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Abstract

In CDMA, the optimal multiuser detector in mean square sense is the condi-
tional mean estimator (CME) regardless of the input distribution, which outputs
the expected value of the transmitted symbols conditioned on the received signal
and the channel state (spreading sequences, fading, etc). In this paper, we first
note that every multiuser detector can be reformulated as the CME for a certain
postulated CDMA channel with a postulated input distribution which may be dif-
ferent from the actual channel and inputs. Using the replica method developed
in statistical physics, a class of generalized CME front end applied to randomly
spread CDMA is studied in a unified framework in the large-system limit. It is
found that for any input distribution, the single-user channel seen at the general-
ized CME output for each user is equivalent to a Gaussian channel followed by a
monotonic decision function. The degradation factor in the effective SNR of the
equivalent channel due to multiple access interference is the multiuser efficiency,
which is found to satisfy a fixed-point equation. The spectral efficiency of such a
system under both joint and separate decoding are derived. Based on a general
linear vector channel model, our results are also applicable to MIMO channels such
as those arising in multiantenna systems.

1 Introduction

In code-division multiple access (CDMA), multiple-access interference (MAI) arises due
to non-orthogonal spreading sequences from all users. Numerous multiuser detection
techniques have been proposed to mitigate the MAI to various degrees. Regardless of
the input distribution, the optimal detector in mean square sense is the conditional mean
estimator (CME), which outputs the expected value of the input symbols conditioned
on the received signal and the channel state (i.e., the spreading sequences, the received
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signal amplitudes, etc). In case of binary inputs, the CME is a soft version of the
individually optimum detector which achieves the minimum bit-error-rate (BER) [1, 2].
A new standpoint we will establish in this paper is that every multiuser detector can
be regarded as a CME for a certain postulated CDMA channel and input distribution,
which may be different than the actual channel and inputs. In other words, a multiuser
detector is nothing but a generalized CME, which is the optimal detector for a postulated
CDMA system, and henceforth may be suboptimal for the actual system due to mismatch
between the postulated and the actual probability laws.

The reformulation of multiuser detection as a generalized CME provides us with a
unified framework in the treatment of multiuser communication problems. Indeed, by
introducing an indefinite postulated channel and input distribution, it is viable to analyze
a wide class of multiuser detectors and arrive at general conclusions. By tuning the
postulated channel and inputs, the result can be easily particularized to most detectors
of interest. Taking advantage of the above new formulation, we present in this paper a
large-system characterization of the input-output relationship of a class of generalized
CME front ends applied to randomly spread CDMA. By a large system we refer to the
limit that both the number of users and the spreading factor tend to infinity with a fixed
ratio.

It has been shown that the output of a wide class of linear multiuser detectors con-
ditioned on the input converges in distribution to a Gaussian random variable in the
large-system limit [3]. The reason is that the MAI in the detection output is a super-
position of interferences and thus central limit theorems apply. Since the MAI seen by
all users are statistically the same in the large-system limit regardless of the input dis-
tribution and the individual signal-to-noise ratios (SNR), the large-system performance
of linear detectors can be fully characterized by a single parameter, called multiuser effi-
ciency, which is the degradation in the effective SNR due to the MAI.1 Fortunately, the
multiuser efficiency of a finite size linear system can be written as an explicit function
of the singular values of the spreading matrix, the empirical distributions of which con-
verge to a known function as the matrix size goes to infinity. Therefore, the large-system
multiuser efficiency can be obtained as an integral with respect to the limiting singular-
value distribution, which, by using the Stieltjes transform, is found as the solution to a
fixed-point equation (cf. e.g. [4, 3]). As far as linear multiuser detectors are concerned,
the multiuser channel can be effectively decoupled into single-user Gaussian channels.

Much less success has been reported in the application of random matrix theory
and central limit theorems in analyzing multiuser detectors that fall out of the above
group of linear detectors, mainly due to lack of explicit expressions of the performance
measures in terms of the singular values. For instance, the optimum detection output is
notoriously non-Gaussian in the large-system limit. In this paper, we study the large-
system input-output relationship of a class of generalized CME that corresponds to an
arbitrary postulated input distribution and a postulated CDMA channel that differs
from the actual channel only in the noise variance. Surprisingly, it is found that under
arbitrary inputs and fading, the single-user channel seen at the generalized CME output is
equivalent to a scalar Gaussian channel followed by a strictly monotonic decision function.
Indeed, the fact that the output of nonlinear detectors conditioned on the input relates
to a Gaussian distribution through a deterministic (linear or nonlinear) function has

1The concept of multiuser efficiency was first introduced in binary uncoded transmission to refer to
the degradation of the minimum bit-error-rate (BER) relative to a single-user channel calibrated in the
equivalent SNR [1].
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long evaded discovery. It is also found in this paper that the effective SNR under this
equivalent Gaussian channel is equal to the input SNR times the same multiuser efficiency
for all users, which satisfies a fixed-point equilibrium equation. By appropriate choices of
the postulated inputs and noise variance, the results can be particularized to obtain the
multiuser efficiency of the matched filter, decorrelator, MMSE detector, as well as the
jointly and individually optimum detectors. In all, the multiuser system under separate
decoding can be effectively decoupled into single-user Gaussian channels that interact
only through the multiuser efficiency.

The foundation of the above simple large-system characterization is the so-called
“self-averaging” property, namely, the dependence of the performance measures on the
spreading sequences vanishes as the system size increases without bound. This is a direct
outcome of the asymptotic equipartition property (AEP). The “entropy rate” dictated by
the AEP, also known as the free energy in statistical physics, is derived in this paper using
the replica method. The replica method has its origin in spin glass theory in statistical
physics, and was first used by Tanaka in multiuser detection to obtain the large-system
uncoded minimum bit-error-rate and spectral efficiency with antipodal inputs [5]. The
replica method has been used successfully in many problems in statistical physics as well
as neural networks and coding theory, while a rigorous proof of the replica method is an
ongoing effort in mathematics and physics communities.

Because of the decoupling shown in this paper, the capacity of the single-user channel
seen at the generalized CME output is equal to the mutual information of the equivalent
scalar Gaussian channel under the same inputs. The spectral efficiency under optimum
joint decoding is also derived and it is found that regardless of the input distribution,
successive decoding with a CME front end against the yet undecoded users achieves the
optimum spectral efficiency.

From a practical viewpoint, this paper presents new results on the performance of
CDMA under arbitrary signaling such as m-PAM. More importantly, the MAI, which
often exhibits very complicated structure, is characterized by a single parameter, the
multiuser efficiency. The spectral efficiency achievable by coded systems is also easily
quantified by means of this parameter. Thus, our results offer valuable insights in the
design and analysis of coded and uncoded CDMA systems.

The linear system in our study also models multiple-input multiple-output (MIMO)
channels where the channel state is unknown at the transmitter. The results can thus be
used to evaluate the performance of high-dimensional MIMO channels (such as multiple-
antenna systems) with arbitrary signaling and various detection techniques.

2 CDMA and Multiuser Detection

Consider the K-user CDMA system with spreading factor N depicted in Fig. 1. At each
interval the vector of input symbols from all users X = [X1, . . . , XK ]> contains indepen-
dent identically distributed (i.i.d.) entries with distribution pX , which has zero mean and
unit variance. The individual instantaneous SIRs {Γk}K

k=1 are i.i.d. with distribution pΓ of
finite moments, hereafter referred to as the SIR distribution. Let the spreading sequence
of user k be denoted by sk = 1√

N
[S1k, S2k, . . . , SNk]

>, where Snk are i.i.d. random vari-
ables with zero mean, unit variance, and finite moments. The N ×K spreading matrix
is denoted by S = [

√
Γ1 s1, . . . ,

√
ΓK sK ]. Assuming symbol-synchronous transmission,
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Figure 1: CDMA channel with separate decoding.

we have the following memoryless CDMA channel:

Y = SX + W (1)

where W ∼ N (0, I). The characteristics of the channel is described as:

pY |X,S(y|x, S) = (2π)−
N
2 exp

[
−1

2
‖y − Sx‖2

]
. (2)

The most efficient use of channel (1) in terms of capacity is achieved by optimal joint
decoding, where the total capacity subject to a certain input distribution is determined
by the mutual information I(X; Y |S). Practically, due to the prohibitive complexity of
joint decoding, one often breaks the process into a multiuser detector front end followed
by separate decoding as shown in Fig. 1. In this case, the CDMA channel together with
the multiuser detector front end is viewed as a single-user channel for each user. The
detection output sequence for an individual user is in general not a sufficient statistic for
decoding even this user’s own information; hence the loss in capacity.

One particular choice of the multiuser detector is the conditional mean estimator:

〈X〉 4= E {X | Y , S} , (3)

which achieves the minimum mean square error. Hereafter, angle brackets 〈·〉 denote
expectation with respect to the posterior probability distribution pX|Y ,S, which is deter-
mined by the input distribution pX and the conditional Gaussian density function pY |X,S

of channel (1) through the Bayes formula.
The CME can be generalized to taking the conditional expectation as in (3) but with

respect to the posterior probability distribution of a “postulated” CDMA system which
may be different from the true one. Let the input distribution and channel characteristic
of the postulated channel be qX and qY |X,S respectively, which, in turn, determines the
postulated posterior probability distribution qX|Y ,S. The generalized CME output is
conveniently denoted as

〈X〉q
4
= Eq {X | Y , S} . (4)

By choosing an appropriate probability measure q, it is possible to particularize the
generalized CME to many different multiuser detectors of interest. In this paper, the
postulated channel differs from the true channel (1) by only the noise variance:

qY |X,S(y|x, S) =
(
2πσ2

)−N
2 exp

[
− 1

2σ2
‖y − Sx‖2

]
. (5)
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Figure 2: Equivalent scalar Gaussian channel, CME and retrochannel.

Here, σ serves as a control parameter. Also, the postulated inputs are i.i.d. with an
arbitrary input distribution qX of zero-mean and unit variance.

Suppose that the postulated input distribution qX is standard Gaussian. It is not
difficult to see that the generalized CME (4) outputs a linear filtering of the received
signal:

〈X〉q =
[
S>S + σ2I

]−1 · S> · Y . (6)

If σ →∞, the generalized CME estimate is consistent with the matched filter output. If
σ = 1, (6) is exactly the soft output of the linear MMSE detector. If σ → 0, (6) converges
to the output of the decorrelator.

Alternatively, suppose that the postulated input distribution qX is identical to pX . If
σ → 0, then limσ→0 〈X〉q is the jointly optimal (or maximum-likelihood) detection [2]. If
σ = 1, then the postulated measure q coincides with the true measure p, and the CME
outputs 〈X〉 is a soft version of the individually optimum multiuser detector [2]. Also
worth mentioning is that, if σ →∞, the generalized CME reduces to the matched filter.

3 Decoupling of CDMA Multiuser Detection

3.1 Main Results

Consider a canonical scalar Gaussian channel:

Z =
√

Γ ·X +
1
√

η
·W (7)

where Γ > 0 is the input SIR, η > 0 the inverse noise variance and W ∼ N (0, 1).
Given ξ > 0, we consider also a postulated Gaussian channel with input SIR Γ and
inverse noise variance ξ. Let the input distribution to this postulated channel be qX .
Then the underlying measure of the postulated channel is qX · qZ|X,Γ;ξ. A retrochannel of
the postulated channel is characterized by the posterior probability distribution qX|Z,Γ;ξ,
namely, it takes in an input Z and outputs a random variable X according to qX|Z,Γ;ξ.
The generalized CME estimate of X given Z is therefore

〈X〉q
4
= Eq {X | Z, Γ; ξ} . (8)

Consider now a concatenation of the scalar Gaussian channel (7) and the retrochannel
of the postulated channel as depicted in Fig. 2. The generalized CME is also included.
Let the input to the Gaussian channel (7) be denoted by X0 to distinguish it from the
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retrochannel output X. We define the mean square error of the CME estimate and the
variance of the retrochannel respectively:

E(Γ; η, ξ) = E

{(
X0 − 〈X〉q

)2
∣∣∣∣ Γ; η, ξ

}
, (9)

V(Γ; η, ξ) = E

{(
X − 〈X〉q

)2
∣∣∣∣ Γ; η, ξ

}
. (10)

Claim 1 Let the generalized CME of the CDMA channel (1) be defined by (4) with
postulated input distribution qX and noise variance σ2. Then, in the large-system limit,
the distribution of the multiuser detection output 〈Xk〉q conditioned on Xk = x being
transmitted with SIR Γk is identical to the distribution of the generalized estimate 〈X〉q
of the equivalent scalar Gaussian channel (7) conditioned on X = x being transmitted
with input SIR Γ = Γk, where the multiuser efficiency η and the inverse noise variance
ξ of the postulated scalar channel satisfy the coupled equations:

η−1 = 1 + β E {Γ · E(Γ; η, ξ)} , (11a)

ξ−1 = σ2 + β E {Γ · V(Γ; η, ξ)} , (11b)

where the expectations are taken over the SIR distribution pΓ. In case of multiple solutions
to (11), (η, ξ) are chosen to minimize the free energy:

F =− E

{∫
pZ|Γ;η(z|Γ; η) · log qZ|Γ;ξ(z|Γ; ξ) d z

}
− 1

2
log

2π

ξ
− ξ

2η
log e

+
σ2ξ(η − ξ)

2βη
log e +

1

2β
[(ξ − 1) log e− log ξ] +

1

2β
log(2π) +

ξ

2βη
log e.

(12)

Claim 1 reveals that the multiple-access channel followed by a generalized CME can
be decoupled into scalar Gaussian channels in the large-system limit, where the effect of
the MAI is summarized as a single parameter η−1 representing the noise enhancement.
Note that conditioned on the input, the multiuser CME output is not Gaussian; rather,
it is asymptotically a function (the generalized CME is nothing but a decision function)
of a Gaussian random variable. It is in general not difficult to find solutions to (11)
numerically. Multiple solutions may coexist, which is known as the phenomenon of
phase transitions in statistical physics. Among those solutions, the multiuser efficiency
is the one that gives the smallest value of the free energy (12), which carries relevant
operational meaning in the communication problem.

The decision function (i.e., the CME) in Fig. 2 is strictly increasing and thus incon-
sequential in both detection and information theoretic viewpoints. Hence the following:

Corollary 1 In the large-system limit, the single-user channel capacity at the generalized
CME output is equal to the input-output mutual information of the equivalent scalar
Gaussian channel (7) with the same input distribution and SIR, and an inverse noise
variance η as the multiuser efficiency determined by Claim 1:

C(Γ; η) = D(pZ|X,Γ;η || pZ|Γ;η | pX). (13)

Clearly, the overall spectral efficiency under suboptimal separate decoding is

Csep(β) = β E {C(Γ; η)} . (14)

The optimal spectral efficiency under joint decoding is greater than (14). The optimal
joint decoding gain is given by the following:
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Claim 2 The gain of optimal joint decoding over the multiuser CME followed by separate
decoding in the large-system spectral efficiency of the CDMA channel (1) is2

Cjoint(β)− Csep(β) =
1

2
[(η − 1) log e− log η] = D (N (0, η) || N (0, 1)) , (15)

where η is the CME multiuser efficiency.

The expression (15) coincides with the expression found originally in [6] in the case of
Gaussian inputs and later in [7] in the case of binary inputs. Interestingly, the spectral
efficiencies under joint and separate decoding are also related by the following general-
ization of a result in [8]:

Proposition 1 Under every input distribution pX ,

Cjoint(β) =

∫ β

0

1

β′
Csep(β

′) dβ′. (16)

3.2 Discussions

We can conceive an interference canceler that decodes the users successively in which re-
liably decoded symbols are used to reconstruct the interference for cancellation. Suppose
the users are decoded in reverse order, then the generalized CME for user k sees only
k − 1 interfering users. Hence the performance for user k under successive decoding is
identical to that of the CME applied to a CDMA system with k instead of K users. The
multiuser efficiency experienced by user k is η

(
k
N

)
where use the fact that it is a function

of the load k
N

seen by the generalized CME for user k. It is easy to see that the overall
spectral efficiency converges almost surely:

1

N

K∑
k=1

C

(
Γk; η

(
k

N

))
→ E

{∫ β

0

C(Γ; β′) dβ′
}

. (17)

Note that the above result on successive decoding is true for arbitrary input distribution
and generalized CME detectors. In the special case of the CME, for which the postulated
inputs and channel are identical to the actual input and channel, the right hand side
of (17) is equal to Cjoint(β) by Proposition 1. We can summarize this principle as:

Proposition 2 In the large-system limit, successive decoding with a CME front end
against yet undecoded users achieves the optimal CDMA channel capacity under arbi-
trary input distributions.

Proposition 2 is a generalization of the previous result that a successive canceler with
a linear MMSE front end against undecoded users achieves the capacity of the CDMA
channel under Gaussian inputs (cf. e.g. [9]). Indeed, this result is an outcome of the chain
rule of mutual information, which holds for all inputs and arbitrary number of users.

3.3 Analysis via the Replica Method

The statistical inference problem faced by the decoder is depicted in Fig. 3. The input
and output of the channel pY |X,S under state S is denoted by X0 and Y respectively. A

2The base of logarithm is indefinite and agrees with the unit of information measure.
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Figure 3: Canonical channel, retrochannel and generalized CME.

generic detector regards Y as the output of a postulated channel qY |X,S caused by some
input X with distribution qX . One meaningful way of processing the received signal is
to find the expected value of X conditioned on (Y , S), i.e., 〈X〉q = Eq{X|Y , S} . A
postulated measure q different than p may be either due to lack of knowledge of the true
statistics or a particular choice that corresponds to a certain detector of interest. The
retrochannel induced by the postulated channel, upon receiving Y under channel state
S, outputs a random variable X according to qX|Y ,S. Clearly, the generalized CME
output 〈X〉q is the expected value of the retrochannel output X given (Y , S).

This paper studies the distribution of the detection output 〈Xk〉q conditioned on the
input X0k in the large-system limit, where both the number of users K and the spreading
factor N tend to infinity but with K/N converging to a positive number β. Here, we use
X0k to denote the input to distinguish it from the retrochannel output Xk. Although
the input-output relationship is dependent on the spreading matrix for any finite size
system, it becomes increasingly predictable from merely a few parameters independent
of the realization of the spreading matrix as the system size grows without bound. This
is known as the self-averaging property in statistical physics. It is a direct outcome
of the asymptotic equipartition property. In the CDMA context, the AEP ensures a
strong consequence that for almost all realizations of the data, the received signal and
the spreading sequences, macroscopic quantities such as the BER, the output SIR and
the spectral efficiency, averaged over data, converge to deterministic quantities in the
large-system limit.

In order to reveal the input-output relationship, we calculate the joint moments con-
ditioned on the channel state:

E
{

Xj
0k · 〈Xk〉iq

∣∣∣ S
}

, i, j = 0, 1, . . . (18)

and then infer the distribution of (〈Xk〉q −X0k). It is helpful to introduce independent
replicas of the retrochannel output X, denoted as X1, . . . ,Xu. Since X0 → (Y , S) →
(X1, . . . ,Xu) is a Markov chain, it can be shown that (18) is equivalent to the joint
moments of the head and tail of the Markov chain

E

{
Xj

0k ·
i∏

m=1

Xmk

∣∣∣∣∣ S

}
, i, j = 0, 1, . . . (19)

which can be evaluated by integrating over the distribution of the central random variable
Y conditioned on S.

According to the AEP, the randomness in the following quantity:

− 1

K
log qY |S(Y |S) (20)
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vanishes as K → ∞. The limit is known as the free energy in statistical physics, which
is denoted by:

F 4
= − lim

K→∞
E

{
1

K
log qY |S(Y |S)

}
. (21)

Essentially, in the large-system limit, almost all realizations of the received signal are
“typical”, and it suffices to calculate the moments in the typical set. The expected value
of the logarithm in (21) is an open problem, which can be formulated equivalently as

F = − lim
K→∞

1

K
lim
u→0

∂

∂u
log E

{
qu
Y |S(Y |S)

}
. (22)

Using the replicas of the retrochannel output, we can evaluate

− lim
K→∞

1

K
log E

{
qu
Y |S(Y |S)

}
= − lim

K→∞

1

K
log E

{
u∏

a=1

qY |X,S(y|Xa, S)

}
(23)

as a function of the integer replica number u. Ubiquitous in statistical physics, the replica
trick assumes that the order of the limit and the derivative in (22) can be exchanged, and
that the resulting expression from (23) is also valid at least in the vicinity of u = 0, and
therefore finds the derivative at u = 0 as the free energy. Note that (Y , S) is induced
by the transmitted symbols X0. By taking expectation over Y first and then averaging
over the S, one finds that

1

K
log E

{
qu
Y |S(Y |S)

}
=

1

K
log E

{
exp

[
β−1K ·G(u)

K (Γ, [X0, . . . ,Xu])
]}

(24)

where G
(u)
K is some function of the SIRs, the transmitted symbols and their replicas. By

first conditioning on the (u+1)× (u+1) correlation matrix Q of the replicas, the central
limit theorem helps to reduce (24) to

1

K
log

∫
exp

[
β−1K ·G(u)(Q)

]
µ

(u)
K ( dQ) (25)

where G(u) is some function of the correlation matrix Q, and µ
(u)
K is its probability

measure. Large deviations can be invoked to show that (25) converges as K →∞ to

sup
Q

[β−1 ·G(u)(Q)− I(u)(Q)] (26)

where I(u) is the rate function of the measure µ
(u)
K [10]. Seeking the extremum (26)

over a (u + 1)2-dimensional space is a hard problem. The technique to circumvent this
is to assume replica symmetry, namely, that the supremum in Q is symmetric over all
replicated dimensions. The resulting supremum is then over a few parameters, and the
free energy can be obtained.

The joint moments (19) of the input and the retrochannel output can be evaluated for
all “typical” realizations of the received signal. The result is that 〈Xk〉q can be regarded
as the generalized conditional mean estimate of a scalar Gaussian channel with input
X0k, hence the proof of Claim 1. Given the input distribution pX , the total capacity
under optimum joint decoding converges to

Cjoint(β) = βF|q=p −
1

2
log(2πe). (27)

Claim 2 is proved by finding the free energy under the assumption that the postulated
measure q is identical to the actual measure p.

9



4 Conclusion

Using the replica method, a family of generalized conditional mean estimators is studied
in the large-system limit, which includes well-known detectors such as the matched filter,
decorrelator, MMSE detector, the jointly and individually optimum detector. One major
result is the decoupling of Gaussian CDMA channels concatenated with a multiuser
detector front end into scalar Gaussian channels. Another result is general formulas for
the spectral efficiency of CDMA channels expressed in terms of the multiuser efficiency.
It is straightforward to particularize the results to any practical input constellation, such
as m-QAM, which can be useful not only for the design and analysis of CDMA, but for
the important special case of the canonical single-user multiantenna array channel.
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