint sat-
isfaction problems [54, 55] and neural networks [56]. Successes in these fields have
triggered subsequent applications of statistical physics to various other fields, such
as information and communication theory, computation theory, learning and arti-
ficial intelligence, etc. One example of the most exciting interplay between these
multitude of disciplines is found in recent research activities of sparse-graph error-
control codes, where “macroscopic” analysis and “microscopic” algorithm design
are concurrently studied, revealing a deep relationship between statistical physics
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Figure 1.2. Single-user encoding, multiuser channel, and multiuser detection followed
by independent single-user decoding.

characterization of a problem and properties of inference algorithms for solving it,
as well as demonstrating importance of statistical physics concepts such as phase
transition and finite size scaling, in the context of error-control coding [57, 58].
This fertile interdisciplinary field sets the stage for the unique treatment of the
multidimensional communication problem described in this chapter.

1.2 GENERIC MULTIUSER DETECTION

In this section, we first describe the multiuser system model considered in this chap-
ter. We then put forth a framework of generic multiuser detection and specialize it
to several popular detectors.

1.2.1 CDMA/MIMO Channel Model

Consider the vector channel depicted in Figure 1.2., which in general models a
MIMO system. In this chapter, the model describes a real-valued1 fully-synchronous
K-user CDMA system with spreading factor L. Each encoder maps its message
into a sequence of channel symbols. All users employ the same type of signal-
ing so that at each interval the K symbols are independent and identically dis-
tributed (i.i.d.) random variables with distribution (probability measure) PX . Let
X = [X1, . . . , XK ]> denote the vector of input symbols from the K users in one
symbol interval. For notational convenience in the analysis, it is assumed that ei-
ther a probability density function (pdf) or a probability mass function (pmf) of the
distribution PX exists,2 and is denoted by pX . Let pX(x) =

∏K
k=1 pX(xk) denote

the joint (product) distribution.3

Let the instantaneous SNR of user k be denoted by γk and A = diag{√γ1 , . . . ,√
γK }. Denote the spreading sequence of user k by Sk = 1√

L
[S1k, S2k, . . . , SLk]>,

where Snk are i.i.d. random variables with zero mean, unit variance and finite
moments. The realization of Slk and Sk are denoted by slk and sk to distinguish
from their random counterparts. The L × K channel “state” matrix is denoted
by S = [

√
γ1 S1, . . . ,

√
γK SK ]. The synchronous flat-fading CDMA channel is

1Extension to a complex-valued system is straightforward [27].
2Validity of the results in this chapter do not depend on the existence of a pdf or pmf.
3The main results of this chapter extend to cases where the entries of X are dependent: See [32].
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described by:

Y =
K∑
k=1

√
γk SkXk + N (1.1)

= SX + N (1.2)

where N ∼ N (0, I) is a vector of independent standard Gaussian entries. Without
loss of generality we assume PX to have zero mean and unit variance.

1.2.2 Generic Posterior Mean Estimation

As depicted in Figure 1.2., the multiuser detector front end estimates the trans-
mitted symbols given the received signal and the channel state without using any
knowledge of the error-control codes employed by the transmitters. Meanwhile, each
single-user decoder only observes the sequence of decision statistics corresponding
to one user, and ignores the existence of all other users. By adopting this separate
decoding approach, the channel together with the multiuser detector front end is
viewed as a bank of coupled single-user channels. Note that the detection output
sequence for an individual user is in general not a sufficient statistic for decoding
this user’s own information.

To capture the intended suboptimal structure, we restrict the capability of the
multiuser detector; otherwise the detector could in principle encode the channel
state and the received signal (S,Y ) into a single real number as its output to each
user, which is a sufficient statistic for all users. A plausible choice is the (canonical)
posterior mean estimator (PME), which computes the mean value of the posterior
probability distribution pX|Y ,S , hereafter denoted by angle brackets 〈·〉:

〈X〉 = E {X | Y ,S} . (1.3)

The expectation is taken over the posterior probability distribution pX|Y ,S , which
is induced from the input distribution pX and the conditional Gaussian density
function pY |X,S of the channel (1.2) by Bayes’ formula:4

pX|Y ,S(x|y, s) =
pX(x)pY |X,S(y|x, s)∫
pX(x)pY |X,S(y|x, s) dx

(1.4)

where the integral shall be replaced by a sum if X is discrete. Note that, although
implicit in notation, 〈X〉 is a function of (Y ,S), which is dependent on the input
X through (1.2).

Also known as the conditional mean estimator, (1.3) achieves the minimum
mean-square error for each user, and is therefore the (nonlinear) MMSE detector.
We also regard it as a soft-output version of the individually optimal multiuser de-
tector (assuming uncoded transmission). In case of binary antipodal transmission,
the posterior mean estimate is consistent in its sign with the individually optimal
hard decision. Although this consistency property does not hold for general m-ary

4Uppercase letters are usually used for matrices and random variates, while lowercase letters are
used for deterministic scalars and vectors. As a compromise, the realization of the spreading
matrix S is denoted as s. We keep the use of s to minimum.
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Figure 1.3. Generalized posterior mean estimator.

constellation, (1.3) is optimal in mean-square sense, and is thus a sensible detection
output to be used for further decoding.5

The PME can be understood as an “informed” optimal estimator which is sup-
plied with the posterior distribution and then computes its mean. A generalization
of the canonical PME is conceivable: Instead of informing the estimator of the ac-
tual posterior pX|Y ,S , we can supply at will any well-defined conditional distribu-
tion qX|Y ,S as depicted in Figure 1.3.. Given (Y ,S), the estimator can nonetheless
perform “optimal” estimation based on this postulated measure q. We call this the
generalized posterior mean estimation, which is conveniently denoted as

〈X〉q = Eq {X | Y ,S} (1.5)

where Eq{·} stands for the expectation with respect to the postulated measure q.
Suppose qX|Y ,S is induced from a prior qX and a conditional distribution qY |X,S ,
then the generalized PME can be expressed as the expectation of X taken over the
postulated posterior probability distribution

qX|Y ,S(x|y, s) =
qX(x)qY |X,S(y|x, s)∫
qX(x)qY |X,S(y|x, s) dx

. (1.6)

For brevity, we also refer to (1.5) as the PME. In view of (1.3), the subscript in
(1.5) can be dropped if the postulated measure q coincides with the actual one p.

In general, postulating a mismatched measure q 6= p causes degradation in de-
tection performance. Such a strategy may be either due to lack of knowledge of the
true statistics or a particular choice that anticipates benefits, such as reduction of
computational complexity. In principle, any deterministic estimation strategy can
be regarded as a PME since we can always choose to put a unit mass at the desired
estimation output given (Y ,S), the fact which demonstrates that the concept of
PME is generic and versatile. We will see in Section 1.2.3 that by postulating an
appropriate measure q, the PME can be particularized to many popular multiuser
detectors. The generic representation (1.5) is pivotal here because it allows a uni-
fied treatment of a large family of multiuser detectors which results in a simple
single-user characterization for all of them.

In this chapter, the posterior qX|Y ,S supplied to the PME is assumed to be the
one that is induced from a postulated CDMA system, where the input follows a

5A more sophisticated detector produces the posterior distribution about each input symbol,
which generally contains much richer content than point estimates such as the posterior mean.
However, as we shall see in this chapter, the posterior distribution is equivalent to a conditional
Gaussian distribution in large systems so that the posterior mean suffices.
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certain distribution qX , and the input–output relationship of the postulated channel
differs from the actual channel (1.2) by only the noise variance. Precisely, the
postulated system is characterized by

Y = SX ′ + σN ′ (1.7)

where S is the state matrix of the actual channel (1.2), the components of X ′ are
i.i.d. with distribution qX , and N ′ is statistically the same as the Gaussian noise N
in (1.2). The postulated input distribution qX is assumed to have zero mean and
unit variance. The posterior qX|Y ,S is determined by qX and qY |X,S according to
Bayes’ formula (1.6). The postulated noise level σ serves as a control parameter.
Indeed, the PME so defined is the optimal detector for a postulated multiuser
system with its input distribution and noise level different from the actual ones.
In general, the postulated channel state could also be different from the actual
instance S, but this is out of the scope of this chapter, as we limit ourselves to
studying the (fairly rich) family of multiuser detectors that can be represented as
PMEs parameterized by the postulated input and noise level (qX , σ).

1.2.3 Specific Detectors as Posterior Mean Estimators

We identify specific choices of the postulated input distribution qX and noise level
σ under which the PME is particularized to well-known multiuser detectors.

The characteristic of the actual channel (1.2) is

pY |X,S(y|x, s) = (2π)−
L
2 exp

[
−1

2
‖y − sx‖2

]
, (1.8)

and that of the postulated channel is

qY |X,S(y|x, s) =
(
2πσ2

)−L2 exp
[
− 1

2σ2
‖y − sx‖2

]
. (1.9)

The posterior distribution can be obtained using Bayes’ formula (cf. (1.6)) as

qX|Y ,S(x|y, s) =

(
2πσ2

)−L2 qX(x)
qY |S(y|s)

exp
[
−‖y − sx‖2

2σ2

]
(1.10)

where

qY |S(y|s) =
(
2πσ2

)−L2 Eq

{
exp

[
−‖y − SX‖2

2σ2

] ∣∣∣∣ S = s

}
(1.11)

and the expectation in (1.11) is taken over X ∼ qX .

1.2.3.1 Linear Detectors Let the postulated input be Gaussian, i.e., qX is N (0, 1).
The optimal detector (PME) for the postulated model (1.9) with this Gaussian
input is a linear filtering of the received signal Y :

〈X〉q =
[
s>s + σ2I

]−1
s>Y , (1.12)

which corresponds to the LMMSE detector and the decorrelator by choosing σ = 1
and σ → 0 respectively. If σ →∞, (1.12) is consistent with the SUMF output:

σ2 〈Xk〉q −→ s>k Y , in L2 as σ →∞. (1.13)
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1.2.3.2 Optimal Detectors Let the postulated prior distribution qX be identical to
pX . Let σ → 0, then the probability mass of the distribution qX|Y ,S is concentrated
on a vector that minimizes ‖y− sx‖, which also maximizes the likelihood function
pY |X,S(y|x, s). The PME limσ→0 〈X〉q is thus equivalent to that of jointly optimal
(or maximum-likelihood) detection [15]. Alternatively, if σ = 1, then the postulated
measure coincides with the actual measure, i.e., qX|Y ,S(x|y, s) = pX|Y ,S(x|y, s).
The PME output 〈X〉 is the mean of the posterior probability distribution, which
is seen as the (soft) individually optimal detector. Also worth mentioning is that,
if σ →∞, the PME reduces to the SUMF.

1.2.3.3 Interference Cancelers Suppose all symbols but X1 are revealed as x̂2, . . . ,
x̂K . The detector can use

qY |X1,S(y|x1, s) ∝ pY |X,S(y|[x1, x̂2, . . . , x̂K ]>, s) (1.14)

as the postulated channel characteristics in order to estimate X1. The resulting
PME of X1 is simply an estimate obtained by matched filtering the received signal
after canceling the interference reconstructed from x̂2, . . . , x̂K . This scheme can be
used for all users in either a successive or a parallel manner as well as in multistage
fashion (e.g., [59–62] and [Chapter Grant-Rasmussen this book]). As is shown
in Section 1.7, interference cancellation is closely related to efficient approximate
algorithms for statistical inference in Bayesian networks.

1.3 MAIN RESULTS: SINGLE-USER CHARACTERIZATION

Before burdening the reader with statistical physics concepts and methodologies,
we introduce the main results of this chapter and describe the breakthrough in
understanding large multiuser systems made possible by the replica analysis.

A large system in this chapter refers to the limit that both the number of users
and the spreading factor tend to infinity but with their ratio, known as the system
load, converging to a positive number, i.e., K/L → β > 0. The load β may or
may not be smaller than 1. It is also assumed that the SNRs of all users, {γk}Kk=1,
are i.i.d. with distribution Pγ , hereafter referred to as the SNR distribution. All
moments of the SNR distribution are assumed to be finite. Clearly, the empirical
distributions of the SNRs converge to the same distribution Pγ as K → ∞. Note
that this SNR distribution captures the (flat) fading characteristics of the channel.

Throughout this chapter we consider detection in one symbol interval assuming
that the channel state is known by the receiver.

1.3.1 Is the Decision Statistic Gaussian?

Linear multiuser detectors are easy to analyze because of the simple structure of
their decision statistics. In general, the detection output is the sum of three inde-
pendent components: the desired signal, the MAI and the Gaussian noise, i.e., the
(normalized) decision statistic for user k is expressed as

〈Xk〉 = Xk +
∑
i6=k

Ii +Nk. (1.15)
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Figure 1.4. The empirical probability density functions of the decision statistics
conditioned on +1 being transmitted. The system has 8 users, the spreading factor is 12,
and SNR=2 dB. A total of 10,000 trials were recorded. (a) The soft individually optimal
detection output. (b) The “hidden” equivalent Gaussian statistic. The asymptotic Gaussian
distribution is also plotted for comparison.

The error performance is determined by the statistics of the MAI and the noise.
For a sufficiently large system, it is common to assume that the MAI is Gaussian
conditioned on the SNRs, so that the performance is quantified as identical to that
of a single-user Gaussian channel with the same input but enhanced noise (or,
equivalently, degraded SNR). This simple single-user characterization is justified
because the MAI converges weakly to a Gaussian random variable, independent of
the noise, as K →∞ [12].

However, the above analysis does not apply beyond linear detection schemes. The
problem here is inherent to nonlinear processing, where the detection output cannot
be decomposed as a sum of independent components associated with the desired
signal and the unwanted interference respectively. Moreover, the detection output is
in general asymptotically non-Gaussian conditioned on the input (consider, e.g., the
discrete output of the maximum-likelihood detector in case of binary transmission).

The above difficulty is largely overcome by applying statistical physics method-
ologies, and in particular the replica method, to the treatment of generic multiuser
detection in the large-system regime. Although the output decision statistic of a
nonlinear detector cannot be decomposed as (1.15), it converges in the large-system
limit to a simple monotone function of a “hidden” Gaussian random variable con-
ditioned on the input Xk, i.e.,

〈Xk〉 → f(Zk) (1.16)

where Zk = Xk+Wk and Wk is Gaussian and independent of Xk. One may contend
that it is always possible to monotonically map a non-Gaussian random variable
to a Gaussian one. What is useful (and surprising) here is that 1) the mapping
f depends on neither the instantaneous spreading sequences, nor the transmitted
symbols which we wish to estimate in the first place; and 2) the statistic Zk is equal
to the desired signal plus an independent Gaussian noise.

By applying an inverse of the function f (which can be readily determined) to
〈Xk〉, the equivalent conditionally Gaussian statistic Zk is recovered, so that we
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Figure 1.5. The single-user channel and PME.

are back to the familiar ground where the output SINR (defined for the equivalent
Gaussian statistic Zk) completely characterizes the performance for an individual
user. We can thus define the multiuser efficiency as the ratio of the output SINR
and the input SNR, which is consistent with its original notion in [15].

Example 1 Figure 1.4.(a) plots the approximate probability density functions ob-
tained from the histogram of the output of the soft individually optimal detector
conditioned on +1 being transmitted. Note that negative decision values correspond
to decision error; hence the dark area on the negative half plane gives the BER.
Since the distribution shown in Figure 1.4.(a) is far from Gaussian, the usual no-
tion of output SINR fails to capture the system performance. In fact, much work in
the literature is devoted to evaluating the error performance by Monte Carlo simula-
tion. Figure 1.4.(b) plots the density of the conditionally Gaussian statistic obtained
by applying f−1 to the non-Gaussian detection output in Figure 1.4.(a). The the-
oretically predicted Gaussian density function (the smooth curve) is also shown for
comparison. The “fit” is remarkable considering that a relatively small system of 8
users with spreading factor 12 is considered. Note that when the multiuser detector
is linear, the mapping f is also linear, and (1.16) reduces to (1.15).

The above example demonstrates the decoupling principle. The asymptotic nor-
mality of the decision statistic or its function allows the performance of multiuser
systems to be simply characterized by the effective SNR, or SINR, of the detection
output. The main claims are formally stated in the following, first for optimal de-
tection (Section 1.3.2) and then for generic multiuser detection (Section 1.3.3). The
analysis and discussion of statistical physics techniques are relegated to Sections
1.4 and 1.6.

1.3.2 The Decoupling Principle: Individually Optimal Detection

In order to describe the decoupling result, we first introduce a scalar channel:

Z =
√
γ X +

1
√
η
N (1.17)

where X ∼ pX , γ is the channel gain, N ∼ N (0, 1) the additive Gaussian noise
independent of X, and η > 0 the inverse noise variance, which is also understood
as the degradation of the channel. The conditional distribution associated with the
channel (1.17) is

pZ|X,γ;η(z|x, γ; η) =
√

η

2π
exp

[
−η

2
(z −√γ x)2

]
(1.18)
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where we generally treat γ as a random variable but η a deterministic parameter.
Thus (1.17) is a flat-fading channel. However, since we are interested in a single
symbol interval with γ known to the receiver, it is more convenient to refer to (1.17)
as a Gaussian channel (for given γ). With X ∼ pX and given η and γ, the input–
output mutual information of the channel (1.17) is denoted by I(X;

√
η γ X +N).

The posterior mean estimate of X given the output Z is6

〈X〉 = E {X|Z, γ; η} , (1.19)

which is an implicit function of Z. The Gaussian channel concatenated with the
PME is depicted in Figure 1.5.. Clearly, 〈X〉 is also the (nonlinear) MMSE estimate,
since it achieves the minimum mean-square error:

EX(η γ) = E
{

(X − 〈X〉)2
∣∣ γ; η

}
. (1.20)

Throughout this chapter, the (decreasing) function EX(a) denotes the MMSE of
estimating X in Gaussian noise with SNR equal to a.

Consider the individually optimal detection defined by (1.3) and also described
in Section 1.2.3.2, where the detection output for user k is the posterior mean esti-
mate E {Xk | Y ,S}. We claim7 that, from a single user’s perspective, the channel
between the input and detection output is asymptotically equivalent to the scalar
Gaussian channel (1.17) with an appropriate value of η that is interpreted as the
multiuser efficiency.

Claim 1 In the large-system limit, the distribution of the output 〈Xk〉 of the indi-
vidually optimal detector for the multiuser channel (1.2) conditioned on Xk = x be-
ing transmitted with SNR γk = γ converges to the distribution of the posterior mean
estimate 〈X〉 of the single-user Gaussian channel (1.17) conditioned on X = x being
transmitted, i.e., the posterior cumulative distribution function (cdf)

P〈Xk〉|Xk,γk(x̃|x, γ) −→ P〈X〉|X,γ(x̃|x, γ) (1.21)

for all γ and all x, x̃ where the cdf PX is continuous.8 Here, the optimal multiuser
efficiency η is determined from the following fixed-point equation:9

η−1 = 1 + β E {γ EX(η γ)} (1.22)

where the expectation is taken over Pγ . In case (1.22) has more than one solution,
η is chosen to minimize10

Cjoint = β I(X;
√
η γ X +N | γ) +

1
2

[(η − 1) log e− log η]. (1.23)

6The posterior mean estimate is defined for both the single-user model (e.g., (1.17)) and the
multiuser model (e.g., (1.2)) and denoted by the same notation 〈·〉. The meaning of the notation
should be clear from the context.
7Since as explained in Section 1.1, rigorous justification for some of the key statistical physics
tools (essentially the replica method) is still pending, the key results in this chapter are referred
to as claims. Proofs are provided in Section 1.4 based on several assumptions.
8If X is a continuous random variable then the cdf is continuous on (−∞,∞). If X is discrete
then the cdf is continuous at all but a finite or countable number of values.
9Because of the way the MMSE is defined, the fixed-point equation is true for arbitrary input
distribution PX which need not have zero mean and unit variance.
10The base of logarithm is consistent with the unit of information measure throughout unless
stated otherwise.
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It is important to note that the efficiency η does not depend on any specific
SNRs in the large system; rather, it depends only on the distributions Pγ and PX .
The conditional mutual information in (1.23) is obtained as an average over the
SNR distribution

I(X;
√
η γ X +N | γ) =

∫ ∞
0

I(X;
√
η tX +N) dPγ(t). (1.24)

The physical meaning of Cjoint will be clear shortly. Note that the left-hand side
(LHS) of (1.21) is a random cdf dependent on the matrix S. The convergence in
(1.21) holds in probability.

The essence of Claim 1 is the following single-user characterization of multiuser
systems: From an individual user’s viewpoint, the input–output relationship of the
multiuser channel and PME is increasingly similar to that under a simple single-
user setting as the system becomes large. Indeed, given the (scalar) input and
output statistics, it is impossible to distinguish whether the underlying system is
in the (large) multiuser or the single-user setting. It is also interesting to note that
the (asymptotically) equivalent single-user system takes an analogous structure as
the multiuser one (compare Figures 1.2. and 1.5.). Note that the conditionally
Gaussian variable Z is not directly available in the multiuser system. Rather, one
can process (Y ,S) to obtain Z as a sufficient statistic for X (see e.g., [52]).

The single-user PME (1.19) is merely a decision function applied to the Gaussian
channel output, which can be expressed explicitly as

E {X | Z = z, γ; η} =
p1(z, γ; η)
p0(z, γ; η)

(1.25)

where we define the following useful functions

pi(z, γ; η) = E
{
Xi pZ|X,γ;η(z |X, γ; η)

∣∣ γ} , i = 0, 1, . . . (1.26)

where the expectation is taken over pX . Note that p0(z, γ; η) = pZ|γ;η(z|γ; η). The
decision function (1.25) is in general nonlinear.

The MMSE can be computed as11

EX(η γ) = 1−
∫
p2
1(z, γ; η)
p0(z, γ; η)

dz. (1.27)

Solutions to the fixed-point equation (1.22) can in general be found numerically.
The conditional mutual information (over γ ∼ Pγ) in (1.23) is also easy to compute.

Example 2 Assume all users take binary antipodal input and the same SNR of
2 dB (γ = 1.585). Let β = 2/3. Solving the fixed-point equation (1.22) yields
η = 0.69. Thus, from each user’s point of view, if individually optimal detec-
tion is employed, the distribution of the decision statistic is identical to that of
the posterior mean estimate of the input to a Gaussian channel with SNR equal to
ηγ = 1.098 (0.41 dB). The distribution of the detection output conditioned on +1
being transmitted is shown in Figure 1.4.(b), which is centered at 1 with a variance
of 1/(ηγ) = 0.911.

11The integral with respect to z is from −∞ to ∞. For notational simplicity we omit integral
limits in this chapter whenever they are clear from context.
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The fixed-point equations (1.22) may have multiple solutions. This is known
as phase coexistence in statistical physics. Among those solutions, the (thermody-
namically) dominant solution gives the smallest value of Cjoint, which is in fact the
optimal spectral efficiency as we shall discuss in Section 1.4.2.3. This is the solu-
tion that carries relevant operational meaning in the communication problem. In
general, as the system parameters (such as the load) change, the dominant solution
may switch from one of the coexisting solutions to another. This phenomenon is
known as phase transition.

The decision function (1.25) is one-to-one because of the following, which is easily
proved using the Cauchy-Schwartz inequality [27].

Proposition 1 The decision function (1.25) is strictly monotone increasing in z
for all γ, η > 0.

This monotonicity result is not surprising because larger (smaller) values of channel
output is likely to be caused by larger (smaller) values of the input.

In the large-system limit, given the detection output 〈Xk〉, one can apply the
inverse of the decision function to recover an equivalent conditionally Gaussian
statistic Z, which is centered at the actual input Xk scaled by

√
γk with a variance

of η−1. Note that η ∈ [0, 1] from (1.22). It is clear that the MAI is asymptotically
equivalent to an enhancement of the noise by η−1, i.e., the effective SNR is reduced
by a factor of η, hence the term multiuser efficiency. Indeed, in the large-system
limit, the multiuser channel with the PME front end can be decoupled into a bank
of independent single-user Gaussian channels with the same degradation in each
user’s SNR.

Corollary 1 In the large-system limit, the mutual information between input sym-
bol and the output of the individually optimal multiuser detector for each user is
equal to the input–output mutual information of the equivalent single-user Gaus-
sian channel with the same input and SNR degraded by η, which is the multiuser
efficiency given by Claim 1. That is, conditioned on the input SNR being γk for
user k,

I (Xk; 〈Xk〉 |S)→ I(X;
√
η γkX +N) (1.28)

where X ∼ pX and N ∼ N (0, 1) are independent.

The overall spectral efficiency under separate decoding is the average of all users’
mutual information multiplied by the load:

Csep(β) = β I(X;
√
η γX +N | γ). (1.29)

The optimal spectral efficiency under joint decoding is greater than that under
separate decoding (1.29), where the increase is given by the following:

Claim 2 The spectral efficiency gain of optimal joint decoding over individually
optimal detection followed by separate decoding of the multiuser channel (1.2) is
determined, in the large-system limit, by the optimal multiuser efficiency as

Cjoint(β)− Csep(β) =
1
2

[(η − 1) log e− log η] (1.30)

= D (N (0, η)‖N (0, 1)) . (1.31)
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Indeed, the spectral efficiency under joint decoding is given by (1.23).

As a by-product, Müller’s conjecture on the mutual information loss [28, 29] is
true for arbitrary inputs and SNRs. Incidentally, the loss is identified as a Kullback-
Leibler divergence [63] between two Gaussian distributions in (1.31) [27].

Interestingly, the spectral efficiencies under joint and separate decoding are also
related by an integral equation, which was originally given in [19, (160)] for the
special case of Gaussian inputs.

Theorem 1 Regardless of the input and SNR distributions,

Cjoint(β) =
∫ β

0

1
β′

Csep(β′) dβ′. (1.32)

Proof: Since Cjoint(0) = 0 trivially, it suffices to show

β
d

dβ
Cjoint(β) = Csep(β). (1.33)

By (1.31) and (1.23), it is enough to show

β
d

dβ
I(X;

√
η γ X +N | γ) +

1
2

d
dβ

[(η − 1) log e− log η] = 0. (1.34)

As the efficiency η is a function of the system load β, (1.34) is equivalent to

d
dη
I(X;

√
η γ X +N | γ) +

1
2β
(
1− η−1

)
log e = 0. (1.35)

The mutual information and the MMSE in Gaussian channels are related by the
following formula [64, Theorem 1],

1
log e

d
dg
I(X;

√
g X +N) =

1
2
EX(g), ∀g. (1.36)

Thus (1.35) holds as η satisfies the fixed-point equation (1.22).

Theorem 1 is an outcome of the chain rule of mutual information:

I(X; Y |S) =
K∑
k=1

I(Xk; Y |S, Xk+1, . . . , XK). (1.37)

The LHS of (1.37) is the total mutual information of the multiuser channel. Each
mutual information in the right-hand side (RHS) is a single-user mutual information
over the multiuser channel conditioned on the symbols of previously decoded users.
As argued below, the limit of (1.37) as K → ∞ becomes the integral equation
(1.32).

Consider a successive interference canceler with PME front ends against yet
undecoded users in which reliably decoded symbols are used to reconstruct the
interference for cancellation. Since the error probability of decoded symbols van-
ishes with code block-length, the interference from decoded users are asymptotically
completely removed. Assume without loss of generality that the users are decoded
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in reverse order, then the PME for user k sees only k − 1 interfering users. Hence
the performance for user k under such successive decoding is identical to that un-
der multiuser detection with separate decoding in a system with k instead of K
users. Nonetheless, the equivalent single-user channel for each user is Gaussian by
Claim 1. The multiuser efficiency experienced by user k, η(k/L), is a function of
the load k/L seen by the PME for user k. By Corollary 1, the single-user mutual
information for user k is therefore

I
(
X;
√
η(k/L) γkX +N

)
. (1.38)

The overall spectral efficiency under successive decoding converges almost surely
by the law of large numbers:

1
L

K∑
k=1

I
(
X;
√
η(k/L) γkX +N

)
→
∫ β

0

I
(
X;
√
η(β′) γ X +N | γ

)
dβ′ (1.39)

which is the RHS of (1.32). This suggests that decoding and stripping users one-
by-one in a large system is tantamount to increasing the SNR little-by-little in some
intricate way.

Together with Theorem 1, the convergence in (1.39) implies the following:

Corollary 2 In the large-system limit, successive decoding with an individually op-
timal detection front end against yet undecoded users achieves the optimal multiuser
channel capacity under any constraint on the input.

Corollary 2 is a generalization of the result that a successive canceler with a
linear MMSE front end against undecoded users achieves the capacity of the CDMA
channel under Gaussian inputs.12

1.3.3 Decoupling Principle: Generic Multiuser Detection

1.3.3.1 A Companion Channel Consider a random transformation pY |X which
characterizes a memoryless channel X → Y . The problem of Bayesian inference is
in general to infer about X given Y based on the posterior probability law pX|Y .
Under many circumstances, e.g., when pX|Y is not exactly known, inference may
be carried out using an alternative law qX|Y . For all estimation purposes, it suf-
fices to know the joint probability distribution of (X,Y,X ′) where Y → X ′ is
characterized by qX|Y and X ′ is independent of X conditioned on Y . Precisely,
pXX′|Y (x, x′|y) = pX|Y (x|y)qX|Y (x′|y) for all (x, x′, y). We call the random trans-
formation qX|Y a companion channel of the channel pY |X .

The above can be specialized to the current problem. Let qZ|X,γ;ξ represent the
input–output relationship of a Gaussian channel akin to (1.17), the only difference
being that the inverse noise variance is ξ instead of η,

qZ|X,γ;ξ(z|x, γ; ξ) =

√
ξ

2π
exp

[
−ξ

2
(z −√γ x)2

]
. (1.40)

Throughout, we choose to explicitly associate η with distribution p and ξ with
distribution q for clarity. Similar to that in the multiuser setting, by postulating the

12This principle, originally discovered in [65], has been shown with other proofs and in other
settings [18,66–70].
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Figure 1.6. (a) The multiuser channel, the (multiuser) PME, and the (multiuser)
companion channel. (b) The equivalent single-user Gaussian channel, PME and companion
channel.

input distribution to be qX , a posterior probability distribution qX|Z,γ;ξ is induced
by qX and qZ|X,γ;ξ using Bayes’ formula (cf. (1.6)). Thus we have a single-user
companion channel defined by qX|Z,γ;ξ, which outputs a random variable X ′ given
the channel output Z (Figure 1.6.(b)). A (generalized) single-user PME is defined
naturally as:

〈X〉q = Eq {X | Z, γ; ξ} =
q1(Z, γ; ξ)
q0(Z, γ; ξ)

(1.41)

where the following functions are defined akin to (1.26):

qi(z, γ; ξ) = Eq
{
Xi qZ|X,γ;ξ(z|X, γ; ξ)

∣∣ γ} , i = 0, 1, . . . (1.42)

where the expectation is taken over qX . The probability law of the composite
system depicted by Figure 1.6.(b) is determined by γ and two parameters η and ξ.

Let us define the mean squared error of the PME as

E(γ; η, ξ) = E

{(
X − 〈X〉q

)2
∣∣∣∣ γ; η, ξ

}
, (1.43)

and also define the variance of the companion channel as

V(γ; η, ξ) = E

{(
X ′ − 〈X〉q

)2
∣∣∣∣ γ; η, ξ

}
. (1.44)

Note that ξ = η if X and X ′ are i.i.d. given Z.
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1.3.3.2 Main Results Consider the multiuser channel (1.2) with input distribution
pX and SNR distribution Pγ . Let its output be fed into the posterior mean estimator
(1.5) and a companion channel qX|Y ,S , both parameterized by the postulated input
qX and noise level σ (refer to Figure 1.6.(a)). Let Xk, X ′k, and 〈Xk〉q be the input,
the companion channel output and the posterior mean estimate for user k with
input SNR γk.

Fix (β, Pγ , pX , qX , σ). Consider also the single-user Gaussian channel (1.18)
with inverse noise variance η and its companion channel depicted in Figure 1.6.(b).
Let X ∼ pX be the input to the single-user Gaussian channel, X ′ be the output
of the single-user companion channel parameterized by (qX , ξ), and 〈X〉q is the
corresponding posterior mean estimate (1.41), with γ = γk.

Claim 3 Consider the multiuser and single-user systems described above (also Fig-
ure 1.6.).

(a) The joint distribution of (Xk, X
′
k, 〈Xk〉q) conditioned on the channel state

S converges in probability as K → ∞ and K/L → β to the joint distribution of
(X,X ′, 〈X〉q) with γ = γk, i.e., the posterior cdf

PXk,X′k,〈Xk〉q|γk(x, x′, x̃|γ) −→ PX,X′,〈X〉|γ(x, x′, x̃|γ) (1.45)

in probability for every x, x′, x̃ where the cdf PX is continuous at x, x′, and x̃.
(b) The parameter η, known as the multiuser efficiency, satisfies together with ξ

the coupled equations:

η−1 = 1 + β E {γ · E(γ; η, ξ)} , (1.46a)
ξ−1 = σ2 + β E {γ · V(γ; η, ξ)} , (1.46b)

where the expectations are taken over Pγ . In case of multiple solutions to (1.46),
(η, ξ) is chosen to minimize the free energy expressed as

F =− E

{∫
pZ|γ;η(z|γ; η) log qZ|γ;ξ(z|γ; ξ) d z

}
+

1
2β

[(ξ − 1) log e− log ξ]

− 1
2

log
2π
ξ
− ξ

2η
log e+

σ2ξ(η − ξ)
2βη

log e+
1

2β
log(2π) +

ξ

2βη
log e.

(1.47)

Claim 3 reveals that, from an individual user’s viewpoint, the input–output
relationship of the multiuser channel, PME and companion channel is increasingly
similar to that under a simple single-user setting as the system becomes large.

Finally, it is straightforward to verify that the decoupling result for individually
optimal detection (Claim 1) is a special case of the results for generic detection
(Claim 3) with the postulated distribution q identical to the actual distribution p
as well as symmetry assumption ξ = η.

1.3.4 Justification of Results: Sparse Spreading

Claims 1–3 have not been rigorously proved because the underlying replica method
is until now an unjustifiable technique. In the following we provide an interpretation
of the central fixed-point equation which was first discussed in [31]. In particular,
we derive (1.22) under the assumption that interference cancellation based on pos-
terior mean estimates of interfering users is optimal, along with some additional
independence assumptions.
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Figure 1.7. A canonical interference canceler equivalent to the single-user channel.

Suppose we construct without loss of generality an estimator for user 1 using
interference cancellation as depicted in Figure 1.7. (see also a discussion of inter-
ference cancellation in Section 1.7). Let 〈X2〉 , . . . , 〈XK〉 be the generalized PME
estimates for user 2 through user K. A decision statistic for user 1 can be generated
by first subtracting the reconstructed interferences using those estimates and then
matched filtering with respect to user 1’s spreading sequence:

Z1 =
√
γ1X1 +

K∑
k=2

S>1Sk
√
γk (Xk − 〈Xk〉) +N1 (1.48)

where N1 is standard Gaussian. We make two specious assumptions:
1. The desired symbolX1, the Gaussian noiseN1, and the residual errors (Xk − 〈Xk〉)

are independent;
2. The statistic Z1 is sufficient for achieving the MMSE for X1.

By the first assumption, the sum of the residual MAI and Gaussian noise converges
to a Gaussian random variable as K → ∞ by virtue of the central limit theorem.
Let the variance of Xk − 〈Xk〉 be denoted by V (γk), which depends on γk. Then
variance of the total interference in (1.48) is

1 + β E {γ V (γ)} (1.49)

which implies that the efficiency for user 1 is

η1 =
1

1 + β E {γ V (γ)}
. (1.50)

Evidently, the efficiency is not dependent on the user number and hence identical for
all users; the subscript of the efficiency can be dropped. By the second assumption,
the mean squared error based on the statistic Z1 should be equal to the MMSE,
which is EX(η γ1). Note that the same applies to all users, hence V (γk) = EX(η γk).
Therefore, formula (1.50) becomes exactly the fixed-point equation (1.22).

Therfore, if the above two assumptions were valid, we would have recovered
the fixed-point equation (1.22) in Claim 1. Moreover, we would have constructed a
degraded Gaussian channel for user 1 equivalent to the single-user channel as shown
in Figure 1.6.(b). We can also argue that every user enjoys the same efficiency since
otherwise users with worse efficiency may benefit from users with better efficiency
until an equilibrium is reached. Roughly speaking, the PME output is a “fixed-
point” of a parallel interference canceler. The multiuser efficiency, in a sense, is the
outcome of such an equilibrium.
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The above interpretation does not hold in general due to the unjustifiable inde-
pendence assumption13. In particular, S>1Sk are not independent, albeit uncorre-
lated, for all k. Also, 〈Xk〉 are dependent on the desired signal X1 and the noise
N1, which is evident in the special case of linear MMSE detection.

Interestingly, the above argument can be made rigorous in the special case
where the spreading matrix S is sparse (or extremely diluted) in some sense (see
also [72, 73]). In [50–52], the general formula (1.22) has been justified for binary
inputs and arbitrary inputs and SNR respectively with sparse spreading and a rel-
atively small load, which is the first partial proof of (1.22) without resorting to
the replica method. The key observation is that, the residual errors are indepen-
dent over almost all choices of the spreading matrix if the posterior mean estimates
are replaced by the (asymptotically equivalent) estimates supplied by parallel in-
terference cancellation, or belief propagation. Interference cancellation and belief
propagation are the subject of Section 1.7 where some practical multiuser detection
schemes are discussed.

1.3.5 Well-known Detectors as Special Cases

As shown in Section 1.2.3, several well-known multiuser detectors can be regarded
as appropriately parameterized PMEs. Thus many previously known results can
be recovered as special cases of the findings in Sections 1.3.2 and 1.3.3.

1.3.5.1 Linear Detectors Let the postulated prior qX be standard Gaussian so that
the multiuser PME represents a linear detector. Since the input Z and output X of
the companion channel are jointly Gaussian (refer to Figure 1.6.(b)), the single-user
PME is simply a linear attenuator:

〈X〉q =
ξ
√
γ

1 + ξγ
Z. (1.51)

From (1.43), the mean squared error is

E(γ; η, ξ) = E

{[
X0 −

ξ
√
γ

1 + ξγ

(√
γX0 +

N
√
η

)]2}
(1.52)

=
η + ξ2γ

η(1 + ξγ)2
. (1.53)

Meanwhile, the variance of X conditioned on Z is independent of Z. Hence the
variance (1.44) of the companion channel output is independent of η:

V(γ; η, ξ) =
1

1 + ξγ
. (1.54)

From Claim 3, one finds that ξ is the solution to

ξ−1 = σ2 + β E

{
γ

1 + ξγ

}
, (1.55)

13It should be noted, however, that a similar independence argument can also be found in statisti-
cal physics literature (see, e.g., [36]). Such independence property is called the “cluster property”
in statistical physics [71].
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and the multiuser efficiency is determined as

η = ξ + ξ (σ2 − 1)
[
1 + β E

{
γ

(1 + ξγ)2

}]−1

(1.56)

which is independent of the input distribution pX .
Let σ →∞ so that the PME becomes the matched filter. One finds ξσ2 → 1 by

(1.55) and consequently, the multiuser efficiency of the matched filter is [15]

η(mf) =
1

1 + β E {γ}
. (1.57)

In case σ = 1, one has the linear MMSE detector. By (1.56), η = ξ and by
(1.55), the efficiency η(lm) is the unique solution to the Tse-Hanly equation [11,18]:

η−1 = 1 + β E

{
γ

1 + ηγ

}
. (1.58)

By letting σ → 0 one obtains the decorrelator. If β < 1, then (1.55) gives
ξ → ∞ and ξσ2 → 1 − β, and the multiuser efficiency is found as η = 1 − β
by (1.56) regardless of the SNR distribution (as shown in [15]). If β > 1, and
assuming the generalized form of the decorrelator as the Moore-Penrose inverse of
the correlation matrix [15], then ξ is the unique solution to

ξ−1 = β E

{
γ

1 + ξγ

}
(1.59)

and the multiuser efficiency is found by (1.56) with σ = 0. In the special case of
identical SNRs, an explicit expression is found [16,17]

η(dec) =
β − 1

β + γ(β − 1)2
, β > 1. (1.60)

By Claim 3, the mutual information with input distribution pX for a user with
SNR given as γ under linear multiuser detection is I(X; 〈X〉q) = I(X;

√
ηγ X +N)

where N ∼ N (0, 1) and η depends on which type of linear detector is in use.
By Claim 2, the total spectral efficiency, which is achieved by Gaussian inputs, is
expressed in terms of the LMMSE efficiency [19]:

C
(G)
joint =

β

2
E
{

log
(

1 + η(lm)γ
)}

+
1
2

[(
η(lm) − 1

)
log e− log η(lm)

]
. (1.61)

1.3.5.2 Optimal Detectors Using the actual input distribution pX as the postu-
lated prior of the PME results in optimum multiuser detectors. As discussed in
Section 1.2.3.2, in case of the jointly optimal detector, the postulated noise level σ
is 0, and (1.46) becomes

η−1 = 1 + β E {γ · E(γ; η, ξ)} , (1.62a)

ξ−1 = β E {γ · V(γ; η, ξ)} . (1.62b)

The parameters can then be solved numerically.
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In case of the individually optimal detector, σ = 1 and q = p. The optimal
efficiency η is the solution to the fixed-point equation (1.22) given in Claim 1.

It is of practical interest to find the spectral efficiency under the constraint that
the input symbols are antipodally modulated as in the popular BPSK. In this case,
equally likely prior maximizes the mutual information. The MMSE is

E(b)(γ) = 1−
∫
e−

z2
2

√
2π

tanh (γ − z√γ) dz, (1.63)

where the superscript (b) stands for binary inputs. By Claim 1, the multiuser
efficiency η(b) is a solution to the fixed-point equation [17]:

1
η

= 1 + β E

{
γ

[
1−

∫
e−

z2
2

√
2π

tanh (ηγ − z√ηγ) dz
]}

. (1.64)

The channel capacity for a user with binary input, SNR equal to γ and separate
decoding is given by [28]

C(b)(γ) = −
∫
e−

z2
2

√
2π

log cosh
(
η(b)γ − z

√
η(b)γ

)
dz + η(b) γ log e. (1.65)

The joint-decoding spectral efficiency with binary inputs is thus

C
(b)
joint =β E

{
C(b)(γ)

}
+

1
2

[(
η(b) − 1

)
log e− log η(b)

]
(1.66)

which is also a generalization of an implicit result in [26].

1.4 THE REPLICA ANALYSIS OF GENERIC MULTIUSER DETECTION

This section introduces the replica method and presents the replica analysis of
generic multiuser detection which leads to Claims 1–3. We first describe the pro-
cedure of the replica method and demonstrate its use with a simple example. We
then apply the method to the analysis of the multiuser system and present the
calculation of the mutual information in some detail.

1.4.1 The Replica Method

Before describing the replica method, we first revisit the key measures used to
characterize the multiuser system, including in particular the input–output mutual
information. For convenience, natural logarithms are assumed from this point on.

1.4.1.1 Spectral Efficiency and Detection Performance Consider the multiuser chan-
nel, the PME and the companion channel as depicted in Figure 1.6.(a). Fix the
input distribution pX . The key quantity is the spectral efficiency

C =
1
L
I(X; Y |S), (1.67)

which we wish to evaluate. In some cases one may want to evaluate the mutual
information I(X; Y |S = s), which is a function of the realization s of S. In
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such cases one assumes the self-averaging property, in which the random quantity
(1/L)I(X; Y |S = s) is assumed to converge to C as L → ∞ for almost all re-
alizations of S. This property has been justified in the special case where qX is
Gaussian [11, 18] as well as in the case of Gaussian spreading sequence and binary
input [74].

The spectral efficiency is expressed as

C =
1
L

E

{
log

pY |X,S(Y |X,S)
pY |S(Y |S)

}
(1.68)

= −β E

{
1
K

log pY |S(Y |S)
}
− 1

2
log(2πe) (1.69)

where the simplification to (1.69) is because pY |X,S given by (1.8) is an L-dimensional
Gaussian density. In Section 1.4.1.2 we show that the replica method can be used
to calculate the normalized conditional differential entropy in (1.69),

E

{
1
K

log pY |S(Y |S)
}

(1.70)

which is also referred to as the free energy using the physics terminology.
In case of a multiuser detector front end, one is interested in the quality of the

detection output for each user, which is completely described by the distribution of
the detection output conditioned on the input. Let us focus on an arbitrary user k,
and let Xk, 〈Xk〉q and X ′k be the input, the PME output, and the companion chan-
nel output, respectively (cf. Figure 1.6.(a)). Instead of the conditional distribution
P〈Xk〉q|Xk , we solve a somewhat more ambitious problem: the joint distribution of
(Xk, 〈Xk〉q , X ′k) conditioned on the channel state S in the large-system limit. The
replica approach calculates the joint moments

E
{
Xi
k (X ′k)j 〈Xk〉lq

}
, i, j, l = 0, 1, . . . (1.71)

by studying a free-energy-like quantity, as will be discussed in Section 1.4.3. The
joint distribution becomes clear once all the moments (1.71) are determined, so does
the relationship between the detection output 〈Xk〉q and the input Xk. It turns out
that, as stated in Claim 3, the large-system joint distribution of (Xk, 〈Xk〉q , X ′k)
is identical to that of the input, PME output and companion channel output as-
sociated with a single-user Gaussian channel with the same input distribution but
with a degradation in the SNR.

We have distilled the problems under both joint and separate decoding to finding
some ensemble averages, namely, the free energy (1.70) and the joint moments
(1.71). In order to calculate these quantities, we resort to a powerful technique, the
heart of which is sketched in the following.

1.4.1.2 The Replica Method Direct calculation of the differential entropy (free en-
ergy) (1.70) is hard. The replica method can be described as the following procedure
to that effect:

1. Reformulate the free energy (1.70) as

F = − lim
K→∞

1
K

lim
u→0

∂

∂u
log E

{
puY |S(Y |S)

}
. (1.72)
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The equivalence of (1.70) and (1.72) can be verified by noticing that for all
positive random variable Θ,

lim
u→0

∂

∂u
log E {Θu} = lim

u→0

E {Θu log Θ}
E {Θu}

= E {log Θ} . (1.73)

2. For an arbitrary positive integer u, calculate

− lim
K→∞

1
K

log E
{
puY |S(Y |S)

}
(1.74)

by introducing u replicas of the system (hence the name “replica” method).

3. Assuming the resulting expression from Step 2 to be valid for all real-valued u
in the vicinity of u = 0, take its derivative at u = 0 to obtain the free energy
(1.72). It is also assumed that the limits in (1.72) can be interchanged.

We note that when analyzing general suboptimal estimators, the free energy
is defined as (1.72) with pY |S(Y |S) replaced by some alternative distribution
qY |S(Y |S) while the expectation remains over the joint probability measure pY ,S .

The rigorous mathematical minds will immediately question the validity of taking
Step 3. In particular, the expression obtained for integer values may not be valid
for real values in general [75]. In fact, the continuation of the expression to real
values is not unique, e.g., f(u) + sin(πu) and f(u) coincide at all integer u for
every function f . Nevertheless, as we shall see, the the replica method simply
takes the same expression derived for integer values of u, which is natural and
straightforward in the problem at hand. The rigorous justification for Step 3 is
still an open problem. Surprisingly, this continuation assumption, along with other
assumptions—sometimes very intricate—on symmetries of solutions, if necessary
(see Section 1.5.1), leads to correct results in all non-trivial cases where the results
are known through other rigorous methods. In other cases, the replica method
produces results that match well with numerical studies.

1.4.1.3 A Simple Example Before applying the replica method to the much more
involved multiuser detection problem, we give a simple example of its application
to the analysis of a single-user system. Let

Y =
√
γ

L
SX + N (1.75)

where X ∼ pX , N ∼ N (0, I), and S = [S1, . . . , SL]> is a column vector with i.i.d.
entries of mean 0 and unit variance. It is easy to see that the channel is equivalent
(via matched filtering) to a single-user Gaussian channel with the same SNR. In the
following we obtain the mutual information for L → ∞ using the replica method
as a warm-up exercise of the technique.

Similar to (1.69), conditioned on the channel state matrix, the input–output
mutual information of (1.75) is

I(X; Y |S) = −E
{

log pY |S(Y |S)
}
− L

2
log(2πe) (1.76)

where pY |S(y|S) = E
{
pY |S,X(y|S, X)

}
. In the following, we evaluate (1.76) using

the replica method. The calculation is rather lengthy, while the outcome is quite
simple.
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The differential entropy can be obtained from

E
{

log pY |S(Y |S)
}

= lim
u→0

∂

∂u
log E

{
puY |S(Y |S)

}
. (1.77)

For any positive integer u, one can introduce u replicas of the original system, and
evaluate the moment as follows:

E
{
puY |S(Y |S)

}
= E

{∫
pu+1

Y |S(y|S) dy

}
(1.78)

= E

{∫ u∏
a=0

pY |S,X(y|S, Xa) dy

}
(1.79)

where the integral is over all entries of the vector y from −∞ to ∞. Plugging in
the Gaussian densities pY |S,X , the RHS of (1.79) becomes (2π)−(u+1)L/2 times

E

{∫ u∏
a=0

exp

[
−1

2

L∑
l=1

(
yl −

√
γ

L
SlXa

)2
]

dy

}

= E

{
E

{∫ L∏
l=1

exp

[
−1

2

u∑
a=0

(
yl −

√
γ

L
SlXa

)2
]

dy

∣∣∣∣∣ X

}}
(1.80)

= E


[
E

{∫
exp

[
−1

2

u∑
a=0

(
y −

√
γ

L
SXa

)2
]

dy

∣∣∣∣∣ X

}]L (1.81)

where in (1.80) and (1.81) the inner expectation is with respect to the spreading
chip(s) conditioned on the symbols X, and (1.81) is due to symmetry and inde-
pendence of the L chips. The integral in (1.81) is simply over a Gaussian density,
which can be evaluated as∫

exp

[
−1

2

u∑
a=0

(
y −

√
γ

L
SXa

)2
]

dy

=

√
2π
u+ 1

exp

[
γ

2(u+ 1)L

(
S

u∑
a=0

Xa

)2

− γ

2L

u∑
a=0

(SXa)2
]
.

(1.82)

By (1.81) and (1.82), the RHS of (1.79) becomes

(2π)−uL/2

(u+ 1)L/2
E


(

E

{
exp

[
γ S2(

∑u
a=0Xa)2

2(u+ 1)L
− γ S2

2L

u∑
a=0

X2
a

] ∣∣∣∣∣ X

})L . (1.83)

Note that the exponent in (1.83) vanishes as L→∞. Using E
{
S2
}

= 1, we have

[(2π)u(u+ 1)]
L
2 E
{
puY |S(Y |S)

}
→ E

{
exp

[
γ(
∑u
a=0Xa)2

2(u+ 1)
− γ

2

u∑
a=0

X2
a

]}
(1.84)

as L → ∞. The RHS of (1.84) can be rearranged using the unit area property of
Gaussian density:14

ex
2

=
√

η

2π

∫
exp

[
−η

2
z2 +

√
2η xz

]
dz, ∀x, η (1.85)

14Equation (1.85) is a variant of the Hubbard-Stratonovich transform [76].
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with η = u+ 1 and x =
√

γ
2(u+1)

∑u
a=0Xa. The RHS of (1.84) becomes√

u+ 1
2π

E

{∫
exp

[
−1

2
(u+ 1)z2 +

√
γ z

u∑
a=0

Xa −
γ

2

u∑
a=0

X2
a

]
dz

}

=

√
u+ 1

2π

∫ [
E

{
exp

[
−1

2
(z −√γ X)2

]}]u+1

dz.

(1.86)

It is convenient to define a random variable Z =
√
γ X + N where N is standard

Gaussian. Let us define

pZ|X(z|x) =
1√
2π

exp
[
−1

2
(z −√γ x)2

]
, (1.87)

and

pZ(z) =
1√
2π

E

{
exp

[
−1

2
(z −√γ X)2

]}
. (1.88)

From (1.84) and (1.86),

[(2π)u(u+ 1)]
L−1

2 E
{
puY |S(Y |S)

}
→
∫
pu+1
Z (z) dz = E {puZ(Z)} . (1.89)

Therefore, from (1.76) and (1.89),

I(X; Y |S) = − lim
u→0

∂

∂u
log E

{
puY |S(Y |S)

}
− L

2
log(2πe) (1.90)

→ −
∫
pZ(z) log pZ(z) dz − 1

2
log(2πe) (1.91)

= h(Z)− h(N) (1.92)
= I(X;

√
γ X +N). (1.93)

It has thus been shown that in the large-dimension limit, the multi-dimensional
channel (1.75) has the same mutual information as the scalar Gaussian channel
with the same input and SNR as we initially expected.

1.4.2 Free Energy

In the remainder of this section, we present major steps of the replica analysis which
lead to Claims 1–3. The outline of this development is as follows. We calculate the
free energy (1.70) using (1.72) so that the spectral efficiency under joint decoding is
immediate from (1.69). In Section 1.4.3, we show a sketch for calculating the joint
moments, (1.71), which lead to the decoupling of the multiuser channel. Some of
the calculations are tedious so we omit some details but provide enough clues and
intuition so that the reader can connect the dots. For more details we refer the
reader to [26,27,31].

For an arbitrary positive integer u, we introduce u independent replicas of the
companion channel with the same received signal Y and channel state S as depicted
in Figure 1.8.. The partition function of the replicated system, from which we
evaluate the free energy (see Section 1.4.1.2), is

quY |S(y|s) = Eq

{
u∏
a=1

qY |X,S(y|Xa, s)

}
(1.94)
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Figure 1.8. The replicas of the companion channel.

where the expectation is taken over the replicated variables {Xak|a = 1, . . . , u, k =
1, . . . ,K}. In (1.94), Xak ∼ qX are i.i.d. since (Y ,S) = (y, s) are given. From
(1.94),

E
{
quY |S(Y ,S)

}
= E

{∫
pY |X,S(y|X0,S)

u∏
a=1

qY |X,S(y|Xa,S) dy

}
(1.95)

where the expectations are taken over the channel state matrix S, the original
symbol vector X0 (i.i.d. entries with distribution pX), and the replicated symbols
Xa, a = 1, . . . , u. For convenience, let σ0 = 1 and σa = σ for a = 1, 2, . . . . Plugging
in (1.8) and (1.9), we have

E
{
quY |S(Y ,S)

}
= E

{∫
(2πσ2)−

uL
2

(2π)
L
2

u∏
a=0

exp
[
−‖y − SXa‖2

2σ2
a

]
dy

}
. (1.96)

Note that S and Xa are independent in (1.96). Let X = [X0, . . . ,Xu]. The fact
that the L dimensions of the multiuser channel are independent and statistically
identical allows the RHS of (1.96) to be written as

E


[(

2πσ2
)−u2 ∫ E

{
u∏
a=0

exp
[
− (y − SAXa)2

2σ2
a

]∣∣∣∣∣AX

}
dy√
2π

]L (1.97)

where the inner expectation is taken over S = [S1, . . . , SK ], a row vector of i.i.d.
random variables each taking the same distribution as the random chips Snk. It is
clear that the original expectation over the growing chip dimension L is replaced
by the fixed dimension u of the replicas.

Define the following variables:

Va =
1√
K

K∑
k=1

√
γk SkXak, a = 0, 1, . . . , u. (1.98)

Clearly, (1.97) can be rewritten as

E
{
quY |S(Y ,S)

}
= E

{
exp

[
KG

(u)
K (AX)

]}
(1.99)
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where

G
(u)
K (AX) = − u

2β
log
(
2πσ2

)
+

1
β

log
∫

E

{
u∏
a=0

exp

[
−
(
y −
√
β Va

)2
2σ2

a

]∣∣∣∣∣AX

}
dy√
2π
.

(1.100)
Note that given A and X, each Va is a sum of K weighted i.i.d. random chips. Due
to a vector version of the central limit theorem, V = [V0, V1, . . . , Vu]> converges
to a zero-mean Gaussian random vector as K →∞. For a, b = 0, 1, . . . , u, define

Qab = E {VaVb | AX} =
1
K

K∑
k=1

γkXakXbk. (1.101)

Although implicit in notation, Qab is a function of {γk, Xak, Xbk}Kk=1. The random
vector V can essentially be replaced by a zero-mean Gaussian vector with covariance
matrix Q = (1/K)X>A2X. As a result,

exp
[
G

(u)
K (AX)

]
= exp

[
G(u)(Q) +O(K−1)

]
(1.102)

where the integral of the Gaussian density in (1.100) can be simplified to obtain

G(u)(Q) = − 1
2β

log det(I + ΣQ)− 1
2β

log
(

1 +
u

σ2

)
− u

2β
log
(
2πσ2

)
(1.103)

where Σ is a (u+ 1)× (u+ 1) matrix:15

Σ =
β

σ2 + u

 u −e>

−e
(
1 + u

σ2

)
I − 1

σ2 ee>

 (1.104)

where e is a u×1 column vector whose entries are all 1. It is clear that Σ is invariant
if two nonzero indexes are interchanged, i.e., Σ is symmetric in the replicas.

By (1.99) and (1.102),

1
K

log E
{
quY |S(Y ,S)

}
=

1
K

log E
{

exp
[
K
(
G(u)(Q) +O

(
K−1

))]}
(1.105)

=
1
K

log
∫

exp
[
KG(u)(Q)

]
dµ(u)

K (Q) +O
( 1
K

)
(1.106)

where the expectation over the replicated symbols is rewritten as an integral over
the probability measure of the covariance matrix Q.

1.4.2.1 Large Deviations and Saddle Point Since Qab given by (1.101) is a sum
of independent random variables for each pair (a, b), the probability measure µ(u)

K

satisfies the large deviations property. By Cramér’s Theorem [77, Theorem II.4.1],
there exists a rate function I(u) such that the measure µ(u)

K satisfies

− lim
K→∞

1
K

logµ(u)
K (A) = inf

Q∈A
I(u)(Q) (1.107)

15The indexes of all (u + 1)× (u + 1) matrices in this chapter start from 0.
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for all measurable sets A of (u+ 1)× (u+ 1) matrices.
Let the moment generating function be defined as

M (u)(Q̃) = E
{

exp
[
γX>Q̃X

]}
(1.108)

where Q̃ is a (u + 1) × (u + 1) symmetric matrix, X = [X0, X1, . . . , Xu]>, and
the expectation in (1.108) is taken over independent random variables γ ∼ Pγ ,
X0 ∼ pX and X1, . . . , Xu ∼ qX . The rate of the measure µ

(u)
K is given by the

Legendre-Fenchel transform of the cumulant generating function [77]:

I(u)(Q) = sup
Q̃

[
tr
{

Q̃Q
}
− logM (u)(Q̃)

]
(1.109)

where the supremum is taken with respect to the symmetric matrix Q̃.
As the exponential factor in (1.106) is proportional to K, and since we are taking

the limit K → ∞, the integral is dominated by the maximum of the overall effect
of the exponent and the rate of the measure on which the integral takes place (the
saddle-point method). Precisely, by Varadhan’s theorem [77, Theorem II.7.1], the
free energy for a given replica number u is

Fu = − lim
K→∞

1
K

log E
{
quY |S(Y ,S)

}
= − sup

Q

[
G(u)(Q)− I(u)(Q)

]
(1.110)

where the supremum is over all valid covariance matrices. Plugging in (1.103),
(1.108) and (1.109),

Fu = inf
Q

sup
Q̃

T (u)(Q, Q̃), (1.111)

with

T (u)(Q, Q̃) =
1

2β
log det(I + ΣQ) + tr

{
Q̃Q

}
− log E

{
exp

[
γX>Q̃X

]}
+

1
2β

log
(

1 +
u

σ2

)
+

u

2β
log
(
2πσ2

)
.

(1.112)

For an arbitrary Q, we first seek the point of zero gradient with respect to Q̃
and find that for any given Q, the extremum in Q̃ satisfies

Q =
E
{
γXX>exp

[
γX>Q̃X

]}
E
{

exp
[
γX>Q̃X

]} . (1.113)

Let Q̃
∗
(Q) denote the solution to (1.113). We then seek the point of zero gradient

of T (u)
(
Q, Q̃

∗
(Q)

)
with respect to Q.16 By virtue of the zero-gradient condition

16The following identities are useful:

∂ log det Q

∂x
= tr

{
Q−1

∂Q

∂x

}
,

∂Q−1

∂x
= −Q−1

∂Q

∂x
Q−1.
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with respect to Q̃, one finds that the derivative of Q̃
∗
(Q) with respect to Q is

multiplied by 0 and hence inconsequential. Therefore, the extremum in Q satisfies

Q̃ = −β−1 (I + ΣQ)−1 Σ. (1.114)

It is interesting to note from the resulting joint equations (1.113)–(1.114) that the
order in which the supremum and infimum are taken in (1.111) can be exchanged.
The solution

(
Q∗, Q̃

∗)
is in fact a saddle point of T (u). Notice that (1.113) can

also be expressed as

Q = E
{
γXX>

∣∣∣ Q̃
}

(1.115)

where the expectation is over an appropriately defined conditional measure Pγ ×
pX|Q̃,γ where

pX|Q̃,γ(x|Q̃, γ) = pX(x)
exp

[
γx>Q̃x

]
E
{

exp
[
γX>Q̃X

]} (1.116)

which is evidently a pdf or pmf. Let Q∗(u) and Q̃
∗
(u) be the solution to (1.113)–

(1.114) as functions of u. The free energy is then found by (1.72) and (1.111).

1.4.2.2 Replica Symmetry Solution Solving joint equations (1.113)–(1.114) directly
is prohibitive except in the simplest cases such as qX being Gaussian. In the gen-
eral case, suggested by the symmetry in the matrix Σ (1.104), we postulate that
the solution to the joint equations satisfies replica symmetry, namely, both Q∗(u)
and Q̃

∗
(u) are invariant if two (nonzero) replica indexes are interchanged. In other

words, the extremum can be written as

Q∗(u) =



r m m . . . m
m p q . . . q

m q p
. . .

...
...

...
. . . . . . q

m q . . . q p

 , Q̃
∗
(u) =



c d d . . . d
d g f . . . f

d f g
. . .

...
...

...
. . . . . . f

d f . . . f g

 (1.117)

where r,m, p, q, c, d, f, g are some real functions of u. The validity of the replica
symmetry assumption is discussed in Section 1.5.1. Under this symmetry assump-
tion, the problem of seeking the extremum (1.111) over a (u+1)2-dimensional space
(with u also a variable) is reduced to seeking the extremum over several parameters.

The eight parameters (r,m, p, q, c, d, f, g) can be solved from the joint equations
(1.113)–(1.114) under replica symmetry assumption. The detailed calculation is
omitted. It is interesting to note that the u-dependence of the parameters ob-
tained from the joint equations (1.113)–(1.114) does not contribute to the free
energy (1.111) due to the zero gradient conditions. Thus for the purpose of the free
energy (1.111), it suffices to find the derivative in (1.111) with Q∗(u) and Q̃

∗
(u)

replaced by their values at u = 0, which we simply denote by Q∗ and Q̃
∗
. From

this point on, with slight abuse of notation, let r,m, p, q, c, d, f, g represent their
values at u = 0.
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Using (1.114) and (1.117), it can be shown that at u = 0,

c = 0, (1.118a)

d =
1

2[σ2 + β(p− q)]
, (1.118b)

f =
1 + β(r − 2m+ q)
2[σ2 + β(p− q)]2

, (1.118c)

g = f − d. (1.118d)

The parameters r,m, p, q can be determined from (1.115) by studying the measure
pX,γ|Q̃ under replica symmetry and u → 0. For that purpose, define two useful
parameters with a modest amount of foresight:

η =
2d2

f
and ξ = 2d. (1.119)

The moment generating function (1.108) is evaluated using the property (1.85) with
η = 2d2/f and noticing that c = 0, g − f = −d to obtain

M (u)(Q̃
∗
) = E

{√
η

2π

∫
exp

[
−η

2
(z −√γX0)2

]
×
[
Eq

{
exp

[
−ξ

2
z2 − ξ

2
(z −√γX)2

] ∣∣∣∣ γ}]u dz
}
.

(1.120)

It is clear that the limit of (1.120) as u→ 0 is 1, i.e.,

lim
u→0

E
{

exp
[
γX>Q̃

∗
X
]}

= 1. (1.121)

Hence (1.113) implies that, as u → 0, the limit of Q∗ab = E
{
γXaXb | Q̃

∗}
is

identical to
lim
u→0

E
{
γXaXb exp

[
γX>Q̃

∗
X
]}

. (1.122)

We apply the transform (1.85) to decouple the cross terms of the form XcXd in the
exponent in (1.122). In fact all terms unrelated to Xa and Xb integrate to 1 which
do not contribute to the limit. More details are found in [27].

1.4.2.3 Single-user Channel Interpretation We now give a useful representation for
the parameters r,m, p, q defined in (1.117). Consider a = 0 and b = 1 for instance.
Expanding (1.122), as u→ 0,

Q∗01 = E
{
γX0X1 exp

[
γX>Q̃

∗
X
]}

(1.123)

→ E

{
γX0

∫ √
η

2π
exp

[
−η

2
(z −√γX0)2

]
(1.124)

×
X1

√
ξ
2π exp

[
− ξ2
(
z −√γX1

)2]
Eq

{√
ξ
2π exp

[
− ξ2
(
z −√γX1

)2] ∣∣∣∣ γ} dz

}
. (1.125)
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Let two single-user Gaussian channels be defined as in Section 1.3.2, i.e., the
input–output relationship of the two channels are described by pZ|X,γ;η given by
(1.18) and qZ|X,γ;ξ by (1.40). Assuming that the input distribution to the channel
qZ|X,γ;ξ is qX , a posterior probability distribution qX|Z,γ;ξ is induced, which defines
a companion channel. Let X0 be the scalar input to the channel pZ|X,γ;η and
X = X1 be the output of the companion channel qX|Z,γ;ξ. The posterior mean
with respect to the measure q, denoted by 〈X〉q, is given by (1.41). The Gaussian
channel pZ|X,γ;η, the companion channel qX|Z,γ;ξ and the PME, all in the single-
user setting, are depicted in Figure 1.6.(b). Then, (1.125) can be understood as an
expectation over X0, X and Z to obtain

E

{
γX0

∫
Eq {X | Z = z, γ; ξ} pZ|X,γ;η(z|X0, γ; η) dz

}
= E

{
γ X0 〈X〉q

}
. (1.126)

Similarly, (1.122) can be evaluated for all (a, b) yielding together with (1.117):

r = lim
u→0

Q∗00 = E
{
γ X2

0

}
= E {γ} , (1.127a)

m = lim
u→0

Q∗01 = E
{
γ X0 〈X〉q

}
, (1.127b)

p = lim
u→0

Q∗11 = E
{
γ X2

}
, (1.127c)

q = lim
u→0

Q∗12 = E
{
γ (〈X〉q)

2
}
. (1.127d)

In summary, the parameters c, d, f, g are given by (1.118) as functions of r,m, p, q,
which are in turn determined by the statistics of the two channels (1.18) and (1.40)
parameterized by η = 2d2/f and ξ = 2d respectively. It is not difficult to see that

r − 2m+ q = E

{
γ
(
X0 − 〈X〉q

)2
}
, (1.128a)

p− q = E

{
γ
(
X − 〈X〉q

)2
}
. (1.128b)

Using (1.118) and (1.119), it can be checked that

r − 2m+ q =
1
β

(
1
η
− 1
)
, and p− q =

1
β

(
1
ξ
− σ2

)
. (1.129)

Under replica symmetry, G(u) (Q∗) is evaluated using (1.103) and expressed in η
and ξ. Together with (1.111) and (1.120), the free energy is found as (1.47), where
by (1.128) and (1.129), (η, ξ) satisfies

η−1 = 1 + β E

{
γ
(
X0 − 〈X〉q

)2
}
, (1.130a)

ξ−1 =σ2 + β E

{
γ
(
X − 〈X〉q

)2
}
. (1.130b)

Because of the saddle-point evaluation in (1.110), in case of multiple solutions
to (1.130), (η, ξ) is chosen as the solution that gives the minimum free energy F .
By defining E(γ; η, ξ) and V(γ; η, ξ) as in (1.43) and (1.44), the coupled equations
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(1.118) and (1.127) can be summarized to establish the key fixed-point equations
(1.46). It will be shown in Section 1.4.3 that, from an individual user’s viewpoint,
the multiuser PME and the multiuser companion channel, parameterized by arbi-
trary (qX , σ), have an equivalence as a single-user PME and a single-user companion
channel.

1.4.2.4 Spectral Efficiency and Multiuser Efficiency Finally, for the purpose of the
total spectral efficiency, we set the postulated measure q to be identical to the actual
measure p (i.e., (qX , σ) = (pX , 1)). The inverse noise variances (η, ξ) satisfy joint
equations but we choose the replica-symmetric solution η = ξ. Using the identity

Cjoint = β F|q=p −
1
2

log(2πe), (1.131)

the total spectral efficiency is

Cjoint = −β E

{∫
pZ|γ;η(z|γ; η) log pZ|γ;η(z|γ; η) d z

}
− β

2
log

2πe
η

+
1
2

(η − 1− log η),
(1.132)

where η satisfies

η + η β E

{
γ

[
1−

∫
[p1(z, γ; η)]2

pZ|γ;η(z|γ; η)
d z

]}
= 1. (1.133)

The optimal spectral efficiency of the multiuser channel is thus found.
We remark that the essence of the replica method here is its capability of con-

verting a difficult expectation (e.g., of a logarithm) with respect to a given large
system to an expectation of a simpler form with respect to the replicated system.
Quite different from conventional techniques is the emphasis of large systems and
symmetry from the beginning, where the central limit theorem and large deviations
help to calculate the otherwise intractable quantities.

1.4.3 Joint Moments

Consider the multiuser Gaussian channel, the PME and the companion channel
depicted in Figure 1.6.(a). The joint moments (1.71) are of interest here. For
simplicity, we first study joint moments of the input and the companion channel
output, which can be obtained as expectations under the replicated system [31,
Lemma 3.1]:

E
{
Xi

0kX
j
k

}
= E

{
Xi

0kX
j
mk

}
, m = 1, . . . , u. (1.134)

It is then straightforward to calculate (1.71) by following the same procedure.
In [27], it is shown that the moments (1.134) can be obtained as

lim
u→0

∂

∂h

1
α1K

log E
{
Z(u)(Y ,S,X0;h)

}∣∣∣
h=0

(1.135)

where α1 ∈ (0, 1) and

Z(u)(y, s,x0;h) = Eq

{
exp

[
h

K1∑
k=1

xi0kX
j
mk

]
u∏
a=1

exp
[
−‖y − sXa‖2

2σ2

]}
(1.136)
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where K1 = α1K and we assume that the SNRs of the first K1 users are equal to
γ. Regarding (1.136) as a partition function for some random system allows the
same techniques in Section 1.4.2 to be used to write

lim
K→∞

1
K

log E
{
Z(u)(Y ,S,X0;h)

}
= sup

Q

[
β−1G(u)(Q)− I(u)(Q;h)

]
(1.137)

where G(u)(Q) is given by (1.103) and the rate I(u)(Q;h) is found as

I(u)(Q;h) = sup
Q̃

[
tr
{

Q̃Q
}
− (1−α1) logM (u)(Q̃)−α1 logM (u)(Q̃, γ;h)

]
(1.138)

where M (u)(Q̃) is defined in (1.108), and

M (u)(Q̃, γ;h) = E
{

exp
[
hXi

0X
j
m

]
exp

[
γX>Q̃X

] ∣∣∣ γ} . (1.139)

From (1.137) and (1.138), taking the derivative in (1.135) with respect to h at h = 0
leaves only one term

∂

∂h
logM (u)(Q̃, γ;h)

∣∣∣∣
h=0

=
E
{
Xi

0X
j
m exp

[
γX>Q̃X

] ∣∣∣ γ}
E
{

exp
[
γX>Q̃X

] ∣∣∣ γ} . (1.140)

Since
Z(u)(Y ,S,X0;h)

∣∣∣
h=0

= quY |S(Y ,S), (1.141)

the Q̃
∗

which satisfies (1.140) and gives the supremum in (1.138) at h → 0 is
exactly the Q̃

∗
which gives the supremum of (1.109), which is replica-symmetric

by assumption. By introducing the parameters (η, ξ) as in Section 1.4.2, and by
definition of qi and pi in (1.42) and (1.26) respectively, (1.140) can be further
evaluated as ∫ (√

2π
ξ e

ξz2

2

)u
pi(z, γ; η) qu−1

0 (z, γ; ξ) qj(z, γ; ξ) dz∫ (√
2π
ξ e

ξz2
2

)u
p0(z, γ; η)qu0 (z, γ; ξ) dz

. (1.142)

Taking the limit u→ 0, one has from (1.134)–(1.142) that as K →∞,

1
K1

K1∑
k=1

E
{
Xi

0kX
j
mk

}
→
∫
pi(z, γ; η)

qj(z, γ; ξ)
q0(z, γ; ξ)

dz. (1.143)

Let X0 ∼ pX be the input to the scalar Gaussian channel pZ|X,γ;η and Z be its
output (see Figure 1.6.(b)). Let X be the output of the companion channel with Z
as its input. Then X0–Z–X is a Markov chain. The RHS of (1.143) is∫

p0(z, γ; η)
pi(z, γ; ξ)
p0(z, γ; ξ)

qj(z, γ; ξ)
q0(z, γ; ξ)

dz = E
{
E
{
Xi

0

∣∣ Z}E
{
Xj
∣∣ Z}} . (1.144)

Letting K1 → 1 (thus α1 → 0)17 so that the requirement that the first K1 users
take the same SNR becomes unnecessary, we have shown by (1.134), (1.143) and

17To be precise, this step requires a more delicate treatment, since the saddle-point evaluation
involved in our calculation only captures terms of order O(K) in the exponent. It has been shown
that the result remains the same even if we take O(1) terms into consideration [78].
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(1.144) that for every SNR distribution and every user k ∈ {1, . . . ,K}

E
{
Xi

0kX
j
k

}
→ E

{
Xi

0X
j
}

as K →∞. (1.145)

We assume that the joint distribution PX0kXk is determinate, i.e., uniquely de-
termined by the joint moments18. Therefore, for every user k, the joint distribution
of the input X0k to the multiuser channel and the output Xk of the multiuser com-
panion channel converges to the joint distribution of the input X0 to the single-user
Gaussian channel pZ|X,γ;η and the output X of the single-user companion channel
qX|Z,γ;ξ.

Applying the same methodology as developed thus far, one can also calculate
the joint moments (1.71) to obtain19

E
{
Xi

0kX
j
k 〈Xk〉lq

}
→ E

{
Xi

0X
j 〈X〉lq

}
(1.146)

where 〈X〉q is the single-user PME output as seen in Figure 1.6.(b), which is a
function of the Gaussian channel output Z. Again, assuming the determinacy, the
joint distributions of (X0k, Xk, 〈Xk〉q) converge to that of (X0, X, 〈X〉q). Indeed,
from the viewpoint of user k, the multiuser setting is equivalent to the single-user
setting in which the SNR suffers a degradation η (compare Figures 1.6.(b) and
1.6.(a)). Hence we have justified the decoupling principle and Claim 3.

In the large-system limit, the transformation from the input X0k to the multiuser
detection output 〈Xk〉q is nothing but a single-user Gaussian channel pZ|X,γ;η con-
catenated with a decision function (1.41). The decision function is one-to-one due
to Proposition 1 and hence inconsequential from both detection- and information-
theoretic viewpoints.

We now conclude that the equivalent single-user channel is an additive Gaussian
noise channel with input SNR γ and noise variance η−1 as depicted in Figure 1.6.(b).
Claim 3 follows, which implies Claims 1 and 2 in the special case that the postulated
measure q is identical to the actual measure p. Curiously, this decoupling result is
identical to what is obtained using parallel interference cancellation in Section 1.3.4
with invalid independence assumption, or using belief propagation in the special
case of sparse spreading matrix [52].

1.5 FURTHER DISCUSSION

1.5.1 On Replica symmetry

The validity of the replica symmetry assumption can be checked by calculating the
Hessian of

[
G(u)(Q)− I(u)(Q)

]
at the replica symmetric supremum [37]. If all the

eigenvalues of the Hessian associated with modes that break replica symmetry are
negative at the replica symmetric supremum, then the solution is stable against

18Note that the determinacy does not necessarily hold in general (the moment problem [79, p. 227],
[80]), even though all distributions of finite support and most discrete and continuous distributions
of practical interest (e.g., Gaussian distribution) are determinate. Sufficient conditions for a
multidimensional distribution to be determinate are given in [81,82]. In particular, if the marginals
are determinate, the joint distribution is also determinate [81].
19Note the change of notation: X is replaced by X0 which corresponds to the 0-th replica and X′

is replaced by X.
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perturbations which break replica symmetry. If not, then the solution is said to
suffer from the de Almeida-Thouless (AT) instability, which has been named after
two physicists who first performed the stability analysis on a spin glass model [83].

For the basic prescription of the AT stability analysis, we ask the reader to see
[26], where one will find detailed description of the analysis for the equal-power
binary input case. Essentially the same analysis can be performed in the generic
case discussed in this chapter, and the result is summarized as follows.

Claim 4 (AT stability) A replica-symmetric solution is stable against replica sym-
metry breaking (RSB) if the following inequality holds.

−βξ2 +
[
E
{
γ
(
〈X2〉q − (〈X〉q)2

)2}]−1

< 0 (1.147)

The LHS of (1.147) is the eigenvalue of the perturbation modes (the so-called
“replicon” modes) that determines the AT stability. One can numerically check
the AT stability condition in order to see if a particular numerical solution of the
replica symmetric fixed-point equations (1.46) is stable against replica symmetry
breaking. In the equal-power binary case, AT instability may actually be observed,
although not always, when the postulated noise level σ is less than 1.

When the AT stability is violated for a solution with replica symmetry, it means
that Q at the true supremum (1.110) should lack the replica symmetry, and Q with
broken symmetry will give us even larger values of

[
G(u)− I(u)

]
. A systematic way

of improving replica-symmetric solutions has been proposed for spin glass models,
which consists of considering a series of symmetry breaking schemes, the so-called 1-
step RSB, 2-step RSB, etc. A preliminary study on the equal-power binary CDMA
problem suggests that consideration of the 1-step RSB alters the solutions only
slightly [84]. We thus expect that the analysis with replica symmetry assumption
provides us with quantitatively accurate enough picture even if the assumption is
not valid.

1.5.2 On Metastable Solutions

As we have briefly mentioned in Section 1.4.2.3, the fixed-point equations (1.46)
determining (η, ξ) may have multiple solutions. Since we are interested in obtaining
the true supremum of

[
G(u) − I(u)

]
, what we have to do is to compare the values

of the free energy F of those solutions, and to pick up the one that minimizes the
free energy. Then we can safely discard the other solutions, since they seem not to
have any operational meaing. Or, do they?

They do, if practical (suboptimal) schemes for obtaining the PME are consid-
ered. In order to understand benefits of considering solutions other than the one
giving the true supremum, it should be a good idea to exploit an analogy with a
‘magnet.’ Typical magnetic materials respond to externally applied magnetic field
by expressing magnetization. Magnetization curves (Figure 1.9.(a)) represent how
the magnetization depends on the external magnetic field. At high enough tem-
perature the magnetization depends monotonically on, and uniquely determined
by, the external field (Figure 1.9.(a), monotone curve). On the other hand, at low
temperature (lower than the so-called Curie temperature), the magnetization may
take multiple values within a certain range of the external field (Figure 1.9.(a),
the S-shaped curve). In particular, non-zero magnetization will be observed even
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Figure 1.9. Typical magnetization curves of ferromagnets. (a) Magnetization curve at
high (monotone curve) and low (S-shaped curve) temperatures. (b) Magnetization curve at
low temperature. Insets show the free energy profiles in the corresponding regions.

when the external field is absent. It is called spontaneous magnetization, and is the
theory underlying the phenomenon such as seen about a magnet. The structural
change of the magnetization curve with temperature is an example of the phase
transition.

A simple mathematical model of magnetism can explain the phase transition
analytically. The analysis consists of evaluating the free energy in essentially the
same manner as the analysis in this chapter, that is, with the fixed-point method. At
the low-temperature (“ferromagnetic”) phase, the fixed-point equations may have
three solutions. When it is the case, the free energy, as a function of magnetization,
has a structure as shown in the insets of Figure 1.9.(b). Thus the true solution in
the mathematical sense is the one that minimizes the free energy, and is given by
the topmost and the lowermost branches in Figure 1.9.(b) when the external field
is positive and negative, respectively. The solution is called a (globally) stable
solution. The solution in the topmost branch with negative external fields, and the
one in the lowermost branch with positive external fields, only locally minimizes
the free energy. They are called “metastable” solutions. The last solution in the
middle branch, called an unstable solution, locally maximizes the free energy.

The significance of the metastable solutions is manifested in a phenomenon called
hysteresis. In the low-temperature condition, the magnetization we observe may
not be the one corresponding to the true solution (the globally stable solution).
Depending on history, the system may take a state corresponding to a metastable
solution, the fact that explains the hysteresis.

Essentially the same description applies to the multiuser detection problem as
well, as can be seen in Figure 1.10. Whereas the globally optimum solution switches
from the uppermost branch to the lowermost one, the numerical results obtained
using suboptimal belief propagation algorithms (see Section 1.7.2) seem to follow
the uppermost branch even though it is not the true solution on the shoulder at
the RHS of the S-shaped curve. The phenomenon can be ascribed to the fact that
the multiuser detection algorithm does not know the true detection results initially:
Indeed, the system may easily get trapped in the metastable solution with large
error probability, due to the “history” effect caused by the initial configurations
being far away from the true detection results.
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Figure 1.10. Comparison of BER between replica analysis of the individually optimal
detector (solid curve) and numerical experiments on the BP-based multiuser detection
algorithm described in Section 1.7.2.3 (dots: L = 2, 000, squares: L = 4, 000). System
load β is 1.6. BPSK data modulation, as well as perfect power control is assumed.

1.6 STATISTICAL PHYSICS AND THE REPLICA METHOD

So far, we have worked with the mathematical aspect of the replica method only and
avoided physical concepts. In retrospect, it is enlightening to draw an equivalence
between multiuser communications and many-body problems in statistical physics,
which also provides the underlying rationale for applying the replica theory in the
first place.

1.6.1 A Note on Statistical Physics

Consider the physics of a macroscopic system, which typically consists of 1020 or
more particles. Let the microscopic configuration of the system be described by a
vector x. The configuration of the system evolves over time according to the laws of
physics. However, in view of the enormous degrees of freedom of such a macroscopic
system, it is practically impossible to track the time evolution of the configuration.
On the other hand, we are most interested in the macroscopic properties of the
system, not the detailed configuration of the humongous number of particles. Ele-
gantly, statistical physics introduces a probabilistic description of the system. Let
p(x) denote the probability that the system is found in configuration x. Assuming
the system is at thermal equilibrium in contact with a heat bath, statistical physics
states that p(x) is given by the so-called Gibbs–Boltzmann distribution:

p(x) = Z−1 exp
[
− 1
T
H(x)

]
(1.148)

where H(x) denotes the Hamiltonian, i.e., the function that associates each config-
uration x to its energy, where

Z =
∑
x

exp
[
− 1
T
H(x)

]
(1.149)

is the partition function normalizing p(x), and where the parameter T > 0 denotes
the temperature of the system.
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The Gibbs–Boltzmann distribution can also be characterized as the solution to
a constrained optimization problem, in which the entropy (disorder) of the system

S = −
∑
x

p(x) log p(x) (1.150)

is maximized under the constraint that the energy of the system is fixed to be

E =
∑
x

p(x)H(x). (1.151)

This optimization problem can be solved using the Lagrange multiplier method.
Using (1.150) and (1.151), the probability distribution p(x) is found to be equal
to (1.148), where the Lagrange multiplier 1/T , serving as the inverse temperature,
is determined by the energy constraint (1.151).

Generally speaking, statistical physics is a theory that studies macroscopic prop-
erties (e.g., pressure, magnetization) of such a system starting from the Hamiltonian
by taking the above probabilistic viewpoint. For the system shown above, it is not
the most probable configuration (the ground state which has the minimum energy),
but those configurations with energy close to E that contribute to the physics of
the system. Indeed, such configurations form the “typical set,” which determines
macroscopic properties of the system. From the mathematical point of view, one
can regard that statistical physics provides a framework of statistical theory regard-
ing probability models with huge degrees of freedom. This view is fundamental in
linking statistical physics with various problems in information and communication
theory.

One particularly useful macroscopic quantity of the thermodynamic system is
the free energy:

F = E − T S. (1.152)

Using (1.148)–(1.151), the free energy at equilibrium can also be expressed as

F = −T logZ. (1.153)

Indeed, at thermal equilibrium, the temperature and energy of the system remain
constant, the entropy is the maximum possible, and the free energy is at its min-
imum. The free energy is often the starting point for calculating macroscopic
properties of a thermodynamic system. For example, the energy E and the entropy
S are obtained by differentiating F ; E = ∂(F/T )/∂(1/T ) and S = −∂F/∂T hold,
respectively.

1.6.2 Multiuser Communications and Statistical Physics

1.6.2.1 Equivalence of Multiuser Systems and Spin Glasses In order to take advan-
tage of the statistical physics methodologies, we equate the multiuser communica-
tion problem to an artificial thermodynamic system, called spin glass. A spin glass
is a system consisting of many directional spins, in which the interaction of the
spins is determined by the so-called quenched random variables whose values are
determined by the realization of the spin glass. An example is a system consisting
of molecules with magnetic spins that evolve over time, while the positions of the
molecules that determine the amount of interactions are random (disordered) but
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remain fixed for each concrete instance. In the probabilistic context, the quenched
variables are simply the random variables we condition on to calculate the expec-
tation values of the performance measures. We then avearge over the quenched
variables in order to obtain the average performance. Let the quenched random
variables be denoted by (Y ,S). The system can be understood as K random spins
sitting in quenched randomness (Y ,S) = (y, s), and its statistical physics described
as in Section 1.6.1 with a parameterized Hamiltonian Hy,s(x).

Suppose the temperature T = 1 and that the Hamiltonian is defined as

Hy,s(x) =
‖y − sx‖2

2σ2
− log qX(x) +

L

2
log
(
2πσ2

)
, (1.154)

then the Gibbs–Boltzmann distribution, the configuration distribution of the spin
glass at equilibrium, is given by (1.10) and its corresponding partition function
by (1.11) (cf. (1.148) and (1.149)). Precisely, the probability that the transmitted
symbol is X = x under the postulated model, given the observation Y = y and
the channel state S = s, is equal to the probability that the spin glass is found at
configuration x, given quenched random variables (Y ,S) = (y, s).

The characteristics of the system is encoded in the quenched randomness (Y ,S).
In the communication channel described by (1.2), (Y ,S) takes a specific distribu-
tion, i.e., the distributions of the received signal and channel state matrix according
to the prior and conditional distributions that underlie the “original” spins.

The free energy of the thermodynamic (or communication) system normalized
by the number of users is

− T
K

logZ(Y ,S) = − 1
K

log qY |S(Y |S) (1.155)

where we assume T = 1. If we assume self-averaging for the per-user free en-
ergy (1.155), it converges in probability to its expected value over the distribution
of the quenched random variables (Y ,S) in the large-system limit K →∞, which
is denoted by F ,

F = − lim
K→∞

E

{
1
K

log qY |S(Y |S)
}
. (1.156)

Hereafter, by the free energy we refer to its large-system limit (1.156).
The reader should be cautioned that for disordered systems, thermodynamic

quantities may or may not be self-averaging [85]. Buttressed by numerical examples
and associated results using random matrix theory, as well as recent progress [74],
the self-averaging property is assumed to hold in this work.

The self-averaging property resembles the asymptotic equipartition property
(AEP) in information theory [63]. An important consequence is that a macro-
scopic quantity of a thermodynamic system, which is a function of a large number
of random variables, may become increasingly predictable from merely a few pa-
rameters independent of the realization of the quenched randomness as the system
size grows without bound.

In view of (1.69) and (1.156), the large-system spectral efficiency of the multiuser
system is affine in the free energy with a postulated measure q identical to the actual
measure p:

C→ β F|q=p −
1
2

log(2πe). (1.157)

Indeed, the replica analysis presented in Section 1.4 was developed based on this
observation.
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1.7 INTERFERENCE CANCELLATION

1.7.1 Conventional Parallel Interference Cancellation

So far we have discussed, via the single-user characterization, theoretical structure
and information transmission capability of the CDMA channels, equipped with
various multiuser posterior mean estimators. Straightforward computation of the
PME requires K-dimensional integration (or summation if Xk’s are discrete), the
computational complexity of which generally grows exponentially in K. This is
practically hard (see Section 1.1.1).20

The interference cancellation is a heuristic idea for reducing complexity by sub-
optimal processing. Suppose we are given a realization s of the channel state matrix
S. The basic observation is that the matched filter output for user k is decomposed
into three terms:

s>k Y = ‖sk‖2
√
γkXk +

∑
k′ 6=k

s>ksk′
√
γk′Xk′ + s>kN (1.158)

The first is the “signal” term that is proportional to the desired symbol Xk. The
second is the MAI consisting of the symbols of the remaining users. The third is
the noise term. In order for a good estimation, we want the interference and noise
terms to be small. Whereas essentially nothing can be done in order to eliminate
the noise term, one could think of reducing the interference because, in the context
of multiuser detection, we want to estimate not only Xk but {Xk′ , k

′ 6= k} as
well, which means that we will certainly have some estimates for the latter, and
that these estimates could be used to reconstruct and then cancel the interference.
For example, if the estimates {x̂k′ , k′ 6= k} are good enough, the “interference
cancellation”

zk = s>k

(
y −

∑
k′ 6=k

sk′
√
γk′ x̂k′

)
, (1.159)

would give us a quantity that is almost free of the interference.
The parallel interference cancellation (PIC), also referred to as the multistage

detector [61], is the idea of performing the interference cancellation in stages and
in parallel. It is formulated as

ztk = s>k y −
∑
k′ 6=k

s>ksk′
√
γk′ x̂

t
k′ (1.160)

x̂t+1
k = fk(ztk) (1.161)

where fk(·) is a decision function for user k, which may be defined on the basis of a
postulated channel characteristics such as (1.14). Initialization of PIC is typically
done by setting {x̂0

k} with a computationally simple estimator, such as a linear
detector.

1.7.2 Belief Propagation

1.7.2.1 Application of Belief Propagation to Multiuser Detection We next turn our
focus to a systematic method for approximate computation of the posterior means.

20The Gaussian-prior case is an exception, in which the PMEs are calculated algebraically, yielding
a linear detector (1.12).
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Posterior mean estimation is also important in researches of artificial intelligence:
How one can represent uncertainties surrounding an intelligent agent is an impor-
tant issue in artificial intelligence, and one might think it natural to use probability
models to handle the uncertainties. Pearl’s proposal of BP [53] has provided us
with a unified approach to calculating posterior means, provided that a probabil-
ity model is represented as a graphical model. As mentioned in Section 1.1.4, the
multiuser system can be described by a bipartite graph shown in Figure 1.1., where
a symbol node Xk and a chip node Yl are connected by an edge if slk 6= 0. The
task of a multiuser detector is to infer the symbols based on the observation at the
chip nodes, to which the framework of BP is applicable. However, BP gives exact
posterior means only for a limited class of probability models (i.e., those that do
not contain cycles), and it generally provides approximate posterior means. BP has
nevertheless been regarded as very important because the decoding algorithms of
many capacity-achieving error-control coding, e.g., the turbo decoding algorithm
for turbo codes and the sum-product algorithm for sparse-graph codes, turn out
to be instances of BP [86, 87]. In view of such outstanding success of BP in error-
control coding, one might think it worthwhile to consider application of BP to the
multiuser detection.

It is possible, at least in principle, to apply BP to the multiuser detection prob-
lem, which yields the following procedure iterating the “Horizontal” and “Vertical”
steps until convergence is achieved:

Input: Channel output y, channel state s, prior qX(x).
Initialization: Set t := 0, and

π0
lk(xk) = qX(xk), l = 1, . . . , L; k = 1, . . . , K. (1.162)

Main Iterations:
for t = 0 to maximum number of iterations do

“Horizontal” step:

ρt+1
lk (xk) =

∫
1√

2πσ2
exp
[
− (yl − (sx)l)2

2σ2

] ∏
k′ 6=k

[
πtlk′(xk′) dxk′

]
(1.163)

“Vertical” step:
πt+1
lk (xk) = αlk qX(xk)

∏
l′ 6=l

ρt+1
l′k (xk) (1.164)

where αlk is the normalization coefficient so that πt+1
lk (xk) is a pmf.

end for
Output: After convergence is achieved, calculate

πk(xk) = αkqX(xk)
L∏
l=1

ρlk(xk), (1.165)

which gives an approximate marginal distribution of Xk.
return πk(x), for all k = 1, . . . ,K and all x.
The difficulty in applying BP to the user detection resides in the Horizontal step,

where one has to perform (K − 1)-dimensional integration, whose computational
complexity grows exponentially in K.
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1.7.2.2 Conventional Parallel Interference Cancellation as Approximate BP Here we
discuss a simple heuristic approximation [88, 89] to alleviate the computational
difficulty, which, interestingly, leads to the conventional parallel interference can-
cellation scheme of Section 1.7.1. Their heuristics consists of two basic ideas: The
first idea is to replace the quantities {πtlk(xk); l = 1, . . . , N}, computed in the
vertical steps, with

πtk(xk) = αkqX(xk)
N∏
l=1

ρtlk(xk) ∝ πtlk(xk)ρtlk(xk). (1.166)

The approximation of πtlk(xk) with πtk(xk) is expected to be quite good asymptot-
ically, because the factor ρtlk(xk) is one among the N factors. The second idea is,
instead of evaluating the expectation with respect to

∏
k′ 6=k π

t
lk′(xk′) in the hori-

zontal steps (1.163), to plug the expectations mt
k′ of Xk′ with respect to πtk′(xk′)

into the exponent of the integrand. The approximation gives

ρt+1
lk (xk) ∝ exp

[
1
σ2

√
γk
L
utlslkxk −

γk
2σ2

s2lk
L
x2
k

]
, (1.167)

and

πt+1
k (xk) ∝ qX(xk) exp

[√
γkxk

σ2
s>ku

t − γkx
2
k

2σ2
‖sk‖2

]
, (1.168)

where ut = [u1, . . . , uL]>, utl = yl − L−1/2
∑
k′ 6=k
√
γk′slk′m

t
k′ . Under the random

spreading assumption and in the large-system regime, ‖sk‖2 = L−1
∑L
l=1 s

2
lk can

safely be regarded as being equal to 1 due to the law of large numbers, so that
(1.168) is represented as an update rule in terms of {mt

k}, as

mt+1
k = f

(
s>k y −

∑
k′ 6=k

s>ksk′
√
γk′m

t
k′ , γk;

1
σ2

)
. (1.169)

The function f(z, γ; ξ) is the decision function Eq {X | Z = z, γ; ξ} induced by the
single-user channel with qX and qZ|X,γ;ξ as defined in (1.40). Equation (1.169) is
nothing but the conventional PIC algorithm discussed in Section 1.7.1, demonstrat-
ing that the conventional PIC algorithm can be regarded as an approximation to
the BP algorithm.

1.7.2.3 BP-based Parallel Interference Cancellation Algorithm We now discuss a
more sophisticated approximation scheme [46]. Let us first rewrite the quantity
(sx)l as

(sx)l =
1√
L

∑
k′ 6=k

√
γk′slk′xk′ +

√
γk
L
slkxk ≡ (sx)l\k +

√
γk
L
slkxk. (1.170)

Noting that the second term of the rightmost side of (1.170) can be regarded small
compared with the first term as L becomes large, one can expand the integrand
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of (1.163) as

exp
[
− (yl − (sx)l)2

2σ2

]
= exp

[
−

(yl − (sx)l\k)2

2σ2

]
×
(

1 +
1
σ2

√
γk
L
slkxk

[
yl − (sx)l\k

]
+

γk
2σ4L

(
slkxk

[
yl − (sx)l\k

])2

+O(L−3/2)
)
.

(1.171)

The key observation is that the distributions {πtlk′(xk′)} affects the LHS of (1.163)
only through the distribution of (sX)l\k, which can be regarded as a Gaussian
random variable in the large-system regime due to the central-limit theorem, since
it is a weighted sum of the independent random variables Xk′ ∼ πtlk′ ; k′ 6= k. The
mean and variance are

µtlk =
1√
L

∑
k′ 6=k

√
γk′slk′m

t
lk′ , (1.172)

and
Ctlk =

1
L

∑
k′ 6=k

γk′s
2
lk′V

t
lk′ , (1.173)

respectively, where mt
lk and V tlk are the mean and the variance of Xk ∼ πtlk. Note

that µtlk is an estimate, based on {πtlk′}, of the MAI component in yl for user k, and
that Ctlk represents uncertainty of the estimate, quantifying magnitude of residual
MAI component after the cancellation of MAI with µtlk. Retaining terms up to
order of L−1, and calculating the Gaussian integral, the horizontal step can be
represented as follows:

ρt+1
lk (xk) ∝ exp

[√
γk
L

slk(yl − µtlk)
σ2 + Ctlk

xk −
γks

2
lk

2L(σ2 + Ctlk)
x2
k

]
. (1.174)

Introducing the parametrization

ρtlk(xk) ∝ exp
[√

γk
L
θtlkxk −

γk
2L

Ξtlkx
2
k

]
, (1.175)

the horizontal and vertical steps are represented as

θt+1
lk =

slk(yl − µtlk)
σ2 + Ctlk

and Ξt+1
lk =

s2lk
σ2 + Ctlk

, (1.176)

and

πtlk(xk) = αlkqX(xk) exp
[
√
γkxk

(
1√
L

∑
l′ 6=l

θtl′k

)
− γkx

2
k

2

(
1
L

∑
l′ 6=l

Ξtl′k

)]
, (1.177)

respectively. The mean mt
lk and the variance V tlk are to be calculated from πtlk(xk).

Equations (1.172), (1.173), (1.176), (1.177) define an approximate BP algorithm
for user detection. This algorithm has polynomial-order computational complexity
per iteration, as opposed to the exponential-order complexity of the original BP.
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The final results are to be read out, after convergence is achieved, as statistics of
the distributions

πk(xk) = αkqX(xk) exp
[
√
γkxk

(
1√
L

L∑
l=1

θ∗lk

)
− γkx

2
k

2

(
1
L

L∑
l=1

Ξ∗lk

)]
, (1.178)

where θ∗lk and Ξ∗lk denote the respective quantities at the equilibrium.
One might ask how good the algorithm performs. The key observations to the

question are that one can regard πtlk(xk), as given by (1.177), as a posterior distribu-
tion with the prior qX and the Gaussian channel qZ|X,γ;ξ(ztlk|xk, γk; ξtlk) (see (1.40))
with appropriately chosen parameters,

ξtlk =
1
L

∑
l′ 6=l

Ξtl′k and ztlk =
1

ξtlk
√
L

∑
l′ 6=l

θtl′k, (1.179)

and that one can apply the density evolution [90] idea to analyze macroscopic
dynamical behaviors of the BP-based algorithm [89, 91], which is motivated by
its great success in the analysis of BP-based decoding algorithms of sparse-graph
codes. Basically, the density evolution describes time evolution of the distributions
of the “messages” (θtlk,Ξ

t
lk) and (mt

lk, V
t
lk). When applied to the approximate BP

algorithm introduced above, it turns out that the distributions of ztlk and ξtlk are
relevant. Relying on a heuristic argument (which can be justified only in case of
sparse spreading [50,51]), one finds, under random spreading and in the large-system
limit, that ξtlk becomes deterministic and independent of l or k, and that

(ξt+1)−1 = σ2 + βE
{
γVt

}
(1.180)

holds, where Vt ≈ V tlk denotes the variance of πtlk, and where we dropped the
indexes lk from ξtlk due to the asymptotic independence. As for ztlk, one can regard
it as following a zero-mean Gaussian distribution, and the variance, denoted here
by (ηt)−1, turns out to satisfy

(ηt+1)−1 = 1 + βE
{
γEt
}
, (1.181)

where Et denotes the mean squared error of the estimate mt
lk. Comparing the

density evolution formulas (1.180) and (1.181) with the fixed-point equations of
the replica analysis (1.46), one observes that stationarity condition of the density
evolution formulas coincide with the fixed-point equations for arbitrary inputs,
which has been proved only in case of sparse spreading [51], as is pointed out
in Sections 1.1.3 and 1.3.4. On the theoretical side, the coincidence suggests an
interesting and not yet fully understood link between the replica analysis and the
BP-based algorithm. As for the application side, on the other hand, it suggests
that, under the random spreading, the BP-based algorithm performs as predicted
by the replica analysis in the large-system limit, and can thus be “asymptotically
optimal.”

1.8 CONCLUDING REMARKS

This chapter presents a simple characterization of the large-system performance
of multiuser detection under arbitrary input and SNR distribution (and/or flat
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fading). A broad family of multiuser detectors is studied under the umbrella of
posterior mean estimators, which includes well-known detectors such as the matched
filter, decorrelator, linear MMSE detector, maximum likelihood (jointly optimal)
detector, and the individually optimal detector.

A key conclusion is the decoupling of a multiuser channel concatenated with a
generic multiuser detector front end. It is found that the detection output for each
user is a deterministic function of a “hidden” Gaussian statistic centered at the
transmitted symbol. Hence the single-user channel seen at the multiuser detection
output is equivalent to a Gaussian channel conditioned on the input SNR in which
the overall effect of MAI is a degradation in the effective SNR. The degradation
factor, known as the multiuser efficiency, is the solution to a pair of coupled fixed-
point equations, and can be easily computed numerically if not analytically.

Another set of results, tightly related to the decoupling principle, lead to general
formulas for the large-system spectral efficiency of multiuser channels expressed in
terms of the multiuser efficiency, both under joint and separate decoding.

Turning to algorithmic issues, the chapter also discusses application of belief
propagation. It is shown that the conventional parallel interference cancellation is
an approximate BP, and that more systematic approximation leads to a variant
of PIC, whose performance is expected to be asymptotically optimal in the large-
system limit. The suggested relation between density evolution formulas of the
algorithm and the fixed-point equations obtained by the replica analysis, which has
not been fully explored yet, might be of help interpreting the replica results further.

From a practical viewpoint, this chapter presents new results on the efficiency
of CDMA communication under arbitrary user powers and input signaling such as
PSK and QAM. The results in this chapter allow the performance of multiuser de-
tection to be characterized by a single parameter, the multiuser efficiency. Thus, the
results offer convenient performance measures and valuable insights in the design
and analysis of multiuser systems, e.g., in power control [92].

The linear system in our study also models MIMO channels under various cir-
cumstances. The results can thus be used to evaluate the output SINR or spectral
efficiency of high-dimensional MIMO channels (such as multiple-antenna systems)
with arbitrary signaling and various detection techniques. Some of the results in
this chapter have been generalized to MIMO channels with spatial correlation at
both transmitter and receiver sides [93], as well as to MIMO-CDMA channels [94].
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30. D. Guo and S. Verdú, “Replica analysis of CDMA spectral efficiency,” in Proc. IEEE
Inform. Theory Workshop. Paris, France, 2003.

31. D. Guo, “Gaussian channels: Information, estimation and multiuser detection,” Ph.D.
dissertation, Department of Electrical Engineering, Princeton University, 2004.

32. T. Tanaka, “Replica analysis of performance loss due to separation of detection and
decoding in CDMA channels,” in Proc. IEEE Int. Symp. Inform. Theory. Seattle,
WA, USA, 2006, pp. 2368–2372.

33. D. Guo, “Performance of synchronous multirate CDMA via statistical physics,” in
Proc. IEEE Int. Symp. Information Theory. Adelaide, Australia, Sep. 2005.

34. ——, “Performance of multicarrier CDMA in frequency-selective fading via statistical
physics,” IEEE Trans. Inform. Theory, vol. 52, no. 4, pp. 1765–1774, Apr. 2006.

35. S. F. Edwards and P. W. Anderson, “Theory of spin glasses,” Journal of Physics F:
Metal Physics, vol. 5, pp. 965–974, 1975.



50 GENERIC MULTIUSER DETECTION AND STATISTICAL PHYSICS
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