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Abstract — We present some new results on large- additive decomposition as the sum of the capacity of a linear
system CDMA obtained through the replica method devel- front-end and a nonlinear gain that depends only on the mul-
oped in statistical physics. We find the spectral efficiency tiuser efficiency.

of randomly spread CDMA subject to Gaussian noise and || the above results on spectral efficiency assume Gaussian
flat fading in the large-system limit under arbitrary input  jnputs which are optimum because the channel realization is
distributions. Both joint decoding and single-user decod- tracked at the receiver. Much less success has been reported in
ing are considered. In the latter case, a conditional mean the application of random matrix theory to the analysis of the

estimator is first applied to separate the users and it is spectral efficiency achievable by specific signal constellations
found that the resulting single-user channel for every user sych as QPSK and 16QAM.

is equivalent to a Gaussian channel. The multiuser effi-
ciency of that Gaussian channel is the same for all users
and satisfies a fixed-point equilibrium equation. The addi-
tive decomposition by Shamai-Verd of optimum capacity
in terms of single-user capacity is shown to hold for arbi-
trary input distributions.

The self-averaging property is nothing but a manifestation
of a fundamental law of nature that the fluctuation of macro-
scopic properties of certain many-body systems vanishes in
the thermodynamic limit when the number of interacting bod-
ies becomes large. In CDMA, the self-averaging principle
ensures a strong property that for almost all realizations of
the noise process and the spreading sequences, certain macro-
scopic average over the posterior probability distribution con-

In the context of randomly spread code-division multipléerges to the same number in the large-system limit, which
access (CDMA), the inherent loss in spectral efficiency dueifoits ensemble average over the distribution of the noise and
non-orthogonal signaling was quantified in the large-systéfif spreading sequences. In [5], Tanaka pioneered statisti-
limit using random matrix theory by Vetdand Shamai [1]. cal physics concepts and methodologies in multiuser detec-
The expression found in [1] also solved the capacity of singléon and obtained the minimum bit-error-rate with antipodal
user narrowband multiantenna channels as the number of @hcoded inputs. Guo and Verd6] further elucidated the re-
tennas grows—a problem that was open since the piond@fionship between statistical physics and CDMA and general-
ing work of Foschini and Telatar. The complexity of optimalzed Tanaka’s results to the case of non-equal powers. Inspired
joint decoding, necessary for achieving capacity, is often prey [5], Muller and Gerstacker [7] studied the channel capac-
hibitive in practice. A common strategy is to separate the usés under separated detection and decoding, where an opti-
using a multiuser detector front end and then perform singl@al multiuser detector with no knowledge of the error-control
user decoding, which induces further penalty on spectral €fdes is applied to generate soft decision statistics for each
ficiency. Assuming capacity-achieving Gaussian inputs, [#per for single-user decoding and noticed that the additive de-
found the penalty incurred by linear detectors as a functi6@mposition of [4] also holds for binary inputs. tMer thus
of the multiuser efficiency of the linear front end, also usinfyrther conjectured the same formula to be valid regardless of
random matrix theory. input distribution [8].

The success of random matrix theory in the analysis of In this work, we use the replica method to analyze CDMA
the spectral efficiency hinges on the fact that the performanaeder a general framework, namely, the distribution of the in-
measures for a finite number of usdisand spreading fac- put symbols as well as the received energies are arbitrary. As-
tor N can be written as explicit functions of the singular valsuming that a detector separates the users by outputting the
ues of the spreading matrix [2], the empirical distributions afiean value of each symbol given the received signals for sub-
which converge to a known function in the large-system limgequent independent single-user decoding, we find that for
where both/K and N tend to infinity with a fixed ratio. As an each user, the resulting single-user channel is equivalent to a
important consequence, the dependency of the performadegraded Gaussian channel. The ratio of effective energy to
measures on the spreading sequences diminishes with prahae energy in the degraded Gaussian channel, calleahtite
bility 1. In other words, the performance measures are sdifiser efficiencyis found to satisfy a fixed-point equilibrium
averaging. Random matrix theory underlies many interestieguation (a generalization of the Tse-Hanly equation [3]), and
asymptotic results. In particular, the multiuser efficiency a$ the same for all users. The spectral efficiencies, both under
the MMSE detector was found by Tse and Hanly [3]; and theint and separate decoding, are found in explicit expressions
spectral efficiency of Gaussian CDMA channels subject to fl@tthe multiuser efficiency, the input distribution and the fading
fading was found by Shamai and Vérf#] in the form of an characteristics. As an immediate corollaryjilMr’s conjec-
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Figure 1: System model of CDMA with joint or separate decoding.

ture on the capacity loss is shown to be true, and we identify W~ N(0,1)

the loss as a Kullback-Leibler divergence between two Gaus- )\

sian distributions. X \? o
The linear system in our study also models multiple-input” 7%

multiple-output (MIMO) channels where the channel state is Ve

unknown at the transmitter. Our results can be used to eval-

uate the spectral efficiency of MIMO channels with high di- Figure 2: Equivalent single-user channel.

mensionality under constellation constraints. An example is

multiple antenna systems under homogeneous fading.

Decision

— X = E{X|Z;«
Function X230

right blocks in Fig. 1. A multiuser detector outputs an estimate
of the transmitted symbols without knowledge of the error-

Consider thei(-user CDMA system with spreading factorcontrol codes used by the encoder. Each decoder only takes
N depicted in Fig. 1. All symbols are independent identicallhe decision statistic for a single user of interest for decoding
distributed (i.i.d.) with distributiorpx, normalized so that without awareness of the existence of any other users. We can
E{X?} =1. WeuseX = [Xy,..., Xx]' to denote a vector regard the CDMA channel and the multiuser detector together
of input symbols from the{ users. Let usek’s spreading se- as a superchannel, which is equivalentfoseparate single-

Il. SYSTEM MODEL AND SUMMARY OF NEW RESULTS

quence be denoted by, = \%ﬁ[sw, Sak,---»snk]'» and the user channels. By the data processing inequality, the capacity
N x K spreading matrix denoted I8/ = [s1, ..., sk], where of the superchannel, which is the sum of the single-user chan-

thes,;'s are i.i.d. random variables with zero mean, unit varinel capacities, is less than the capacity of the original CDMA
ance and finite higher-order moments. Assuming symbahannel. In this work, we study a particular type of detec-
synchronous transmission, we have the following memoryletss, namely, theonditional mean estimatpwhich outputs the

multiple-access channel: mean value of the symbols conditioned on the received signal
and the spreading sequences.
Y =SAX+W (1) Clearly, the spectral efficiency under either joint or single-

] ) o user (separate) decoding is dependent on the spreading se-
where W is a vector that contains iid. zero-meap,ences. However, if we consider the large-system asymptote,

unit variance Gaussian random variables, amd = gyery performance measure we are interested in converges for
diag(yT1, ..., T ) wherel is the signal-to-interference 5jmast all choices of the spreading sequences. Consequently,

ratio (SIR) of user:. We assume that the SIR of all users arge can describe the multiuser efficiency and the spectral ef-
known deterministic numbers, and &5 — oo, its empirical ficjency of the channel and the superchannel using merely
cumulative distributions converge to a known distributidn  macroscopic parameters without worrying about the instanta-
hereafter referred to as tH&R distribution This SIR distri- eqys spreading sequences. In the following, we give the limit
bution captures the overall effect of the transmit energies, th€ihe multiuser efficiency and the spectral efficiency when

noise level, and the fading characteristics of the channel.  poth K and NV tend to infinity but withK /N converging to a

The total capacity of the CDMA channel subject to a Certaﬁbsitive numbep. Besidess, we only assume that the input
input distribution is the mutual information between the tra”ﬁistributionpx and the SIR distributio; are known.

mitted symbolsX and the received signal’. There exists  Gjyen a scalan > 0, consider a Gaussian channel as de-
an error-correcting code of any rate no larger than the capa%med in Fig. 2:
such that by jointly decoding all users as depicted by the upper
right block in Fig. 1, the original information can be recovered Z=VaX+W (2)
arbitrarily reliably.

Practically, we often break the process into multiuser deterelV is a unit Gaussian random variable independent of
tection followed by separate decoding, as shown by the low&r We assume that the inpuK takes the distributiopx.



Given thatZ is received, we can define an estimateXoas

Conditional

X=FE {(X|Z;0} 3) Mean Estimator

which is the mean value ok conditioned onZ. X is the
function of Z that minimizes the mean square error:

£(a):E{(X—X)2 a}. @

Theorem 1 In the large-system limit, the distribution of the
conditional mean estimator outp¥;, of channel (1) condi- . .
tioned onX; = x being transmitted is the same as that of thgondmonal mean estimator.
conditional mean estimat& of channel (2) conditioned on
X = x being transmitted witlax = nI';, where the multiuser

igure 3: A canonical interference canceller equivalent to the

efficiencyn is the solution to the fixed-point equation: and then matched filtering with respect to user 1's spreading
sequence,
n+n-B-E{T-E0D)} =1 (5) .
Zy T .
where the expectation is taken over the SIR distribufpn VG = v X+ Z sise VT (X — X)) + Wi (7)
k=2

Theorem 2 In the large-system limit, the channel capacityhere1v; is a unit Gaussian random variable. The variance
under the conditional mean estimator and single-user decagf-the multiple access interference, assuming the estimation

ing for a user with input distributiopx and SIRI" is equalto errors are uncorrelated, is a weighted sun€6fl’;). The
the input-output mutual information of the single-user Gaugesulting SIR for user 1 is therefore

sian channel (2) with input distributiony anda = nI" where
7n is the multiuser efficiency given by Theorem 1. In case of Iy ®)
multiple solutions to (5)y is chosen as the smallest one. 1+ 8-E{T-&(D)}

OBy the fixed-point equation in Theorem 1, (8) is equablt,
which is exactly the same as that of a conditional mean esti-
mator. We have thus shown that the conditional mean estimate

n—1 1 for one user has the same quality as the output of an inter-

5 loge — 5 logn =D (N(0.7) [[N(0,1)).  (8) ference canceller using the conditional mean estimates of all
other users. The multiuser efficiency is such that an equilib-
rium is achieved, so that every user enjoys the same efficiency;

otherwise the users with worse efficiency may benefit from

Thg c_ondmonal mean es“".‘"’.‘tor plays an important role ers with better efficiency until an equilibrium is reached.
quantifying CDMA spectral efficiency. Theorem 1 reveals that

each single-user channel resulting from applying the condi- 1. REPLICA ANALYSIS

tional mean estimator to a multiuser channel is equivalent to - . .

a degraded Gaussian channel as depicted in Fig. 2. The r?ggi-r?e ggﬁf‘gtdee”:é'r?b(gggesGauss'an CDMA channel with flat

tiuser efficiency is a uniqgue number jo, 1] associated with 9

CDMA as a solution to a fixed-point equation. The effective

energy in every degraded channel is the input energy times they|x s (y|z, S) = (27)

same multiuser efficiency. The single-user channel capacity

is simply the mutual information across the degraded Gaughe posterior distribution can be obtained from the prior and

sian channel under the input distributipg, as concluded in the conditional distribution through the Bayes formula

Theorem 2. The total spectral efficiency under joint decoding

is closely related to that under separate decoding. The gain Px|v.s(z|y,S)

identified in Theorem 3 coincides with the expression found . 1 )

originally in [1] in the case of Gaussian inputs. =27 (y,8) -px(x) - exp [_2”3/ — SAz|| ]
Our results on large CDMA systems allow a simple in-

terpretation: The performance averaged over spreading ere

guences is equivalent to an equilibrium of the multiuser in- N

terference game. This can be best illustrated by introducing a Z(y,8) = (2m) = - py|s(ylS) (11)

canonical interference canceller as shown in Fig. 3. Suppose o - .

that the conditional mean estimates are available for all us&ts- r'lormallz[ng coefficient, conveniently referred to as the

but user 1. A decision statistic for user 1 is generated by firos"%‘rtltlon function

subtracting the reconstructed interferences using the estimateA. Joint Decoding

Theorem 3 The gain of joint decoding over separate deco
ing in the large-system CDMA spectral efficiency is

N
2

x|~ gly - S4al?]. @

(10)



Since the input distribution is fixed, the total capacity undés the mean value of the single-user channel capacities
joint decoding is
I(Xg; (Xi) | S). 21
pY\X,S(Y|X,S) ‘ S} (12) ( k7< k> | ) ( )
py|s(Y]S) For the purpose of calculating (21), we study the joint distri-
The spectral efficiency is defined as the total capacity diution of Xz and(Xy) through their moments
vided by the number of chips per symbol interval. Therefore,

I(X;Y|S) = E{log

by (11)-(12) and noticing thaty| x s is a Gaussian density, E { X (X1)" g} i,j=0,1,... (22)
the spectral efficiency of joint decoding is (in nats)
1 1 It turns out that the moments are macroscopic quantities which
C(s)=p-E {— e Z(Y, S)’ S} 5 (13)  converge with probability 1 in the large-system limit to
In statistical physics, the term inside the expectation in (13) . j i
is known as the free energy. As a macroscopic property, the Kh_IgO E {Xk (Xk) } ' (23)
free energy converges with probability 1 to its expectation in
the large-system limit, which is denoted 18y Again, we use the replica method to evaluate (23). For nota-
tional convenience, we usk¥ to denote the transmitted sym-
F—_ lim E {1 logz(y7s)} ) (14) bql vector. Upon each instance@ﬁS), let Xq,..., X, t_>e .
K—o00 K u independent random vectors induced from the posterior dis-

Therefore, the spectral efficiency converges almost surely t§iPUtionpx|y s. ThusXo — (¥, ) — (X1,..., X, ) isa
Markov chain. The moments in (23) are equivalent to

1
C=pF-3. (15) |
The expectation of the logarithm in (14) is an open problem, Am E {ng 11 ka} (24)
m=1

for which the replica method is applied:

B . 1. 0 u which can be evaluated by working with a modified partition
Fo= - Klgnoo 7 ou logBE{Z"(Y,5)}  (16) f,nction akin to (18). The proof of Theorems 1-3 follows the
. 0 . 11 E{ZUY.S 17 above track.
= —lim o lim —logE{Z*(Y,S)}. (17)
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