
2003 Conference on Information Sciences and Systems, The Johns Hopkins University, March 12–14, 2003

Spectral Efficiency of Large-system CDMA via Statistical Physics

Dongning Guo and Sergio Verdú
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Abstract — The channel capacity of randomly spread

CDMA subject to Gaussian noise and flat fading is

studied in the large-system limit under arbitrary in-

put distributions. Using the replica method originally

developed in statistical physics, we find the spectral

efficiencies under both joint decoding and single-user

decoding. We show that under single-user decoding,

where a conditional mean estimator is first applied

to separate the users, each user is as if transmitting

through a degraded Gaussian channel where the ratio

of the effective energy to the true energy is the same

multiuser efficiency to everyone. It is found that the

multiuser efficiency is the solution to a fixed-point

equilibrium equation. The spectral efficiency under

both joint and separate decoding are expressed explic-

itly in the multiuser efficiency, the input distribution

and the fading characteristics.

I Introduction

In code-division multiple access (CDMA), unless the
spreading sequences of all users are mutually orthogonal, so
that single-user capacity is enjoyed by everyone, there is some
inherent loss in spectral efficiency due to the imposed spread-
ing structure. The loss was quantified under random spread-
ing in the large-system limit using random matrix theory by
Grant and Alexander [1] and Verdú and Shamai [2]. The com-
plexity of optimal joint decoding, necessary for achieving the
capacity, is often prohibitive in practice. A common strategy
is to separate the users using a multiuser detector front end
and then perform single-user decoding, which induces further
penalty on spectral efficiency. Assuming Gaussian inputs, the
penalty was found for linear detectors as a function of the
multiuser efficiency of the linear front end in [2], also using
random matrix theory.

The success of random matrix theory in the analysis of
the spectral efficiency hinges on the fact that the performance
measures for a finite number of users (K) and spreading factor
(N) can be written as explicit functions of the eigenvalues of
the spreading matrix [3], the empirical distributions of which
converge to a known function in the large-system limit where
both K and N tend to infinity but with their ratio fixed [4].
As an important consequence, the dependency of the perfor-
mance measures of randomly spread CDMA on the spreading
sequences diminishes with probability 1 in the large-system
limit. In other words, the performance measures are self-
averaging. Random matrix theory underlies many interesting
asymptotic results. In particular, the multiuser efficiency of
the MMSE detector is found as a solution to the Tse-Hanly
fixed-point equation [5]. The spectral efficiency of Gaussian
CDMA channels subject to flat fading was found by Shamai
and Verdú [6].

All the above results on spectral efficiency assume Gaussian
inputs which are optimum because the channel characteristics
are known at the receiver. Often used in practice are signal
constellations that are more friendly to information bits, such
as QPSK, 16QAM, etc. Therefore, it is of great interest to an-
alyze the effects of given input distributions. Random matrix
theory is found to be quite limited in this regard.

The self-averaging property is nothing but a manifestation
of a fundamental law of nature that the fluctuation of macro-
scopic properties of certain many-body systems vanishes in
thermodynamic limit when the number of interacting bod-
ies becomes sufficiently large. In CDMA, the self-averaging
principle ensures a strong property that for almost all realiza-
tions of the noise process and the spreading sequences, certain
macroscopic average over the posterior probability distribu-
tion converges to the same number in the large-system limit,
which is its ensemble average over the distribution of the noise
and the spreading sequences. In [7], Tanaka introduced sta-
tistical physics concepts and methodologies into CDMA and
obtained the bit-error-rate and the spectral efficiency of Gaus-
sian CDMA under binary input constraint. Guo and Verdú
further elucidated the relationship between statistical physics
and CDMA and generalized Tanaka’s results to the case of un-
balanced received powers [8]. Inspired by [7], Müller and Ger-
stacker studied the channel capacity under separated decod-
ing, where an optimal multiuser detector with no knowledge
of the error-control codes is applied to generate soft decision
for each user for single-user decoding [9]. They noticed that
the capacity loss due to separation of detection and decoding
under binary input constraint takes the same formula as the
capacity loss under Gaussian distributed inputs. Müller fur-
ther conjectured that the capacity loss is given by the same
expression regardless of the input distribution [10].

In this paper, we present some new results on Gaussian
CDMA spectral efficiency under arbitrary input distribution
and fading characteristics. Analytical expressions are ob-
tained through replica analysis, a powerful tool originally de-
veloped in spin glass theory in statistical physics. Under sep-
arate decoding, assuming that a detector outputs the mean
value of the input symbol of each user conditioned on the
received signal and the spreading sequences for subsequent
independent decoding, we find that each resulting single-user
channel is equivalent to a degraded Gaussian channel. The ra-
tio of the effective energy to the true energy in the degraded
Gaussian channel, called the multiuser efficiency, is found to
satisfy a fixed-point equilibrium equation (a generalization of
the Tse-Hanly equation [5]), and is the same for all users. The
spectral efficiencies, both under joint and separate decoding,
are found in explicit expressions in the multiuser efficiency,
the input distribution and the received energy distribution.
As an immediate corollary, Müller’s conjecture on the capac-
ity loss is true, and we identify the loss as a Kullback-Leibler
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Figure 1: System model of CDMA with joint or separate decoding.

divergence between two Gaussian distributions.
The linear system in our study also models multiple-input

multiple-output (MIMO) channels where the channel state is
unknown at the transmitter. Our results are equally appli-
cable to evaluating the spectral efficiency of MIMO channels
with high dimensionality under constellation constraints. An
example is multiple antenna systems under homogeneous fad-
ing.

II System Model

We study a K-user CDMA system with a spreading factor
of N depicted in Fig. 1. We assume that all users employ the
same type of signaling. All symbols are independent identi-
cally distributed (i.i.d.) with distribution pX , normalized so
that E

{
X2

}
= 1. We use X = [X1, . . . , XK ]> to denote a

vector of input symbols from the K users. Throughout this
paper, random variables are denoted by upper case letters.
An expectation E {·} is taken over the joint distribution of the
random variables within the braces.

Let user k’s spreading sequence be denoted by sk =
1√
N

[s1k, s2k, . . . , sNk]>, and the N × K spreading matrix de-

noted by S = [s1, . . . , sK ], where the snk’s are i.i.d. random
variables with zero mean, unit variance and finite higher-order
moments. Let Γ1, . . . , ΓK be the K users’ respective received
energies per symbol and A = diag(

√
Γ1 , . . . ,

√
ΓK ). Assum-

ing symbol-synchronous transmission, we have the following
memoryless multiple-access channel:

Y = SAX + W (1)

where W is a vector that contains i.i.d. zero-mean Gaussian
random variables with unit variance. The characteristic of the
Gaussian CDMA channel with flat fading can be described as

pY |X,S(y|x, S) = (2π)−
N
2 exp

[
−1

2
‖y − SAx‖2

]
(2)

where ‖ · ‖ denotes the Euclidean norm of a vector. Note that
the spreading sequences are randomly chosen for each user
and not dependent on the received energies. The channel (1)
is the real-valued counterpart of the more general complex
fading channel model (e.g., in [6]).

The input signal-to-interference ratio (SIR) is defined as the
energy ratio of the useful signal to the noise in the matched
filter output in absence of interfering users, which is conve-
niently Γk for user k in our setting. We assume that the SIR
of all users are known deterministic numbers, and as K →∞,
their empirical cumulative distributions converge to a known

distribution PΓ, hereafter referred to as the SIR distribution.
The SIR distribution captures the overall effect of the transmit
energies, the noise level, and the channel fading characteris-
tics.

The total capacity of the CDMA channel subject to a cer-
tain input distribution is the mutual information between the
transmitted symbols X and the received signal Y . There ex-
ists an error-correcting code of any rate no larger than the
capacity such that by jointly decoding all users as depicted by
the upper right block in Fig. 1, the original information can
be recovered arbitrarily reliably.

Practically, we often break the process into multiuser de-
tection followed by separate decoding, as shown by the lower
right blocks in Fig. 1. A multiuser detector front end outputs
an estimate of the transmitted symbols without knowledge of
the error-control codes used by the encoder. Each decoder
takes only the decision statistic for a single user of interest
for decoding without awareness of the existence of any other
users. We can regard the CDMA channel and the multiuser
detector together as a superchannel, which is equivalent to K
separate single-user channels. By the data processing theo-
rem, the capacity of the superchannel, which is the sum of
the single-user channel capacities, is less than the capacity of
the original CDMA channel. One has to restrict the power
of the multiuser detector here; otherwise the detector could
in principle encode the received signal vector and the spread-
ing sequences into a single real number as its output, which
is a sufficient statistic for all users! In this paper, we study
a particular type of detector, namely, the conditional mean
estimator, which outputs the mean value of the symbols con-
ditioned on the received signal and the spreading sequences.

Clearly, the spectral efficiency in either joint or single-user
(separate) decoding is dependent on the spreading sequences.
In this paper, we are concerned with only the large-system
regime, namely, when both K and N tend to infinity but with
K/N , known as the system load, converging to a fixed positive
number β. In such asymptote, every performance measure we
are interested in converges for almost all choices of the spread-
ing sequences. Consequently, we can describe the multiuser
efficiency and the spectral efficiency of the channel and the
superchannel using merely the macroscopic parameters with-
out worrying about the instantaneous spreading sequences.

III CDMA and the Replica Method

In CDMA, the posterior distribution can be obtained from
the prior distribution and the conditional distribution through



the Bayes formula

pX|Y ,S(x|y, S)

=
pY |X,S(y|x, S) · pX(x)

pY |S(y|S)
(3)

= Z−1(y, S) · pX(x) · exp

[
−1

2
‖y − SAx‖2

]
(4)

where in (3), pY |S(y|S) is the marginal distribution of
pY ,X|S(y, x|S) = pY |X,S(y|x, S)pX(x), and in (4),

Z(y, S) = (2π)
N
2 · pY |S(y|S) (5)

= E

{
exp

[
−1

2
‖y − SAX‖2

] ∣∣∣∣ S

}
(6)

is a normalizing coefficient, which we conveniently refer to as
the partition function. Note that the expectation in (6) is
taken over X conditioned on S.

A Spectral Efficiency of Joint Decoding
Since the input distribution is fixed, the total capacity un-

der joint decoding is equal to the input-output mutual infor-
mation conditioned on the spreading matrix

I(X; Y |S) = E

{
log

pY |X,S(Y |X, S)

pY |S(Y |S)

∣∣∣∣ S

}
(7)

where the expectation is taken over the joint conditional dis-
tribution pY ,X|S . Noticing that the channel characteristics
given by (2) is a Gaussian density, we have easily

E
{

log pY |X,S(Y |X, S)
∣∣ S

}
= −N

2
log(2πe). (8)

The spectral efficiency is defined as the total capacity di-
vided by the number of chips per symbol interval. Therefore,
by (5), (7) and (8), the spectral efficiency of joint decoding is

C(S) =
1

N
I(X; Y |S) = − 1

N
· E { log Z(Y , S)|S} − 1

2
. (9)

Interestingly, the spectral efficiency is closely related to the
partition function Z(Y , S).

We define the free energy as

− 1

K
log Z(Y , S). (10)

It includes all information about statistics of the observables
in the system. As a macroscopic property, the free energy
converges with probability 1 to its expectation over the dis-
tribution of the random variables (Y , S) in the large-system
limit, denoted by F ,

F = − lim
K→∞

E

{
1

K
log Z(Y , S)

}
. (11)

Therefore, the spectral efficiency under joint decoding con-
verges almost surely to

C = βF − 1

2
(12)

in the large-system limit. Note that the −1/2 term in (12)
can be removed by redefining the partition function up to a
constant coefficient. In either way, the spectral efficiency is
affine in the free energy.

B Spectral Efficiency of Separate Decoding
A conditional mean estimator is used to separate the users

and outputs

X̃ = 〈X〉 4= E {X | Y , S} (13)

where, by definition, the operator 〈·〉 gives the expectation
taken over the posterior probability distribution pX|Y ,S . The
reason for choosing this particular detector is two-fold: 1)
This detector is optimal in the sense that it has the mini-
mum output mean square error; and 2) it bridges the spectral
efficiencies of joint and separate decoding, as we will see later.

The single-user channel capacity due to the multiuser detec-
tor for an arbitrary user k is equal to the mutual information
between the input symbol and the detector output

I(Xk; 〈Xk〉 |S). (14)

For the purpose of calculating (14), we study the distribution
of 〈Xk〉 conditioned on the input Xk. Our approach is to
calculate joint moments

E
{

Xj
k · 〈Xk〉i

∣∣∣ S
}

, i, j = 0, 1, . . . (15)

and then infer the distribution of (〈Xk〉 − Xk). It turns out
that the moments are macroscopic properties, which converge
with probability 1 in the large-system limit. It therefore suf-
fices to calculate

lim
K→∞

E
{

Xj
k · 〈Xk〉i

}
. (16)

It is conceptually helpful here to introduce a stochastic es-
timator called the Bayes retrochannel [8]. Upon a received
signal Y with a channel state S, this stochastic estimator
outputs a random variable according to the probability distri-
bution pX|Y ,S given by (3). It is clear that the expected value
of the retrochannel output is exactly the conditional mean es-
timate. To distinguish the original symbols that caused the
received signal from the retrochannel output, we denote the
original symbol vector by X0, and the retrochannel output by
X. We note that X0 → (Y , S) → X is a Markov chain. It
can be shown that (16) is tantamount to

lim
K→∞

E
{

Xj
0k ·X

i
k

}
, (17)

which turns out to be easier to calculate.
We have distilled the spectral efficiency problem under both

joint and separate decoding to calculating some ensemble av-
erages, namely, the free energy (11) and the moments (17).
We resort to the replica method, a powerful technique devel-
oped in statistical physics, to calculate these quantities.

C Replica Method
The difficulty of calculating the free energy (11) is due to

the unwieldiness of taking the average of a logarithm. An
alternative is to write

F = − lim
K→∞

1

K
lim
u→0

∂

∂u
log E {Zu(Y , S)} (18)

= − lim
u→0

∂

∂u
lim

K→∞

1

K
log E {Zu(Y , S)} (19)

where (18) can be easily verified and (19) is resulted by as-
suming that the order of the limit in K and the limit of the
derivative in u can be exchanged. For an arbitrary integer u,
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we introduce u replicas of the CDMA system with the same
received signal Y and spreading matrix S. The partition func-
tion of the replicated system is

Zu(y, S) = E

{
u∏

a=1

exp

[
−1

2
‖y − SAXa‖2

] ∣∣∣∣∣ S

}
(20)

where the expectation is taken over the the i.i.d. replicated
symbols, {Xak|a = 1, . . . , u, k = 1, . . . , K}, conditioned on S.
We can henceforth evaluate

− lim
K→∞

1

K
log E {Zu(Y , S)} (21)

as a function of the integer u. We then use a trick: We assume
that the resulting expression is also valid for an arbitrary real
number u and find the derivative at u = 0 as the free en-
ergy. This is called the replica method. The replica method
was invented in the context of spin glasses [11] and has since
been successfully applied to many problems [12]. There are
intensive ongoing efforts in the mathematics and physics com-
munity to find a rigorous proof for the replica method which
we shall avoid in this work.

The replica idea is also used to calculate (17). We use
X0 to denote the transmitted symbols and use {Xa} to rep-
resent the replicated symbols. This can be best understood
by considering u replicas of the Bayes retrochannel with the
same received signal Y and spreading matrix S. Clearly,
X0 → (Y , S) → {Xa} is a Markov chain. The moments (17)
are tantamount to

lim
K→∞

E

{
Xj

0k ·
i∏

m=1

Xmk

}
(22)

which can be evaluated by working with a modified partition
function than (20).

IV New Results

We present our new results without proofs. Readers inter-
ested in details are referred to [13]. Assuming that the system
load β, the input distribution pX and the received SIR dis-
tribution PΓ are known, we give the large-system limit of the
multiuser efficiency and the spectral efficiency.

Given a scalar α > 0, consider a Gaussian channel as de-
picted in Fig. 2:

Z =
√

α X + W (23)

where W is a unit Gaussian random variable independent of
X. We assume that the input X takes the distribution pX .
Given that Z is received, we can define an estimate of X as

X̃ = E {X|Z; α} (24)
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Figure 3: A canonical interference canceler equivalent to
the conditional mean estimator.

which is the mean value of X conditioned on Z. It is useful
here to define the mean square error

E(α) = E

{(
X̃ −X

)2
∣∣∣∣ α

}
. (25)

In fact, X̃ is the optimal function of Z that minimizes the
mean square error. We have the following theorems.

Theorem 1 In the large-system limit, the distribution of the
conditional mean estimator output X̃k of channel (1) condi-
tioned on Xk = x being transmitted is the same as that of the
conditional mean estimate X̃ of channel (23) conditioned on
X = x being transmitted with α = ηΓk, where the multiuser
efficiency η is a solution to a fixed-point equation:

η + η · β · E {Γ · E(ηΓ)} = 1 (26)

where the expectation is taken over the SIR distribution PΓ.

Theorem 2 In the large-system limit, the channel capacity
for a user with input distribution pX and SIR Γ under the
conditional mean estimator and single-user decoding is equal
to the input-output mutual information across the single-user
Gaussian channel (23) with α = ηΓ where η is the multiuser
efficiency given by Theorem 1. In case of multiple solutions
to (26), η is chosen as the smallest one.

Theorem 3 The gain of joint decoding over separate decoding
in the large-system spectral efficiency of CDMA is

1

2
(η − 1− log η) = D (N (0, η) || N (0, 1)) . (27)

Remarks: The conditional mean estimator plays an im-
portant role in quantifying the spectral efficiency of CDMA.
Theorem 1 reveals that each single-user channel resulted from
applying the conditional mean estimator to a multiuser chan-
nel is equivalent to a degraded Gaussian channel as depicted
in Fig. 2. The multiuser efficiency is a number in [0, 1] as-
sociated with CDMA as a solution to a fixed-point equation.
The effective energy is the input energy times the same mul-
tiuser efficiency for all users. The single-user channel capacity
is simply the mutual information across the degraded Gaus-
sian channel under the input distribution pX , as concluded in
Theorem 2. The total spectral efficiency under joint decoding
is closely related to that under separate decoding. The dif-
ference, as identified in Theorem 3, is simply a divergence in
between two Gaussian distributions.



Our results allow a simple interpretation: The performance
averaged over spreading sequences is equivalent to an equilib-
rium of the multiuser interference game. This can be best
illustrated by introducing a canonical interference canceler as
shown in Fig. 3. Suppose that the conditional mean estimates
(denoted by 〈Xk〉) are available for all users but user 1. A
decision statistic for user 1 is generated by first subtracting
the reconstructed interferences using the estimates and then
matched filtering with respect to user 1’s spreading sequence,

1
√

η
Z1 =

√
Γ1 X1 +

K∑
k=2

s>1sk

√
Γk (Xk − 〈Xk〉) + W1 (28)

where W1 is a unit Gaussian random variable. By Theorem 1,
the variance of the multiple access interference, assuming the
estimation errors are uncorrelated, is found as a weighted sum
of E(ηΓk). The resulting SIR for user 1 is therefore

Γ1

1 + β · E {Γ · E(ηΓ)} . (29)

By the fixed-point equation in Theorem 1, (29) is equal to
ηΓ1, which is exactly the same as that of a conditional mean
estimator. We have thus shown that the conditional mean
estimate for one user can be regarded as the output of an in-
terference canceler using the conditional mean estimates of all
other users. The multiuser efficiency is such that an equilib-
rium is achieved, so that every user enjoys the same efficiency;
otherwise the users with worse efficiency may benefit from
users with better efficiency until an equilibrium is reached.

Using Theorems 1–3, we can easily reproduce previously
known capacity results under Gaussian and binary inputs. Be-
fore proceeding, we give an explicit expression for the mean
square error (25).

The degraded Gaussian channel (23) is characterized by

pZ|X(z; α |x) =
1√
2π

exp

[
−1

2
(z −

√
α x)2

]
. (30)

In addition, we define

q(z; α) = E
{
X · pZ|X(z; α |X)

}
, i = 0, 1, . . . . (31)

Clearly, the decision function in Fig. 2 can be written as

E {X|Z = z; α} =
q(z; α)

pZ(z; α)
. (32)

Thus, the mean square error is expressed as

E(α) = 1−
∫

[q(z; α)]2

pZ(z; α)
dz. (33)

A Gaussian Inputs
The Gaussian prior is known to give the maximum of the

mutual information, i.e., the power constrained channel ca-
pacity. Let the prior distribution be

p
(n)
X (x) =

K∏
k=1

[
1√
2π

e−
x2

k
2

]
, (34)

where we use a superscript (n) to denote normal distribution.
The conditional mean estimator is merely a linear amplifier
and mean square error is easily shown to be

E(n)(α) =
1

1 + α
. (35)

By Theorem 1, one finds that the multiuser efficiency satisfies
the Tse-Hanly equation [5, 2]

η + β · E
{

ηΓ

1 + ηΓ

}
= 1, (36)

which has a unique positive solution η(n). By Theorem 2, the
single-user channel capacity for a user of SIR Γ is

C(n)(Γ) =
1

2
log

(
1 + η(n)Γ

)
. (37)

By Theorem 3, the total spectral efficiency is expressed in
terms of the multiuser efficiency,

C
(n)
joint =

β

2
E

{
log

(
1 + η(n)Γ

)}
+

1

2

(
η(n) − 1− log η(n)

)
,

(38)

as first derived by Shamai and Verdú for fading channels [6].

B Binary Inputs
It is practically appealing to know the spectral efficiency

where the input symbols are constrained to be antipodally
modulated as in the popular BPSK and QPSK. Equally prob-
able ±1’s maximizes the mutual information in this case,

p
(b)
X (x) = 2−K , ∀x ∈ {−1, 1}K . (39)

It is not difficult to show that

E(b)(α) = 1−
∫

1√
2π

e−
z2
2 tanh

(
α− z

√
α
)

dz. (40)

The multiuser efficiency, η(b), is a solution to

η + η β · E
{

Γ− Γ

∫
1√
2π

e−
z2
2 tanh

(
ηΓ− z

√
ηΓ

)
dz

}
= 1,

(41)

as was a generalization by Guo and Verdú [8] of an earlier re-
sult on equal SIRs due to Tanaka [7]. The single-user channel
capacity for a user with SIR Γ is the same as that obtained
by Müller and Gerstacker [14]

C(b)(Γ) = η(b) Γ−
∫

e−
z2
2

√
2π

log cosh
(
η(b)Γ− z

√
η(b)Γ

)
dz.

(42)

The total spectral efficiency of the CDMA channel with binary
inputs is immediate by Theorem 3, also a generalization of
Tanaka’s inexplicit result in [7] by Guo and Verdú [8].

V. Numerical Results

We plot the multiuser efficiency and the spectral efficiency
as a function of the SIR. Two input distributions are consid-
ered, namely, Gaussian inputs and binary inputs. We consider
equal SIR for all users (perfect power control) only.

In Fig. 4 we plot the multiuser efficiency as a function of
the SIR. A system load of β = 1 and β = 3 are considered. We
find the multiuser efficiency under Gaussian inputs decrease
from 1 to 0 as the SIR increases. This can be easily checked
by inspecting the Tse-Hanly equation (36). The multiuser
efficiency is not monotonic for binary inputs. Under a system
load of β = 1, the multiuser efficiency converges to 1 for both
diminishing SIR and infinite SIR. The case of β = 3 is more
curious. Multiple solutions to the fixed-point equation (41)
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Figure 5: Spectral efficiency vs. SIR.

coexist for an average SIR of 11 dB or higher. This is called
phase transition in statistical physics. This can be shown by
taking the limit Γ →∞ in (41). Essentially, if ηΓ →∞, then
η → 1; while if ηΓ → τ where τ is the solution to

τ

∫
1√
2π

e−
z2
2 [1− tanh(τ − z

√
τ)] dz =

1

β
, (43)

then η → 0. If β > 2.085, there exists a solution to (43) so
that two modes coexist for large SIR. It is interesting that
Gaussian inputs result in about the same multiuser efficiency
as binary inputs but without phase transition.

In Fig. 5 we plot the overall spectral efficiency as a function
of the input SIR. The spectral efficiency under both joint de-
coding and separate decoding are plotted. It is clear that the
loss in spectral efficiency due to separate decoding is not sig-
nificant for binary inputs while quite significant for Gaussian
inputs in the case of β = 1. In the case of β = 3, as a result
of phase transition, one observes a jump to saturation in the
spectral efficiency under binary inputs. On the other hand,

Gaussian inputs suffer great loss if decoded separately, where
the spectral efficiency under separate decoding saturates well
below that of binary inputs. We can infer that the conditional
mean estimator is not efficient in case of dense constellation.

VI. Conclusion

Assuming an arbitrary input distribution, we give exact ex-
pressions for the multiuser efficiency and the spectral efficiency
of Gaussian CDMA channels subject to fading in the large-
system limit, both under joint and separate decoding. Using
the general expressions obtained in this paper, it is straight-
forward to particularize the results to any input constellation,
which can be useful for the design and analysis of CDMA as
well as MIMO channels.
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[6] S. Shamai and S. Verdú, “The impact of frequency-flat fading
on the spectral efficiency of CDMA,” IEEE Trans. Inform.
Theory, vol. 47, pp. 1302–1327, May 2001.

[7] T. Tanaka, “A statistical mechanics approach to large-system
analysis of CDMA multiuser detectors,” IEEE Trans. Inform.
Theory, vol. 48, pp. 2888–2910, Nov. 2002.
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