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Abstract—Fast and efficient discovery of all neighbor-
ing nodes by a node new to a neighborhood is critical
to the deployment of wireless ad hoc networks. Differ-
ent than the conventional ALOHA-type random access
discovery schemes, this paper assumes that all nodes in
the neighborhood simultaneously send their unique on-
off signatures known to the receive node. In particular,
a transmitter does not transmit any energy during an
“off” mini-slot in its signature sequence. The received
signal can be viewed as the outcome of a sequence of
tests over the mini-slots, where the outcome of a test
is positive if there is energy at the corresponding mini-
slot from at least one neighbor, and negative if none of
the neighboring nodes transmits energy during the mini-
slot. The neighbor discovery problem is thus equivalent
to a classical group testing problem. Two practical and
scalable detection algorithms are developed from the
group testing viewpoint. Unlike some previous neighbor
discovery schemes using coherent multiuser detection,
which are difficult to implement due to lack of training,
the proposed scheme requires only non-coherent energy
detection. The proposed algorithms are shown to achieve
faster and more reliable discovery than existing random
access schemes.

I. INTRODUCTION

The emerging wireless ad hoc network paradigm
enables a new type of network in which collaborating
devices relay packets from one device to another across
multiple wireless links in a self-organizing manner. A
number of applications based on this type of network
have been established or are expected in the near future,
such as environmental and building monitoring, disaster
relief and military battlefield communication. Due to
the self-organizing nature of ad hoc networks, every
node in the network can be alternately functioning as
a transmitter or a receiver. Oftentimes, a node can
communicate directly with only several other nodes
around itself, which are called its “neighbors”. In ab-

sence of a central controller, every node has to discover
its neighbors before efficient routing is possible. The
process for a node to identify all its neighbors is called
neighbor discovery, which is a crucial first step of
constructing reliable wireless ad hoc networks.

Neighbor discovery in ad hoc networks is a critical
and non-trivial task. Algorithms such as “birthday pro-
tocol” [1], directional antenna neighbor discovery [2],
[3] and slotted random transmission and reception [4]
have been proposed to enable all nodes in a network
to find out their neighbors either synchronously or
asynchronously. These algorithms can be categorized
as random access discovery, which requires nodes to
be randomly in a “transmitting” or “listening” state in
each time slot so that each node gets a chance to hear
every neighbor for at least once in a sufficient amount
of time. Such random access discovery schemes allow
one transmission to be successful at a time, and hence
generally require a large number of time slots until
reliable neighbor discovery is achieved.

Timely discovery of a node’s neighbors is a critical
issue in wireless networks, especially when the nodes
are mobile. References [5]–[7] suggest solution of the
neighbor discovery problem from the multiuser detec-
tion perspective. The idea is to let all neighbors simul-
taneously send their unique signature waveforms which
identify themselves, and let the center node detect
which signatures are at presence. The advantage is rapid
detection achieved using multiuser detectors, which are
well-understood in the context of code-division multiple
access (CDMA). However, the difficulties of scaling
the scheme as well as implementing coherent detection
without training have not been adequately addressed
(training for channel estimation is evidently impossible
before the discovery of neighbors).

In this work, we propose a novel scheme based on
group testing, which is highly scalable, only requires



simple non-coherent (energy) detection and incurs small
overhead. A CDMA-like on-off signaling is proposed,
where the signature of each user is a randomly produced
binary sequence of 0’s and 1’s. The difference with the
usual direct-sequence CDMA with frequency- or phase-
shifted keying spreading sequence is that, during the
chips or mini-slots corresponding to 0’s in the sequence,
the node transmits zero energy. The receive node simply
detects whether there is energy in each chip, and infer
about which nodes are present as neighbors based on
the overall on-off pattern. The underlying assumption
is of course that transmitters can switch on and off
as frequently as the chip rate. This is feasible using
today’s technology because amplifiers have sharp re-
sponse time.

Interestingly, the neighbor discovery scheme using
on-off signatures can be viewed as a group testing
problem. In general, the classical problem of group
testing is to identify defective items out of a set of
objects by exercising tests over a sequence of object
pools. The aim is to discover all defective items with
the fewest number of tests. Application of group testing
to the design of efficient algorithms for contention
resolution in random multiple-access communication
systems has been studied (e.g., [8], [9]). It is shown
that by querying a sequence of subsets of all the users,
a central controller can identify all active users and
resolve collision very quickly. Furthermore, the group
testing techniques are extended to multiple-access sys-
tems with heterogeneous population of users, where
different users may have different probabilities of being
active [10]. Note that multiple-access based on group
testing relies on a central controller to roll out an
optimal plan of queries, whereas in ad hoc networks
such controller is not available. Also, unlike the works
in [8] and [10], the sequence of tests used in this paper
is predetermined, which does not change over time.

The rest of the paper is organized as the following.
In Section II, we describe the group testing technique
and how it is applied to neighbor discovery. A direct
algorithm for neighbor discovery based on group testing
is proposed in Section III along with an upper bound
on its error performance. A second algorithm with
lower complexity is also proposed in the section. Both
algorithms are shown to be efficient and effective using
numerical results in Section IV. Section V concludes
the paper.

II. NEIGHBOR DISCOVERY AS GROUP TESTING

Consider a network with K + 1 nodes, indexed by
0, 1, . . . , K. Without loss of generality, consider the

neighborhood of node 0. The problem of neighbor
discovery is to collect the indices of the nodes which
are in the neighborhood of node 0. An ALOHA type
of random access discovery scheme is often considered,
where each user sends its index through random access
of the channel upon receipt of a beacon signal from
node 0. Typically, it takes a number of transmissions to
resolve contention and finish the discovery process.

In order for more rapid discovery, one can take
advantage of the multiple access channel and let nodes
simultaneously send their coded identity information in
response to a beacon signal from node 0. The neigh-
bor discovery problem is fundamentally a multiuser
detection problem. Let Xk indicate whether node k
is a neighbor of node 0, i.e., Xk = 1 denotes that
node k is directly connected with node 0, whereas
Xk = 0 denotes otherwise. Suppose X1, . . . , XK are
independent and identically distributed (i.i.d.) Bernoulli
random variables with parameter p. We also assume that
node 0 typically has no more than a small number of
neighbors, so that the vector X = [X1, . . . , XK ]T is
sparse. The goal of neighbor discovery is to infer about
the elements of X based on the observation.

Consider the use of CDMA-type signaling, i.e., each
node is assigned a signature and nodes transmit the
signatures simultaneously when they receive the bea-
con from the center node (out-of-range nodes are not
aware of the beacon signal and hence do not respond).
Suppose node 0 has a priori knowledge of the corre-
spondence between nodes and signatures. We use the
L×K matrix S to denote the signature matrix, i.e. its
jth column Sj is the signature for node j. We use non-
coherent detection at the receiver so that no channel
estimation is needed. A simple and useful scheme is
to use two values, 1 and 0, for elements (chips) of
each signature. A 1 indicates some energy is transmitted
during the corresponding mini-slot, while a 0 indicates
no transmission during the mini-slot. Let the vector Y
denote the received signal at node 0. In order to focus
on the efficiency of the methodology proposed in this
paper, we assume that the response from the neighbors
are noiseless. Thus, node 0 detects energy in Yj and
set Yj = 1 only when the jth element of at least one
of the K signatures contains energy. Otherwise, Yj is
set to be 0. Therefore, Y can be regarded as the output
of passing the signatures of the neighbors through an
OR-channel.

Recovering X from Y can be done by exploring the
results from group testing. The classical group testing
problem is to identify defective items out of a set
of objects by exercising pool queries whose output is



produced in the manner of an OR-channel. In group
testing language, the matrix S can be viewed as a test
plan, where Sij = 1 indicates node j is tested in the ith
test and Sij = 0 indicates otherwise. Accordingly, Y
is considered as the test output. Thus, a group testing
problem can be described using the following linear
system,

Y = SX, (1)

where the addition is the inclusive or operation. In
general, the number of tests L can be a function of K
which is to be designed. The aim is of classical group
testing is to achieve perfect detection of the defective
items using the fewest number of queries.

Similar to classical group testing, the goal of this
paper is to recover X based on Y with sufficiently
small error using a small number of tests L. Note that
in neighbor discovery L can be interpreted as detection
delay, which is also proportional to the transmission
power consumption of neighbors and memory usage.
Due to the sparsity of X , very low discovery error
probabilities can be achieved by using much fewer tests
than the total number of nodes in the system (i.e.,
L � K). This can of course be regarded also as an
instance of compressed sensing [11], while the algo-
rithms designed in this paper are specialized and simple.
In particular, using a randomly generated S and each
of its elements independently following some Bernoulli
distribution with parameter q which is carefully picked,
the recovery error rate averaged over all realizations
of S and X can be asymptotically upper bounded by
O(K−1).

III. ALGORITHMS

This section presents two algorithms for recovering
X from the observation Y . Before describing the
algorithms, we introduce some terminologies used in
the group testing literature. We call an element of
Y which equals to 1 a positive test and otherwise a
negative test.

A. A Direct Algorithm

Note that a negative test rules out all nodes
probed in this test as neighbors. By checking all
negative tests, we can mark the nodes probed by
these tests as non-neighboring nodes. The remaining
unmarked nodes are called undetermined nodes.
Note that those positive tests with only one node
tested indicate such nodes as neighbors. In principle,
one can search over all hypotheses of the set of
neighbors to discover definite neighbors. In this
work, we simply mark all undetermined nodes as

neighbors. We propose the direct algorithm as follows.

Algorithm I: Direct Algorithm

1: Input: Y and S
2: U ← {1, . . . , K}
3: for i = 1 to L do
4: if Y i = 0 then
5: U ← U \ {j : Si,j = 1}
6: end if
7: end for
8: mark nodes in U as neighbors.

It is possible that there are still some non-neighboring
nodes among the undetermined ones, and we call them
false alarms. The following proposition analyzes the
average number of false alarms and concludes that this
average number can be extremely small when K is large
and the test plan S is carefully designed.

Proposition 1: In the neighbor discovery problem
described by (1), suppose there are K > 3 nodes
in the network and on average c of them are neigh-
bors of node 0. If the elements of signature matrix
S are independently generated according to Bernoulli
distribution with parameter q, then the number of false
alarms averaged over all possible realizations of S and
X , which is denoted by E , is upper bounded as

E ≤ K−1 exp
[
c

(
exp

(
1

log log K

)
− 1

)]
(2)

if we choose

q =
1

2 log K log log K
(3)

and the length of the signatures to be

L = 4(log K)2 log log K . (4)

Proof of Proposition 1: Because there are on
average c nodes around node 0, the parameter p = c/K.
For a given s and a given x, let u(s, x) denote the
number of undetermined nodes. We use XK to denote
the set of all possible realizations of X and use PX(·)
to denote the probability mass function of the random
variable X . Define

ũ(s) =
∑

x∈XK

u(s, x)PX(x), (5)

which is the number of false alarms averaged over XK

for a given s.
Let sj denote the jth column of s. We adopt the

convention that for two equal-length binary vectors a
and b, the notation a ⊆ b states that the set of indices



of non-zero entries in a is a subset of that in b. Let XK
i

denote the subset of XK whose elements have exactly
i 1’s. Thus,

ũ(s) =
K∑

j=1

∑
x∈XK ,sj⊆sx

PX(x) (6)

=
K∑

j=1

K∑
i=0

∑
x∈XK

i ,sj⊆sx

PX(x) . (7)

Next we average ũ(S) over all possible realizations
of S. Note that for given j ∈ {1, . . . , K} and x ∈ XK

i ,
Sj ⊆ Sx if i ≥ 1 and xj = 1, whereas if xj = 0 then
Sj ⊆ Sx occurs if and only if none of the L rows of
S has a 1 in column j and a 0 in each of the i columns
indexed by the 1’s in x. Hence, P (Sj ⊆ Sx) equals
1 if i ≥ 1 and xj = 1 and equals (1 − q(1 − q)i)L if
xj = 0. It follows that

E {ũ(S)}

=
K∑

i=0

(K − i)(1− q(1− q)i)LQ(i) +
K∑

i=0

iQ(i) (8)

= K
K∑

i=0

Q(i)(1− q(1− q)i)L

+
K∑

i=0

iQ(i)(1− (1− q(1− q)i)L) (9)

where

Q(i) =
(

K

i

)
pi(1− p)K−i. (10)

Because

(1−q(1−q)i)L ≤ (1−q(1−iq))L ≤ e−q(1−iq)L, (11)

the first term in (9) does not exceed

K
K∑

i=0

Q(i)e−q(1−iq)L

= Ke−qL
(
1− p + peq2L

)K
(12)

≤ Ke−qL+Kp(eq2L−1). (13)

In addition, it is easy to see that the second term in (9)
can be upper bounded by Kp. Therefore,

E {ũ(S)} ≤ Ke−qL+Kp(eq2L−1) + Kp . (14)

Note that there are on average Kp active nodes, it
follows that the average number of false alarms E has
an upper bound given by

E ≤ Ke−qL+Kp(eq2L−1). (15)

One can pick values for L and q as given in (4) and
(3) to arrive at the upper bound (2).

Remark: In [12], Berger and Levenshtein studied
the minimum number of tests required in classical
group testing by adapting methods originally developed
in information theory and coding theory. The upper
bound (14) in the proof of Proposition 1 was also
derived in [12] to illustrate the asymptotic efficiency
of group testing. Here we repeat the derivation of (14)
for completeness. There are many different choices of
L and q other than (4) and (3) to arrive at different
versions of upper bounds according to (15). In fact
[11] provides several different choices. In this paper,
it suffices to consider the special case described by (4)
and (3).

The computational cost of Algorithm I mainly resides
on the “for” loop, which introduces complexity of
O(K(log K)2 log log K) in order to address all ele-
ments in S. The set operation in line 8 contributes
no more than K operations in total. Therefore, the
complexity of Algorithm I is O(K(log K)2 log log K).

Here we give a comparison between the the neighbor
discovery scheme based on group testing and random
access similar to the birthday-listen-and-transmit algo-
rithm in [1]. Consider a network with ten thousand
nodes and on average six nodes around node 0. We
assume time is slotted and transmission of each bit takes
one slot. In group testing based neighbor discovery,
we need to assign L ≈ 754 bits to each signature
by equation (4). Thus, the group testing method uses
754 slots in total. There is no need for training and
power control overhead. To quantify the comparison,
we consider the probability of failure as the metric,
namely the probability of the event where neighbor
discovery is not successful either due to introducing
false alarms or missing any neighbor. In group testing
based discovery, the probability of failure is upper
bounded by the average number of false alarms, which
equals 0.003 in the example of this comparison.

As for the random access discovery scheme, we
consider the case where nodes contend to announce
themselves across a sequence of slotted contention
periods. In each contention period, every neighbor in-
dependently chooses either to transmit (with probability
η) or to listen (with probability 1− η) and the choices
are independent across contention periods. In order to
characterize the probability of failure, we derive a lower
bound by calculating the probability of one particular
node among the neighbors being missed. Using the
same Q(·) as in (10) with p = 0.0006, the lower bound
θ for probability of failure after T contention periods



is given by

θ =
K∑

i=1

Q(i)
[
1− η (1− η)i−1

]T
. (16)

The smallest T that brings θ below 0.003 is 114,
which is obtained when η is set to 0.11. Due to the
lack of a central scheduler, in each contention period
each neighbor has to transmit its identification sequence
which takes at least log2(104) ≈ 14 bits without
counting in additional overhead such as preamble and
parity check bits. Thus the total time expense is at least
114×14 = 1596 slots. In this case, using group testing
discovery scheme is about 50% more economic than
using random access discovery.

We note that the above analysis has not included the
overhead in each packet transmission. In order to send
the 14 bits of identity information reliably, many more
bits have to be used as preambles for synchronization,
parity checks for error control, etc. The overall impact
of such overhead is much more significant in the case of
random access because the additional cost is multiplied
to the number of contention periods.

It is also interesting to calculate the expected number
of slots required to hear all neighbors. Let BΛ

i denote
the expected number of contention periods required
until hearing i specified nodes among Λ neighbors. We
have the following recursive equation

BΛ
i = iη(1− η)Λ−1(BΛ

i−1 + 1)

+
[
1− iη(1− η)Λ−1

]
(BΛ

i + 1). (17)

Note that BΛ
1 = 1

η(1−η)Λ−1 . Thus we get

BΛ
i =

1
η(1− η)Λ−1

i∑
k=1

1
k

. (18)

Averaging over all possible numbers of neighbors, the
overall average number of contention periods is given
by

K∑
l=1

Q(l)Bl
l =

K∑
l=1

Q(l)

[
1

η(1− η)l−1

l∑
k=1

1
k

]
. (19)

Therefore, with η = 0.11 which minimizes the lower
bound of probability of failure, 43 contention periods
are required on average to discover all neighbors, which
leads to a total time expense of 43 × 14 = 602 slots.
Taking into account the overhead, which accumulates
linearly with the number of contention periods, the time
expense associated with random access discovery can
be much larger than 754 slots.

B. Group Testing with Binning: An Algorithm with
Reduced Complexity

Although the direct algorithm performs well as the
total number of nodes in the network K becomes
large, e.g., over one million, its computation complexity
becomes challenging. An efficient solution in case of a
large K is to divide and conquer.

The key element of the algorithm proposed in this
section is to use binning to decompose neighbor dis-
covery among a large number of nodes into several
smaller problems each of which involves much fewer
candidates. We call this method group testing with
binning. We introduce a parameter β ∈ (0, 1) which is
the binning exponent. For convenience, we assume Kβ

to be an integer. The binning method contains 	1/β
+1
stages. On stage i ∈ {1, . . . , 	1/β
 + 1}, using some
mechanism, for example Hashing, we can randomly
distribute all nodes into Kβ bins with 	K1−β
 nodes
in each bin. Each bin is then assigned an Li × 1
binary vector as its signature and every node in the
same bin uses the bin signature as its own signature
for stage i. Distributing nodes into bins as well as
generating sets of bin signatures is independent across
different stages. After stacking signatures for different
stages together, the resulting signature for each node
is a (

∑�1/β�+1
i=1 Li)× 1 vector. We give an example to

illustrate the signature design with binning. Assuming
K = 106 and β = 1/2, we have 3 stages and

√
K =

1000 bins with 1000 nodes in each bin on every stage.
We take node 1 as an example. Suppose it is distributed
into bin b1, bin b2 and bin b3 on the consecutive three
stages, and also suppose we generate three different sets
of signatures, denoted by S1, S2 and S3 respectively,
the signature for node 1 is constructed by stacking three
vectors and is represented by [S1

b1

T
, S2

b2

T
, S3

b3

T ]T .
During the neighbor discovery process, the neighbor-

ing nodes respond with their respective signatures after
receiving a beacon signal from node 0. By applying
the direct algorithm to the received signal associated
with each stage, node 0 can find out which bins contain
neighbors as well as which nodes are located in these
neighbor-containing bins on each stage. According to
the performance of the direct algorithm, when Kβ is big
enough, node 0 can detect the neighbor-containing bins
with high accuracy. Note that for those real neighbors,
they must be detected on every stage, while for those
non-neighboring nodes, the probability that they appear
in one of the detected bins on every stage can be
extremely small. Thus the intersection of the nodes
detected on different stages points out pretty much all
neighbors. This observation inspires the group testing



with binning algorithm as is described in the following.

Algorithm II: Group Testing with Binning

1: Input: Y , S1, . . . ,S�1/β�+1

2: for t = 1 to 	1/β
+ 1 do
3: Pt ←{the set of bin indices detected using

the direct algorithm based on the part of Y
corresponding to the t-th stage }

4: Ut ← {1 ≤ j ≤ K : ∃l ∈ Pt, such that node j is
located in bin l}

5: end for
6: I ← ⋂�1/β�+1

t=1 Ut

7: mark the nodes in I as neighbors

We give an estimate of the computational complexity
of Algorithm II. Particularly, we can use an identical
signature length Li = 4(log Kβ)2 log log Kβ for all
i. The detection on 	1/β
 + 1 stages results in a
computational cost O(	1/β
Kβ(log Kβ)2 log log Kβ)
(	1/β
 is counted because its value may depend
on K). Another major cost comes from the inter-
section operation in line 6 of the algorithm. Be-
cause we can order the node indices in each bin
on every stage at the initialization of the system
which should be done once for all, hence sorting
the nodes detected on each stage costs O(	K1−β
),
and finding the intersection of sets of detected
nodes on different stages costs O(	1/β
	K1−β
).
Therefore, the complexity of Algorithm II is given
by O(	1/β
max{Kβ(log Kβ)2 log log Kβ , 	K1−β
}).
Oftentimes, one may design a system such that Kβ is
a constant. In this case, we can rewrite the complexity
as O(K log K).

C. Comparison of Two Algorithms

In this section, we compare the two proposed algo-
rithms using an example. Consider a network with one
million nodes and on average six neighboring nodes.
We choose β = 2/3 and have 3 stages as well as 10000
bins on each stage. Table I summarizes the comparison.
It is clear that although the second algorithm with
binning technique require 13% increase in the signature
length, its computational cost is only 1.13% of that of
the direct algorithm.

IV. NUMERICAL RESULTS

Numerical results are provided in this section in
order to illustrate the efficiency of the two proposed
algorithms. Consider a network with on average six
neighbors for node 0. The random signatures are gen-
erated with length L given in (4) and parameter q given

TABLE I
COMPARISON OF DIRECT ALGORITHM AND GROUP TESTING

WITH BINNING ALGORITHM

signature length computation cost
(bits) (operations)

direct
algorithm 2.0× 103 5.0× 108

with binning 2.26× 103 5.65× 106

in (3). Fig. 1 plots the number of false alarms averaged
over 2000 random instances of neighbor discovery
using the direct algorithm against the total number of
nodes in the network. Given the small number of total
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Fig. 1. Plot of the number of false alarms averaged over
2000 instances against the total number of nodes using the direct
algorithm. The blue dashed curve is the upper bound computed
according to Proposition 1 and the red curve with cross markers is
the average number calculated from simulation.

transmissions required by this algorithm, the discovery
scheme is seen to be highly efficient. Fig. 2 plots the
simulation results using group testing with binning.
One can see the algorithm performs efficiently in large
networks.

V. CONCLUSION AND DISCUSSION

Efficient neighbor discovery scheme based on group
testing has been proposed and analyzed in this paper.
Unlike conventional multiuser detection methods, the
proposed scheme requires only non-coherent energy
detection and incurs little overhead. Two algorithms
are developed to implement the proposed scheme, both
of which achieve high discovery accuracy much more
rapidly than random access discovery schemes.

Although this paper only considers neighbor discov-
ery for one particular node, the group testing scheme
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Fig. 2. Plot of the number of false alarms averaged over 2000
instances against the total number of nodes using the group testing
with binning algorithm.

can be extended to neighbor discovery for all nodes in
a network using cross-layer design. Integration of the
group testing scheme in physical layer and the birthday-
listen-and-transmit scheme [1] in medium access con-
trol layer serves as a promising solution.

Note that when only a small portion of all nodes in
the network are neighbors, neighbor discovery can also
be regarded as a compressed sensing problem, which
studies the recovery of a sparse signal from its random
projection which is of a much lower dimension than the
original signal [11]. The group testing scheme proposed
in this work may imply interesting applications in
compressed sensing.

Finally, throughout the work we have assumed noise-
less transmissions. Implementation of group testing in
presence of noise is a direction of ongoing work.
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