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Abstract—A unified approach to power control is proposed for
maximizing utility in terms of energy efficiency in code-division
multiple access (CDMA) networks. The approach is applicable to
a large family of multiuser receivers including the matched filter,
the decorrelator, the linear minimum mean-square error (MMSE)
receiver, and the (nonlinear) optimal detectors. It exploits the
linear relationship between the transmit power and the output
signal-to-interference-plus-noise ratio (SIR) for each user in the
large-system limit. Suppose that each user seeks to selfishly
maximize its own energy efficiency, a unique Nash equilibrium is
shown to exist and be SIR-balanced, thus extending a previous
result on linear receivers. A unified power control algorithm
for reaching the Nash equilibrium is proposed, which adjusts
transmit powers iteratively by computing the large-system mul-
tiuser efficiency, which is independent of instantaneous spreading
sequences. The convergence of the algorithm is proved for linear
receivers, and is demonstrated via simulation for the multiuser
maximum likelihood detector. Moreover, the performance of the
algorithm in finite-size systems is studied and compared with that
of a conventional power control scheme, in which user powers
depend on the instantaneous spreading sequences.

Index Terms—Code-division multiple access (CDMA), energy
efficiency, game theory, large systems, multiuser detection, mul-
tiuser efficiency, Nash equilibrium, power control.

I. INTRODUCTION

Power control is used for interference management and
resource allocation in both uplink and downlink transmission
in code-division multiple access (CDMA) networks [1]–[8].
For example, in the uplink, each user transmits just enough
power to achieve the required quality of service (QoS) without
causing excessive interference to other users. Power control
algorithms for multiuser receivers such as the linear min-
imum mean-square error (MMSE) receiver and successive
interference cancellation receivers have been proposed in [4]
and [7], respectively. In such schemes, the output signal-to-
interference-plus-noise ratio (SIR) of each user is measured
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and then the user’s transmit power is adjusted linearly to
achieve the desired SIR.

Power control is often modeled as an optimization problem
under some QoS constraints. A practically appealing scheme
is to minimize the total transmit power under the constraint
that the SIR of each user is above some threshold. The
power of one user affects the performance of other users
in the network through multiple-access interference. Under
reasonable assumptions, it is shown that the total transmit
power is minimized when all the SIR requirements are met
with equality [1]. Another scheme is to choose the transmit
powers in such a way as to maximize the spectral efficiency
(in bits/s/Hz) of the network, where the optimal strategy is
essentially a water-filling scheme [6].

More recently, power control has been modeled as a non-
cooperative game in which each user selfishly maximizes its
utility (e.g., [9]–[16]). Reference [15] applies game theory
to the cross-layer design of power control and multiuser
detection. The utility function therein measures the number
of bits transmitted per joule of energy consumed, which is
particularly suitable for energy-constrained networks. Assum-
ing linear multiuser detection, a Nash equilibrium is shown to
exist, which refers to a configuration of user strategies under
which no user can unilaterally change its strategy to improve
its own utility [17]. Moreover, the users are SIR-balanced at
equilibrium (i.e., they have the same output SIR).

This work extends the results in [15] to a large family of
linear and nonlinear receivers in the so-called large-system
regime, where the number of users and the spreading factor
are large with a given ratio. This is due to results in [18],
[19] where a linear relationship between the input power
and the output SIR is shown to exist for generic multiuser
detection in the large-system limit. Members of this family
include well-known receivers such as the matched filter (MF),
the decorrelator (DEC), the linear MMSE receiver, as well
as the individually optimal (IO) and jointly optimal (JO)
multiuser detectors.1 By exploiting the linear relationship,
which is characterized by the multiuser efficiency, we propose
a unified power control (UPC) algorithm for reaching the Nash
equilibrium. The convergence of the proposed algorithm is
proved for linear receivers and is demonstrated by means of
simulation for the ML detector.

1The individually optimal detector minimizes the error probability of
detecting the symbol of an individual user whereas the jointly optimal detector
minimizes the probability of error for simultaneously detecting the symbols
of all users [20]. The jointly optimal detector is often referred to as the
(multiuser) maximum likelihood (ML) detector.
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Because of its large-system nature, the UPC algorithm does
not depend on instantaneous spreading sequences. Therefore,
the actual SIR achieved by the UPC algorithm fluctuates
around the target SIR as the spreading sequences change,
which results in a loss in the utility. The performance of UPC
in finite-size systems is studied and it is shown that if the
spreading factor is reasonably large, the SIR achieved by UPC
stays close to the target SIR most of the time, hence the utility
loss is insignificant.

The rest of the paper is organized as follows. Section II
provides the system model and relevant results in multiuser
detection. Section III discusses the game-theoretic approach
to power control. The UPC algorithm for reaching Nash
equilibrium is proposed and studied in Section IV. The perfor-
mance of UPC in finite-size systems is studied in Section V.
Simulation results are presented in Section VI and conclusions
are given in Section VII.

II. MULTIUSER DETECTION AND POWER CONTROL

A. CDMA and Multiuser Detection

Consider the uplink of a synchronous DS-CDMA system
with K users and spreading factor N . Let pk, hk, and σ2

represent the transmit power, channel gain and the variance
of background noise and co-channel interference respectively,
for user k. The received signal-to-noise ratio (SNR) for user
k is then Γk = pkhk

/
σ2 . The received signal in one symbol

duration (after chip-matched filtering) can be represented as

Y = SX + W =
K∑

k=1

√
ΓkXksk + W (1)

where Xk denotes the transmitted symbol of user k, sk denotes
its K × 1 unit-norm spreading sequence, and W ∼ N (0, I)
denotes the noise vector consisting of independent and iden-
tically distributed (i.i.d.) standard Gaussian entries. Random
spreading sequence is assumed for all users, and the input
symbols Xk are assumed to be i.i.d. with probability mass
function pX which is of unit variance.2

Suppose the receiver is a linear filter ck, the detection output
can be represented as a sum of three independent components:

X̂k = cT
k Y =

√
Γk

(
cT

k sk

)
Xk + MAIk + Vk (2)

i.e., the desired signal, the MAI and Gaussian background
noise. The quality of the output is effectively measured in
terms of the output SIR,

γk =
Γk(cT

k sk)2

cT
k ck +

∑
j 6=k Γj(cT

k sj)2
= ηkΓk (3)

because the multiple-access interference (MAIk) is asymptot-
ically Gaussian [21]. Clearly, γk ≤ Γk, i.e., the SIR is no
greater than the SNR due to the MAI. The degradation factor
ηk is known as the multiuser efficiency. In fact, (2) can be
regarded as an equivalent single-user Gaussian channel for
user k as depicted in Fig. 1(b), in which X = Xk and Z is
proportional to X̂k.

2The results in the paper also apply to continuous input distributions such
as Gaussian input where pX denotes the probability density function (see [19]
for a general discussion).
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Fig. 1. (a) The DS-CDMA system with multiuser detection. (b) The
equivalent scalar Gaussian channel for user k and the companion channel.

Note that for nonlinear detection, it is in general not possible
to directly decompose the detection output into a sum of
desired signal and interference and noise as in (2); neither
is the output asymptotically Gaussian. We defer the treatment
of nonlinear detection to Section III.

B. Power Control

Power control can be modeled as a non-cooperative game
in which each user adapts its transmit power to selfishly
maximize its own utility (see e.g., [9]–[16]). We follow [9]
to define the utility of user k as

uk = Tk/pk (bits/joule) (4)

where Tk is the net number of information bits delivered cor-
rectly per unit time for user k, referred to as the goodput). This
utility captures the tradeoff between the throughput and energy
consumption and is particularly suitable for applications in
which energy efficiency is critical.

The throughput for user k can be quantified as

Tk = f(γk)RL/M (5)

where R is the transmission rate, L and M are the number
of information bits and the total number of bits in a packet,
respectively (i.e., L−M bits of overhead), all independent of
γk, and f(γk) is the efficiency function representing the packet
success rate at SIR equal to γk. The underlying assumption is
that packets in error are retransmitted. The utility of user k is
thus given as a function of the transmit power by

uk(pk) =
RL

M

f(γk)
pk

. (6)

The efficiency function, f(·), is assumed to be increasing
and sigmoidal (S-shaped), i.e., there is a point above which the
function is strictly concave, and below which the function is
strictly convex. We also require that f(∞) = 1 and f(0) = 0
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to ensure that uk = 0 when pk = 0. These assumptions are
valid in many practical systems (see [15] for further details).
It can be shown that the utility function in (6) is quasiconcave;
that is, there exists a point below which the function is non-
decreasing, and above which the function is non-increasing.

The non-cooperative power control game is described as

max
0≤pk≤Pmax

uk for k = 1, · · · ,K (7)

where Pmax is the maximum allowed power. For such a non-
cooperative game, a Nash equilibrium is a set of transmit pow-
ers (p1, . . . , pK) for which no user can unilaterally improve
its own utility. It has been shown in [15] that the following
proposition holds for all linear receivers.

Proposition 1: The utility-maximizing strategy for user k
is given by pk = min(p∗k, Pmax), where p∗k is such that the
resulting output SIR γk = γ∗, which is the unique solution to

f(γ) = γf ′(γ). (8)

Furthermore, the power control game has a unique Nash
equilibrium.

The key to the proof of Proposition 1 is that, for the linear
receivers of interest, there is a linear relationship between the
output SIR and transmit power of each user. Without loss of
generality, let the relationship be described as γk = φk pk

where φk is not dependent on pk. Taking the partial derivative
of the utility function in (6) with respect to the transmit power
and equating it to zero, we have

∂uk(pk)
∂pk

=
RL

M

∂

∂pk

(
f(γk)

pk

)
= 0 (9)

which is equivalent to

∂

∂γk

(
f(γk)

γk

)
=

f ′(γk)γk − f(γk)
γ2

k

= 0. (10)

Therefore, γk = γ∗ which is the solution to (8) maximizes
the user’s utility as long as the corresponding pk is feasible;
otherwise pk = Pmax.

The existence of a Nash equilibrium is guaranteed by the
quasiconcavity of the utility function. The uniqueness of the
equilibrium is because of the uniqueness of γ∗ and the one-to-
one relationship between the transmit power and output SIR.
Interestingly, Proposition 1 implies that, at Nash equilibrium,
all users have the same output SIR (i.e., the Nash equilibrium
is SIR-balanced).

III. LARGE MULTIUSER SYSTEMS AND POWER CONTROL

This paper studies power control in large CDMA systems.
Mathematically, we consider the large-system limit, where
both the number of users and the spreading factor tend to
infinity but with their ratio converging to a positive number,
i.e., K/N → α. Let us also assume that the received SNRs
Γk are i.i.d. with distribution PΓ at a given time. Moreover,
we assume that PΓ varies slowly over time (i.e., slow fading
channel).

In general, the multiuser efficiency depends on the received
SNRs, the spreading sequences as well as the type of detector.
However, in the large-system regime, the dependence on the

spreading sequences vanishes and the received SNRs affect
the efficiency only through their distribution. In particular, the
multiuser efficiency of the matched filter and the decorrelator
are obtained as

ηmf =
1

1 + αE{Γ} (11)

ηdec = 1− α for α < 1 (12)

while the efficiency of the (linear) MMSE receiver, ηmmse, is
the unique solution to the following fixed-point equation

1
η

= 1 + αE
{

Γ
1 + η Γ

}
(13)

where the expectation is over PΓ.
As pointed out in Section II-A, Gaussian characterization of

detection output in the analysis of the SIR using (3) does not
directly apply to nonlinear receivers. Remarkably, reference
[18], [19] finds that, under mild assumptions, the output of a
generic nonlinear receiver converges in the large-system limit
to a simple monotone function of a “hidden” Gaussian statistic
conditioned on the input, i.e.,

X̂k → g
(√

ηΓk Xk + Uk

)
(14)

where Uk ∼ N (0, 1) is independent of Xk. By applying an
inverse of function g(·) to the detection output X̂k, an equiv-
alent conditionally Gaussian statistic Zk =

√
ηΓk Xk + Uk

is recovered. Each symbol Xk traverses an equivalent single-
user Gaussian channel, so that the output SIR (defined for
the equivalent Gaussian statistic Zk) completely characterizes
the system performance. This result is referred to as the
“decoupling principle.” The equivalent channel is illustrated
in Fig. 1(b). Indeed, as far as the posterior probability PXk|X̂k

is concerned, the multiuser model (Fig. 1(a)) and the single-
user model (Fig. 1(b)) are asymptotically indistinguishable.

A. Posterior Mean Estimators

The decoupling principle holds for a broad family of mul-
tiuser receivers, called the posterior mean estimators (PME)
[18], [19]. Given the observation Y and the spreading matrix
S, a PME computes the mean value of some posterior proba-
bility distribution qX|Y,S, which is conveniently denoted as

〈X〉q = Eq {X | Y,S} . (15)

In this work, the posterior qX|Y,S supplied to the PME is
induced from the following postulated CDMA system,

Y = SX′ + %W (16)

which differs from the actual channel (1) by only the input and
the noise variance. In particular, the components of X′ are i.i.d.
with distribution qX , and the postulated noise level % serves
as a control parameter. The posterior qX|Y,S is determined by
qX and qY|X,S according to Bayes’ formula

qX|Y,S(x|y,S) =
qX(x)qY|X,S(y|x,S)∑
x qX(x)qY|X,S(y|x,S)

. (17)

Indeed, the PME so defined is parameterized by (qX , %)
and can be regarded as the optimal detector for the postulated
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multiuser system (16). In case the postulated posterior qX|Y,S

is identical to pX|Y,S, the PME is a soft version of the indi-
vidually optimal detector. The postulated posterior, however,
can also be chosen such that the PME becomes one of many
other detectors, including but not limited to the MF, DEC,
linear MMSE, as well as the JO detectors. Thus the concept
of PME is generic and versatile.

B. Decoupling Principle for PME Receivers

Let the input–output relationship of a general scalar Gaus-
sian channel be denoted as

pZ|X;a(z|x; a) =
1√
2π

exp
[
−1

2
(
z −√a x

)2
]

(18)

where a is a parameter describing the quality of the channel.
Similar to that in the multiuser setting, by postulating the
input distribution to be qX , a posterior probability distribution
qX|Z;a is induced from qX and pZ|X;a using Bayes’ formula
(cf. (17)). In particular, we have a single-user companion
channel defined by qX|Z;a(·|·; ξΓ), which outputs a random
variable X ′ given the channel output Z (Fig. 1(b)). A single-
user PME is defined naturally as:

〈X〉q = Eq {X | Z; ξΓ} =
∑

x

x qX|Z;a(x|Z; ξΓ). (19)

The probability law of the composite system depicted by
Fig. 1(b) is determined by Γ, η and ξ.

Proposition 2 ( [18], [19]): Consider the multiuser chan-
nel (1) with PME receiver (15). Fix (α, PΓ, pX , qX , %). The
joint probability distribution of (Xk, 〈Xk〉q) converges in
the large-system limit to the joint probability distribution of(
X, g

(√
ηΓk X + U

))
where U ∼ N (0, 1) and

g(z) = Eq {X | Z = z; ξΓ} (20)

where the multiuser efficiency η satisfies together with ξ a pair
of coupled equations:

η−1 = 1 + αE
{

Γ (X − g(Z))2
}

(21a)

ξ−1 = %2 + αE
{

Γ (X ′ − g(Z))2
}

(21b)

where the expectations are taken over the following joint
distribution of (X,Z, X ′, Γ):

pX(x) pZ|X;ηΓ(z|x; ηΓ) qX|Z;ξΓ(x′|z; ξΓ) PΓ(Γ). (22)

In case of multiple solutions to (21), (η, ξ) is chosen to
minimize the so-called free energy (see [18]).

Proposition 2 reveals that, from an individual user’s view-
point, the input–output relationship of the multiuser channel
concatenated with the multiuser receiver is asymptotically
identical to that of the scalar Gaussian channel with a (nonlin-
ear) decision function. In fact, the joint distribution described
by (22) is nothing but that of (X, Z, X ′,Γ) in the equivalent
scalar system depicted by Fig. 1(b). Note that even though
(24) is a large-system result, it is a good approximation for
most finite-size systems of practical interest.

As shown in [18], [19], by choosing appropriate parameter-
ization (qX , %), the PME can be made to represent the MF, the

DEC, the linear MMSE as well as the IO and JO detectors. In
particular, the multiuser efficiencies of the linear receivers are
given as (11)–(13). The multiuser efficiency of the IO detector
with BPSK inputs is found to satisfy the fixed-point equation

1
η

= 1 + αE

{
Γ− Γ

+∞∫

−∞

e−
z2
2√

2π
tanh

(
ηΓ− z

√
ηΓ

)
dz

}
. (23)

Although there is usually no known analytical solution to
the fixed-point equations (21) or (23), the multiuser efficiency
is in general easy to compute by solving such equations
numerically. In principle, the multiuser efficiency may be
different for different users with different types of receivers. In
the uplink, it is natural to assume the same type of receiver for
all users and hence all users have the same multiuser efficiency.

C. Power Control with PME Receivers

Of particular importance to the power control problem is the
linear relationship between the transmit power and the output
SIR of each user implied by the decoupling principle, i.e.,

γk = η Γk (24)

where the multiuser efficiency η depends on the SNR distri-
bution PΓ rather than the individual SNRs Γk. This is mainly
due to the fact that in a large system, as one user’s transmit
power varies, the interference seen by the user essentially stays
the same as long as the empirical distribution of the received
powers remains the same.

Note that the key to the proof of Proposition 1, which is the
linear relationship between the transmit power and received
SIR, also holds for the PME receivers in the large-system
limit. This implies that, in large systems with PME receivers, a
unique Nash equilibrium exists for the power control game (7).
Moreover, at equilibrium, each user transmits at a power level
that achieves an output SIR equal to γ∗, the solution of
f(γ) = γf ′(γ). To the best of our knowledge, this work is
the first to establish the existence and uniqueness of Nash
equilibrium for multiuser systems with nonlinear receivers.
It is interesting to note that, due to the specific choice of
utility function (6), the Nash equilibrium SIR is independent
of the type of receiver and depends only on physical-layer
configuration such as modulation, coding and packet size.

IV. UNIFIED POWER CONTROL ALGORITHM

A. The Algorithm

In this section, a unified power control algorithm for reach-
ing the Nash equilibrium is proposed for uplink CDMA with
PME receivers. Similar to some of the other power control
algorithms, the UPC algorithm iteratively adjusts the transmit
powers in order to reach the target output SIR of γ∗.

The UPC Algorithm carries out the following iteration:
1) Set n = 0 and use arbitrary powers p1(0), · · · , pK(0);
2) Use the power profile to compute the multiuser effi-

ciency η(n) by solving (21).
3) For user k, update the powers according to

pk(n + 1) =
1

η(n)
γ∗ σ2

hk
; (25)
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4) n=n+1, stop if convergence; otherwise, go to Step 2.
Assuming that the empirical distribution of user SNRs

is available, the receiver can compute η(n) in step 2. The
transmit power for achieving SIR γ∗ can then be computed
using (25) based on estimates of the channel gain hk and the
noise variance σ2.

The UPC algorithm applies to a large family of linear and
nonlinear receivers, including the MF, DEC, linear MMSE,
and IO and JO detectors. In particular, for the matched filter,
the UPC algorithm becomes the same as the bilinear power
control algorithm proposed in [22] for minimizing the SIR
error. In fact, one may also extend Proposition 2 to the case
that different users use different type of receivers so that
the UPC algorithm remains applicable by replacing η by
individual efficiencies ηk.

It is an apparent paradox that the success of the power
control scheme depends on the assumption that the empirical
distribution of SNR is fixed, while the purpose is to adjust
transmit powers in order to affect the SNRs. This, however, can
be resolved naturally in practice, where the number of users is
finite, by continued iteration and by replacing the expectations
in (21) with an average over all users’ received SNRs (or their
estimates). For example, for the linear MMSE receiver, (13)
can be expressed as

1
η

= 1 +
α

K

K∑

k=1

Γk

1 + ηΓk
. (26)

B. Convergence

In the following, we establish the convergence of the UPC
algorithm for the MF, DEC, and linear MMSE receiver. The
technique, which requires a monotone relationship between the
transmit powers and the multiuser efficiency, does not apply
to the optimal detectors. For the ML receiver, the convergence
is instead verified through simulation in Section VI.

Let Γ = [Γ1, · · · , ΓK ] and define an interference function,

I(Γ) =
γ∗

η(Γ)
(27)

in which the dependence of the efficiency on Γ is explicit. By
(25) and (27), the UPC algorithm is equivalent to

Γk(n + 1) = I (Γ(n)) , k = 1, . . . ,K. (28)

Proposition 3: For the matched filter, the decorrelator, and
the MMSE receiver, if there exists a Γ̂ such that Γ̂k ≥ I(Γ̂),
k = 1, . . . ,K, then for every initial vector Γ(0), the recursion
(28) converges to the unique fixed point solution of Γ∗k =
I(Γ∗), k = 1, . . . , K. Furthermore, for any feasible Γ̂ (i.e.,
Γ̂k ≥ I(Γ̂) for all k), Γ∗k ≤ Γ̂k for all k.

Proof: The existence of a Γ̂ implies that a feasible SNR
vector exists for achieving γ∗. It suffices then to show that
I(Γ) is a standard interference function [3], i.e., for all Γ with
Γk ≥ 0 for all k, the following three properties are satisfied:
1) Positivity: I(Γ) > 0; 2) Monotonicity: If Γ′k ≥ Γk for
all k, then I(Γ′) ≥ I(Γ); 3) Scalability: For all θ > 1,
θI(Γ) > I(θΓ). Evidently, it is equivalent to showing the
three properties for Î(Γ) = 1/η(Γ).

Positivity of Î(Γ) is trivial for all receivers since η ∈ [0, 1].
Consider first the matched filter. The multiuser efficiency

is given by (11), where E{Γ} =
∑K

k=1 Γk/K. If Γ′ ≥ Γ,
then E{Γ′} ≥ E{Γ} and hence Î(Γ′) ≥ Î(Γ). To prove the
third property, note that, for θ > 1, Î(θΓ) = 1 + αE{θΓ} <
θ + αθE{Γ} = θÎ(Γ).

Consider now the decorrelator, the multiuser efficiency of
which is constant η = 1− α > 0 for α < 1. Properties 2 and
3 are trivial.

Consider the MMSE receiver. The multiuser efficiency is
the solution to (13), or equivalently, the unique solution of

η + αE

{(
1
ηΓ

+ 1
)−1

}
= 1. (29)

Note that the left-hand side of (29) increases if both η and
Γ increase. Thus if Γ′ ≥ Γ, we must have η(Γ′) ≤ η(Γ)
to maintain the equality. Hence, Î(Γ′) ≥ Î(Γ). To prove the
third property, let us define η′ = η(θΓ) and η′′ = θη′, where
θ > 1. Therefore,

η′′ + αθE

{(
1

η′′Γ
+ 1

)−1
}

= θ. (30)

Showing θÎ(Γ) > Î(θΓ) is equivalent to showing η′′ > η.
Since the left-hand side of (29) is increasing in η, and

η′′ + αE

{(
1

η′′Γ
+ 1

)−1
}

= 1 +
(

1− 1
θ

)
η′′ > 1, (31)

we must have η′′ > η. Therefore, θÎ(Γ) > Î(θΓ).

V. PERFORMANCE EVALUATION AND DISCUSSION

The UPC takes a large-system approach and is hence
independent of the spreading sequences. Therefore, after con-
vergence, the transmit powers need not be updated as long
as the channel gains remain static. However, the actual SIRs
depend on the spreading sequences in finite-size systems (see
(3) as an example). As the spreading sequence changes, the
output SIRs achieved by the UPC algorithm fluctuate around
the target SIR, which results in a loss in energy efficiency.

The question is how close will the SIRs be to the target
if the UPC algorithm is applied. In the following, we study
the performance of the UPC algorithm for DEC and linear
MMSE receiver and compare the performance with that of
an SIR-based algorithm, which adjusts the transmit power to
compensate for the mismatch between the received SIR and
the target.

A. The Decorrelator

For the decorrelator, it is sensible to assume α < 1. The
large-system multiuser efficiency is given by ηdec = 1 − α.
Hence the SNR dictated by the UPC algorithm is

Γ∗k = Γ∗dec = γ∗/(1− α), k = 1, · · · ,K, (32)

which should lead to an SIR of γ∗ in the large-system limit.
The actual output SIR for a finite-size system is given by

γk =
(

γ∗

1− α

) /[(
S̃T S̃

)−1
]

kk
, (33)
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where S̃ = [s1, s2, · · · , sK ] and [ · ]kk extracts the kth diagonal
entry of a matrix.

It has been shown that in large systems, the distribution of
1
/[

(S̃T S̃)−1
]
kk

can be approximated by a beta distribution
with parameters (N − K + 1,K − 1) [23]. As a result, the
probability density function of γk is given approximately by

fγdec
(z) =

(
1

Γ∗dec

)N−1
zN−K(Γ∗dec − z)K−2

B(N −K + 1,K − 1)
(34)

where z ≤ Γ∗dec and B(a, b) =
∫ 1

0
ta−1(1−t)b−1dt. Therefore,

as the spreading sequences change from symbol to symbol, the
probability that γk stays within ∆ dB of γ∗ is given by

P∆,dec = Pr {|γdec(dB)− γ∗(dB)| ≤ ∆} (35)

=
∫ γH

γL

fγdec
(z)dz , (36)

where γL = 10−
∆
10 γ∗ and γH = 10

∆
10 γ∗.

Alternatively, the fluctuation of the actual SIR around γ∗

can also be approximated less accurately by a Gaussian
distribution with variance [24]

ζ2 =
2γ∗2α

(1− α)N
, (37)

i.e., γdec ∼ N (
γ∗, ζ2

)
. Therefore, the probability that γk stays

within ∆ dB of γ∗ is approximately given by

P norm
∆,dec = Φ

(
γH − γ∗

ζ

)
− Φ

(
γL − γ∗

ζ

)
, (38)

where Φ(·) is the cumulative distribution function of the
standard Gaussian distribution.

B. The MMSE Receiver

If the linear MMSE receiver is used and all users have the
same target SIR, γ∗, the steady-state SNRs will be identical
to Γ∗ = γ∗/η after the UPC algorithm converges, where the
multiuser efficiency is given by

η =
1− α

2
− 1

2Γ
+

1
2

√
(1− α)2 +

2(1 + α)
Γ

+
1
Γ2

. (39)

It can be shown that the fluctuation of the true SIR around γ∗

is approximately Gaussian with variance [24], [25]:

ζ2 =
1
N

2γ∗2

1− α
(

γ∗
1+γ∗

)2 . (40)

The probability that γk stays within ∆ dB of γ∗ admits a
similar expression to (38) using the function Φ(·).

It is seen from these approximations that the variance of
fluctuations of SIR decreases as 1/N . In the following section,
we demonstrate the performance of the UPC algorithm using
simulations and also investigate the accuracy of the theoretical
approximations discussed above.
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Fig. 2. Transmit powers for the ML, MMSE, and decorrelator, using the
UPC algorithm (N = 32 and K = 8).

VI. NUMERICAL RESULTS

Consider the uplink of a randomly spread DS-CDMA sys-
tem. The noise variance is assumed to be σ2 = 1.6× 10−14.
We use f(γ) = (1 − e−γ)M as the efficiency function3 with
γ∗ = 6.4 (=8.1 dB).

We first demonstrate the convergence of the UPC algorithm
assuming K = 8 users and spreading factor of N = 32. The
channel gain for user k is given by hk = 0.1× d−4

k where dk

is the distance of user k from the uplink receiver (e.g., base
station). Assume dk = 100+10k in meters. We implement the
UPC algorithm for the decorrelator and the MMSE receiver
as well as the maximum likelihood detector.

Fig. 2 plots the transmit powers for users 1, 4 and 8 at the
end of each iteration. It is seen that for all three receiver types,
the UPC algorithm converges quickly to steady-state values.
The results are similar when the initial power values and/or K
and N change. It is also observed that the steady-state transmit
powers for the decorrelator and the MMSE receiver are close
to those of the ML detector (the difference is less than 22%
in this case). This means that in terms of energy efficiency,
which is quantified by the utility achieved at Nash equilibrium,
the performance of the decorrelator and the MMSE receiver
is close to that of the ML detector.

We next investigate the fluctuation of the SIR and bit-error-
rate (BER) achieved by the (large-system) UPC algorithm
against perfect power control where the SIR is computed
using instantaneous spreading sequences (labeled SIR-based
in plots). Fig. 3 shows the SIR and bit-error-rate (BER) of
user 1 using the MMSE detector. It is seen that the SIR-based
algorithm achieves the target SIR, γ∗, at all time whereas the
output SIR for the UPC algorithm fluctuates around the target

3This efficiency function serves as an approximation to the packet success
rate that is reasonable for moderate to large packet sizes.
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Fig. 3. User 1 output SIR and BER for the UPC algorithm and SIR-based
algorithm with the MMSE receiver (N = 32 and K = 8).
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Fig. 4. CDFs of γ for the decorrelator.

SIR as the spreading sequences change. Also, the fluctuations
in the BER are larger when the UPC algorithm is used.

To evaluate the accuracy of the theoretical approximations
given in Section V, Figs. 4 and 5 plot the cumulative distribu-
tion function (CDF) of the output SIR γ for the decorrelator
and the MMSE receiver with different spreading factors and
both low and high system loads. The plots show CDFs
obtained from simulation (based on 100,000 realizations) as
well as those predicted by the theoretical approximations given
in Section V. It is seen from the figures that the theoretical
approximations become more accurate as the spreading fac-
tor increases. Also, the approximations are generally more
accurate when the system load is low. Note that, for the
decorrelator, the approximation based on a beta distribution
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Fig. 5. CDFs of γ for the MMSE receiver.

is slightly more accurate than the one based on a Gaussian
distribution, especially for small spreading factors and large
system loads.

To quantify the discrepancies between the simulation results
and the theoretical approximations, we compute P∆,dec and
P∆,MMSE using the CDFs obtained from simulations as well
as those predicted by theory (see (35) and (38)). Table I
shows the results for different spreading factors and system
loads for ∆ = 1 dB. The numbers in the table represent the
probability that γ is within 1 dB of γ∗. By (6), a 1-dB increase
in the output SIR results in 10% loss in the user’s utility.
The probabilities obtained by simulation suggest that the UPC
algorithm performs better for the MMSE receiver than for
the decorrelator. It is also seen from the table that when the
spreading factor is small, the fluctuations in the output SIR
are considerable, especially when the system load in high.
The performance improves as the spreading factor increases.
For example, for the MMSE receiver, when N = 256 and
α = 0.75, the SIR stays within 1 dB of the target SIR 98% of
the time. It is also observed that the theoretical approximations
for the MMSE detector are pessimistic. For the decorrelator,
while approximating the SIR by a beta distribution is more
accurate (see Fig. 4), the values obtained for P∆,MMSE by the
Gaussian approximation are closer to the simulation results.
This is because the slope of the CDF of γ is closer to the
slope of the Gaussian CDF. Since P∆,MMSE heavily depends
on the slope of the CDF, it is more accurately predicted by the
Gaussian approximation (rather than the beta approximation).

VII. CONCLUSION

A unified approach to energy-efficient power control in
large systems has been proposed, which is applicable to a
large family of linear and nonlinear multiuser receivers. The
approach exploits the linear relationship between the transmit
power and the output SIR in large systems. Taking a non-
cooperative game-theoretic approach with emphasis on energy
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TABLE I
SUMMARY OF RESULTS FOR THE DECORRELATOR AND THE MMSE RECEIVER

N P sim
1dB,dec P beta

1dB,dec P norm
1dB,dec P sim

1dB,dec P beta
1dB,dec P norm

1dB,dec P sim
1dB,MMSE P norm

1dB,MMSE P sim
1dB,MMSE P norm

1dB,MMSE

α = 0.25 α = 0.25 α = 0.25 α = 0.75 α = 0.75 α = 0.75 α = 0.25 α = 0.25 α = 0.75 α = 0.75

16 0.77 0.87 0.74 0.28 0.19 0.30 0.93 0.46 0.41 0.33
64 0.98 1.0 0.97 0.54 0.64 0.55 0.99 0.76 0.74 0.61
256 1.0 1.0 1.0 0.87 0.96 0.87 1.0 0.98 0.98 0.91

efficiency, it is shown that the Nash equilibrium is SIR-
balanced not only for linear receivers but also for some
nonlinear receivers such as the individually and jointly op-
timal multiuser detectors. In addition, a unified power control
algorithm for reaching the Nash equilibrium has been proposed
and its performance of in finite-size systems has been studied.
It would be straightforward to extend the unified approach
to multirate and multicarrier systems based on related large-
system results [26], [27].
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