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Abstract—This paper studies a nonlinear vector precoding
scheme which inverts the wireless multiple-input multiple-output
(MIMO) channel at the transmitter so that simple symbol-by-
symbol detection can be used in lieu of sophisticated multiuser
detection at the receiver. In particular, the transmit energy
is minimized by relaxing the transmitted symbols to a larger
alphabet for precoding, which preserves the minimum signaling
distance. The so-called replica method is used to analyze the
average energy savings with random MIMO channels in the
large-system limit. It is found that significant gains can be
achieved with complex-valued alphabets. The analysis applies to
a very general class of MIMO channels, where the statistics of
the channel matrix enter the result via the R-transform of the
asymptotic empirical distribution of its eigenvalues. Moreover, we
introduce polynomial-complexity precoding schemes for binary
and quadrature phase-shift keying in complex channels by using
convex rather than discrete relaxed alphabets. In case the number
of transmit antennas is more than twice the number of receive
antennas,we show that a convex precoding scheme, despite its
polynomial complexity, outperforms NP-hard precoding using the
popular Tomlinson-Harashima signaling.

Index Terms—Multiple antennas, multiple-input multiple-
output (MIMO) systems, spatial equalization, Tomlinson-
Harashima precoding, replica method, random matrices, R-
transform.

I. I NTRODUCTION

SINCE the pioneer work of [1] and [2], it has been well-
known that using multiple transmit and receive antennas

with sophisticated signal processing can improve the data rate
of wireless systems significantly without need for additional
radio spectrum. As a design choice, signal processing can be
carried out at the receiver side, the transmitter side, or both.
This work studies nonlinear precoding schemes where major
processing is required solely at the transmitter, so that signal
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detection at the receiver can be simply performed symbol-by-
symbol in lieu of joint (or multiuser) detection. Such schemes
are obviously advantageous for downlink data transmission
to low-cost or battery-driven devices such as cell-phones and
wireless sensors.

Assuming that the multiple-input multiple-output (MIMO)
channel coefficients are known to the transmitter, the channel
can be inverted using a linear precoder so that no crosstalk is
seen by the receiver [3], [4]. The convenience comes, however,
at the expense of enhancing the transmit energy required
to maintain the same received signal-to-noise ratio (SNR).
It has been recognized that for transmission with a discrete
constellation, the data vector can be perturbed to take values in
a relaxed alphabet (usually a subsuming lattice) before linear
precoding. This reduces the transmit energy, and yet maintains
the minimum distance of the signal constellation [5]–[7]. The
technique of nonlinear precoding can be traced back to the
work of Tomlinson [8] and Harashima and Miyakawa [9] on
inter-symbol interference channels.

The search for a displacement vector corresponding to
the minimum-energy signal in a discrete set is an NP-hard
problem in general. An exhaustive search is computationally
complex and becomes infeasible for large alphabets and/or
high dimensions. As a major contribution in this paper, we
propose to use non-discrete alphabets, and in particular disjoint
convex sets as the relaxed alphabets. If each symbol can
be represented by any letter in its corresponding convex set,
the search for the minimum energy signal becomes a convex
optimization problem, which admits efficient algorithms [10].
Several convex sets of relaxed alphabets are described in the
paper which preserve the minimum distance of signaling.

With precoding technique broadened to the use of arbitrary
alphabets, whether discrete or not, this paper further studies
the energy savings due to nonlinear precoding. Under several
assumptions, we use the so-called replica method to quantify
the average minimum transmit energy required for maintain-
ing the minimum distance of the signaling in random high-
dimensional MIMO systems. To the best of our knowledge,
this work puts forth the first analytical formulas for evaluating
the minimum transmit energy in nonlinear precoding.

Admittedly, this paper only takes a first step towards a
complete characterization of nonlinear precoding, as it should
be cautioned that the replica analysis is based on several
heuristic assumptions which have not been rigorously justified
in mathematical physics. The replica method was originally
invented for the analysis of spin glasses in statistical physics
[11], [12] and has recently been successfully applied to
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problems in wireless communications (e.g. [13]–[16]) and
coding theory (e.g. [17], [18]). Extensive simulation and exact
analytical results in the literature suggest that the replica
analysis generally yields excellent approximations in random
MIMO systems.

The paper is composed of five more sections. Section II in-
troduces vector precoding with arbitrary alphabets. Section III
presents the general result for the minimum transmit energyin
high-dimensional channels. Section IV specializes the results
to MIMO channels and various choices of relaxed alphabets.
Conclusions are drawn in Section V. Some technical details
including the replica analysis are relegated to the Appendix.

II. V ECTORPRECODING

Consider a single-user MIMO system described by

r = Ht + n (1)

where the vectorst and r denote the signals at the multiple
transmit and received antennas respectively,H denotes the
K × N matrix of antenna gains, andn denotes the white
Gaussian noise. Instead of directly modulating the data stream
onto theN transmit antennas, vector precoding maps theK-
dimensional vector of data symbolss to the N -dimensional
signalt = T (s) for transmission.

This paper studies the following nonlinear precoding
scheme whichaims to simplify the receiver as well as to
minimize the transmit energy. Let us assume not more receive
antennas than transmit antennas for now (K ≤ N ). Consider
first linear precoding with the pseudoinverse of the channel

T = H+ = H†
(

HH†
)−1

(2)

so that the received signal becomes

r = HTx + n = x + n (3)

where the signalx represents the same data ass does.
Evidently, the symbols observed at the received antennas are
completely separated and can be simply detected symbol-by-
symbol. Instead of lettingx = s, which reduces to linear
precoding, we choose the entries ofx from a relaxed alphabet
which induces a smaller transmit energy.

Specifically, letS denote the original signal constellation,
i.e., s = [s1, . . . sK ] ∈ SK . The relaxed alphabet (constella-
tion) B is then a union of some disjoint setsBs, s ∈ S, so that
every symbols ∈ S can be represented using any element in
Bs without ambiguity. In particular, the vectors is mapped to
some vectorx = [x1, . . . , xK ]T with xk ∈ Bsk

, k = 1, . . . , K,
which minimizes the transmit energy, i.e.,

x∗ = argmin
x∈Bs1×···×BsK

‖Tx‖2. (4)

One would also like to design the subsetsBs to satisfy the
following distance-preserving property

‖s − s′‖ ≤ min
x∈Bs,x′∈Bs′

‖x − x′‖, ∀s, s′ ∈ S (5)

i.e., the minimum distance between therepresenteddata sym-
bols does not decrease due to the mapping. This is easily
achieved by lettingBs be distinct sub-lattices ofB with s ∈ Bs

for every s ∈ S. Strictly speaking, using a relaxed alphabet
may increase the uncoded error probability even though the
minimum distance is preserved. Such an impact is negligible
at moderate to high SNRs.

Note that in case of more receive antennas than transmit
antennas (K > N ), the channel cannot be inverted using any
linear precoder. We still define the precoding matrix as the
(Moore-Penrose) pseudoinverse [19]

T = H+ = lim
ǫ→0

H†
(

HH† + ǫI
)−1

(6)

where the limit exists althoughHH† is not invertible, but we
modify the objective function of the constrained optimization
(4) to read

x∗ = argmin
x∈Bs1×···×BsK

lim
ǫ→0

x†
(

HH† + ǫI
)−1

x. (7)

Note that if Ts is transmitted, there will be crosstalk in the
received vector becauseHH+ 6=I. Remarkably, if we transmit
Tx with the minimum energy representing the same data, then
there is typically no crosstalk as long asK is not greater than a
thresholdK∗ > N , because the relaxed vectorx can usually
be found in the subspace spanned bythosecolumns ofH
which can effectively be inverted byH+.

We finish the description of vector precoding using an
example of relaxed alphabets for binary transmission. Without
precoding, it is most common to map each bit to one of the two
symbols inS = {−1, +1}, which is known as binary phase
shift keying (BPSK). With vector precoding, a popular choice
for the supersets isB−1 = 4Z− 1 andB+1 = 4Z + 1 [8], [9],
which is known as the Tomlinson-Harashima precoding. The
distance property (5) obviously holds.

III. G ENERAL RESULTS

Given the precoding matrixT and the disjoint alphabetsBs,
s ∈ S, solving (4) for the minimum energy signal is known
as a quadratic programming problem in the optimization
literature, which is computationally complex in general. For
example, the problem is NP-hard with the discrete lattice
alphabets in the Tomlinson-Harashima precoding.

In this work, we broaden the scope of vector precoding to
include the use of arbitrary alphabets which may or may not be
discrete, as long as the distance-preserving property (5) holds.
In particular, we propose several sets of convex alphabets,
which reduce (4) and (7) to convex optimization problems
because the respective objective functions are strictly positive.
Efficient algorithms with polynomial complexity can then be
applied. We relegate the discussion of various precoding al-
phabets and their performance to Section IV. In the following,
we focus on the result of the minimum transmit energy with
an arbitrary set of given alphabets, either convex or not.

Formally, the expected transmit energy per dimension of the
precoding scheme described in Section II is

1

K
E

{

min
x∈Bs1×···×BsK

lim
ǫ→0

x†
(

HH† + ǫI
)−1

x

}

(8)

where the expectation is over the distribution of the channel
matrix H. Difficult to treat directly, the expectation (8) is
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evaluated in Appendix A using the replica method in thelarge-
system limit, which refers to the regime where thenumbersof
transmit and receive antennas bothgo to infinity with their
ratio K/N converging to a positive numberα, called the load
of the system. A pair of fixed-point equations are found from
which the average transmit energy can be evaluated using
the load, the alphabets, as well as the statistics of the data
s and the channel matrixH. In particular, the statistics of the
channel matrix enter the equations only through the so-called
R-transform of the asymptotic distribution of a scalar function
of its singular values.

DEFINITION 1 (R-TRANSFORM) Let P(x) denote an arbi-
trary probability distribution. Let

m(s) =

∫
dP(x)

x − s
(9)

which is known as the Stieltjes transform. Then, the R-
transform ofP(x) is

R(w) = m−1(−w) − 1

w
(10)

with m−1(·) denoting the inverse function ofm(·).

The following proposition quantifies the average minimum
transmit energy using nonlinear precoding.

PROPOSITION1 Supposea random matrixJ can be decom-
posed as

J = UDU † (11)

whereD is diagonal andU is Haar distributed [20]. More-
over, asK → ∞, the empiricaldistribution of the diagonal
elements ofD (i.e., the eigenvalues ofJ ) convergesto a non-
random distribution uniquely characterized by its R-transform
R(·). Also, let the empirical distribution ofsk, k = 1, . . . , K
converge in probability to some limiting distribution P(s) as
K → ∞. Then under some technical assumptions which are
discussed in Appendix A and include, e.g., replica symmetry,
the average minimum transmit energy per symbol

E =
1

K
min

x∈Bs1×···×BsK

x†Jx → q [R(−χ) − χR′(−χ)]

(12)
in probability as K → ∞. In (12), R′(·) represents the
derivative of the functionR(·), χ ∈ (0,∞) and the parameters
q and χ satisfy the following pair of coupled fixed-point
equations:

q =
∑

s∈S
P(s)

∫

C

∣
∣
∣
∣
∣
argmin

x∈Bs

∣
∣
∣
∣
∣
z − R(−χ)x

√

qR′(−χ)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2
e−|z|2

π
dz (13)

χ =

∑

s∈S
P(s)ℜ

∫

C

argmin
x∈Bs

∣
∣
∣
∣
∣
z − R(−χ)x

√

qR′(−χ)

∣
∣
∣
∣
∣
z∗

e−|z|2

π
dz

√

qR′(−χ)
(14)

where the integrals are carried out for the real and imaginary
parts ofz separately from−∞ to ∞, and the operatorℜ in
(14) takes the real part of the result of the integral.

We remark that even though Proposition 1 describes the
minimum energy per symbol in the limit of infinite number of
antennas with technical assumptions yet to be fully justified,
it is usually a good approximation for systems of moderate
size (e.g.4 × 4 antennas).

From (13) it can be seen thatq describes roughly the
extent to which the whole alphabet space is utilized: the
larger q becomes the larger values inB are being actively
used. This can be also seen by the fact thatminx∈B |x|2 ≤
q ≤ maxx∈B |x|2. The physical intuition behind the energy
minimization in the above proposition is the following: In the
large system limit the eigenvalue distribution of the matrix J

becomes deterministic. This distribution is described by the R-
transform. When minimizing the transmit energy, the precoder
ideally would like to find a vectorx, which is parallel to
the complex eigenvector of the matrixJ with the minimum
eigenvalueand has small norm. However, since the vectorx
is constrained to have elements from the given alphabetB, the
probability of finding such a vector is zero. Therefore thereare
two competing options. One is to expand the utilization of the
alphabetB to higher energy letters, thereby tending to increase
the value ofq and accordingly the transmitted energy. The
other is to try to find a vectorx with components increasingly
spilling over to eigenvectors with higher eigenvalues, thereby
being able to decrease the utilization of high energy letters
of B, but paying the price of higher eigenvalues ofJ . This
eigenvalue spillover loosely determines the value ofχ. The
competition of these two effects is optimized at the minimum,
which is determined by the fixed-point equations above. It is
clear that the more relaxed the space of the alphabet is, e.g.
complex letters versus real ones, the better the precoder will
be able to approximate the small eigenvalue eigenvectors.

We note that the proposition applies to every linear front
end which can be decomposed according to (11) with Haar
distributed eigenspace. Which is more general than, e.g. the
pseudoinverse described in (2). Such frontends include “regu-
larized” matricesH†(HH† + γI)−1 with any γ > 0, which
have been studied in [21] in the context of linear precoding.

IV. PARTICULAR RESULTS

This section applies the general results presented in Sec-
tion III to particular wireless MIMO channels and signaling
schemes for nonlinear precoding. Proposition 1 leaves three
characteristics to specify: 1) the statistics of the channel ma-
trix, which enter the fixed-point equations via its R-transform;
2) the probability mass functionP(s) on the original constel-
lation S; and 3) the relaxed signal alphabetsBs, s ∈ S.

To model the statistics of the entries of theK×N matrixH

is a non-trivial task and a topic of ongoing research (see e.g.
[22] and references therein). For the sake of convenience, we
assume in this first-order approach that the entries of the chan-
nel matrix H are independent identically distributed (i.i.d.)
circularly-symmetric complex Gaussian random variables with
zero mean and variance1/N . The normalization of each row
of H to unit norm ensures that the trace ofHH† does not
scale with the number of columns inT and thus the received
energy per symbol without precoding is independent of the
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TABLE I
ENERGY PER SYMBOL FOR INVERTED SQUARE CHANNEL.

L 1 2 3 4 ∞

E ∞ 2.6942 2.6656 2.6655 2.6655
E [dB] ∞ 4.3043 4.2579 4.2578 4.2578

number of transmit antennasN .1 For that case, we find in
Appendix B that

R(w) =
1 − α −

√

(1 − α)2 − 4αw

2αw
(15)

R′(w) =

(

1 − α −
√

(1 − α)2 − 4αw
)2

4αw2
√

(1 − α)2 − 4αw
(16)

with α = limK→∞ K/N . It is also helpful to recognize that

R2(w)

R′(w)
=

√

(1 − α)2 − 4αw

α
. (17)

With the R-transform given in (15), we find by (12)

E =
q

√

(1 − α)2 + 4αχ
=

q

α

R′(−χ)

R2(−χ)
. (18)

Plugging that relation into the fixed-point equations in Propo-
sition 1, we obtain the fixed-point equation for the transmit
energy per symbol as

E =

∑

s∈S
P(s)

∫ ∣
∣
∣
∣
argmin

x∈Bs

∣
∣
∣
∣
z − x√

αE

∣
∣
∣
∣

∣
∣
∣
∣

2
e−|z|2

π
dz

1 − α +
∑

s∈S

2P(s)
√

E
α

ℜ
∫

argmin
x∈Bs

∣
∣
∣
∣
z − x√

αE

∣
∣
∣
∣
z∗

e−|z|2

π
dz

.

(19)
In the following, we compare the performances of several
constructions of the redundant signal re-presentations for the
channel model specified above.

A. One-Dimensional Lattice for Precoding of BPSK Symbols

Consider BPSK modulation with each symbol equally likely
to take the two values inS = {−1, 1}. Let the relaxed
alphabets be symmetric:B1 = −B−1 ⊂ R. Plugging into
(19), the fixed-point equation simplifies to

E =

∫ ∣
∣
∣
∣
argmin

x∈B1

∣
∣
∣z
√

αE − x
∣
∣
∣

∣
∣
∣
∣

2
e−|z|2

π
dz

1 − α + 2

√
α

E
ℜ
∫

argmin
x∈B1

∣
∣
∣z
√

αE − x
∣
∣
∣ z∗

e−|z|2

π
dz

.

(20)
Without loss of generality, letB1 = {c1, c2, . . . , cL} with

−∞ = c0 < c1 < · · · < cL < cL+1 = +∞. This
case describes Tomlinson-Harashima type of precoding [8],
[9] with optimization overL possible representations for each

1Note that Proposition 1 describes the large-system limit and we do not
compare the performance for differentN . Thus the normalization of the
channel coefficients does not violate any physical constraint.

information bit. The boundary points of the Voronoi regions
arevi = (ci+ci−1)/2 and for allz ∈ (vi/

√
αEs, vi+1/

√
αE),

argmin
x∈B1

∣
∣
∣z
√

αE − x
∣
∣
∣ = ci. (21)

The fixed-point equation becomes

E =

c2
1 +

L∑

i=2

(
c2
i − c2

i−1

)
Q
(

ci+ci−1√
2αE

)

1 − α +
√

α
L∑

i=2

ci−ci−1√
πE

exp
(

− (ci+ci−1)2

4αE

) (22)

whereQ(x) =
∫∞

x
exp(−x2/2)dx/

√
2π denotes the comple-

ment of the cumulative distribution function of the standard
Gaussian distribution.

For the case of no precoding at all, i.e.L = 1, we get

E = c2
1/(1 − α). (23)

For the case of generalL, we restrict to the special case
of a square channel matrix first. The rectangular channel is
addressed subsequently.

1) Square Channel Matrix:For α = 1, (22) simplifies to

E = π







c2
1 +

L∑

i=2

(
c2
i − c2

i−1

)
Q
(

ci+ci−1√
2E

)

L∑

i=2

(ci − ci−1) exp
(

− (ci+ci−1)2

4E

)







2

. (24)

Numerical solutions to (24) are shown in Table I for the
equally spaced integer latticeB1 = {+1,−3, +5,−7, +9, . . .}
and various numbers of lattice points. Obviously, there is little
improvement when going from two to three lattice points
and negligible improvement beyond three. This has significant
implications on the potential complexity of a lattice search.

2) Rectangular Channel Matrix:For a rectangular channel
matrix, the Gramian is only invertible for loadsα ≤ 1.
However, the R-transform is well-defined for any positive load.
For singular random matrices, the R-transform reflects the
fact that the asymptotic eigenvalue distribution has some point
mass at infinity.

The minimum of the transmit power is determined by (22)
and shown in Fig. 1. We observe two distinct behaviors. In
the case without precoding, i.e.L = 1, the energy per symbol
goes to infinity in the limitα = 1. In contrast, the curves
for L > 1 are finite for allα ≤ 1. In fact, a phase transition
occurs and the energy per symbol jumps discontinuously from
a finite value to infinity at some value ofα∗ > 1. Note that
precoding enables to achieve finite transmitted energy evenfor
loadsα ∈ [1, α∗) for which the matrixJ is singular. This is
possible as the degrees of freedom given by the choice of a
particular lattice point allow to choose the transmitted vector
t to lie in a subspace spanned by only those eigenvectors of
the matrixHH† which correspond to non-zero eigenvalues.

B. Two-Dimensional Quadrature Lattice for QPSK

Consider extending the one-dimensional precoding of BPSK
on the real line to two-dimensional precoding of quadra-
ture phase-shift keying (QPSK) in the complex plane. Using
Gray mapping, we can consider theprecodingfor QPSK as
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Fig. 1. The transmitted energy per symbol versus the load forvarious L
corresponding to the one-dimensional lattice precoding for BPSK, using (22)
and (23) as discussed in Sec. IV-A.

independentprecodingof BPSK in the real and imaginary
components. The original constellation isS = {1 + j, −1 + j,
−1 − j, 1 − j}. The relaxedalphabets arerepresented as

Bs =
s

1 + j

(
(4Z + 1) × (4jZ + j)

)
, ∀s ∈ S. (25)

For example, the relaxed alphabet corresponding to1 + j is
the 2-dimensional latticeB1+j = {(4Z + 1) × (4jZ + j)}.

The symmetry in both quadrature components implies that
(19) becomes

E =

c2
1 +

L∑

i=2

(
c2
i − c2

i−1

)
Q
(

ci+ci−1√
2αE

)

1−α
2 +

√
α

L∑

i=2

ci−ci−1√
πE

exp
(

− (ci+ci−1)2

4αE

) . (26)

In order for a fair comparison with one-dimensional modula-
tion, we use the energy per bitEb = E/log2 |S| as a metric,
where the cardinality of the constellation|S| = 4 in the case
of QPSK. The energy per bit is shown in Fig. 2. Remarkably,
the energy per bit remains as small asEb = 4

3 for any load if
L grows large.

C. 2-Dimensional Checkerboard Lattice for BPSK

One can also relax the one-dimensional BPSK modulation
to precoding using lattices in the two-dimensional complex
plane. LetS = {−1, +1}. We may choose

Bs = e j sπ
4

(
(2Z + 1) × (2Z)

)
, s ∈ S. (27)

The relaxed alphabetsB+1 andB−1 correspond to the center
of the black and white fields of a checkerboard respectively.

We can rotate the above infinite lattice by45o degrees
without loss of generality due to the rotational invarianceof the
complex Gaussian integral kernel in the fixed-point equation
(19). After rotation we find the same lattice as in the two-
dimensional quadrature precoding except for a lattice scaling
by a factor of1/

√
2. Thus, the energy per symbol will be half

the energy per symbol of quadrature precoding and the energy
per bit will be identical.

0 5 10 15
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b [d

B
]

α

Fig. 2. Transmitted energy per bit(26) versus the load for precoded channel
inversion and Gray-mapped QPSKusing a two-dimensional quadrature lattice
(25), analyzed in Sec. IV-B.

D. Two-Dimensional Semi-Discrete Lattice for BPSK

Consider the following modification of the precoding
scheme in Section IV-C. We map each BPSK symbol to a
complex number, the real part of which takes its value in
the real-valued lattice, whereas the imaginary part is allowed
to take any value, which obviously preserves the minimum
distance between the relaxed alphabets. Precisely, letS and
Bs, s ∈ S be defined as in Section IV-A. The new relaxed
alphabets will beBs × jR, s ∈ S. By complete relaxation
of the imaginary part, we expect the minimum energy to be
further reduced. The fixed-point equation (19) reduces to

E =

c2
1 +

L∑

i=2

(
c2
i − c2

i−1

)
Q
(

ci+ci−1√
2αE

)

1 − α
2 +

√
α

L∑

i=2

ci−ci−1√
πE

exp
[

− (ci+ci−1)2

4αE

] . (28)

Fig. 3 compares the complex semi-discrete lattice with the
complex quadrature lattice in terms of the energy per bit.
Precoding with semi-discrete lattices achieves a remarkable
gain which comes at the expense of reduced data rate. It
is particularly noteworthy that the semi-discrete latticewith
L = 1 outperforms all quadrature lattices for loads up to
α ≈ 0.479. Note that forL = 1, the alphabetsBs are convex,
so that the quadratic programming problem is convex and
admits a polynomial time algorithm. For large loads and large
lattice size, the energy per bit approachesEb = 4

3 . Oftentimes,
using simple convex alphabets not only allows low-complexity
implementation of nonlinear precoding, but also leads to good
performance.

E. A Convex Relaxation for QPSK

Consider the following relaxation of the QPSK constellation

B1+j = {z ∈ C : ℜz ≥ 1,ℑz ≥ 1} (29)

and Bs = s
1+jB1+j for s = −1 + j, −1 − j and 1 − j,

i.e., all alphabetsaredefined as a rotation ofB1+j about the
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Fig. 3. Comparison between the energy per bit for precoding with thesemi-
discrete lattice (solid lines) using (28) as discussed in Sec. IV-D with the
energy per bit using the complex quadrature lattice (see Fig. 2 and (26) in
Sec. IV-B).

Fig. 4. Convex alphabets corresponding to the QPSK constellation pointsas
discussed in Sec. IV-E.

origin as depicted in Fig. 4. The mappings 7→ Bs preserves
the minimum distance. As all four alphabets are convex, the
corresponding quadratic programming problems can be solved
efficiently. Furthermore, the mappings in the two quadrature
components are independent.

Using the above relaxed alphabets, the fixed-point equa-
tion (19) simplifies to

Q

(√

2

αE

)

=
2 + (α − 1)E +

√
αE
π

e−
1

αE

2 + αE
. (30)

The solution to (30) is shown in Fig. 5. For unit load, the
energy per symbol is found to be approximately three times
higher than with lattice precoding. This is the price to pay
for precoding with polynomial complexity. In contrast to
channel inversion only, the proposed convex relaxation allows
to increase the load by about 30% without need for more
transmitted energy. Alternatively, the transmitter can achieve
the same performance with 30% fewer antennas.

0 0.2 0.4 0.6 0.8 1
0 

4 

8 

12 

16 

20

α

E

Fig. 5. Energy per symbol versus the load for QPSK. The solid line shows
the convex relaxation(see Fig. 4) analyzed in Sec. IV-E. The dashed and
dash-dotted lines refer to the complex quadrature lattice with L = ∞ and
L = 1, resp,see (26) and Fig. 2.

The considerations in the above paragraph concerning the
performance of the proposed convex relaxation are somewhat
pessimistic. Admittedly, the energy per symbol is about three
times larger than with lattice precoding. However, unlike
lattice precoding, the proposed convex relaxation increases the
average distanceand, therefore, makes the signal more robust
against channel impairments.

V. CONCLUSIONS

It has been shown quantatitively in this paper that vector
precoding can be used to significantly reduce the transmit
power in MIMO systems. Inparticular, we find substantial ad-
vantage of complex-valued precoding over real-valued precod-
ing. Moreover, we broaden the scope of nonlinear precoding to
include convex alphabets, for which efficient algorithms exist
for computing the transmit signal with the minimum energy.
We note that the replica symmetry assumption underlying
the theoretical result might not hold true. We have started
investigating first order replica symmetry breaking (1RSB).
Preliminary results indicate that the results in this paperchange
insignificantly under 1RSB.
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APPENDIX A
DERIVATION OF PROPOSITION1

Let us useBs as a short hand forBs1 ×· · ·×BsK
. We start

by rewriting the energy per symbol defined in (12) as

E = lim
K→∞

1

K
min
x∈Bs

x†Jx (31)

= − lim
K→∞

lim
β→∞

1

βK
E log

∑

x∈Bs

e−βx†Jx (32)

where (32) follows from the fact that the infinity norm of a
vector gives its maximal component and the introduction of the
expectation resultsfrom taking into account the fundamental
(postulated) self-averaging property of large random matrices
[20]:

ASSUMPTION1 (SELF-AVERAGING PROPERTY) We have

lim
K→∞

Pr

(
1

K

∣
∣
∣
∣
min
x∈Bs

x†Jx − E min
x∈Bs

x†Jx

∣
∣
∣
∣
> ǫ

)

= 0 (33)

for all ǫ > 0, i.e. convergence in probability.

We are now faced with a formidable task of calculating the
expectation of a logarithm of a sum of exponentials. To make
progress we observe that we can rewrite the logarithm as a
derivative of a product, namely

E log Z =
d

dn
EZn

∣
∣
∣
∣
n=0+

=
d

dn
log E Zn

∣
∣
∣
∣
n=0+

(34)

where the derivatives are evaluated taking the limitn = 0 from
the positive real axis, and an extra logarithm is introduced
in the second equality for future convenience. One can then
rewrite (31) as

E = − lim
K→∞

lim
β→∞

1

βK
lim

n→0+

∂

∂n
log E

[
∑

x∈Bs

e−βx†Jx

]n

(35)

using (34). We see that by the manipulation described above,
we have exchanged the task of calculating an expectation of a
logarithm to calculating an expectation of a non-integer power,
an equally complicated feat. Nevertheless, we will calculate
the above power for integer values ofn = 1, 2, ... and insist
that the analytic continuation of the result in the vicinityof
n = 0+ will be the above function. This is summarized in the
following assumption:

ASSUMPTION2 (REPLICA CONTINUITY) For all β > 0, the
continuation of the function

f(n) =

n∏

a=1

∑

xa∈Bs

e−βx†
aJxa (36)

onto the positive real line is equal to
(
∑

x∈Bs

e−βx†Jx

)n

(37)

in the right-sided vicinity ofn = 0.

This is the basis of the so-called replica approach: Rather than
trying to evaluating an expectation over the logarithm of a

function, we opt to calculate the expectation of the product
of n identical replicas of that function and then analytically
continue the result to real-valuedn in the vicinity of zero. This
trick has been used extensively, with little formal justification
but with many celebrated results in statistical physics [23].
Applying this trick, and after interchanging the limits ofK →
∞ andn → 0 we have

E = − lim
β→∞

1

β
lim
n→0

∂

∂n
Ξn (38)

where2

Ξn = lim
K→∞

1

K
log E

n∏

a=1

∑

xa∈Bs

e−βx†
aJxa (39)

= lim
K→∞

1

K
log E

∑

{xa∈Bs}
exp

[

−β

n∑

a=1

x†
aJxa

]

(40)

= lim
K→∞

1

K
log E

∑

{xa∈Bs}
exp

[

tr

(

− βJ

n∑

a=1

xax†
a

)]

(41)

It is important to keep in mind that wewill need the linear
term in a smalln expansion ofΞn, in order to evaluate the
derivative in (38) atn = 0. Expressing now,J = UDU †, as
in (11), we can integrate over the Haar distributed eigenvectors
of J . This integration was studied by Harish-Chandra [24]
and Itzykson & Zuber [25] in the mathematics and physics
literature, respectively. It was recently re-derived in the context
of wireless communications in [26]. Here, we are interested
in the asymptotic form of the Harish-Chandra-Itzykson-Zuber
integral, evaluated for fixed-rank matrices

∑

a xax†
a, when

K → ∞. This result was applied in the context of wireless
communications in [27]. Guionnet and Maı̈da [28] solve this
integral in terms of the R-transformR(w) of the asymptotic
eigenvalue distribution ofJ . Following their approach yields

Ξn = lim
K→∞

1

K
log

∑

{xa∈Bs}
exp



−K

n∑

a=1

λa∫

0

R(−w)dw



 (42)

with λ1, . . . , λn denoting the eigenvalues of then×n dimen-
sional matrixβQ, whereQ is defined by

Qab =
1

K
x†

axb
△
=

1

K

K∑

k=1

x∗
akxbk. (43)

In order to perform the summation in (42), theKn-dimensio-
nal space spanned by the replicas is split into subshells

S(Q)
△
=
{
x1, . . . , xn

∣
∣x†

axb = KQab

}
(44)

where the inner product of two replicated vectorsxa andxb

is constant in each subshell. Noting thatx†
axb is Hermitian,

we can expressΞn as

Ξn = lim
K→∞

1

K
log

∫

eKI(Q)e−KG(Q)DQ, (45)

where

DQ =

n∏

a=1

dQaa

n∏

b=a+1

dℜQab dℑQab (46)

2The notation
P

{xa∈Bs}
is used as shortcut for

P

x1∈Bs

· · ·

P

xn∈Bs

.
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is the appropriate integration measure (note thatQ† = Q),

G(Q) =

n∑

a=1

λa(βQ)∫

0

R(−w) dw (47)

and

eKI(Q) =
∑

{xa∈Bs}

n∏

a=1

δ
(
x†

axa − KQaa

)
×

n∏

b=a+1

δ
(
ℜ
[
x†

axb − KQab

])
δ
(
ℑ
[
x†

axb − KQab

])
(48)

denotes the probability weight of the subshell. There are two
reasons of following this procedure and introducing the new
variablesQab. First, this allows us to explicitly sum over{xa}
as will be seen below. Secondly, we expect that for largeK a
single subshell will dominateΞn, which will also be observed
below. In the following the two exponential terms in (45) are
evaluated separately.

We start with the evaluation of the measureeKI(Q).
For future convenience, we introduce the complex variables
Q̃

(I)
ab , 1 ≤ a ≤ b ≤ n and Q̃

(Q)
ab , 1 ≤ a < b ≤ n. We also

define the matrixQ̃ with elements

Q̃aa = Q̃(I)
aa (49)

Q̃ab =
1

2

(

Q̃
(I)
ab − jQ̃

(Q)
ab

)

(50)

Q̃ba =
1

2

(

Q̃
(I)
ab + jQ̃

(Q)
ab

)

(51)

wherea < b. We may now writethe Dirac measure of the
elements of theHermitian matrix Pab = x†

axb − KQab in
terms of its inverse Laplace transform

δ (Paa) =

∫

J

exp
[

Q̃aaPaa

] dQ̃
(I)
aa

2πj
(52)

δ (ℜPab) δ (ℑPab) =

∫

J 2

eQ̃
(I)
ab

ℜPab−Q̃
(Q)
ab

ℑPab
dQ̃

(I)
ab dQ̃

(Q)
ab

(2πj)2

(53)

=

∫

J 2

eQ̃abPba+Q̃baPab
dQ̃

(I)
ab dQ̃

(Q)
ab

(2πj)2
. (54)

with J = (t − j∞; t + j∞) for somet ∈ R andPab = P ∗
ba.

We may now express (48) as

eKI(Q) =
∑

{xa∈Bs}

∫

J n2

e

P

a,b

Q̃ab(x†
axb−KQab)

D̃Q̃ (55)

=

∫

J n2

e
−Ktr[Q̃Q]+

K
P

k=1

log Mk(Q̃)
D̃Q̃ (56)

where the integration measure is given by

D̃Q̃ =
n∏

a=1

(

dQ̃
(I)
aa

2πj

n∏

b=a+1

dQ̃
(I)
ab dQ̃

(Q)
ab

(2πj)2

)

(57)

and

Mk

(

Q̃
)

=
∑

{xa∈Bsk
}
e

P

a,b

x∗
axbQ̃ab

. (58)

In the limit of K → ∞ one of the exponential terms in (45)
will dominate over all others. Thus, only that extremal value of
the correlationQab is relevant for calculation of the integral.

To make further progress, we need to identify the saddle-
point which dominates the integrals. We invoke an important
assumption on the structure of the matrices(Qab) and (Q̃ab)
at the saddle-point:

ASSUMPTION3 (REPLICA SYMMETRY) When applying the
replica method to solve the saddle-point equations, we will
assume that the extremal point is invariant to permutationsof
the replica indexes.

The assumption of replica symmetry translates to searching
over a subset of possible saddle-points with specific symmetry
properties of the matrixQ = (Qab). Indeed, we require that
Qab = q, ∀a 6= b and Qaa = q + χ/β, ∀a for someq and
χ with χ ≥ 0 sinceQ has to be positive semidefinite. Thus
we distinguish the correlation between different replicasand
autocorrelation of an individual replica. We apply the same
idea to the correlation variables in thetransformdomain and
set with a modest amount of foresightQ̃ab = β2f2, ∀a 6= b
andQ̃aa = β2f2−βe, ∀a. Note that despite the fact thatQ is
complex-valued in general, its values at the saddle-point are
in fact real-valued.

For a detailed discussion of replica symmetry, the reader
is referred to the literature of spin glasses, e.g. [12], [29].
Even though naively there is noa priori reason for replica
symmetry not to hold (after all we start with a bona fide replica
symmetric problem (35)), it should be pointed out that, at least
for the non-convex problems discussed in this paper, replica
symmetry is not generally valid. However, it is well-known in
statistical mechanics that the true value of quantities such asE
does not differ much from the corresponding values evaluated
within the replica-symmetric assumption (cf. [30], [31]).

For the evaluation ofG(Q) in (45), we can use replica sym-
metry to explicitly calculate the eigenvaluesλi. Considerations
of linear algebra lead to the conclusion that the eigenvalues χ
andχ+βnq occur with multiplicitiesn−1 and 1, respectively.
Thus we get

G(q, χ) = (n − 1)

χ∫

0

R(−w) dw +

χ+βnq∫

0

R(−w) dw. (59)

Since the integral in (45) is dominated by the maximum
argument of the exponential function, the derivatives of

G(q, χ) + tr(Q̃Q) (60)

with respect toq and χ must vanish asK → ∞.3 The
assumption of replica symmetry leads to

tr(Q̃Q) = n(n − 1)β2f2q + n
(
βf2 − e

)
(βq + χ) . (61)

3It turns out that whenlimn→0 ∂nΞn is expressed in terms ofe, f, q, χ,
the relevant extremum is in fact a maximum and not a minimum. This is due
to the fact that whenn drops below unity, the minima of a function become
maxima and vice-versa. For a detailed analysis of this technicality, see [32].
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χ =
1

√

qR′(−χ)

∫∫ ∑

x∈Bs
ℜ{z∗x}eβ2

√
qR′(−χ)ℜ{z∗x}−βR(−χ)|x|2

∑

x∈Bs
eβ2

√
qR′(−χ)ℜ{z∗x}−βR(−χ)|x|2

Dz dPs(s) (74)

q =

∫∫ ∑

x∈Bs
|x|2eβ2

√
qR′(−χ)ℜ{z∗x}−βR(−χ)|x|2

∑

x∈Bs
eβ2

√
qR′(−χ)ℜ{z∗x}−βR(−χ)|x|2

Dz dPs(s) −
χ

β
. (75)

Taking derivatives after plugging (59) and (61) into (60) yields

nR(−χ − βnq) + n(n − 1)βf2 + n
(
βf2 − e

)
= 0 (62)

(n − 1)R(−χ) + R(−χ − βnq) + n
(
βf2 − e

)
= 0 (63)

and solving fore andf gives

e = R(−χ) (64)

f =

√

R(−χ) − R(−χ − βnq)

βn

n→0−→
√

qR′(−χ). (65)

In addition, the replica symmetry assumption simplifies (58)

Mk(e, f) =
∑

{xa∈Bsk
}
e
β

n
P

a=1

[
(βf2−e)|xa|2+2

n
P

b=a+1

βf2ℜ{x∗
axb}

]

(66)
Note that the setsBsk

enter the transmitted energy only via
(66). Applying the complex Hubbard-Stratonovich transform

e|x|
2

=

∫

C

e2ℜ{xz∗} e−|z|2 dz

π
︸ ︷︷ ︸

△
=Dz

(67)

to (66), we find

Mk(e, f) =
∑

{xa∈Bsk
}
e
β2f2

˛

˛

˛

˛

n
P

a=1
xa

˛

˛

˛

˛

2

−
n

P

a=1
βe|xa|2

(68)

=
∑

{xa∈Bsk
}

∫

e
β

n
P

a=1
2fℜ{xaz∗}−e|xa|2

Dz (69)

=

∫



∑

x∈Bsk

e2βfℜ{xz∗}−βe|x|2




n

Dz. (70)

Moreover, forK → ∞, we have by the law of large numbers

log M(e, f) =
1

K

K∑

k=1

log Mk(e, f) (71)

→
∫

log

∫
(
∑

x∈Bs

e2βfℜ{z∗x}−βe|x|2
)n

DzdP(s). (72)

In the large-system limit, the integral in (56) is dominated
by that value of the integration variable which maximizes the
exponent. Thus, partial derivatives of

log M(e, f) − tr(Q̃Q) (73)

with respect tof and e must vanish asK → ∞. An
explicit calculation of the two derivatives gives the following
expressions for the macroscopic parametersq and χ shown
on top the page. Finally, the fixed-point equations (74) and

(75) simplify via the saddle point integration rule to (14) and
(13) in the limit β → ∞. Note that the minimization with
respect to the symbolx splits the integration space ofz into the
Voronoi regions defined by the (appropriately scaled) signal
constellationBs.

Returning to the initial goal of the average transmit energy,
and collecting previous results, we find from (38) that

E = lim
β→∞

1

β
lim
n→0

∂

∂n

[

(n − 1)

χ∫

0

R(−w) dw

+

χ+βnq∫

0

R(−w) dw − log M(e, f)

+ n(n − 1)f2β2q + n(f2β − e)(χ + βq)

]

(76)

= lim
β→∞

1

β

χ∫

0

R(−w) dw − χ

β
R(−χ) + qχR′(−χ)

− 1

β

∫∫

log
∑

x∈Bs

eβ2fℜ{z∗x}−βe|x|2Dz dP(s). (77)

We use l’Hospital’s rule, re-substituteχ and q, make use of
0 < χ < ∞ and finally obtain (12). Note that for any bound
on the amplitude of the signal setB, the parameterq is finite.
Even without bound,q will remain finite for a well-defined
minimization problem. The parameterχ behaves in a more
complicated manner. It can be both zero, finite, and infinite
as β → ∞ depending on the particular R-transform and the
signal setsBs. For χ 6∈ (0,∞), the saddle-point limits have
to be reconsidered.

APPENDIX B
THE R-TRANSFORM

Let PX(x) be an arbitrary probability distribution function
such that both the Stieltjes transform defined in (9) and

mX−1(s) =

∫
dPX(x)

1
x
− s

(78)

exist for some complexs with ℑ(s) > 0. It can be checked
that

mX−1

(
1

s

)

= −s (1 + s mX(s)) . (79)

Let s = m−1
X (−w). Then, we find

mX−1

(
1

m−1
X (−w)

)

= −m−1
X (−w)

(
1 − w m−1

X (−w)
)
.

(80)
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and
1

m−1
X (−w)

= m−1
X−1

(
−m−1

X (−w)
(
1 − wm−1

X (−w)
))

. (81)

With Definition 1, we find

1

RX(w) + 1
w

= RX−1

(

−wRX(w)

(

RX(w) +
1

w

))

− 1

wRX(w)
(
RX(w) + 1

w

)

(82)

and
1

RX(w)
= RX−1 (−RX(w) (1 + wRX(w))) . (83)

It is well known [33], [34] that fora K×N random matrix
H with i.i.d. entries of variance1/N , the R-transform of the
limiting spectral measurePHH†(x) is given by

RHH†(w) =
1

1 − αw
. (84)

Letting X−1 = HH†, we find

R(HH†)−1(w) = 1 + αR(HH†)−1(w)
(
1 + wR(HH†)−1(w)

)

(85)
with (83). Solving (85) for the R-transform implies (15). Note
that forα ≥ 1, the mean of the spectral measure is diverging.
Thus, the R-transform must have a pole atw = 0 which
excludes the other solution of (85).
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