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Abstract—This paper studies the entropy rate of hidden
Markov processes (HMPs) which are generated by observing
a discrete-time binary homogeneous Markov chain through an
arbitrary memoryless channel. A fixed-point functional equation
is derived for the stationary distribution of an input symbol
conditioned on all past observations. While the existence of
a solution to the fixed-point functional equation is guaranteed
by martingale theory, its uniqueness follows from the fact that
the solution is the fixed point of a contraction mapping. The
entropy or differential entropy rate of the HMP can then
be obtained through computing the average entropy of each
input symbol conditioned on past observations. In absence of
an analytical solution to the fixed-point functional equation, a
numerical method is proposed in which the fixed-point functional
equation is first converted to a discrete linear system using
uniform quantization and then solved efficiently. The accuracy
of the computed entropy rate is shown to be proportional to the
quantization interval. Unlike many other numerical methods, this
numerical solution is not based on averaging over a sample path
of the HMP.

Index Terms—Blackwell’s measure, contraction mapping, en-
tropy rate, filtering, fixed-point functional equation, hidden
Markov process.

I. INTRODUCTION

LET {Xn} be a binary homogeneous Markov chain with
symmetric transition probability ε. Let {Yn} be the

observation of {Xn} through an arbitrary memoryless channel.
Conditioned on Xk, the past, current and future observations,
namely, Y k−1

−∞ , Yk and Y ∞
k+1, are independent. Without con-

ditioning, however, the output {Yn} is not a Markov process.
Such a process is called a hidden Markov process (HMP).
The entropy (resp. differential entropy) rate of discrete (resp.
continuous) HMPs is a classical open problem.

The entropy rate of HMPs has been studied since the
1950s. Blackwell expressed the entropy rate in terms of a
complicated probability measure, which is the distribution of
the conditional distribution of X0 given the past observations
Y 0
−∞ [1]. Blackwell’s work was followed by several authors

who studied HMPs from the estimation-theoretic viewpoint.
In 1965, Wonham [2] used stochastic differential equation to
describe the evolution of the posterior probability distribution
of the dynamical state given the output perturbed by Gaussian
noise. Recently, Ordentlich and Weissman [3] presented a
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new approach for bounding the entropy rate of HMP by
constructing an alternative Markov process corresponding to
the log-likelihood ratio of estimating the positivity of current
symbol X0 based on the past observations Y 0

−∞. Furthermore,
Nair et al. [4] used the techniques in [3] to study the behavior
of filtering error probability and obtained tight bounds for the
entropy rate in the rare-transition regime, i.e., when ε is very
small. An overview of statistical and information-theoretic
aspects of HMPs is presented in [5].

In absence of an analytical solution due to the difficulty of
Blackwell’s measure, some other works use Monte Carlo simu-
lation [6], sum-product method [7] and “prefixsets” method [8]
to numerically compute the entropy rate by averaging over a
long, randomly chosen sample path of the HMP. In addition,
some deterministic computation methods based on quantized
systems are suggested in [9] and [10] independently. In [9],
density evolution is applied to a “forward variable” after quan-
tization to obtain its stationary distribution. Reference [10]
solves a linear system for the stationary distribution of the
quantized Markov process to obtain a good approximation of
the entropy rate.

This paper studies the entropy rate problem using filtering
techniques and develops a new numerical method. A fixed-
point functional equation is derived in Section II whose solu-
tion is the conditional cumulative distribution function (cdf) of
the log-likelihood ratio of X0 given the past observations Y −1

−∞
conditioned on X0 = +1. Once the cdf is obtained, the entropy
rate can be computed. While the existence of a solution to the
fixed-point functional equation is guaranteed by martingale
theory, Section III proves its uniqueness by showing that
the solution corresponds to the fixed point of a contraction
mapping. Since no explicit analytical solution to this equa-
tion (which corresponds to the cdf of Blackwell’s measure)
is known, numerical methods are developed in Section IV
which give excellent approximations to the quantized cdf. In
Section V, the accuracy of the numerically computed entropy
rate is shown to be in the order of the quantization interval.
Like the numerical methods in [9] and [10], the numerical
method in this paper does not require a sample path of the
HMP; rather, it is based on a direct computation of the filtering
probability measure. While the numerical method provided
in [10] quantizes the likelihood process, the numerical method
in this paper quantizes the fixed-point functional equation.

II. ENTROPY RATE

Let {Xn} be a stationary binary symmetric Markov chain
with alphabet X = {+1,−1} and transition probability
ε ∈ (0, 1/2). Let {Yn} be the observation of {Xn} through a



stationary memoryless channel characterized by two transition
probability distributions PY |X(·|x), x = ±1, with alphabet
Y ⊂ R.

Suppose Y is discrete. The entropy rate is related to the
input-output mutual information of the memoryless channel
by

lim
n→∞

1
n

H(Y n
1 )

= lim
n→∞

(
1
n

H(Y n
1 |Xn

1 ) +
1
n

I (Xn
1 ;Y n

1 )
)

(1)

= H(Y1|X1) + lim
n→∞

(
1
n

H(Xn
1 )− 1

n
H(Xn

1 |Y n
1 )

)
= H(Y1|X1) + H2(ε)−H(X1|X0, Y

∞
1 ) (2)

where H2(·) is the binary entropy function. Note that in case
the alphabet Y is continuous and that PY |X(·| ± 1) admit
probability densities, we shall replace the entropies of Y by
the corresponding differential entropies.

A. Entropy and Posterior Probabilities

One can treat H(X1|X0, Y
∞
1 ) in (2) as the expectation of

the binary entropy of X1 conditioned on X0, Y
∞
1 , i.e.,

H(X1|X0, Y
∞
1 ) = E

{
H2(PX1|X0,Y∞1

(+1|X0, Y
∞
1 ))

}
(3)

where the conditional probability PX1|X0,Y∞1
(+1|X0, Y

∞
1 ) is

a random variable taking its value in [0, 1], which is a function
of X0 and Y ∞

1 . Consequently, in order to compute the entropy
rate of the HMP, it suffices to obtain the distribution of the
conditional probability PX1|X0,Y∞1

(+1|X0, Y
∞
1 ). We further

note that for given x and y,

PX1|X0,Y1,Y∞2
(X1|x, y, Y ∞

2 )

=
PX1|Y∞2 (X1|Y ∞

2 )PX0|X1(x|X1)PY |X(y|X1)∑
x′∈{±1} PX1|Y∞2 (x′|Y ∞

2 )PX0|X1(x|x′)PY |X(y|x′)
. (4)

Therefore, it is enough to find the distribution of
PX1|Y∞2 (+1|Y ∞

2 ).
The random probability PXi|Y∞i+1

(+1|Y ∞
i+1) represents a

limit. The distribution of PXi|Y∞i+1
(+1|Y ∞

i+1) for every i = 0,
±1, . . . , is well-defined on the σ-algebra generated by Y ∞

i+1.
In fact, these distributions are also identical, which is a direct
consequence of the stationarity of the HMP and the fact
that PX0|Y n

1
(+1|Y n

1 ) → PX0|Y∞1 (+1|Y ∞
1 ) with probability 1

as n → ∞. The latter convergence can be established by
considering a Doob martingale {(Zn,Fn) : n = 1, 2, . . . }
where Fn is the σ-algebra generated by Y n

1 and Zn =
PX0|Y n

1
(+1|Y n

1 ) = E
{
1{X0=+1}|Y n

1

}
which converges to

E
{
1{X0=+1}|Y ∞

1

}
= PX0|Y∞1 (+1|Y ∞

1 ) with probability 1
by Doob’s martingale convergence theorem [11, Theorem
13.3.7]. Furthermore, the above convergence also applies to
the probability distribution of PX0|Y n

1
(+1|Y n

1 ) conditioned on
X0 = +1 because PX0|Y n

1
(+1|Y n

1 ) is a function of Y n
1 and

the conditioning only changes the probability measure defined
on the σ-algebra generated by Y n

1 .
By (3) and (4), the computation boils down to obtaining the

distribution of the log-likelihood ratio

Li = log
PXi−1|Y∞i (+1|Y ∞

i )
PXi−1|Y∞i (−1|Y ∞

i )
. (5)

Note that Li, i = 0, ±1, . . . , are identically distributed. In
the remainder of this section, we show that the distribution of
Li satisfies a fixed-point functional equation using stationarity
and the fact that Li is a function of Li+1 and Yi.

B. Symmetric Channels
Let {Yn} be the observation of {Xn} through a sym-

metric memoryless channel characterized by PY |X(y|x) =
PY |X(−y|−x). Let the cdf of Li conditioned on Xi−1 = +1
be denoted by F , i.e.,

F (l) = Pr {Li ≤ l|Xi−1 = +1} .

Theorem 1: The cdf F satisfies the following fixed-point
functional equation:

F (qε(x)) = E
{
(1− ε)F (x− r(W ))
+ ε(1− F (−x− r(W )))

}
(6)

for all x ∈ R, where W ∼ PY |X(·|+ 1),

r(y) = log
PY |X(y|+ 1)
PY |X(y| − 1)

(7)

and
qε(x) = log

ε + (1− ε)ex

εex + (1− ε)
. (8)

Proof: The key to the proof is the following evolution, which
follows from the Bayes’ rule and definition (5)

Li = log
PY∞i |Xi−1(Y

∞
i |+ 1)

PY∞i |Xi−1(Y
∞
i | − 1)

= log
(1− ε)PY∞i |Xi

(Y ∞
i |+ 1) + εPY∞i |Xi

(Y ∞
i | − 1)

εPY∞i |Xi
(Y ∞

i |+ 1) + (1− ε)PY∞i |Xi
(Y ∞

i | − 1)

= log
eα+r(Yi)+Li+1 + 1
er(Yi)+Li+1 + eα

(9)

where α = log[(1− ε)/ε]. The log-likelihood ratio Li defined
in (5) accepts a natural bound, i.e.,

|Li| ≤ α, (10)

which is because in terms of estimating Xi−1, providing Y ∞
i

is no better than providing Xi. Define

hε(l) = log
(1− ε)el − ε

(1− ε)− εel

which is a monotonically increasing function of l ∈ (−α, α).
Then inverting relationship (9) gives

Li+1 = hε(Li)− r(Yi) .

Let FU |V (u|v) denote the cdf of random variable U con-
ditioned on V = v, i.e., FU |V (u|v) = Pr {U ≤ u|V = v}.
Clearly, by change of variable,

FLi|Yi,Xi
(l|y, x) = FLi+1|Yi,Xi

(hε(l)− r(y)|y, x)
= FLi+1|Xi

(hε(l)− r(y)|x) ,



and thus

FLi|Xi
(l|x)=

∫
Y

FLi|Yi,Xi
(l|y, x) dFY |X(y|x)

=
∫
Y

FLi+1|Xi
(hε(l)−r(y)|x)dFY |X(y|x) . (11)

Also, because Li is a function of Y ∞
i , one can get

FLi|Xi−1(l|x) =
∑

x′=±x

FLi|Xi,Xi−1(l|x
′, x)PXi|Xi−1(x

′|x)

= (1− ε)FLi|Xi
(l|x) + ε FLi|Xi

(l| −x) . (12)

Since the probability measure of Li conditioned on Xi−1

is stationary, one can define F (l) , FLi|Xi−1(l| + 1), l ∈ R,
which does not depend on i. Furthermore, note the following
fact by symmetry,

FLi|Xi−1(l|x) = 1− FLi|Xi−1 (−l| − x) .

Substituting from (11) into (12) and letting x = +1 yields

F (l) = E
{
(1− ε)F (hε(l)− r(W ))
+ ε (1− F (−hε(l)− r(W )))

}
. (13)

Note that the inverse of hε(·) is qε(·). Equation (13) be-
comes (6) by letting x = hε(l) and hence l = qε(x). �

C. Asymmetric Channels
Consider a channel characterized by PY |X(·| + 1) and

PY |X(·| − 1) which are in general not symmetric. Let F+

(resp. F−) denote the cdf of Li conditioned on Xi−1 = +1
(resp. Xi−1 = −1).

Theorem 2: The conditional cdfs F+ and F− satisfy[
F+(qε(x))
F−(qε(x))

]
=

[
1− ε ε

ε 1− ε

] [
E {F+(x− r(U))}
E {F−(x− r(V ))}

]
(14)

for all x ∈ R, where qε(x) is given in (8) and U , V are
independent random variables with U ∼ PY |X(·| + 1) and
V ∼ PY |X(·| − 1).

The proof is straightforward using the same technique
developed in the proof of Theorem 1. Note that in [3] and [10],
Ordentlich and Weissman studied the filtering process from
a different perspective using an alternative Markov process.
Formulas similar to (6) and (14) in the special case of discrete
memoryless channels were also established.

D. Computation of Entropy Rate
Assuming that F , the conditional cdf of the log-likelihood

ratio, is found, the entropy rate can be computed us-
ing (2), where the key is to compute the conditional entropy
H(X1|X0, Y

∞
1 ). By (5) and (7), the conditional probability (4)

can be rewritten using the log-likelihood ratio as

PX1|X0,Y∞1
(+1|X0, Y

∞
1 )

= (1 + exp [−αX0 − r(Y1)− L2])
−1

.

Therefore, in view of (3), one can write

H(X1|X0, Y
∞
1 )

= E
{

H2

(
(1 + exp [−αX0 − r(Y1)− L2])

−1
)}

. (15)

Also note that for given x and y and any subset A of R,∫
A

PL2|X0,Y1(l|x, y)dl

=
∫

A

∑
x′∈{±1} PL2,X0,X1,Y1(l, x, x′, y)

PX0,Y1(x, y)
dl

=
∫

A

dF (l)
1 + exp[−αx− r(y)]

+
∫

A

−dF (−l)
1 + exp[αx + r(y)]

. (16)

Therefore, in order to compute the entropy, it suffices to solve
the fixed-point functional equation (6) (or (14)).

An alternative method of computing the entropy rate is
by first computing the input-output mutual information of
HMPs using a fundamental information-estimation differential
relationship due to Palomar and Verdú [12], and then using the
decomposition (1). The key is still the computation of the same
cdf, while this method has no particular advantage compared
to the direct computation described in above.

III. UNIQUENESS OF SOLUTION TO THE FIXED-POINT
FUNCTIONAL EQUATION

Theorems 1 and 2 state that the (conditional) cdf of the log-
likelihood ratio satisfies a fixed-point functional equation. An
explicit solution to (6) or (14) is not available. An important
question is that, is the solution to the fixed-point functional
equation unique?

Proposition 1: Let S denote the set of cdfs whose corre-
sponding probability measure has a support within the interval
Ω = [−α, α]. The fixed-point functional equation (6) admits
no more than one solution in S.

Proof: First, rewrite (6) as (13) with the variable l
replaced by u. For any two cdfs F1 and F2 in S, the L1

distance d(F1, F2) is given by the following

d(F1, F2) =
∫

R
|F1(u)− F2(u)| du .

Define the operator Ψ on the set S as

(ΨF )(u) =
0, if u < −α;
E {(1− ε)F (hε(u)− r(W ))

+ε (1− F (−hε(u)− r(W )))} , if u ∈ Ω;
1, if u > α.

(17)

Note that the image ΨF is increasing, equal to 0 at u < −α
and equal to 1 at u > α. Thus Ψ is an injection on S. For
simplicity, let us denote f1(x) − f2(x) as f1,2(x) where f1

and f2 are two functions. The key to the proof is the fact that
Ψ is a contraction mapping under the L1 distance. For any



two cdfs F1, F2 ∈ S,

d(ΨF1,ΨF2) =
∫

Ω

∣∣∣E{
(1− ε)F1,2(hε(u)− r(W ))

+ εF2,1(−hε(u)− r(W ))
}∣∣∣du

≤
∫

Ω

E
{

(1− ε)
∣∣F1,2(hε(u)− r(W ))

∣∣
+ ε

∣∣F2,1(−hε(u)− r(W ))
∣∣}du (18)

= E
{∫

Ω

[
(1− ε)

∣∣F1,2(hε(u)− r(W ))
∣∣

+ ε
∣∣F1,2(−hε(u)− r(W ))

∣∣]du
}

, (19)

where (18) follows from Jenson’s inequality, and the order
of integration and expectation is exchanged in (19) using
Tonelli’s theorem [13, p. 183]. Note that qε(·) defined in (8) is
the inverse of hε(·). For the first term in the integrand of (19),
one can obtain the following by change of variable,∫

Ω

∣∣F1,2(hε(u)− r(W ))
∣∣du=

∫
R

∣∣F1,2(t)
∣∣q′ε(t + r(W ))dt

≤ (1− 2ε)
∫

R

∣∣F1,2(t)
∣∣dt (20)

where the inequality is because q′ε(t) ≤ 1− 2ε for all t ∈ R.
Similarly, one can upper bound the second term in (19), which,
together with (20), leads to

d(ΨF1,ΨF2) ≤ (1− 2ε)d(F1, F2) (21)

with 0 < 1− 2ε < 1. Therefore, Ψ is a contraction mapping.
Note that the solution to (6) is a fixed point of the operator

Ψ. Suppose there exist two cdfs F ∗
1 and F ∗

2 in S which
satisfy (6), by the contraction mapping property of Ψ, one
can get the following inequality

d(F ∗
1 , F ∗

2 ) = d(ΨF ∗
1 ,ΨF ∗

2 ) ≤ (1− 2ε)d(F ∗
1 , F ∗

2 ),

which implies that d(F ∗
1 , F ∗

2 ) = 0. Thus, F ∗
1 and F ∗

2 must be
the same cdf. �

Note that the assertion in Proposition 1 also applies to the
asymmetric case (14), which can be shown using the same
contraction mapping argument.

IV. NUMERICAL METHODS

Since no explicit analytical solution to the fixed-point func-
tional equation is known, a numerical method is developed in
this section to compute it. Although this method is based on
the result for symmetric channels, it can be extended to asym-
metric channels without much modification. The numerical
method represents a significant improvement over a previous
method proposed in [14], the convergence of which was not
established.

Noting that Li accepts a natural bound (10), one can sample
F arbitrarily finely to obtain a good approximation. After
sampling, the fixed-point functional equation can be converted
to a linear system which has at least one feasible solution.
One may find that reference [10] also utilizes a linearized
system method to approximate the stationary distribution of an
alternative Markov process. The method in this paper differs

from the one in [10] by discretizing the fixed-point functional
equation while the one in [10] discretizes the transition kernel
of the alternative Markov process.

Let M be the number of samples from the support Ω, which
is defined in Section III. Thus, the step size ∆M is given by

∆M =
2
M

log
1− ε

ε
.

We take two extra samples outside Ω and get the vector of
sample points x̂. Formally,

x̂i = − log
1− ε

ε
− ∆M

2
+ i∆M , i = 0, . . . ,M + 1. (22)

Let F̂ be the vector that consists of values of F evaluated at
the points of x̂, i.e., the ith element of F̂ is obtained by F̂ (i) =
F (x̂i). One can define the following discrete representation Ψ̂
based on Ψ in (17).

(Ψ̂F̂ )(i) ,
0, if i = 0;
E
{

(1− ε)F̂ (Q (hε(x̂i)− r(W )))

+ε
(
1− F̂ (Q (−hε(x̂i)− r(W )))

) }
, if 1 ≤ i ≤ M ;

1, if i = M + 1,
(23)

where Q(·) is a uniform quantizer given by the following,

Q(x) =
0, if x < − log 1−ε

ε ;
i, if x̂i − ∆M

2 ≤ x < x̂i + ∆M

2 , 1 ≤ i ≤ M ;
M + 1, if x ≥ log 1−ε

ε .

Clearly, Ψ̂ maps an (M+2) vector F̂ to another (M+2) vector
Ψ̂F̂ . If fact, equation (23) is equivalent to a linear system to
be given in the following context.

Let ‖ · ‖2 denote the L2 norm on the space RM+2. Let Ŝ
denote the set of all feasible vectors of F̂ , i.e., the set of vectors
with value 0 for the first element and 1 for the last element
and intermediate element values increasing with the index. It
is easy to check that Ŝ is a compact convex subset of RM+2.
The key to the numerical method is that Ψ̂ is a nonexpansive
mapping on Ŝ, which also implies the continuity of Ψ̂.

For any two points F̂1 and F̂2 in Ŝ, we adopt F̂1,2(i) as the
abbreviation of F̂1(i)− F̂2(i), it is true that

‖Ψ̂F̂1−Ψ̂F̂2‖22 =
M∑
i=1

∣∣∣E{
(1− ε)F̂1,2 (Q (hε(x̂i)− r(W )))

+ εF̂2,1 (Q (−hε(x̂i)− r(W )))
}∣∣∣2

≤
M∑
i=1

E
{

(1−ε)
∣∣∣F̂1,2 (Q (hε(x̂i)−r(W )))

∣∣∣2
+ ε

∣∣∣F̂2,1 (Q (−hε(x̂i)−r(W )))
∣∣∣2 }

(24)

=E
{ M∑

i=1

[
(1−ε)

∣∣∣F̂1,2 (Q (hε(x̂i)−r(W )))
∣∣∣2

+ ε
∣∣∣F̂2,1 (Q (−hε(x̂i)−r(W )))

∣∣∣2 ]}
,



where (24) follows from Jensen’s inequality. Because
[hε(x̂0), . . . , hε(x̂M+1)] is an expansion of sequence
[x̂0, . . . , x̂M+1], namely |hε(x̂i) − hε(x̂j)| > |x̂i − x̂j | when
i 6= j, given W = w for any w, one must have

M∑
i=1

∣∣∣F̂1,2 (Q (hε(x̂i)− r(w)))
∣∣∣2 ≤ ‖F̂1 − F̂2‖22

and
M∑
i=1

∣∣∣F̂2,1 (Q (−hε(x̂i)− r(w)))
∣∣∣2 ≤ ‖F̂1 − F̂2‖22.

Therefore,

‖Ψ̂F̂1 − Ψ̂F̂2‖2 ≤ ‖F̂1 − F̂2‖2,

which implies that Ψ̂ is nonexpansive and hence continuous.
Therefore, by Brouwer’s fixed point theorem [15], the conti-
nuity of Ψ̂ implies that there exists at least one F̂ ∗ such that

Ψ̂F̂ ∗ = F̂ ∗. (25)

A. A Linear System Method

To compute a solution F̂ ∗, note that equation (25) is
equivalent to the following linear system

(I −A)F̂ ∗ = d, (26)

where I is the identity matrix, d = [0, ε, . . . , ε, 1]T is an (M +
2)× 1 vector, and A is the probability weight matrix with the
element ai,j given by

ai,j =
0, if i = 1;
(1− ε)p+

i,j − εp−i,j , if 2 ≤ i ≤ M + 1, where
p+

i,j = Pr{Q (hε(x̂i)− r(W )) = j}
p−i,j = Pr{Q (−hε(x̂i)− r(W )) = j};

1, if i = M + 2.

Note that the weights p+
i,j and p−i,j can be easily computed

because p+
i,j is the probability of r(W ) taking values in

(hε(x̂i)−x̂j−∆M

2 , hε(x̂i)−x̂j+∆M

2 ] and p−i,j is the probability
of r(W ) taking values in (−hε(x̂i)−x̂j−∆M

2 ,−hε(x̂i)−x̂j +
∆M

2 ]. There may exist more than one solution in Ŝ to the linear
system (26). However, the accuracy analysis in Section V
shows that no matter which solution is used to compute the
entropy rate, the resulting error is in the order of the length
of the quantization interval.

Once an approximation of the cdf F is obtained, the entropy
rate can be computed as is discussed in Section II-D.

B. An Iterative Method

As an alternative to solving the linear system (26), we pro-
pose an iterative method which is simpler to implement. Since
Ŝ is a compact convex subset of the strictly convex Banach
space RM+2 and Ψ̂ is a continuous nonexpansive mapping,
according to Theorem 2 in [16], one can conclude that for any
initial point F̂0 ∈ Ŝ and t ∈ (0, 1), the sequence {Ψ̂n

t (F̂0)}
converges to a fixed point of Ψ̂, where Ψ̂t is an alternative
mapping which is given by Ψ̂t(F̂ ) = (1− t)F̂ + tΨ̂(F̂ ).

The above result suggests an algorithm which approximates
a fixed point of the discrete mapping Ψ̂. Starting from any
initial point F̂0, we repeatedly apply Ψ̂t to F̂0 and terminate
when the distance between two successive resulting points is
smaller than some pre-specified threshold.

Two figures are provided in the following in order to
illustrate the effectiveness of the iterative method. Fig. 1 shows
the numerically computed entropy rate in the case of observing
the Markov process through a memoryless binary symmetric
channel (BSC). The entropy rate of the HMP is plotted as a
function of the transition probability ε of the Markov chain
and the crossover probability δ of the BSC. Fig. 2 plots
one numerical approximation of the cdf F using the iterative
method in the BSC case with ε = 0.05 and δ = 0.2. It appears
that the cdf F is rather complicated with infinite amount of
details. (In certain cases the support of the probability measure
of the log-likelihood ratio is a Cantor set [17, Section V].)
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Fig. 1. The entropy rate as a function of the transition probability of the
Markov chain (ε) and the crossover probability of the BSC (δ).
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Fig. 2. The numerically computed cdf F of a BSC case with ε = 0.05,
δ = 0.2 and 800 samples used. One may find complicated and seemingly
infinite amount of details when zooming in the figure.

V. ACCURACY OF THE NUMERICAL METHOD

The purpose of this section is to analyze the accuracy of
the numerical method for computing the entropy rate.

Theorem 3: Let H denote the conditional entropy (15) and
let Ĥ denote the computed entropy rate using the numerical
method described in Section IV. The accuracy of the the
numerical method, i.e., |H − Ĥ|, is upper bounded as

|H − Ĥ| ≤ K
2ε

∆M , (27)



where M is the number of samples used in the method, ∆M

is the length of the quantization interval given by ∆M =
2
M log 1−ε

ε and

K = log
1− ε

ε
+

1
2
E {|r(Y1)|} .

Remark: One may check that E {|r(Y1)|} < ∞ for most of
channels of interest in communications, such as BSC, additive
white Gaussian noise channel, and channels with additive
noise following Rayleigh, Rician or Laplacian distribution.

Proof: Computing the entropy rate of the output process
{Yn} can be reduced to computing the conditional entropy
H . For simplicity, we introduce the following notations

S(l) = exp(−αX0 − r(Y1)− l) ,

B1 = 1 + exp(−αX0 − r(Y1)) ,

B2 = 1 + exp(αX0 + r(Y1)) .

Recall (15) and (16), one may have the following,

H = E
{

H2

(
(1 + exp [−αX0 − r(Y1)− L2])

−1
)}

= E

{∫ α

−α

H2

(
1

1 + S(l)

) (
dF ∗(l)

B1
+
−dF ∗(−l)

B2

)}
,

where F ∗ is the solution to the fixed-point functional equation
(system) ΨF = F. Define

K(l) , E

{
H2

(
1

1 + S(l)

)
1

B1
+ H2

(
1

1 + S(−l)

)
1

B2

}
.

Therefore, the conditional entropy can be computed by

H =
∫ α

−α

K(l)dF ∗(l) .

The derivative of K(l) is bounded as

|K ′(l)| =
∣∣∣∣E{

S(l) log S(l)
[1 + S(l)]2B1

− S(−l) log S(−l)
[1 + S(−l)]2B2

}∣∣∣∣
≤ E

{
1

2 + 1/S(l) + S(l)
| − αX0 − r(Y1)− l|

+
1

2 + 1/S(−l) + S(−l)
| − αX0 − r(Y1) + l|

}
≤ E

{
1
4
(2α + |r(Y1)|) +

1
4
(2α + |r(Y1)|)

}
≤ α +

1
2
E {|r(Y1)|} = K .

Using the numerical method in Section IV, the computed
entropy rate Ĥ can be represented by

Ĥ =
M∑
i=0

K

(
x̂i +

1
2
∆M

)
P̂i,

where x̂i is given in (22), and P̂i = F̂ ∗(i + 1) − F̂ ∗(i) for
i = 0, . . . ,M . In order to calculate the deviation |H− Ĥ|, we
introduce the cdf F̃ which is a piecewise-constant extension
of F̂ ∗. Formally, F̃ is given by

F̃ (x) = F̂ ∗(Q(x)), x ∈ R .

Note that
Ĥ =

∫
R

K(l)dF̃ (l) .

Therefore, the deviation

|H − Ĥ| =
∣∣∣∣∫

R
K(l)d(F ∗(l)− F̃ (l))

∣∣∣∣
=

∣∣∣∣∫
R
(F ∗(l)− F̃ (l))K ′(l)dl

∣∣∣∣ (28)

≤ K
∫

R

∣∣∣F ∗(l)− F̃ (l)
∣∣∣ dl = Kd(F ∗, F̃ )

where (28) follows from integration by parts and the fact that
|F ∗(l) − F̃ (l)| is 0 outside [−α, α]. Thus, the accuracy of
the numerical computation reduces to characterizing the L1

distance between F ∗ and F̃ .
We want to show that F̃ satisfies the following equality at

the values {x̂i}, i.e.,

(ΨF̃ )(x̂i) = F̃ (x̂i), 0 ≤ i ≤ M + 1. (29)

First, it is easy to see that for i = 0 and i = M + 1, the
equality holds naturally by the definition of Ψ. Secondly, for
the remaining values of i, the following is true,

(ΨF̃ )(x̂i) = E
{

(1− ε)F̃ (hε(x̂i)− r(W ))

+ ε(1− F̃ (−hε(x̂i)− r(W )))
}

= E
{

(1− ε)F̂ ∗(Q(hε(x̂i)− r(W )))

+ ε(1− F̂ ∗(Q(−hε(x̂i)− r(W ))))
}

= F̂ ∗(i) = F̃ (x̂i).

Note that equation (21) suggests d(ΨiF̃ ,Ψi−1F̃ ) ≤ (1 −
2ε)i−1d(ΨF̃ , F̃ ). In addition, according to the contraction
mapping property,

lim
n→∞

ΨnF̃ = F ∗.

Therefore,

d(F ∗, F̃ )= lim
n→∞

d(ΨnF̃ , F̃ )

≤ lim
n→∞

n∑
i=1

d(ΨiF̃ ,Ψi−1F̃ )

≤ lim
n→∞

n∑
i=1

(1−2ε)i−1d(ΨF̃ , F̃ )

=
1
2ε

d(ΨF̃ , F̃ ).

Thus, obtaining the bound of d(ΨF̃ , F̃ ) suffices to characterize
d(F ∗, F̃ ).

Claim: d(ΨF̃ , F̃ ) ≤ ∆M .
Proof: For the piecewise constant cdf F̃ , and for each

interval [x̂i − ∆M/2, x̂i + ∆M/2), i = 1, . . . ,M , the value
of ΨF̃ at x̂i is equal to F̃ , while the value at positions left to
x̂i is smaller than F̃ and the value at positions right to x̂i is
larger than F̃ . In addition, ΨF̃ is increasing. Thus, F̃ (x̂i−1) ≤
ΨF̃ (x) ≤ F̃ (x̂i) for x̂i−1 ≤ x ≤ x̂i, 1 ≤ i ≤ M + 1.
Because the maximum value for a cdf is 1, one can upper
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Fig. 3. Computed entropy rates of a BSC case with ε = 0.05 and δ = 0.2 using two numerical methods. The curve marked by ‘×’ is produced using the
iterative method in Section IV-B and the curve marked by ‘+’ is produced using the numerical method in [10]. The black dot-dash line stands for a reference
of the real entropy rate. The inset shows a magnified portion of the original plot with number of samples ranging from 100 to 10000.

bound d(ΨF̃ , F̃ ) by ∆M . �
This suffices to conclude the accuracy (27), as opposed to

O(∆M log 1
∆M

) in [10]. �
Numerical results suggest that the entropy rate computed

using the numerical method provided in this paper converges
rapidly as the number of samples grows. In addition, the
iterative method given in Section IV-B is of low complexity
due to the iterative structure. Fig. 3 plots the computed entropy
rates using the iterative method in Section IV-B together with
those using the numerical method in [10]. A BSC case with
ε = 0.05 and δ = 0.2 is used in this numerical result. And the
entropy rates are plotted against the number of samples used
in the computation.

Although both accuracy bounds in [10] and in this paper
can be rigorously proved, they are not tight enough for a direct
comparison. Depending on ε and δ, the numerical method in
[10] may perform better or worse than the one in this paper.
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