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Abstract — We present some new results on large-
system CDMA obtained through the replica method devel-
oped in statistical physics. We find the spectral efficiency
of randomly spread CDMA subject to Gaussian noise and
flat fading in the large-system limit under arbitrary input
distributions. Both joint decoding and single-user decod-
ing are considered. In the latter case, a conditional mean
estimator is first applied to separate the users and it is
found that the resulting single-user channel for every user
is equivalent to a Gaussian channel. The multiuser effi-
ciency of that Gaussian channel is the same for all users
and satisfies a fixed-point equilibrium equation. The addi-
tive decomposition by Shamai-Verd́u of optimum capacity
in terms of single-user capacity is shown to hold for arbi-
trary input distributions.

I. I NTRODUCTION

In the context of randomly spread code-division multiple
access (CDMA), the inherent loss in spectral efficiency due to
non-orthogonal signaling was quantified in the large-system
limit using random matrix theory by Verdú and Shamai [1].
The expression found in [1] also solved the capacity of single-
user narrowband multiantenna channels as the number of an-
tennas grows—a problem that was open since the pioneer-
ing work of Foschini and Telatar. The complexity of optimal
joint decoding, necessary for achieving capacity, is often pro-
hibitive in practice. A common strategy is to separate the users
using a multiuser detector front end and then perform single-
user decoding, which induces further penalty on spectral ef-
ficiency. Assuming capacity-achieving Gaussian inputs, [1]
found the penalty incurred by linear detectors as a function
of the multiuser efficiency of the linear front end, also using
random matrix theory.

The success of random matrix theory in the analysis of
the spectral efficiency hinges on the fact that the performance
measures for a finite number of usersK and spreading fac-
tor N can be written as explicit functions of the singular val-
ues of the spreading matrix [2], the empirical distributions of
which converge to a known function in the large-system limit
where bothK andN tend to infinity with a fixed ratio. As an
important consequence, the dependency of the performance
measures on the spreading sequences diminishes with proba-
bility 1. In other words, the performance measures are self-
averaging. Random matrix theory underlies many interesting
asymptotic results. In particular, the multiuser efficiency of
the MMSE detector was found by Tse and Hanly [3]; and the
spectral efficiency of Gaussian CDMA channels subject to flat
fading was found by Shamai and Verdú [4] in the form of an

additive decomposition as the sum of the capacity of a linear
front-end and a nonlinear gain that depends only on the mul-
tiuser efficiency.

All the above results on spectral efficiency assume Gaussian
inputs which are optimum because the channel realization is
tracked at the receiver. Much less success has been reported in
the application of random matrix theory to the analysis of the
spectral efficiency achievable by specific signal constellations
such as QPSK and 16QAM.

The self-averaging property is nothing but a manifestation
of a fundamental law of nature that the fluctuation of macro-
scopic properties of certain many-body systems vanishes in
the thermodynamic limit when the number of interacting bod-
ies becomes large. In CDMA, the self-averaging principle
ensures a strong property that for almost all realizations of
the noise process and the spreading sequences, certain macro-
scopic average over the posterior probability distribution con-
verges to the same number in the large-system limit, which
is its ensemble average over the distribution of the noise and
the spreading sequences. In [5], Tanaka pioneered statisti-
cal physics concepts and methodologies in multiuser detec-
tion and obtained the minimum bit-error-rate with antipodal
uncoded inputs. Guo and Verdú [6] further elucidated the re-
lationship between statistical physics and CDMA and general-
ized Tanaka’s results to the case of non-equal powers. Inspired
by [5], Müller and Gerstacker [7] studied the channel capac-
ity under separated detection and decoding, where an opti-
mal multiuser detector with no knowledge of the error-control
codes is applied to generate soft decision statistics for each
user for single-user decoding and noticed that the additive de-
composition of [4] also holds for binary inputs. Müller thus
further conjectured the same formula to be valid regardless of
input distribution [8].

In this work, we use the replica method to analyze CDMA
under a general framework, namely, the distribution of the in-
put symbols as well as the received energies are arbitrary. As-
suming that a detector separates the users by outputting the
mean value of each symbol given the received signals for sub-
sequent independent single-user decoding, we find that for
each user, the resulting single-user channel is equivalent to a
degraded Gaussian channel. The ratio of effective energy to
true energy in the degraded Gaussian channel, called themul-
tiuser efficiency, is found to satisfy a fixed-point equilibrium
equation (a generalization of the Tse-Hanly equation [3]), and
is the same for all users. The spectral efficiencies, both under
joint and separate decoding, are found in explicit expressions
in the multiuser efficiency, the input distribution and the fading
characteristics. As an immediate corollary, Müller’s conjec-
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Figure 1: System model of CDMA with joint or separate decoding.

ture on the capacity loss is shown to be true, and we identify
the loss as a Kullback-Leibler divergence between two Gaus-
sian distributions.

The linear system in our study also models multiple-input
multiple-output (MIMO) channels where the channel state is
unknown at the transmitter. Our results can be used to eval-
uate the spectral efficiency of MIMO channels with high di-
mensionality under constellation constraints. An example is
multiple antenna systems under homogeneous fading.

II. SYSTEM MODEL AND SUMMARY OF NEW RESULTS

Consider theK-user CDMA system with spreading factor
N depicted in Fig. 1. All symbols are independent identically
distributed (i.i.d.) with distributionpX , normalized so that
E

{
X2

}
= 1. We useX = [X1, . . . , XK ]> to denote a vector

of input symbols from theK users. Let userk’s spreading se-
quence be denoted bysk = 1√

N
[s1k, s2k, . . . , sNk]>, and the

N ×K spreading matrix denoted byS = [s1, . . . , sK ], where
thesnk ’s are i.i.d. random variables with zero mean, unit vari-
ance and finite higher-order moments. Assuming symbol-
synchronous transmission, we have the following memoryless
multiple-access channel:

Y = SAX + W (1)

where W is a vector that contains i.i.d. zero-mean
unit variance Gaussian random variables, andA =
diag(

√
Γ1 , . . . ,

√
ΓK ) whereΓk is the signal-to-interference

ratio (SIR) of userk. We assume that the SIR of all users are
known deterministic numbers, and asK → ∞, its empirical
cumulative distributions converge to a known distributionPΓ,
hereafter referred to as theSIR distribution. This SIR distri-
bution captures the overall effect of the transmit energies, the
noise level, and the fading characteristics of the channel.

The total capacity of the CDMA channel subject to a certain
input distribution is the mutual information between the trans-
mitted symbolsX and the received signalY . There exists
an error-correcting code of any rate no larger than the capacity
such that by jointly decoding all users as depicted by the upper
right block in Fig. 1, the original information can be recovered
arbitrarily reliably.

Practically, we often break the process into multiuser de-
tection followed by separate decoding, as shown by the lower
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Figure 2: Equivalent single-user channel.

right blocks in Fig. 1. A multiuser detector outputs an estimate
of the transmitted symbols without knowledge of the error-
control codes used by the encoder. Each decoder only takes
the decision statistic for a single user of interest for decoding
without awareness of the existence of any other users. We can
regard the CDMA channel and the multiuser detector together
as a superchannel, which is equivalent toK separate single-
user channels. By the data processing inequality, the capacity
of the superchannel, which is the sum of the single-user chan-
nel capacities, is less than the capacity of the original CDMA
channel. In this work, we study a particular type of detec-
tor, namely, theconditional mean estimator, which outputs the
mean value of the symbols conditioned on the received signal
and the spreading sequences.

Clearly, the spectral efficiency under either joint or single-
user (separate) decoding is dependent on the spreading se-
quences. However, if we consider the large-system asymptote,
every performance measure we are interested in converges for
almost all choices of the spreading sequences. Consequently,
we can describe the multiuser efficiency and the spectral ef-
ficiency of the channel and the superchannel using merely
macroscopic parameters without worrying about the instanta-
neous spreading sequences. In the following, we give the limit
of the multiuser efficiency and the spectral efficiency when
bothK andN tend to infinity but withK/N converging to a
positive numberβ. Besidesβ, we only assume that the input
distributionpX and the SIR distributionPΓ are known.

Given a scalarα > 0, consider a Gaussian channel as de-
picted in Fig. 2:

Z =
√

α X + W (2)

whereW is a unit Gaussian random variable independent of
X. We assume that the inputX takes the distributionpX .



Given thatZ is received, we can define an estimate ofX as

X̃ = E {X|Z;α} (3)

which is the mean value ofX conditioned onZ. X̃ is the
function ofZ that minimizes the mean square error:

E(α) = E

{(
X̃ −X

)2
∣∣∣∣ α

}
. (4)

Theorem 1 In the large-system limit, the distribution of the
conditional mean estimator output̃Xk of channel (1) condi-
tioned onXk = x being transmitted is the same as that of the
conditional mean estimatẽX of channel (2) conditioned on
X = x being transmitted withα = ηΓk, where the multiuser
efficiencyη is the solution to the fixed-point equation:

η + η · β · E {Γ · E(ηΓ)} = 1 (5)

where the expectation is taken over the SIR distributionPΓ.

Theorem 2 In the large-system limit, the channel capacity
under the conditional mean estimator and single-user decod-
ing for a user with input distributionpX and SIRΓ is equal to
the input-output mutual information of the single-user Gaus-
sian channel (2) with input distributionpX andα = ηΓ where
η is the multiuser efficiency given by Theorem 1. In case of
multiple solutions to (5),η is chosen as the smallest one.

Theorem 3 The gain of joint decoding over separate decod-
ing in the large-system CDMA spectral efficiency is

η − 1
2

log e− 1
2

log η = D (N (0, η) || N (0, 1)) . (6)

The conditional mean estimator plays an important role in
quantifying CDMA spectral efficiency. Theorem 1 reveals that
each single-user channel resulting from applying the condi-
tional mean estimator to a multiuser channel is equivalent to
a degraded Gaussian channel as depicted in Fig. 2. The mul-
tiuser efficiency is a unique number in[0, 1] associated with
CDMA as a solution to a fixed-point equation. The effective
energy in every degraded channel is the input energy times the
same multiuser efficiency. The single-user channel capacity
is simply the mutual information across the degraded Gaus-
sian channel under the input distributionpX , as concluded in
Theorem 2. The total spectral efficiency under joint decoding
is closely related to that under separate decoding. The gain
identified in Theorem 3 coincides with the expression found
originally in [1] in the case of Gaussian inputs.

Our results on large CDMA systems allow a simple in-
terpretation: The performance averaged over spreading se-
quences is equivalent to an equilibrium of the multiuser in-
terference game. This can be best illustrated by introducing a
canonical interference canceller as shown in Fig. 3. Suppose
that the conditional mean estimates are available for all users
but user 1. A decision statistic for user 1 is generated by first
subtracting the reconstructed interferences using the estimates
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Figure 3: A canonical interference canceller equivalent to the
conditional mean estimator.

and then matched filtering with respect to user 1’s spreading
sequence,

Z1√
η

=
√

Γ1 X1 +
K∑

k=2

s>1sk

√
Γk (Xk − X̃k) + W1 (7)

whereW1 is a unit Gaussian random variable. The variance
of the multiple access interference, assuming the estimation
errors are uncorrelated, is a weighted sum ofE(ηΓk). The
resulting SIR for user 1 is therefore

Γ1

1 + β · E {Γ · E(ηΓ)}
. (8)

By the fixed-point equation in Theorem 1, (8) is equal toηΓ1,
which is exactly the same as that of a conditional mean esti-
mator. We have thus shown that the conditional mean estimate
for one user has the same quality as the output of an inter-
ference canceller using the conditional mean estimates of all
other users. The multiuser efficiency is such that an equilib-
rium is achieved, so that every user enjoys the same efficiency;
otherwise the users with worse efficiency may benefit from
users with better efficiency until an equilibrium is reached.

III. R EPLICA ANALYSIS

The characteristic of the Gaussian CDMA channel with flat
fading can be described as

pY |X,S(y|x,S) = (2π)−
N
2 exp

[
−1

2
‖y − SAx‖2

]
. (9)

The posterior distribution can be obtained from the prior and
the conditional distribution through the Bayes formula

pX|Y ,S(x|y,S)

=Z−1(y,S) · pX(x) · exp
[
−1

2
‖y − SAx‖2

]
(10)

where

Z(y,S) = (2π)
N
2 · pY |S(y|S) (11)

is a normalizing coefficient, conveniently referred to as the
partition function.

A. Joint Decoding



Since the input distribution is fixed, the total capacity under
joint decoding is

I(X;Y |S) = E

{
log

pY |X,S(Y |X,S)
pY |S(Y |S)

∣∣∣∣ S

}
. (12)

The spectral efficiency is defined as the total capacity di-
vided by the number of chips per symbol interval. Therefore,
by (11)–(12) and noticing thatpY |X,S is a Gaussian density,
the spectral efficiency of joint decoding is (in nats)

C(S) = β · E
{
− 1

K
log Z(Y ,S)

∣∣∣∣ S

}
− 1

2
. (13)

In statistical physics, the term inside the expectation in (13)
is known as the free energy. As a macroscopic property, the
free energy converges with probability 1 to its expectation in
the large-system limit, which is denoted byF ,

F = − lim
K→∞

E

{
1
K

log Z(Y ,S)
}

. (14)

Therefore, the spectral efficiency converges almost surely to

C = βF − 1
2
. (15)

The expectation of the logarithm in (14) is an open problem,
for which the replica method is applied:

F = − lim
K→∞

1
K

lim
u→0

∂

∂u
log E {Zu(Y ,S)} (16)

= − lim
u→0

∂

∂u
lim

K→∞

1
K

log E {Zu(Y ,S)} . (17)

For an arbitrary integeru, we introduceu replicas of the
CDMA system with the same received signalY and spreading
matrixS. The partition function of the replicated system is

Zu(y,S) = E

{
u∏

a=1

exp
[
−1

2
‖y − SAXa‖2

] ∣∣∣∣∣ S

}
(18)

where the expectation is taken over the the i.i.d. replicated
symbols,{Xak|a = 1, . . . , u, k = 1, . . . ,K}, conditioned
onS. We can henceforth evaluate

− lim
K→∞

1
K

log E {Zu(Y ,S)} (19)

as a function of the integeru. The replica methodassumes
that the resulting expression is also valid for an arbitrary real
numberu and find the derivative atu = 0 as the free en-
ergy. The replica method was invented in the context of spin
glasses [9]. There are intensive ongoing efforts in the mathe-
matics and physics community to find a rigorous proof for the
replica method.

B. Separate Decoding
We assume that to separate the users we employ a condi-

tional mean estimator:

〈X〉 4= E {X | Y ,S} (20)
where the operator〈·〉 gives the expectation taken over the pos-
terior probability distributionpX|Y ,S . The spectral efficiency

is the mean value of the single-user channel capacities

I(Xk; 〈Xk〉 |S). (21)

For the purpose of calculating (21), we study the joint distri-
bution ofXk and〈Xk〉 through their moments

E
{

Xj
k · 〈Xk〉i

∣∣∣ S
}

i, j = 0, 1, . . . (22)

It turns out that the moments are macroscopic quantities which
converge with probability 1 in the large-system limit to

lim
K→∞

E
{

Xj
k · 〈Xk〉i

}
. (23)

Again, we use the replica method to evaluate (23). For nota-
tional convenience, we useX0 to denote the transmitted sym-
bol vector. Upon each instance of(Y ,S), let X1, . . . ,Xu be
u independent random vectors induced from the posterior dis-
tributionpX|Y ,S . ThusX0 → (Y ,S) → (X1, . . . ,Xu) is a
Markov chain. The moments in (23) are equivalent to

lim
K→∞

E

{
Xj

0k ·
i∏

m=1

Xmk

}
(24)

which can be evaluated by working with a modified partition
function akin to (18). The proof of Theorems 1–3 follows the
above track.
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