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Abstract—Code-division multiple access (CDMA) is the basis
of a family of advanced air interfaces in current and future
generation networks. The benefits promised by CDMA have not
been fully realized partly due to the prohibitive complexity of
optimal detection and decoding of many users communicating
simultaneously using the same frequency band. From both
theoretical and practical perspectives, this paper advocates a
new paradigm of CDMA with sparse spreading sequences, which
enables near-optimal multiuser detection using belief propagation
(BP) with low-complexity. The scheme is in part inspired by
capacity-approaching low-density parity-check (LDPC) codes
and the success of iterative decoding techniques. Specifically, it is
shown that BP-based detection is optimal in the large-system limit
under many practical circumstances, which is a unique advantage
of sparsely spread CDMA systems. Moreover, it is shown that,
from the viewpoint of an individual user, the CDMA channel is
asymptotically equivalent to a scalar Gaussian channel with some
degradation in the signal-to-noise ratio (SNR). The degradation
factor, known as the multiuser efficiency, can be determined from
a fixed-point equation. The results in this paper apply to a broad
class of sparse, semi-regular CDMA systems with arbitrary input
and power distribution. Numerical results support the theoretical
findings for systems of moderate size, which further demonstrate
the appeal of sparse spreading in practical applications.

Index Terms—Code-division multiple access (CDMA), sparse
spreading, multiuser detection, belief propagation.

I. INTRODUCTION

In a code-division multiple access (CDMA) system, a num-
ber of users communicate with a base station simultaneously
over the same frequency band. Typically, each user is assigned
a randomly generated spreading sequence (signature) with a
large time-bandwidth product. The sequence is used to directly
modulate the transmitted waveform in time in direct sequence
(DS) CDMA, to control the frequency shift in frequency
hopping (FH) CDMA, or is translated to the phase and
amplitude of subcarriers in multicarrier (MC) CDMA (see e.g.
[1]). The spread of user signals in bandwidth and the ease
of frequency planning provide many advantages particularly
in wireless applications. However, the potential benefits of
CDMA have not been fully realized in practice partly due to
the computational complexity of effective multiuser detection
in presence of multiple-access interference (MAI).

The MAI arises in many CDMA systems in which it is
impossible to maintain orthogonality of the spreading se-
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quences of all users. Optimal detection in such systems is
equivalent to a test of an exponential number of hypotheses
about the data symbols of all users, which is NP-complete and
hence prohibitively complex for all but systems with very few
users [2]. Numerous suboptimal multiuser detectors with lower
complexity have been proposed to mitigate the MAI to various
degrees. Most notable ones include the decorrelating detector,
the linear minimum mean-square error (MMSE) detector, and
the successive and parallel interference cancelers [2].

This work investigates a new paradigm of CDMA, called
sparsely spread CDMA or simply sparse CDMA, which re-
cently emerged in the literature [3], [4]. The key technique is
to use sparse spreading sequences whose fraction of nonzero
entries is small so that near-optimal performance is provably
achievable by the linear-complexity belief propagation (BP)
algorithm and its variants. Multiuser detection based on mod-
ified BP with heuristic Gaussian approximation was originally
proposed for the usual dense CDMA [5]–[7]. The use of
sparsity is in part inspired by the success of iterative decoding
techniques for low-density parity-check (LDPC) codes. In [4],
Yoshida and Tanaka proposed a family of sparse CDMA and
analyzed the performance of such schemes in the large-system
limit, which refers to the regime where the number of users
and the spreading factor both tend to infinity with their ratio
fixed. The heuristic statistical physics technique used in [4],
known as the replica method, has previously been used to
study dense CDMA in the large-system limit. In particular,
Tanaka obtained the first analytical error performance for large
CDMA systems [8], and Guo and Verdú showed that the
CDMA channel followed by multiuser detection can essen-
tially be decoupled into a bank of scalar Gaussian channels,
one for each user [9], [10]. Concurrent to [4], Montanari and
Tse proposed in [3] a different ensemble of sparse CDMA,
and justified Tanaka’s formula [8] for the first time in a special
case without resorting to replicas. The work [3] has since been
generalized to arbitrary input and noisy channels in the context
of general sparse linear systems [11]–[13]. More recently,
Raymond and Saad [14] studied sparse CDMA of the regular
LDPC code type using the replica method and verified their
findings numerically.

It is straightforward to apply sparse spreading sequences
in CDMA systems. In sparse FH-CDMA and MC-CDMA,
sparsity takes place in the frequency domain and is particularly
robust to channel impairment. In sparse DS-CDMA, although
extensive and dense delay profile generally destroys sparsity
of the spreading sequences, sparsity may be preserved to
some extent in many wireless dispersive channels subject to
a few dominant paths (see, e.g., [15]). Moreover, sparsity is
preserved regardless of whether the system is synchronous
or asynchronous. One major consequence of sparse spreading
in DS-CDMA and FH-CDMA is the increase in peak power
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because of zero transmission for some fraction of the time.
The CDMA systems considered in this work are described

in Section II in full generality. A specific ensemble of sparse
spreading matrices is also defined. Section III is devoted to the
exposition of BP-based multiuser detection and also serves as
a recipe for implementing the BP algorithm.

The main results in this paper are summarized in Section
IV. The performance of sparse CDMA with several types of
detectors investigated. Consider first the performance of itera-
tive detection using BP. Under the sparsity condition, detection
of each symbol is essentially equivalent to statistical inference
on a tree (or tree-like graph) of some depth determined by the
number of iterations. The quality of the statistics obtained by
BP can be evaluated using density evolution for any given
ensemble. An alternative to density evolution is to use the
replica method to obtain a set of coupled equations which
describe the performance [14]. For the ensemble described
in Section II, the node degrees increase without bound in
the large-system limit, so that the aggregate likelihood ratio
converges to a Gaussian random variable due to the central
limit theorem. This allows the asymptotic performance to
be determined rigorously using a fixed-point equation. It
is interesting to note that density evolution with heuristic
Gaussian approximation has been applied to obtain similar
fixed-point equations which characterize the performance of
dense CDMA systems [16], [17].

In Section V, it is shown that the quality of detection can
be simply described by the variance of the likelihood ratio.
Interestingly, in the viewpoint of each user, the CDMA channel
combined with the BP detector is asymptotically equivalent
to a scalar Gaussian channel, where the collective impact of
interfering users is a degradation in the signal-to-noise ratio
(SNR) of the desired user. The degradation, known as the
multiuser efficiency, can be obtained from an iterative formula.
In Section V, we also show that BP effectively produces the a
posteriori probability of the input given the observed channel
output in the large-system limit, if the iterative formula for
the multiuser efficiency of BP has a unique fixed point. In
other words, BP computes a sufficient statistic and is therefore
optimal in such cases. The optimality of BP is not sustained
if the iterative formula has more than one solution.

This paper adopts the following notational convention un-
less noted otherwise. Deterministic and random variables are
denoted by lowercase and uppercase letters respectively, and
scalars, vectors and matrices are distinguished using normal,
bold and underlined bold fonts respectively. For any random
variable X , let PX denote its cumulative distribution function
(cdf), and pX denote the corresponding probability mass or
density function.

II. SYSTEM MODEL

A. CDMA System

Consider a fully-synchronous CDMA system with K users
and spreading factor L. User k modulates the symbol Xk

onto a spreading sequence Sk with positive amplitude Ak.
Let the spreading sequence of user k be described by Sk =

1√
Λk

[S1k, S2k, . . . , SLk]>where
√

Λk is a normalization factor.

The output at one arbitrary chip l ∈ {1, 2, . . . , L} is

Yl =
K∑

k=1

Slk√
Λk

AkXk + Nl (1)

where Nl ∼ N (0, 1) are independent standard Gaussian
random variables representing noise. Let X = [X1, . . . , XK ]>

denote the input vector and S = [S1, · · · ,Sk] denote the
spreading matrix. The CDMA channel can be succinctly
described by a linear system in Gaussian noise:

Y = SAX + N

where N ∼ N (0, I), A = diag(A1, . . . , AK), and {Ak} are
i.i.d. with distribution PA of a finite fourth-order moment.
Note that the amplitudes Ak may be different for different
users and also vary over time. Thus fading is inherently
considered in the model.

A multiuser detector assumes the symbols {Xk} to be in-
dependent and identically distributed (i.i.d.) and to take values
in the alphabet χ ⊂ R, which may be discrete or continuous.
Let PX denote the cdf of Xk, which is of zero mean and
finite variance. Given S, A, and PX , the job of the multiuser
detector is to produce an estimate of X using the output Y
of the CDMA system. Oftentimes, the multiuser detector is
followed by a decoder for error-control codes, so that a soft es-
timate of the symbols is most desirable. The optimal multiuser
detector in general produces the posterior distribution of Xk,
i.e., PXk|Y ,SA(·|Y ,SA), which is a sufficient statistic for Xk

and based on which all classical decision rules can be derived.
For example, MMSE estimator outputs the conditional mean
E {Xk|Y ,SA} and the maximum a posteriori (MAP) detector
finds X̂k = arg maxx∈χ P {Xk = x|Y ,SA} in case of dis-
crete alphabet χ. In practice, the alphabet is often very simple
and the soft output of the multiuser detector admits many
equivalent forms. For example, if the inputs are modulated
in binary phase-shift keying (BPSK), where χ = {+1,−1},
the optimal soft output is simply the a posteriori probabilities
of Xk = +1 (or −1) given the output Y and the channel
matrix SA, and an equivalent and frequent form of the soft
output is the log-likelihood ratio (LLR) between the two a
posteriori probabilities.

B. Factor Graph Representation

Let s be a specific realization of the spreading matrix S.
We can construct the corresponding factor graph representation
of the CDMA system as depicted in Figure 1. Each user
symbol Xk is represented by a circle, called the symbol node,
and each received signal entry Yl corresponds to a square,
called the chip node. For any (k, l), symbol node k and chip
node l are connected by an edge if slk 6= 0, and each edge
connecting k and l is associated with the corresponding gain
factor slk√

Λk
Ak. The purpose of the factor graph representation

is twofold. First, the probability law of the CDMA system
can be completely described using the factor graph, which
renders multiuser detection equivalent to statistical inference
on the graph. The BP algorithm [18], also known as the
sum-product algorithm [19], [20], can thus be derived from
the factor graph representation, which will be elaborated in
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Fig. 1. The Forney-style factor graph for the CDMA system.

Section III. Secondly, the factor graph representation facilitates
discussions of graph-based concepts, e.g., the neighborhood of
a node and the graph-based system ensemble. The factor graph
representation is very general. In particular, CDMA with usual
dense spreading corresponds to a complete bipartite graph.

C. The Limiting Ensemble of Sparse Spreading Matrices

In a sparse CDMA system, all but a small fraction of the
entries in the spreading sequence for each user are zero. Each
symbol Xk is thus spread over a relatively small subset of
the L chips, which is different from traditional CDMA where
each symbol is spread over all L chips. A common approach
for the analysis of CDMA is to consider the large-system
limit where K = βL → ∞ and allow random selection
of the spreading matrix S, user power profile A, and user
symbol vector X . There are at least three types of sparse
system limits: (i) each symbol is spread onto a fixed number
of chips; (ii) each symbol is spread onto a random number
of chips, the average of which is a fixed number regardless
of K and L; and (iii) each symbol Xk is spread onto Λk

chips where Λk → ∞ but Λk = o
(
L1/(4t)

)
as L → ∞

where t is a constant to be explained shortly. In any one of
the three cases, the ratio of the number of nonzero chips for
each user and L vanishes. Types (i) and (ii) are the subject
of [14] and [4] respectively, whereas the analysis of this work
focuses on type (iii). Numerical results in Section VI show
that the asymptotic results are representative for systems with
moderate size, where Λk are quite small.

Specifically, we consider a sequence of ensembles indexed
by the user number K. For any fixed K and L as a function of
K, let S be randomly constructed as follows. First, an L×K
binary incidence matrix HL×K = (Hlk) is randomly picked
from a certain ensemble to be described shortly. For all (l, k)
with Hlk = 0, set Slk = 0. For all (l, k) with Hlk = 1, Slk are
drawn i.i.d. with distribution PS , which is of zero mean, unit
variance, and finite fourth-order moment. The normalization
factor for each spreading sequence Sk is

√
Λk, where Λk =∑L

l=1 Hlk is the symbol (node) degree of Xk, which is the
number of chips over which Xk is spread. We define Λ̄ =
1
K

∑K
k=1 Λk as the average symbol degree. Similarly, the chip

(node) degree and the average chip degree are defined as Γl =∑K
k=1 Hlk and Γ̄ = 1

L

∑L
l=1 Γl respectively.

Two common classes of ensembles for HL×K is the doubly
Poisson ensembles and the regular bipartite graph ensembles.
For a doubly Poisson ensemble, the entries {Hlk} are i.i.d.
Bernoulli distributed. A regular bipartite graph ensemble, how-
ever, consists of all bipartite graphs with K symbol nodes and

L chip nodes such that all symbol nodes are of identical degree
and so are all chip nodes, where H is the incidence matrix of
a uniformly randomly picked graph from the ensemble. Both
classes of ensembles satisfy the properties:

1) The ensemble is automorphism under any permutation
of the symbol or chip node indices.

2) If the expected average chip degree EΓ̄ grows as slow
as o

(
L1/(4t)

)
with L, then for every k, the probability

that Xk is involved in a cycle of length shorter than t
approaches zero as K = βL→∞. This is often called
the asymptotic cycle-free (A.C.F.) property [21].

3) As EΓ̄→∞, the chip degrees concentrate around their
expected average, i.e., for every l and ε > 0,

lim
K=βL→∞

P
{
|Γl − EΓ̄| > εEΓ̄

}
= 0. (2)

We call an ensemble chip-semi-regular if it satisfies (2).
The analysis in this paper applies to any class of ensembles

satisfying the above three properties, which hold for most
popular ensembles including symbol-irregular bipartite graph
ensembles. See [22] for more examples.

Once the ensemble of H is determined, which in turn
determines the ensemble of S, we consider the large-system
limit with K = βL,EΓ̄→∞ such that EΓ̄ grows sufficiently
slowly so that the asymptotic cycle-free property is ensured.
Throughout this paper, we use lim K=βL→∞

Γ̄ → ∞, A.C.F.

to denote this
large-system limit for a sparse system ensemble satisfying the
A.C.F. property, which is also simply referred to as the large-
sparse-system limit.

Finally, we assume that the input distribution PX , the user
power profile PA, the chip distribution PS , and the system
load β remain fixed regardless of the system size (K, L).

III. BELIEF PROPAGATION FOR MULTIUSER DETECTION

BP is an efficient iterative message-passing algorithm for
computing the marginal posterior distributions, which is de-
vised based on the factor graph of the underlying Bayesian
inference networks. Each node in the factor graph sends “mes-
sages” to its neighbors during each “iteration” and after several
iterations, inference can be made based on the messages
exchanged in the final round. If applied to a factor graph free of
cycles, BP produces the exact marginal posterior distribution
and is thus optimal in information-theoretic sense. BP is also
frequently applied to graphs with cycles and is known to
produce good approximation of the posterior marginals in
practice, even though its (suboptimal) performance is no-
toriously difficult to quantify on loopy graphs [23], [24].
In the following we first provide the iterative formulas of
BP for ready implementation in practical CDMA systems.
The underlying theory will then be discussed to justify the
algorithm and set the stage for the analytical results.

A. The BP Algorithm for Multiuser Detection

Consider the CDMA system described in Section II, where
the spreading matrix S is randomly picked from an ensemble
of sparse matrices. Let the realization of S and the amplitudes
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A be denoted by s and a respectively, so that conditioning on
the channel state is dropped in the remainder of this section.

Consider the bipartite graph depicted in Figure 1. In each
iteration of BP, messages are first sent from symbol nodes to
chip nodes; each chip node then computes messages to send
back to the symbol nodes based on the previously received
messages. These chip-to-symbol messages will then be used
to generate the new symbol-to-chip messages in the next
iteration. Let

{
V

(t)
k→l(x)

}
x∈χ

or the shorthand
{
V

(t)
k→l(χ)

}
represent the message from symbol node k to chip node l

and
{
U

(t)
l→k(χ)

}
represent the message in the reverse direction

at the t-th iteration. The messages represent generally the
extrinsic information of Xk in some form (see e.g., [19]).

For convenience, the alphabet χ is assumed to be discrete
and finite so that each message can be represented as a
vector with dimension equal to the cardinality of χ. Let
pX(x) denote the probability mass function of the symbol
distribution PX and the statement “V (x) ∝ u(x)” means
that ∀x ∈ χ, V (x) = c · u(x) for some constant c such
that

∑
x∈χ V (x) = 1. Let ∂l (resp. ∂k) denote the subset

of symbols (resp. chips) connected directly to chip l (resp.
symbol k), called its neighborhood. Also, let ∂l\k denote the
neighborhood of chip node l excluding symbol node k.

The iterative BP algorithm for computing the (approximate)
a posteriori distribution of all symbols is described as follows.

1: Input: s, a, y.
2: Initialization:
3: for all k = 1, . . . ,K and l = 1, . . . , L do
4: U

(0)
l→k(x)← 1 for all x ∈ χ.

5: Main Iterations:
6: for t = 1 to T (generally ranging from 20 to 40) do
7: for all k, l with slk 6= 0 and x ∈ χ do
8: V

(t)
k→l(x) ∝ pX(x)

∏
j∈∂k\l

U
(t−1)
j→k (x) (4a)

9: for all k, l with slk 6= 0 and x ∈ χ do
10: (Let

∑
(xi)∂l\k

denote sum over xi ∈ χ for all i ∈ ∂l\k.)

U
(t)
l→k(x) ∝

∑
(xi)∂l\k

exp

[
− 1

2

(
yl −

slk√
Λk

akx

−
∑

i∈∂l\k

sli√
Λk

aixi

)2
] ∏

i∈∂l\k

V
(t)
i→l(xi)

(4b)

11: return Vk(x) ∝ pX(x)
∏

j∈∂k

U
(T )
j→k(x), x ∈ χ, k=1, . . .K.

At termination, {Vk(x)}x∈χ is the (approximate) posterior
probability density or probability mass function of symbol Xk

produced by the BP algorithm for each k.
The complexity of the algorithm depends on the number

of nonzero entries in the spreading matrix s, and is in fact
exponential in the chip degree Γl because of summation in
(4b). Nonetheless, with relatively small values of Γl and |χ|,
the complexity per symbol is essentially linear with respect
to the spreading factor L (hence also K) and the number
of iterations. This makes the algorithm particularly suitable
for sparse CDMA with binary or quaternary modulation and
small node degrees (e.g., Γl < 10). At the cost of degraded
performance, the above algorithm can be further simplified for
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Fig. 2. Statistical inference over the corresponding tree structure.

detection of dense CDMA with a complexity also linear in Γ̄
[5]–[7]. This is achieved by noting that the summation (4b)
can be reduced if each

{
V

(t)
i→l(x)

}
is replaced by its Gaussian

approximation and the sum over (xi)i∈∂l\k is replaced by an
expectation over a Gaussian density.

B. The BP Algorithm: Justification and Implementation

In the following, we demonstrate how to derive the message-
passing algorithm from the viewpoint of statistical inference
on graph assuming that the spreading matrix is sparse. For
pedagogical reasons, the messages are represented in the form
of the log-likelihood ratio, which will eventually be reduced to
the unnormalized posteriors seen in (3). Let us fix a reference
point x0 ∈ χ throughout the paper. In general, the LLR
function of some observation Z = z about X is defined as1

LZ|X(z|x) = log
pZ|X(z|x)
pZ|X(z|x0)

= log
pX|Z(x|z)
pX|Z(x0|z)

−log
pX(x)
pX(x0)

for all x ∈ χ, where pZ|X is the conditional probability density
function of Z given X . Clearly, the LLR LZ|X(z|·) and the
a posteriori distribution PX|Z(·|z) determine each other for
every z. The LLR is a sufficient statistic of Z for X and
contains the extrinsic information about X .

Consider first the problem of inferring about an arbitrary
symbol Xk using only one chip Yl which is immediately
connected to Xk. A sufficient statistic is the a posteriori
probability of Xk, which is expressed as PXk|Yl

(x|Yl), x ∈ χ,
or equivalently, the LLR function LYl|Xk

. This statistic is
readily computed from the model (1), where all the other
neighboring Xi of Yl, i ∈ ∂l\k are i.i.d. with the prior
distribution PX :

LYl|Xk
(y|x) = log

pYl|Xk
(y|x)

pYl|Xk
(y|x0)

= log
E

{
pYl|X(y|X)

∣∣ Xk = x
}

E
{

pYl|X(y|X)
∣∣ Xk = x0

} . (4)

Thus the expectation in (4) can be evaluated as

E
{

pYl|X(y|X)
∣∣ Xk = x

}
=

∑
{xi}∂l\k

xk=x

1√
2π

e
− 1

2

(
y−

∑
i∈∂l

sli√
Λi

aixi

)2 ∏
i∈∂l\k

pX(xi).
(5)

1We assume natural logarithm throughout the paper.
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Consider the problem of inferring about Xk using all chips
which are immediately connected to Xk, i.e., all chip nodes
with distance one to Xk on the factor graph. Let the chips
be denoted by Yl1 , . . . , YlΛk

as depicted in Figure 2. An LLR
is obtained for each Yl according to (4). We need a crucial
assumption to facilitate the development of the BP algorithm,
which is that the subsets of symbols connected to the Λk chips
do not overlap except for Xk, so that they are conditionally
independent given Xk. The posterior distribution of Xk can
be obtained from the LLRs (4) and is equivalent to the LLR

LYl1 ,...,YlΛk
|Xk

(yl1 , . . . , ylΛk
|x) =

∑
l=l1,...,lΛk

LYl|Xk
(yl|x). (6)

In view of Figure 2, the LLR (6) is obtained by inferring about
Xk using all chips on a subtree of the factor graph of depth
two with Xk as its root, where all leaf (symbol) nodes on the
subtree are assumed to be distinct and i.i.d. with the prior pX .

The above computation can be carried out to obtain the
posterior distribution of every symbol given its neighboring
chips. Now that we have a posterior about each symbol,
this computation can be repeated for each symbol using the
posteriors in lieu of the prior distribution pX . In fact the
LLR in (4) is computed in the same manner, except that
the expectation (5) should be carried out with pX(xi) in the
equation replaced by the posterior distribution of Xi induced
by the newly obtained LLRs. As a result, inference about each
symbol Xk is based on all chips on a subtree of depth four
with Xk as the root. Again, the inference is exact if all leaf
(symbol) nodes on the depth-four subtree are distinct and i.i.d.

The above computation can be repeated any number of
times, each time using the LLR obtained in a previous iteration
to improve on the estimate of the new LLRs, and thereby
enlarging the subset of chips used for inference about each
symbol. In order for proper Bayesian inference, we require
that while computing the message from one node to another,
the previous message from the destination node is not included
in computing the new message intended for the same node.
This algorithm can be summarized in terms of the LLRs as the
following. Let L

(t)
k→l and L

(t)
l→k represent the LLR messages

passed between symbol k and chip l at the t-th iteration. Then

L
(t)
k→l(x) =

∑
j∈∂k\l

L
(t−1)
j→k (x). (7a)

and

L
(t)
l→k(x)

= log
E

{
pYl|X(yl|X)

∣∣ Xk = x, {L(t)
i→l(χ)}i∈∂l\k

}
E

{
pYl|X(yl|X)

∣∣ Xk = x0, {L(t)
i→l(χ)}i∈∂l\k

} (7b)

In particular, the expectations conditioned on the set of
L

(t)
i→l in (7b) can be regarded as expectation with respect to

Xi ∼ P
(t)
Xi

where the probability mass function p
(t)
Xi

(x) ∝
pX(x) exp

[
L

(t)
i→l

]
, ∀x ∈ χ.

Formulas (7) are not particularly convenient for computa-
tion, e.g., due to the normalization in (7b) in order to obtain the
LLRs. In fact normalization is not necessary in intermediate
stages. Consider passing messages proportional to exp [L],

which denote unnormalized posteriors, instead of using L, (7)
can be rewritten in the form of (3) in Algorithm 1 which is
more efficient in terms of implementation.

The iterative formulas (7) perform exact marginalization of
each symbol Xk given the entire observation Y in at most K
iterations if the factor graph contains no cycle. In the CDMA
model where the average node degree is always greater than
2, cycles are inevitable, and it is impossible to maintain that
all leaf nodes of each subtree of depth 2t be distinct for large
t. Thus, the BP algorithm performs approximate inference by
assuming that the leaf nodes are always distinct and i.i.d. Note
that sparse spreading implies that the graph is locally tree-like,
which generally leads to little performance degradation due to
myopia of the algorithm. Such a phenomenon has previously
been observed in the BP decoding of LDPC codes (cf. the
concentration theorem in [21]).

Finally, we remark that the finite-alphabet constraint on χ
can in principle be dropped (e.g., PX can be Gaussian), while
the BP algorithm still computes approximate posteriors, except
that the messages defined on χ will have infinite dimension, in
which case the BP algorithm in the form of (3) is not practical.

IV. MAIN RESULTS

This section presents several large-system results on mul-
tiuser detection in sparse CDMA systems, the proof of which
are relegated to Section V. Of particular interest is the quality
of the estimate obtained by optimal detection as well as
BP-based suboptimal detection. Throughout this section, we
assume that the symbols Xk ∼ PX are i.i.d., the amplitudes
Ak ∼ PA are i.i.d., and the spreading matrix is randomly
chosen from the ensemble described in Section II-C.

A. The Asymptotic Performance of BP
Consider the problem of inferring about an individual sym-

bol Xk using the BP algorithm. After t iterations, the output
of BP is a posterior distribution for Xk computed based on all
observations at chip nodes within distance 2t−1 to Xk on the
factor graph, denoted by Y

(t)
k . With slight abuse of notation,

let P bp
Xk

(·|Y (t)
k ,SA) denote the output cdf of BP, which is

the approximate posterior of Xk given Y
(t)
k and the channel

matrix. For simplicity, we omit the adjective “approximate” as
long as it is clear from the context that the output of the BP-
based detection is referred to. A key result in this paper states
that the posterior computed for each symbol using BP after
t iterations essentially converges to the posterior of a scalar
Gaussian channel as the size of the CDMA system increases.

Let us introduce the canonical scalar Gaussian channel:

Z =
√

gX + N (8)

where X ∼ PX and N ∼ N (0, 1) are independent, and
g denotes the gain of the channel in SNR. Throughout this
paper, we use PX|Z;g(·|z; g) to denote the cdf of the posterior
distribution of the input X given Z = z, according to the
Gaussian model (8), which is parameterized by g.

Theorem 1: Fix the number of iterations t. For every k and
x where PX(x) is continuous,

P bp
Xk

(
x
∣∣Y (t)

k ,SA
)
→ PX|Z;g

(
x
∣∣h(

Y
(t)
k ,SA

)
; η(t)A2

k

)



SUBMITTED TO IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 6

in probability in the large-sparse-system limit for some η(t) ∈
[0, 1] and some function h(·) such that h

(
Y

(t)
k ,SA

)
∼

N
(√

η(t) ax, 1
)

conditioned on Xk = x and Ak = a.
Moreover, η(0) = 0 and η(t), t = 1, 2, . . . , are determined
by the following recursion:

1
η(t)

= 1 + β var
{

AX
∣∣∣√η(t−1) AX + N,A

}
(9)

where N ∼ N (0, 1) and

var {U |V } = E
{

(U − E {U | V })2
}

stands for the average conditional variance (or equivalently the
MMSE) of estimating random variable U given observation V .

-
Xk

-

-

-

XK

X1

Xk

-⊗
√

η(t) Ak

6

-⊕?

N (0, 1)

-
Z

Posterior
distribution
computer

-
PX|Z;g(·| . . . )

SAX + N -
Y

BP
multiuser
detection

with t
iterations

-
P bp

Xk
(·|Y (t)

k , SA)

Fig. 3. Upper diagram: Multiuser channel and BP detection. Lower diagram:
The asymptotically equivalent scalar Gaussian channel.

Theorem 1 states that the problem of estimating each
individual symbol Xk using t iterations of belief propagation
is asymptotically equivalent to that of estimating the same
symbol through a scalar Gaussian channel with SNR equal to
η(t)A2

k, e.g., with a degradation η(t) in the input SNR. The
parameter η(t) is termed the multiuser efficiency of the BP
detector after t iterations. This type of information equivalence
is referred to as the decoupling principle (see, e.g., [9], [10]),
because the collective effect of the noise and the interference
from other users to the desired user are equivalent to an
additive Gaussian noise of zero-mean and known variance.
Note that formulas similar to (9) have been obtained in the
context of iterative decoding of coded CDMA using an em-
pirically inspired Gaussian approximation [16], [17], whereas
the derivation of (9) is rigorous.

Interestingly, formula (9) involves the MMSE of estimating
AX as the input to the scalar Gaussian channel shown in Fig-
ure 3. The function h(·) finds essentially a Gaussian sufficient
statistic for the inference problem. We relegate discussion of
the function h to Section V.

We refer to Figure 3 for an interpretation of the result.
As a consequence of Theorem 1, if an observer has access
only to the posterior of Xk computed by BP after t iterations
(the upper information flow) and the posterior distribution of
Xk computed through a scalar Gaussian channel (the lower
information flow), the observer is not able to distinguish these

two models from each other for a large system.

B. Optimal Detection and Its Relation to BP

Let PXk|Y ,SA(·|Y ,SA) denote the actual posterior cdf of
Xk given the received signal Y and the channel state SA.

Theorem 2: Suppose the following equation

1
η

= 1 + β var {AX |√ηAX + N,A} (10)

with N ∼ N (0, 1) has a unique fixed point η. Then for every
k and x where PX(x) is continuous,

PXk|Y ,SA

(
x
∣∣Y ,SA

)
→ PX|Z;g

(
x|h(Y ,SA);A2

kη
)

in probability in the large-sparse-system limit, where h(·) is
such that h(Y ) ∼ N (

√
η ax, 1) conditioned on Xk = x and

Ak = a.
Theorem 2 states that the problem of estimating each Xk

given the entire observation Y is also asymptotically equiva-
lent to estimating the same symbol through a scalar Gaussian
channel. The multiuser efficiency is determined by fixed-point
equation (10), which corresponds to iterative formula (9), and
was originally obtained in [9] for dense CDMA using the
replica method.

It can be shown that limt→∞ η(t) = η as long as (10) has
a unique solution. In this case, Theorems 1 and 2 together
imply that the quality of the posterior obtained by BP is
asymptotically as good as that obtained by optimal detection.
Precisely, the following result is established in Section V.

Corollary 1: If (10) has a unique fixed point, then

lim
t→∞

lim
K=βL→∞

Γ̄ → ∞, A.C.F.

∣∣∣P bp
Xk

(
x
∣∣Y (t),SA

)
− PXk|Y ,SA

(
x
∣∣Y ,SA

)∣∣∣→ 0
(11)

in probability for every k and x where PX(x) is continuous.
Corollary 1 implies that essentially the same posterior about

each symbol is obtained either using Y (t) or using Y in large
sparse systems as the number of iterations t becomes large,
although Y (t) is a much smaller vector compared to Y as the
ratio of their dimensions vanishes for large systems.

It is important to note the order of limits taken in (11): The
system size goes to infinity before the number of iterations.
The two limits do not commute in general. In fact, the posterior
obtained by BP may not converge if the number of iterations
is sent to infinity first for a finite-size system.

The fixed-point equation (10) has at least one solution. As
η varies from 0 to 1 (1/η from ∞ to 1), the right-hand side
(RHS) of (10) decreases continuously to a number greater than
1, so that the two sides intersect as functions of η. Depending
on PX , PA and β, there may exist more than one solutions to
(10). For sufficiently small β, however, the slope of the RHS
as a function of η is negligible, so that the solution to (10) is
unique.

Theorem 2 characterizes the optimal performance one can
hope to achieve when the solution of (10) is unique. What if
the solution to (10) is not unique, which generally corresponds
to the scenario when the system load β is large? Let η0 and
η1 denote the smallest and the largest fixed point of (10)
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respectively. The performance of BP is characterized by η0

because iterative formula (9) leads to η0 with η(0) = 0. It is
not known whether the decoupling principle still holds true in
this case. In Section V, we show that the quality of optimal
detection is inferior than the posterior of the scalar Gaussian
channel X 7→ √η1AX + N .

C. Error Performance and Mutual Information

Practical measures of the performance of the CDMA sys-
tem, such as the probability of error, the output signal-to-
interference ratio (SIR), and the mutual information, can
all be derived from the posterior distribution due to BP
or optimal detection. According to the decoupling principle
stated in Theorems 1 and 2, these performance measures by
optimal and BP-based detection in large sparse systems can be
analytically expressed or numerically computed at ease using
the equivalent scalar Gaussian channel as a proxy of the high-
dimensional input-output system.

For example, the output SIR for user k achieved by t
iterations of BP detection is equal to a2

k η(t). If (10) has
a unique fixed point η, then the output SIR of optimal
detection is simply equal to a2

k η. In case of binary inputs
with P {Xk = −1} = P {Xk = 1} = 1/2 for all k, the bit-
error probability achieved by t iterations of BP is

P
{

Xk 6= X̂k,BP

}
=

1√
2π

∫ ∞

√
a2

k η(t)
e−

z2
2 dz. (12)

Similar can be said about the bit-error probability of a max-
imum a posteriori (MAP) detector if (10) has a unique fixed
point η, where η(t) in (12) is replaced by η.

Another performance measure of interest is the MMSE (i.e.,
the average conditional variance). By Theorem 1,

var
{

Xk

∣∣∣Y (t),SA
}
→ var

{
X

∣∣∣√η(t)AX + N,A
}

(13)

in the large-sparse-system limit. By Theorem 2, (13) also holds
literally with the superscript (t) removed from both sides.

Furthermore, Theorems 1 and 2 imply that the mutual
information between each individual input symbol and the
output of BP detection conditioned on the input power is

I
(
Xk;Y (t)|Ak

)
→ I

(
X;

√
η(t)AX + N |A

)
in the large-sparse-system limit, where Ak, A ∼ PA, X ∼ PX

and N ∼ N (0, 1). Similarly, for the optimal detector,

I (Xk;Y |Ak)→ I (X;
√

ηAX + N |A) (14)

if (10) has a unique fixed point. Note that (14) specifies the
maximum achievable rate for user k in a CDMA system with
joint detection of all symbols but separate decoding of the
information stream of each user. Higher throughput can be
achieved by joint detection and decoding, which is given by
the following result.

Theorem 3: Suppose (10) has a unique fixed point η. The
input–output mutual information per dimension of the sparse
CDMA system converges in the large-sparse-system limit:

1
K

I(X;Y )→ I(X;
√

η AX + N |A) +
η − 1− log η

2β
(15)

where the unit of information is nats.

V. PROOF

A. The Asymptotic Performance of BP

In this subsection, we prove Theorem 1 by considering
messages of the LLR form and by applying the central limit
theorem to (7). We consider again those PX with finite support
χ and our results can be generalized to continuous cases using
the Kolmogorov extension theorem. In deriving the asymptotic
performance formula for the relaxed BP, we first make the
following observations.

Observation 1: Consider the scalar Gaussian channel

Y =
√

γX + N (16)

where N ∼ N (0, 1) and γ > 0 is the SNR. Fix a reference
symbol x0 ∈ χ. Conditioned on X = x ∈ χ, the LLRs{
LY |X(Y |x1) = log pY |X(Y |x1)

pY |X(Y |x0)

}
x1∈χ

can be regarded as a

random vector of dimension equal to the cardinality of χ. Then
the random vector is Gaussian distributed. In particular,

E
{
LY |X(Y |x1)

}
= γx(x1 − x0)− γ(x2

1 − x2
0)/2

cov
(
LY |X(Y |x1),LY |X(Y |x2)

)
= γ(x1 − x0)(x2 − x0).

Moreover, the converse also holds true. That is, for any channel
X 7→ Z, if the LLR vector is Gaussian with the mean and
covariance identical to those given in above, the channel must
be statistically equivalent to the scalar Gaussian channel (16).

Proof: The direct part of the observation is due to

LY |X(Y |x1) =
√

γ (x− x0)Y − γ(x2
1 − x2

0)/2

obtained from pY |X(y|x) = exp
[
− 1

2 (y −√γx)2
] /√

2π. The
converse can be shown by reconstructing the channel charac-
teristic based on the LLRs, which is omitted here.

Observation 2: For any number of iterations t, there is no
cycle in the subgraph induced by all nodes within distance
2t − 1 from Xk with probability 1 in the large-system limit.
Therefore, in view of (7), all L

(t−1)
j→k (x) are i.i.d. conditioned

on Xk = xk. By the central limit theorem,
{
L

(t)
k→l(x)

}
x∈χ

is
jointly Gaussian distributed.

From the above two observations, proving Theorem 1
is equivalent to showing that the mean and covariance of
L

(t)
k→l(x) described by (7a) admits a form in Observation 1 and

with γ = A2
kη(t) where η(t) satisfies (9). To this end, we focus

on quantifying the scaling law of the mean and covariance of
L

(t−1)
j→k (x) or L

(t)
j→k(x) with respect to 1

Λk
. We first recall the

definition of p
(t)
Xi

(x) ∝ pX(x) exp
[
L

(t)
i→j

]
, ∀x ∈ χ. Define

Wj =
∑

i∈∂j\k

Sji√
Λi

Aixi (18)

and let

fm(y) =
∑

{xi}∂j\k

1√
2π

e−
1
2 (y−Wj)

2

×
[
(y −Wj)m − δm,2

] ∏
i∈∂j\k

p
(t)
X (xi)

(19)
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where δm,2 is equal to 1 if m = 2 and 0 otherwise. Then by
the Taylor series expansion to the second order,

E
{

pYj |X(y|X)
∣∣ Xk = x,S,A, {L(t)

i→j(χ)}i∈∂j\k

}
=

∑
{xi}∂j\k

1√
2π

e
− 1

2

(
y−Wj−

Sjk√
Λk

Akxk

)2 ∏
i∈∂j\k

p
(t)
X (xi)

= f0(y) + f1(y)
Sjk√
Λk

Akx + f2(y)
S2

jk

Λk
A2

kx2 + o

(
1

Λk

)
(20)

where f0(y) to f2(y) correspond to the zeroth to the second
order terms of the expansion. Note that the third order deriva-
tive of exp

[
−(·)2/2

]
is uniformly bounded (i.e., independent

of yj), the remainder term can be moved out of the summation.
Following (20) and Taylor series expansion of log(1 + x), we
have by (7b)

L
(t)
j→k(x) =

f1(yj)
f0(yj)

Sjk√
Λk

Ak(x− x0)

+
f2(yj)
f0(yj)

S2
jk

Λk
A2

k(x2 − x2
0)

−1
2

f2
1 (yj)

f2
0 (yj)

S2
jk

Λk
A2

k(x2 − x2
0) + o

(
1

Λk

)
.

(21)

We are interested in the scaling law of the mean and the
covariance of L

(t)
j→k(x) over the ensemble.

We discuss each term in (21) separately in the following.
By (19) and Taylor series expansion to the first order,

E

{
f1(Yj)
f0(Yj)

∣∣∣∣ Xk = xk,S,A, {L(t)
i→j(χ)}i∈∂j\k

}
=

∫ ∑
{xi}∂j\k

f1(y)
f0(y)

e
− 1

2

(
y−Wj−

Sij√
Λi

Aixi

)2 ∏
i∈∂j\k

p
(t)
Xi

(x)dy

=
∫

f1(y)dy +
∫

f2
1 (y)

f0(y)
dy

Sjk√
Λk

Akxk + o

(
1√
Λk

)
(22)

where the integrability of the remainder term follows from
the finiteness of χ and the properties of exp

[
−(·)2/2

]
.

Throughout, we assume all integrals with respect to y are
from −∞ to ∞. It is ease to verify that

∫
f1(y)dy = 0.

Therefore, based on (22), the first term in (21) contributes∫ f2
1 (y)

f0(y) dy
S2

jk

Λk
A2

kxk(x− x0) to the mean. By applying similar
techniques and noting that

∫
f2(y)dy = 0, it can be shown that

the second term of (21) does not contribute to the mean while
the third term contributes

∫ f2
1 (y)

f0(y) dy
S2

jk

2Λk
A2

k(x2
0−x2). Similarly,

to the covariance between L
(t)
j→k(x1) and L

(t)
j→k(x2), the first

term contributes
∫ f2

1 (y)
f0(y) dy

S2
jk

Λk
A2

k(x1−x0)(x2−x0) while the
other two terms contribute zero. In all, the scaling law of the
mean and covariance of L

(t)
j→k(x) is decided and the mean and

the covariance of the Gaussian vector L
(t)
k→l(x) (conditioned

on Xk = xk, S, A, and {L(t−1)
i→j (·)}) is

E
{

L
(t)
k→l(x)

}
= Γ

(
xk(x− x0)− (x2 − x2

0)/2
)

cov
(
L

(t)
k→l(x1), L

(t)
k→l(x2)

)
= Γ(x1 − x0)(x2 − x0)

where

Γ =
∫

f2
1 (y)

f0(y)
dy

∑
j∈∂k\l S

2
jk

Λk
A2

k.

In view of Observation 1, the mean and covariance are indeed
those of a scalar Gaussian channel. By law of large numbers,∑

j∈∂k\l S
2
jk/Λk → 1 in probability when Λk is sufficiently

large. The last piece of the proof of Theorem 1 is to quantify
the corresponding SNR by showing that

lim
K=βL→∞

Γ̄ → ∞, A.C.F.

∫
f2
1 (y)

f0(y)
dy = η(t)

satisfies recursion (9). By again invoking the central limit
theorem that Wj is asymptotically Gaussian and integrating
the limit forms of f0(y) and f1(y) respectively, we have

lim
Γj→∞

fm(y) = E

{
1√
2π

e−
(y−W )2

2 (y −W )m

}
where m = 0, 1 and W ∼ N (µW , σ2

W ). Evidently,

lim
Γj→∞

f2
1 (y)

f0(y)
=

1√
2π

(y − µW )2

(1 + σ2
W )

5
2

exp
[
− (y − µW )2

2(1 + σ2
W )

]
where (µW , σ2

W ) are the mean and variance of Wj . The
finiteness of χ enables us to exchange the order of the limit
and integration, we thus have

lim
K=βL→∞

Γ̄ → ∞, A.C.F.

∫
f2
1 (y)

f0(y)
dy =

∫
lim

K=βL→∞
Γ̄ → ∞, A.C.F.

f2
1 (y)

f0(y)
dy =

1
1 + σ2

W

.

What remains is to associate σ2
W in iteration t with the

quality of BP estimation in iteration t − 1. In view of (18),
using the law of large numbers for the case when Γj is
large and using induction on t, one can show that σ2

W =
β var

{
AX

∣∣∣√η(t−1)AX + N,A
}

, where the initial η(0) is
set to zero, because no inference information is available
before the first iteration. The proof is thus complete.

B. The Asymptotic Equivalence of BP and MAP
Recall that BP is an optimal detection rule based on the

limited observations Y
(t)
k on the subtree of depth 2t−1 rooted

at the each desired symbol Xk. Define X
(t)
k as the symbols

on the same subtree. Let us define a genie-aided BP (gBP)
as the optimal detection based on Y (t) where all entries of
X not in X

(t)
k are revealed to the BP estimator by a genie.

This effectively guarantees independence of the leaves on the
subtree of depth 2t − 1. One can show that the a posteriori
detector for symbol Xk based on Y is a physically degraded
detection rule with respect to gBP while the classical BP is a
physically degraded rule when compared to the MAP detector.

Following the same scalar Gaussian channel analysis in
the previous subsection, one can show that the asymptotic
performance gBP can be described by the same iterative
formula in Theorem 1 while the only difference for the gBP is
that the initial η(0) is set to 1, which corresponds to the case of
“perfect” initial extrinsic information.2 Due to the uniqueness

2An even more straightforward initial value is η(0) = ∞, which corre-
sponds to a Gaussian channel with infinite SNR and thus represents perfect
extrinsic information. The first iteration leads to η(1) = 1.



SUBMITTED TO IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 9

of the fixed point of (10) by assumption, BP and gBP will
have the same asymptotic performance. Namely,

P bp
Xk

(x|Y (t),SA) t→∞−→ PX|Z;g(x|hBP(Y (t),SA), ηA2
k)

P bp
Xk

(x|Y (t),SA,X\X(t))
t→∞−→ PX|Z;g(x|hgBP(Y (t),SA,X\X(t)), ηA2

k)

in probability where hBP and hgBP are two functions comput-
ing the equivalent scalar Gaussian channel outputs for BP and
gBP. Theorem 1 alone does not guarantee that hBP and hgBP

generate the same equivalent scalar channel outputs when t
tends to infinity, and the asymptotic equivalency between BP
and gBP can be further strengthened as follows.

We claim that, in the large-sparse-system limit,∣∣hBP(Y (t),SA)− hgBP(Y (t),SA,X\X(t))
∣∣→ 0

in probability as t → ∞. Namely, in the large sparse system
limit, BP and gBP not only produce outputs of identical
quality, but also compute identical posterior distributions for
almost all instances as well. This can be established by noting
that BP is inferior to gBP for all instances of X\X(t).
Suppose for some event with strictly positive probability that
hBP(Y (t),SA) 9 hgBP(Y (t),SA,X\X(t)). Then since BP
is a strict degraded detection rule of gBP for any event, BP
will have strictly worse performance than gBP conditioned
on that event. As a result, BP will again have a strictly
worse performance than gBP in average, which contradicts the
implications of Theorem 1 that their performance are identical.

Since the performances of BP and gBP sandwich the
performance of optimal posterior probability detector, the
optimal detector will also face a scalar Gaussian channel in
the large-system limit as described in Theorem 2 as long
as (10) has a unique fixed point. Moreover, by the similar
argument as in the last paragraph, with probability one,
the posterior distribution PXk|Y ,SA(·|Y ,SA) are identical
to the posterior distributions limt→∞ P bp

Xk
(·|Y (t),SA) and

limt→∞ P bp
Xk

(·|Y (t),SA,X\X(t)) computed by BP and gBP
respectively. Corollary 1 is thus established.

C. Joint Decoding vs. Separate Decoding
Theorem 3 is an outcome of the chain rule of mutual

information applied to the input–output mutual information
of the CDMA channel

I(X;Y |SA) =
K∑

k=1

I(Xk;Y |SA, Xk+1, . . . , XK). (23)

Each summand in the RHS is a single-user mutual information
over the multiuser channel conditioned on the symbols of
previously decoded users, where we assume without loss of
generality that the users are decoded in reverse order.

Since the error probability of decoded symbols vanishes
with code block-length, the interference from decoded users
are asymptotically completely removed. Consequently user k
sees only k − 1 interfering users. Hence the posterior for
user k under such successive decoding is identical to that
under multiuser detection with separate decoding in a system
with k instead of K users. The equivalent scalar channel

for each user is Gaussian by Theorem 2. The multiuser
efficiency experienced by user k is a function of the effective
load βk = k/L, and the mutual information converges to
I
(
X;

√
η(βk) AX + N |A

)
. In view of (23),

1
K

I(X;Y |SA) =
1
K

K∑
k=1

I
(
X;

√
η(βk)AX + N |A

)
→ 1

β

∫ β

0

I
(
X;

√
η(ξ)AX + N |A

)
dξ

as K → ∞ where the last equation is by definition of the
Riemann integral.

As far as Theorem 3 is concerned, it suffices to prove that

d
dβ

[
β I

(
X;

√
η(β) AX + N |A

)
+

η(β)− 1− log η(β)
2

]
= I

(
X;

√
η(β)AX + N |A

)
or, equivalently,

β
d

dβ
I
(
X;

√
η(β) AX + N |A

)
=

d
dβ

log η(β)− η(β)
2

.

(24)
Noticing that the multiuser efficiency η is a function of the
system load β, (24) is equivalent to

d
dη

I(X;
√

η γ AX + N |A) =
1
2β

(
η−1 − 1

)
. (25)

The mutual information and the MMSE in Gaussian channels
are related by the following formula [25, Theorem 1],

d
dg

I(X;
√

g X + N) =
1
2

var {X |√g X + N } , ∀g.

Thus (25) holds as η satisfies the fixed-point equation (10).

VI. NUMERICAL RESULTS

This section investigates the quality of BP and its compar-
ison with optimal detection in the asymptotic regime. Like
many implications based on the central limit theorem and BP,
the asymptotic performance matches that of practical systems
even when the system size (K, L), the node degrees and the
number of iterations are not very large. The performance of
sparse CDMA for practical system parameters is confirmed by
several numerical examples in this section.

Figure 4 shows the multiuser efficiency as a function of
the SNR, which is obtained by the fixed-point of (10) under
various input and power distributions. The results apply to any
chip distribution PS as it does not affect the iterative equation
(9). The iterative equation (9) provides an efficient method
of probing the sparse CDMA performance for different SNRs
without resorting to brute force simulation.

Using the theoretically computed multiuser efficiency (as
illustrated in Figure 4 for various SNRs), one can efficiently
compute the predicted asymptotic symbol-error-rate (SER) for
the sparse CDMA system. For example, Figure 5 shows the
SER achieved by BP detection for systems with K = L equal-
power users (thus β = 1) with BPSK modulation. In addition
to the asymptotic SER, we also plot the performance of BP
detection for three simulated systems with size K = L = 100
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Fig. 4. Multiuser efficiency as a function of the SNR. For the first three
curves, the symbol distribution PX is equally likely among 2 or 4 or 6 evenly
spaced scalar points while all users have the same power. We also consider a
different power profile in the fourth curve for which half of the users are 10
dB higher than the rest. The multiuser efficiency for standard Gaussian input
with equal power is plotted for comparison.

and fixed node degrees Λk = Γl = 4, 6, and 8 respectively.
It can be seen that with degrees as small as 6, the finite-sized
sparse CDMA system is closely approaching the asymptotic
prediction based on (9) and (10). Figure 6 assumes a similar
setting but considers that half of the users have double the
power of the rest of the users (3 dB higher). Again, the finite-
sized system performance fits the prediction pretty well.
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Fig. 5. The SER vs. SNR of BP multiuser detection with K = L = 100
users (β = 1). The spreading matrix is chosen from a regular bipartite graph
ensemble with degrees 4, 6, and 8. The chip distribution PS is evenly spread
over four points with zero mean and unit variance. All input symbols are
BPSK modulated with equal power.

Figure 7 demonstrates the empirical probability density
function of the decision statistics of a BP detection on a
finite system K = L = 100 with SNR=11 dB, equal-power
users with BPSK modulation, the same quaternary PS as in
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Fig. 6. The SER vs. average user SNR of BP multiuser detection with
K = L = 100 users (β = 1). The spreading matrix is chosen from a regular
bipartite graph ensemble with degrees 4, 6, and 8. The chip distribution PS

is evenly spread over four points with zero mean and unit variance. All input
symbols are BPSK modulated. Half of the user has double the power (3 dB)
over the rest. Users of high power are seen to have lower SER than those of
lower power.

Figures 5 and 6. Since (10) focuses on the variances, we
further shift the statistics to mean zero. Even for such a short
system with very small degrees, the normality is apparent and
the variance fits the predicted η very well.
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Fig. 7. The empirical distribution of the decision statistics of a finite-size
system obtained by BP. Also shown is the theoretical large-system asymptotic
distribution.

Figure 8 shows the evolution of the multiuser efficiency with
the number of iterations according to (9) in case of equal-
power users with BPSK modulation. Clearly, the optimal η
can be reached within 10 iterations. In all the numerical ex-
periments we have conducted, the output posterior distribution
of BP converges within 15–20 iterations, which demonstrates
the efficiency of BP on sparse CDMA systems.

VII. CONCLUDING REMARKS

We have studied sparsely spread CDMA systems and low-
complexity multiuser detection based on belief propagation.
Assuming a chip-semi-regular ensemble of sparse spreading
matrices, the posterior distribution for each symbol computed
by BP is shown to be asymptotically equivalent to the posterior
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Fig. 8. The evolution of multiuser efficiency with the number of iterations.

of a scalar Gaussian channel with the same input symbol. BP-
based detection is shown to be asymptotically optimal as long
as the load of the system is not too large, where the asymptotic
equivalence of BP and a posterior detection is established in
the (strongest) sense of the posterior probability for arbitrary
input distributions. This phenomenon is in contrast to the
wisdom for LDPC codes with infinitely long codeword length
that the MAP decoder is generally strictly better than BP.

An important question is how the performance of sparse
CDMA compares with that of dense CDMA. The difference
is believed to be small, as is buttressed by numerical results
(see, e.g., [9], [14]), which adds to the practical appeal
of sparse CDMA. In fact, the iterative formula obtained in
Section V leads to exactly the fixed-point equation for the
multiuser efficiency under dense CDMA obtained using the
heuristic replica method [8]–[10]. A precise quantification
of the difference between sparse and dense CDMA is not
available, however, due to lack of an accurate and manageable
expression of the optimal performance of dense CDMA.
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