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Abstract—This paper studies a nonlinear vector precoding
scheme which inverts the wireless multiple-input multipleoutput
(MIMO) channel at the transmitter so that simple symbol-by-
symbol detection can be used in lieu of sophisticated multaer
detection at the receiver. In particular, the transmit enemy
is minimized by relaxing the transmitted symbols to a larger
alphabet for precoding, which preserves the minimum signahg
distance. The so-called replica method is used to analyze eh
average energy savings with random MIMO channels in the
large-system limit. It is found that significant gains can be
achieved with complex-valued alphabets. The analysis appk to
a very general class of MIMO channels, where the statisticsfo
the channel matrix enter the result via the R-transform of the
asymptotic empirical distribution of its eigenvalues. Moreover, we
introduce polynomial-complexity precoding schemes for biary
and quadrature phase-shift keying in complex channels by lisg
convex rather than discrete relaxed alphabets. In case theumber
of transmit antennas is more than twice the number of receive
antennas,we show that a convex precoding schemealespite its
polynomial complexity, outperforms NP-hard precoding ushg the
popular Tomlinson-Harashima signaling.

Index Terms—Multiple antennas, multiple-input multiple-
output (MIMO) systems, spatial equalization, Tomlinson-
Harashima precoding, replica method, random matrices, R-
transform.

I. INTRODUCTION
INCE the pioneer work of [1] and [2],

known that using multiple transmit and receive antenn
with sophisticated signal processing can improve the deta r
of wireless systems significantly without need for addigibn
radio spectrum. As a design choice, signal processing can%?e
carried out at the receiver side, the transmitter side, ¢h.bo
This work studies nonlinear precoding schemes where maPor

processing is required solely at the transmitter, so thatadi
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detection at the receiver can be simply performed symbel-by
symbol in lieu of joint (or multiuser) detection. Such scleam
are obviously advantageous for downlink data transmission
to low-cost or battery-driven devices such as cell-phomeks a
wireless sensors.

Assuming that the multiple-input multiple-output (MIMO)
channel coefficients are known to the transmitter, the célann
can be inverted using a linear precoder so that no crosstalk i
seen by the receiver [3], [4]. The convenience comes, howeve
at the expense of enhancing the transmit energy required
to maintain the same received signal-to-noise ratio (SNR).
It has been recognized that for transmission with a discrete
constellation, the data vector can be perturbed to takesgaiu
a relaxed alphabet (usually a subsuming lattice) befoemalin
precoding. This reduces the transmit energy, and yet niagta
the minimum distance of the signal constellation [5]-[7heT
technique of nonlinear precoding can be traced back to the
work of Tomlinson [8] and Harashima and Miyakawa [9] on
inter-symbol interference channels.

The search for a displacement vector corresponding to
the minimum-energy signal in a discrete set is an NP-hard
problem in general. An exhaustive search is computatignall
complex and becomes infeasible for large alphabetsoand
high dimensions. As a major contribution in this paper, we

it has been wellPrOPOse to use non-discrete alphabets, and in particidjuili

convex sets as the relaxed alphabets. If each symbol can
e represented by any letter in its corresponding convex set
the search for the minimum energy signal becomes a convex
timization problem, which admits efficient algorithm®]1
everal convex sets of relaxed alphabets are describece in th
aper which preserve the minimum distance of signaling.
With precoding technique broadened to the use of arbitrary
alphabets, whether discrete or not, this paper furtheriestud
the energy savings due to nonlinear precoding. Under Severa
assumptions, we use the so-called replica method to gquantif
the average minimum transmit energy required for maintain-
ing the minimum distance of the signaling in random high-
dimensional MIMO systems. To the best of our knowledge,
this work puts forth the first analytical formulas for evaing
the minimum transmit energy in nonlinear precoding.
Admittedly, this paper only takes a first step towards a
complete characterization of nonlinear precoding, asdukh
be cautioned that the replica analysis is based on several
heuristic assumptions which have not been rigorouslyfjedti
in mathematical physics. The replica method was originally
invented for the analysis of spin glasses in statisticalspsy
[11], [12] and has recently been successfully applied to
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problems in wireless communications (e.g. [13]-[16]) anfibr every s € S. Strictly speaking, using a relaxed alphabet
coding theory (e.g. [17], [18]). Extensive simulation anéh& may increase the uncoded error probability even though the
analytical results in the literature suggest that the cepliminimum distance is preserved. Such an impact is negligible
analysis generally yields excellent approximations ind@n at moderate to high SNRs.
MIMO systems. Note that in case of more receive antennas than transmit

The paper is composed of five more sections. Section Il iantennas £ > N), the channel cannot be inverted using any
troduces vector precoding with arbitrary alphabets. $adii linear precoder. We still define the precoding matrix as the
presents the general result for the minimum transmit eniergy(Moore-Penrose) pseudoinverse [19]
high-dimensional channels. Section IV specializes thaligs 1
to MIMO channels and various choices of relaxed alphabets. T=H" = lim H' (HHT + 61) (6)
Conclusions are drawn in Section V. Some technical details
inc|uding the rep”ca ana|ysis are re'egated to the AppendiWhere the limit exists altl‘](-.)l.lghII_IT is not inVertibIe, but we

modify the objective function of the constrained optimiaat
Il. VECTORPRECODING (4) to read

Consider a single-user MIMO system described by z* =  argmin  lima' (HHT N 61)—1 e @)
r=Ht+n Q)

2EBsy X X B e—0
, .. Note that if T's is transmitted, there will be crosstalk in the
where the vectorg andr denote the signals at the mu“'plereceived vector becaudé# H *4I. Remarkably, if we transmit
transmit and received antennas respectivély,denotes the T with the minimum energy representing the same data, then

é{ x N matr.|x of ante(rjma; c?alnsl, arrdd dler!otesh th;’ white there is typically no crosstalk as long Asis not greater than a
aussian noise. Instead of directly modulating the da&@str y, oqpo|qjc- ~ N, because the relaxed vectorcan usually

o_nto th(_aN transmit antennas, vector precoding map;]khe be found in the subspace spanned thgse columns of Hf
dimensional vector of data symbaoiésto the N-dimensional which can effectively be inverted h§f .

S'gnﬁlt:T(s) for (t:iransmr:53|(]3n|.l . i di We finish the description of vector precoding using an
:]_ IS paﬁgrr]agtu 1es .t el_fo ﬁWIng noniinear p"reco Ingxample of relaxed alphabets for binary transmission. d\ith
scheme whichaims t,o simplity the receiver as well as toprecoding,it is most common to map each bhit to one of the two
minimize the transmit energy. Let us assume not more rece bols inS — {—1,+1}, which is known as binary phase

a_mter_mas than tra_nsmit_ antennas for _nd\jvf; N). Consider shift keying (BPSK). With vector precoding, a popular cleic
first linear precoding with the pseudoinverse of the channe{;Or the supersets i8_, — 4Z — 1 andB,, — 47+ 1 [8], [9]
—1 f f f f .
[ —— ¥ which is known as the Tomlinson-Harashima precoding. The
r=H" =-H (HH ) (2) distance property (5) obviously holds.
so that the received signal becomes
I1l. GENERAL RESULTS

Given the precoding matri¥’ and the disjoint alphabefs,
where the signalz represents the same data asdoes. s ¢ S, solving (4) for the minimum energy signal is known
Evidently, the symbols observed at the received antenreas a§ a quadratic programming problem in the optimization
completely separated and can be simply detected symbol-Bérature, which is computationally complex in generabr F
symbol. Instead of lettinge = s, which reduces to linear example, the problem is NP-hard with the discrete lattice
precoding, we choose the entrieszofrom a relaxed alphabet glphabets in the Tomlinson-Harashima precoding.
which induces a smaller transmit energy. In this work, we broaden the scope of vector precoding to

Specifically, letS denote the original signal constellationinclude the use of arbitrary alphabets which may or may not be
ie., s = [s1,...5x] € S*. The relaxed alphabet (constellagiscrete, as long as the distance-preserving propertyciish
tion) B is then a union of some disjoint sefg, s € S, so that |n particular, we propose several sets of convex alphabets,
every symbols € S can be represented using any element ighich reduce (4) and (7) to convex optimization problems
B, without ambiguity. In particular, the vectaris mapped to pecause the respective objective functions are strictjtipe.

r=HTr+n=x+n 3)

some vectow = [z1,...,ox]" withay € By, k=1,.... K, Efficient algorithms with polynomial complexity can then be

which minimizes the transmit energy, i.e., applied. We relegate the discussion of various precoding al
z* = argmin ||Tz| (4) phabets and their performance to _Sectlon V. In_the foII(ng_w

@EB,, XX By, we focus on the result of the minimum transmit energy with

an arbitrary set of given alphabets, either convex or not.
Formally, the expected transmit energy per dimension of the

precoding scheme described in Section Il is

ls=5 < min_|z—2, VsseS (5) 1 {

One would also like to design the subséts to satisfy the
following distance-preserving property

rEBs,x'€B,

i.e., the minimum distance between tlepresentedata sym- K
bols does not decrease due to the mapping. This is easilgere the expectation is over the distribution of the chinne
achieved by letting3; be distinct sub-lattices df with s € B,  matrix H. Difficult to treat directly, the expectation (8) is

. . —1
min _ lim & (HHMEI) m} 8)

TEBsy X+ X Bs o €0
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evaluated in Appendix A using the replica method inltrge- We remark that even though Proposition 1 describes the
system limitwhich refers to the regime where thembersof minimum energy per symbol in the limit of infinite number of
transmit and receive antennas bajh to infinity with their antennas with technical assumptions yet to be fully justifie
ratio K /N converging to a positive numbey, called the load it is usually a good approximation for systems of moderate
of the system. A pair of fixed-point equations are found fromsize (e.g4 x 4 antennag
which the average transmit energy can be evaluated usingrrom (13) it can be seen that describes roughly the
the load, the alphabets, as well as the statistics of the das@ent to which the whole alphabet space is utilized: the
s and the channel matri¥. In particular, the statistics of thelarger ¢ becomes the larger values i# are being actively
channel matrix enter the equations only through the s@dallused. This can be also seen by the fact that, s |[z]? <
R-transform of the asymptotic distribution of a scalar fimt ¢ < max,c5|z|?>. The physical intuition behind the energy
of its singular values. minimization in the above proposition is the following: Imet
large system limit the eigenvalue distribution of the matfi
DEFINITION 1 (R-TRANSFORM) Let P(z) denote an arbi- becomes deterministic. This distribution is describedHgy/R-

trary probability distribution. Let transform. When minimizing the transmit energy, the precod
dP(x) ideally would like to find a vectore, which is parallel to
(s) = /E (9) the complex eigenvector of the matrik with the minimum

S o eigenvalueand has small normHowever, since the vectar
which is known as the Stieltjes transform. Then, the Rsconstrained to have elements from the given alphBbéite

transform ofP(x) is probability of finding such a vector is zero. Therefore thane
Rlw) — m=1 1 10 two competing options. One is to expand the utilization &f th
(w) =m™ (-w) — = (10)  aiphabets to higher energy letters, thereby tending to increase

the value ofq and accordingly the transmitted energy. The
other is to try to find a vectar with components increasingly
The following proposition quantifies the average minimurapilling over to eigenvectors with higher eigenvaluesrebg
transmit energy using nonlinear precoding. being able to decrease the utilization of high energy letter
of B, but paying the price of higher eigenvalues.bf This
PrROPOSITION1 Supposea random matrixJ can be decom- eigenvalue spillover loosely determines the valuexofThe
posed as competition of these two effects is optimized at the minimum
J=UDU' (11) which is determined by the fixed-point equations above. It is
clear that the more relaxed the space of the alphabet is, e.g.
complex letters versus real ones, the better the precoder wi
be able to approximate the small eigenvalue eigenvectors.
We note that the proposition applies to every linear front
o R end which can be decomposed according to (11) with Haar
R(). Also_, let the e.mp'”ca' dlstrlpgpon.o_cfk., k — ..., K distributed eigenspace. Which is more general than, eqy. th
converge in probability to some Ilrm’g d|str|but|9n P(s) as pseudoinverse described in (2). Such frontends includgu-re
K oo T_hen under_ some teghmcal assumptlons which Wrized” matricesH (HH' +~I)~' with any~ > 0, which
discussed in Appendlx A and_ includeg, replica symmetry, have been studied in [21] in the context of linear precoding.
the average minimum transmit energy per symbol
1

E=— min x'Jx — q[R(—x) — xR'(—x)] IV. PARTICULAR RESULTS
K zeB,, x-xBs

with m~1(-) denoting the inverse function af(-).

where D is diagonal andU is Haar distributed [20]. More-
over, asK — oo, the empiricaldistribution of the diagonal
elements oD (i.e., the eigenvalues aof) convergego a non-
random distribution uniquely characterized by its R-trnmm

(12) This section applies the general results presented in Sec-
in probability as K — oo. In (12), R'(-) represents the tion Ill to particular wireless MIMO channels and signaling
derivative of the functio®(-), x € (0, c0) and the parameters schemes for nonlinear precoding. Proposition 1 leavesthre
q and x satisfy the following pair of coupled fixed-poinicharacteristics to specify: 1) the statistics of the chanme
equations: trix, which enter the fixed-point equations via its R-tramsf;

2) the probability mass functioR(s) on the original constel-

2
q :ZP(S)/ argmin |z — R(-x)z || eV d= (13) lation S; and 3) the relaxed signal alphabéts s € S.
= J | wes. qR'(—x) To model the statistics of the entries of thex N matrix H
i is a non-trivial task and a topic of ongoing research (see e.g
ZP(S) %/argmm . R(-x)z ¢ 4 [22] and references therein). For the sake of convenienee, w
s ’ z€B, qR'(—x) ™ assume in this first-order approach that the entries of taech
X = - nel matrix H are independent identically distributed (i.i.d.)
gR'(=x) (14) circularly-symmetric complex Gaussian random variablik w

zero mean and variande’ N. The normalization of each row
where the integrals are carried out for the real and imagiparof H to unit norm ensures that the trace HFH ' does not
parts of z separately from—oo to oo, and the operatofR in  scale with the number of columns i and thus the received
(14) takes the real part of the result of the integral. energy per symbol without precoding is independent of the
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TABLE |

ENERGY PER SYMBOL FOR INVERTED SQUARE CHANNEL information bit. The boundary points of the Voronoi regions
arev; = (¢;+¢;—1)/2andfor allz € (v;/vaEs, viy1/VakE),
L 1 2 3 4 o0
E oo | 2.6942 | 2.6656 | 2.6655 | 2.6655 argmin |2V aF — x‘ =c. (21)
E[dB] || oo | 4.3043 | 4.2579 | 4.2578 | 4.2578 z€By
The fixed-point equation becomes
L
ci+ci—
number of transmit antenna¥.! For that case, we find in ci +ZZ:2 (F—ci1)Q (—\/ﬁl)
Appendix B that E= — ( » (22)
1—a+va CizCil o (_ CitcCi—1 )
R(w) 1—a—+/(1-a)?-4daw (15) \/_122 veE P ok
w =
20w 5 whereQ(z) = [ exp(—2?/2)dz/v/2m denotes the comple-
(1 —a—/(1—-a)- 4aw) ment of the cumulative distribution function of the stardlar
R(w) = 5 ~ (16) Gaussian distribution.
daw? /(1 — )? — daw For the case of no precoding at all, ik= 1, we get
with a = limg_.o K/N. Itis also helpful to recognize that E=23/1-aq). (23)
R*(w) /(1 —a)?—4aw 17 For the case of generdl, we restrict to the special case
R'(w) o : (17) of a square channel matrix first. The rectangular channel is
, ) ) . addressed subsequently.
With the R-transform given in (15), we find by (12) 1) Square Channel MatrixFor a = 1, (22) simplifies to
q q R'(—x) L
= == . 18 2 2 2 citeio
1—a)?+dax aR*(=X) (19) Cl+.22(ci‘ci*1)Q( @)
E=n = (24)
Plugging that relation into the fixed-point equations ingro XL: (¢ — cio1) ex (_ (ci+ci,])2)
sition 1, we obtain the fixed-point equation for the transmit &y \G T G OXP 4B
energy per symbol as Numerical solutions to (24) are shown in Table | for the
o |12 e-l2P equally spaced integer latti¢® = {+1,—3,+5,—-7,49,...}
> P(s)/ argmin |z — dz and various numbers of lattice points. Obviously, theréttie |
_ s€S w€Bs vak T improvement when going from two to three lattice points
2P (s) ) x . e—1z2> 7 and negligible improvement beyond three. This has sigmifica
l—a+ Z = n aigergm z —@‘ S dz implications on the potential complexity of a lattice séarc
s€S \/ & : 2) Rectangular Channel MatrixFor a rectangular channel

) (19)  matrix, the Gramian is only invertible for loads < 1.
In the following, we compare the performances of severgloyever, the R-transform is well-defined for any positivado
constructions of the redundant signal re-presentation$® o singular random matrices, the R-transform reflects the
channel model specified above. fact that the asymptotic eigenvalue distribution has sooietp
mass at infinity.
A. One-Dimensional Lattice for Precoding of BPSK Symbols The m|n|n_1um.of the transmit power is .de.termmed t,)y (22)
and shown in Fig. 1. We observe two distinct behaviors. In
Consider BPSK modulation with each Symbol equa”y I|ke|me case without precoding, & = 1, the energy per Symbo'
to take the two values iS5 = {-1,1}. Let the relaxed goes to infinity in the limita = 1. In contrast, the curves

alphabets be symmetri@8; = —B_; C R. Plugging into for L > 1 are finite for alla < 1. In fact, a phase transition
(19), the fixed-point equation simplifies to occurs and the energy per symbol jumps discontinuously from
JNL a finite value to infinity at some value ef* > 1. Note that
/ argmin ’z\/ﬁ — x‘ dz precoding enables to achieve finite transmitted energy foren
Jo €8 = loadsa € [1,a*) for which the matrixJ is singular. This is
@ ) e I? possible as the degrees of freedom given by the choice of a
l-a+ 2\/2%/ sl ‘Z@ - x‘ 2 —dz particular lattice point allow to choose the transmittedtoe
(20) t to lie in a subspace spanned by only those eigenvectors of
Without loss of generality, le3; = {c1,c2,...,cr} with the matrix H H' which correspond to non-zero eigenvalues.
—00 = ¢ < ¢ < -0 < ¢ < ¢cLy1 = +oa. This

case describes Tomlinson-Harashima type of precoding [8], Two-Dimensional Quadrature Lattice for QPSK
[9] with optimization overL possible representations for each Consider extending the one-dimensional precoding of BPSK

. iy _ . on the real line to two-dimensional precoding of quadra-
Note that Proposition 1 describes the large-system limit we do not

compare the performance for differed. Thus the normalization of the ture phase-§hiﬂ keying (QPSK) in the complex plane. Using
channel coefficients does not violate any physical comgtrai Gray mapping, we can consider tpeecodingfor QPSK as
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Fig. 1. The transmitted energy per symbol versus the load/doious L

corresponding to the one-dimensional lattice precodim@Bf@SK, using (22) . .
and (23) as discussed in Sec. IV-A. Fig. 2. Transmitted energy per {i26) versus the load for precoded channel

inversion and Gray-mapped QP3$iing a two-dimensional quadrature lattice
(25), analyzed in Sec. IV-B.

independenfprecodingof BPSK in the real and imaginary

components. The original constellation§s= {1 +j, —1+j, p_ Two-Dimensional Semi-Discrete Lattice for BPSK

—1—3j,1—j}. Th laxedalphabet ted . . e .
! ']}S © relaxediiphabets areepresented as Consider the following modification of the precoding

B, = _((4z+ 1) x (4jZ+j)), Vs € S. (25) scheme in Section IV-C. We map each BPSK symbol to a
L+] complex number, the real part of which takes its value in
For example, the relaxed alphabet corresponding 40 is the real-valued lattice, whereas the imaginary part isnadtb
the 2-dimensional lattic&;; = {(4Z + 1) x (4jZ +j)}. to take any value, which obviously preserves the minimum
The symmetry in both quadrature components implies thaistance between the relaxed alphabets. Precisely§ lahd
(19) becomes Bs, s € S be defined as in Section IV-A. The new relaxed
I alphabets will be3; x jR, s € S. By complete relaxation
A+Y (F-c21)Q (%) of the imaginary part, we expect the minimum energy to be
E = i=2 ) (26) further reduced. The fixed-point equation (19) reduces to

L
l1—a Ci—Ci_1 (citci—1)?
24 /a > exp (— ) e
Vg e (- s+ b - )a(s)

L
=2

In order for a fair comparison with one-dimensional modula- £ = L (28)

. . . Ca . . 2

tion, we use the energy per biit, = E/log, |S| as a metric, 1-$+Vay % exp[—%}

where the cardinality of the constellatiof§| = 4 in the case =2

of QPSK. The energy per bit is shown in Fig. 2. RemarkablyFig. 3 compares the complex semi-discrete lattice with the

the energy per bit remains as smallias = % for any load if complex quadrature lattice in terms of the energy per bit.

L grows large. Precoding with semi-discrete lattices achieves a remékab
gain which comes at the expense of reduced data rate. It
C. 2-Dimensional Checkerboard Lattice for BPSK is particularly noteworthy that the semi-discrete lattigih

o | lax th di ional BPSK modul L. = 1 outperforms all quadrature lattices for loads up to
NE can also refax t. € oné-dimensiona =i moau at'%znx 0.479. Note that forL, = 1, the alphabet#, are convex,
to precoding using lattices in the two-dimensional compl

&b that the quadratic programming problem is convex and
plane. LetS = {~1,+1}. We may choose admits a polynomial time algorithm. For large loads anddarg
B, = el T ((2Z+1) x (2Z2)), s€S. (27) lattice size, the energy per bit approaciigs= %. Oftentimes,

using simple convex alphabets not only allows low-compiexi

The relaxed alphabe#8,; andB_, correspond to the centerjmplementation of nonlinear precoding, but also leads tdgo
of the black and white fields of a checkerboard respectivelperformance.

We can rotate the above infinite lattice kijp° degrees
without loss of generality due to the rotational invariantthe .
complex Gaussian integral kernel in the fixed-point eqmatidz' A Convex Relaxation for QPSK
(19). After rotation we find the same lattice as in the two- Consider the following relaxation of the QPSK constellatio

dimensional quadrature precoding except for a latticeirsgal o ) S 1G>
by a factor ofl /y/2. Thus, the energy per symbol will be half Biyj={:€C: Rz 21,8221} (29)
the energy per symbol of quadrature precoding and the eneegyd B, = =B for s = —1+j, -1 —j and1 —j,

per bit will be identical. i.e., all alphabetsire defined as a rotation df;; about the
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~<oo

12 ¢

10" 10 10
“ Fig. 5. Energy per symbol versus the load for QPSK. The soliel $hows
_ ) ) ) ) ~ the convex relaxatior(see Fig. 4) analyzed in Sec. I\V-Hhe dashed and
Fig. 3. Comparison between the energy per bit for precoding withstai-  dash-dotted lines refer to the complex quadrature lattith W = oo and
discrete lattice (solid lines) using (28) as discussed in. $¢D with the [ — 1, resp,see (26) and Fig..2
energy per bit using the complex quadrature lattice (see Fignd (26) in
Sec. IV-B).

- 3 The considerations in the above paragraph concerning the
performance of the proposed convex relaxation are somewhat
-1+ T2 1+ pessimistic. Admittedly, the energy per symbol is abouéehr
times larger than with lattice precoding. However, unlike
T lattice precoding, the proposed convex relaxation in@eése

average distancand, therefore, makes the signal more robust
T against channel impairments.

1= T 1= V. CONCLUSIONS

It has been shown quantatitively in this paper that vector
Fig. 4. Convex alphabets corresponding to the QPSK coatitell pointsas  precoding can be used to significantly reduce the transmit
discussed in Sec. IV-E. power in MIMO systems. Irparticular, we find substantial ad-
vantage of complex-valued precoding over real-valuedqatec

origin as depicted in Fig. 4. The mappisg— B, preserves ing. Moreover, we broaden the scope of nonlinear precoding t
g P g Apiag— P include convex alphabets, for which efficient algorithmssex

the minimum distance. As all four alphabets are convex, t ing th '+ sianal with th o
corresponding quadratic programming problems can be gol gr computing the tran§m|t signal with the minimum energy.
efficiently. Furthermore, the mappings in the two quadetu e note that the replica symmetry assumption underlying

the theoretical result might not hold true. We have started

components are independent. : L : . .
Using the above relaxed alphabets, the fixed-point eq vestigating first order replica symmetry breaking (1RSB)
tion (19) simplifies to ' reliminary results indicate that the results in this pajange
insignificantly under 1RSB.
2 24 (a—1)E+ %efﬁ
C\WaE) = 2+ aE - G0
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APPENDIXA function, we opt to calculate the expectation of the product

DERIVATION OF PROPOSITION1 of n identical replicas of that function and then analytically

Let us useB3, as a short hand foB,. x --- x B,... We start continue the result to real-valuedn the vicinity of zero. This

by rewriting the energy per symbol defined in (12) as  trick has been used extensively, with little formal justition
1 but with many celebrated results in statistical physics].[23

E = lim — minz'Jz (31) Applying this trick, and after interchanging the limits Af —

K—oo K xeB, . oo andn — 0 we have
= — lim lim ——Elog Y e /7o (32 T B
K—o00 3—00 ﬁK = F=— ﬂli}n;o B i:IIlO %\—‘n (38)

where (32) follows from the fact that the infinity norm of ayhere
vector gives its maximal component and the introductiornef t

expectation resultfrom taking into account the fundamental =, = 1lim L log E H Z o Pl Jza (39)
3 . . K—oco K
(postulated) self-averaging property of large random iTesr a=1 1w, B,
= K]gnm? log E Z exp |- Z xzlJz, (40)
ASSUMPTION1 (SELFAVERAGING PROPERTY We have {z, €8s} a=1
1 . ' 1 2
Klgmoo Pr (K min @ Jx EaI:relll% ' Jx| > 6) 0 (33) KlgnooK logE{ 2 }exp ltr( ﬁJZlmawa)] (41)

for all ¢ >0, i.e. convergence in probability. It is important to keep in mind that weill need the linear

We are now faced with a formidable task of calculating th€rm in a smalln expansion of=,, in order to evaluaTte the
expectation of a logarithm of a sum of exponentials. To malerivative in (38) at» = 0. Expressing nowJ = UDU', as

progress we observe that we can rewrite the logarithm adnd11), we can integrate over the Haar distributed eigetovec
derivative of a product, namely of J. This integration was studied by Harish-Chandra [24]

and Itzykson & Zuber [25] in the mathematics and physics
ElogZ = i EZ" (34) literature, respectively. It was recently re-derived ia dontext
dn n=0+t of wireless communications in [26]. Here, we are interested
where the derivatives are evaluated taking the limit 0 from in the asymptotic form of the Harish-Chandra-Itzykson-&ub
the positive real axis, and an extra logarithm is introducéategral, evaluated for fixed-rank matricés, «,z{, when

in the second equality for future convenience. One can thén — oo. This result was applied in the context of wireless
rewrite (31) as communications in [27]. Guionnet and Maida [28] solve this

n integral in terms of the R-transforf(w) of the asymptotic
(35) eigenvalue distribution off. Following their approach yields

d
= < logEZ"
n=0* dn o

1 0 i
: . : —Bx'Jx
E = —Khm ﬁhm K nhr& n log E[ E e

xEBs

A
using (34). We see that by the manipulation described abové, = lim_ % log Y exp |-K) /R(—w)dw (42)
we have exchanged the task of calculating an expectation of a {m.€B,} a=17

logarithm to calculating an expectation of a non-integev@o \ith A1, ..., \, denoting the eigenvalues of thex n dimen-
an equally complicated feat. Nevertheless, we will cal@ilagiqng) matrix3Q, whereQ is defined by

the above power for integer values of= 1,2, ... and insist

that the analytic continuation of the result in the vicindg§ 1 4 Al - .

n = 07 will be the above function. This is summarized in the Qab = —ThTp = T ;xakxbk- (43)

K
following assumption: o . .
In order to perform the summation in (42), tthén-dimensio-

ASSUMPTION2 (REPLICA CONTINUITY) For all 3 > 0, the nal space spanned by the replicas is split into subshells

. . . A _
continuation of the function S(Q) 2 {-’B1, o, \-’Blwb _ KQab} (44)
f(n) = H Z o Bl Jz, (36) Where the inner product of two replicated vectars and x;,

a=1 1w, B, is constant in each subshell. Noting tha}x; is Hermitian,

o L we can expres§,, as
onto the positive real line is equal to P "

= oy b KI(Q) .~ KG(Q)
== Khm Klog/e e DQ, (45)

( Z eﬁmTJm> (37) —00
xCBs where . .
in the right-sided vicinity ofx = 0. DQ = H dQua H ARQap ASQup (46)

This is the basis of the so-called replica approach: Ratiaar t o pratt

trying to evaluating an expectation over the logarithm of aZ2The notation}_, 5., is used as shortcut for-,, 5. - >4, e,
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is the appropriate integration measunete thatQ' = Q),

L Aa(5Q)
6@ =Y. [ Awd (@7)
a=1
and
K@) = Z ﬁ 1) (:c];ma — KQM) X
. {z,EBs} a=1 (48)
I 0 (®[zlas — KQa)) 6 (S [xfms — KQab])
b=a+1

and .
S wnryQas
et .

M (@)= Y (58)
{za€Bs, }

In the limit of K — oo one of the exponential terms in (45)

will dominate over all others. Thus, only that extremal \eabf

the correlation),;, is relevant for calculation of the integral.
To make further progress, we need to identify the saddle-

point which dominates the integrals. We invoke an important

assumption on the structure of the matri¢es,,) and (Q.)

at the saddle-point:

ASSUMPTION3 (REPLICA SYMMETRY) When applying the

denotes the probability weight of the subshell. There ae tePlica method to solve the saddle-point equations, we will

reasons of following this procedure and introducing the ned®

variables() ;. First, this allows us to explicitly sum ovér, }

as will be seen below. Secondly, we expect that for lgkge

sume that the extremal point is invariant to permutatiohs
the replica indexes.

The assumption of replica symmetry translates to searching

single subshell will dominat&,,, which will also be observed gyer a subset of possible saddle-points with specific symmet
below. In the following the two exponential terms in (45) argroperties of the matrix) = (Qup). Indeed, we require that

evaluated separately.
We start with the evaluation of the measusdZ(Q).

Qu = ¢,Va # b and Que = q + x/3,Va for someq and
x with xy > 0 since@ has to be positive semidefinite. Thus

F}?{) future convenience, wg((j)r;troduce the complex variablgg distinguish the correlation between different replieasl
Quy»,1 <a<b<mnand@,”,1 <a<b<n We also autocorrelation of an individual replica. We apply the same

define the matrixQ with elements

Qua = QL) (49)
o Liom _p@

Quw = 5(Q%-i0ly) (50)
G = 5 (00 +ia) (51)

idea to the correlation variables in tlhi@nsformdomain and
set with a modest amount of foresight,, = 32f2,Va # b
andQ,, = (2f2 — e, Va. Note that despite the fact thé is
complex-valued in general, its values at the saddle-paoiat a
in fact real-valued.

For a detailed discussion of replica symmetry, the reader
is referred to the literature of spin glasses, e.g. [12]].[29

wherea < b. We may now writethe Dirac measure of the Even though naively there is n@ priori reason for replica

elements of theHermitian matrix P, = zlx, — KQup in
terms of its inverse Laplace transform

- dQw
d (Paa) = /exp [Qaapaa} Q—

52
o] (52)
J

§ (RPub) 8 (SPup) = / QR
j2

~@ar,, 40405
2mj)?

(53)

N ~ A1) 14(Q)
_ / eQa,bPI)a+Q1)a Pap anb qQab ) (54)

- (27j)?
j2
with J = (t — joo;t + joo) for somet € R and P, = F;,.
We may now express (48) as

Z Qab(mzmbeQab)

KZT(Q) Z P DQ (55)
{maeBs}JnZ
Kt [QQ]+£‘ log M,(Q)
_ /e = Y56 (56

2

jn
where the integration measure is given by

49, Q7
“emp ) 7

o n d@((l]a) n
a1 (5 1

-
] b=a-+1

symmetry not to hold (after all we start with a bona fide replic
symmetric problem (35)), it should be pointed out that, aste
for the non-convex problems discussed in this paper, r@plic
symmetry is not generally valid. However, it is well-known i
statistical mechanics that the true value of quantitieb sts@
does not differ much from the corresponding values evatlate
within the replica-symmetric assumption (cf. [30], [31]).

For the evaluation of (Q) in (45), we can use replica sym-
metry to explicitly calculate the eigenvalugs Considerations
of linear algebra lead to the conclusion that the eigengalue
andy + ng occur with multiplicitiesn —1 and 1, respectively.
Thus we get

X+Bnq

X

Glax) = (n— 1) / R—w)dw+ [ R(—w)dw. (59)
0 0

Since the integral in (45) is dominated by the maximum

argument of the exponential function, the derivatives of

G(g, x) + tr(QQ) (60)

with respect tog and y must vanish ask — o0.® The
assumption of replica symmetry leads to

tr(QQ) = n(n — 1)3%f2q+n (Bf* —¢) (Bg+x). (61)

3|t turns out that whedim,, .o .=, is expressed in terms @f f, ¢, x,
the relevant extremum is in fact a maximum and not a minimuhis & due
to the fact that whem drops below unity, the minima of a function become
maxima and vice-versa. For a detailed analysis of this feality, see [32].
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1 e, R{z*z}ef2VaR (0OR{z"2} —BR(=x)|2|*
YT iR = // S, e, VAR ORLw) ARl
'(— 2rx}— —)|z|?
. - // ZIEBS |$|2662V qR/ (—x)R{z"z}—BR(—x)|z| D. dP(S) X
3o VAR (SOR(" 2} =Rl ’ e

Dz dPy(s) (74)

(75)

Taking derivatives after plugging (59) and (61) into (6(®lgs (75) simplify via the saddle point integration rule to (14)da
9 9 B (13) in the limit 5 — oo. Note that the minimization with
nR(=x = Bng) +n(n — 1B +n (sz —e)=0 (62) respect to the symbai splits the integration space ofinto the
(n—1)R(=x) + R(—x — Bng) +n (3f*—¢e) =0 (63) Voronoi regions defined by the (appropriately scaled) digna
constellationB;.

and solving fore and f gives X L )
Returning to the initial goal of the average transmit engrgy

e=R(—x) (64) and collecting previous results, we find from (38) that
R(=x) = R(=x = fBng)  n—o 1
—>oo n— n
In addition, the replica symmetry assumption simplifies) (58 4+Bna
n 278 v 2 n 2 . _ _
e - Y > (G2 =elealP+2 52 B R{zm)] + / R(—w) dw — log M (e, f)
0
{za€Bs; } (66)
_ 2 92 24

Note that the setd3,, enter the transmitted energy only via +n(n—1)f"8q+n(f"B —e)(x + Bq) (76)
(66). Applying the complex Hubbard-Stratonovich transfor

olel® — /62%{mz*} o224z 67) = Jim_ 5/ w)dw — = R( X) +ax R (=x)

4 NI
2D //10g Z oB2fR{z"z}—Belz|* 1y, dP(s). (77)
to (66), we find z€B,
52 3 o {i Belza|? We use I'Hospital’s rule, re-substitute and ¢, make use of
My(e, f) = Z e a=1 a=1 (68) 0 < y < oo and finally obtain (12). Note that for any bound
{za€Bs, } on the amplitude of the signal sBt the parametey is finite.
5 Z 2R (2o} —elwa? Even without boundg will remain finite for a well-defined
= Z /e a=1 e Dz (69) minimization problem. The parameter behaves in a more
complicated manner. It can be both zero, finite, and infinite

{z.€Bs, }
' as§ — oo depending on the particular R-transform and the

_ Z Q28 R{z="}—Belzl* | D, (70) signal setsB,. For x ¢ (0,00), the saddle-point limits have
to be reconsidered.

z€Bs,
Moreover, forK — oo, we have by the law of large numbers APPENDIXB
THE R-TRANSFORM
log M{(e Zlog Mi(e (71) Let Px(z) be an arbitrary probability distribution function

such that both the Stieltjes transform defined in (9) and

_ /log/<z o2BfR{z"2}—Be|z| ) DzdP(s). (72) mx1(s) :/dPx(Z) (78)
1

zeB i3
xr

In the large-system limit, the integral in (56) is domlnateg)qst for some complex with S(s) > 0. It can be checked
by that value of the integration variable which maximizes thy,at

1
exponent. Thus, partial der|vat|ves~of S <§> s (14 smx(s)). (79)
log M (e, f) - tr(QQ) (73) 1 |
with respect tof and e must vanish asKk — oo. An Lets = m (-w). Then, we find
explicit calculation of the two derivatives gives the falliog 1 B 1 1 1
expressions for the macroscopic parametemnd Y shown "'X my (—w)/) —miy (~w) (1~ wmy' (~w)) .

on top the page. Finally, the fixed-point equations (74) and (80)
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and

m =my i (—my (—w) (1 —wmy' (—w))). (81)

With Definition 1, we find

[15]

[16]

1 1 [17]
7Rx(w) T 1= RX—l (—wRX(lU) <RX(U)) + E)) (18]

v . (82)
_ [19]

’U}Rx(’w) (Rx(’w) + %)
[20]
and

L R R 1 R 83 24

x(w) x-1 (=Rx(w) (1 + wRx(w))). (83)
It is well known [33], [34] that fora K x N random matrix 22]

H with i.i.d. entries of varianceé /N, the R-transform of the
limiting spectral measur® g () is given by

1 [23]

Rypi(w) = 7——. (84) |24

Letting X' = HH', we find [25]
R(HHt)fl(w) =1 + CYR(HHT)fl(’lU) (1 + U)R(HHT)—l(’lU)) [26]

(85)
with (83). Solving (85) for the R-transform implies (15). tdo 27
that fora > 1, the mean of the spectral measure is diverging.
Thus, the R-transform must have a polewat= 0 which

. [28]
excludes the other solution of (85).
REFERENCES (28]
[1] G. Foschini and M. Gans, “On limits of wireless communicas in a [30]
fading environment when using multiple antennagjireless Personal
Communicationsvol. 6, pp. 311-335, 1998. [31]
[2] 1. E. Telatar, “Capacity of multi-antenna Gaussian c¢feds,” European
Transactions on Telecommunicationsl. 10, pp. 585-595, Nov./Dec.
1999. [32]

[3] B. R. Voj¢ic and W. M. Jang, “Tranmitter precoding inrghronous
multiuser communications,IEEE Transactions on Communicatigns
vol. 46, pp. 1346-1355, Oct. 1998.

M. Joham, W. Utschick, and J. A. Nossek, “Linear transpribcess-
ing in MIMO communication systems|EEE Transactions on Signal [34]
Processingvol. 53, pp. 2700-2712, Aug. 2005.

R. F. Fischer,Precoding and Signal Shaping for Digital Transmission
John Wiley & Sons, 2002.

C. Windpassinger, R. F. H. Fischer, T. Vencel, and J. Boétu“Precod-

ing in multiantenna and multiuser communication&EE Transactions

on Wireless Communicationsol. 3, pp. 1305-1316, July 2004.

B. M. Hochwald, C. Peel, and A. Swindlehurst, “A vectarfurbation
technique for near-capacity multiantenna multiuser comoation-

Part II: Perturbation,JEEE Transactions on Communicatignsol. 53,

pp. 537-544, Mar. 2005.

M. Tomlinson, “New automatic equaliser employing maalakithmetic,”

|IEE Electronics Lettersvol. 7, pp. 138-139, Mar. 1971.

H. Harashima and H. Miyakawa, “Matched-transmissiochtéque for
channels with intersymbol interferencéZEE Transactions on Commu-
nications vol. COM-20, pp. 774-780, Aug. 1972.

S. P. Boyd and L. Vandenbergh€onvex Optimization Cambridge
University Press, 2004.

S. F. Edwards and P. W. Anderson, “Theory of spin glass&surnal

of Physics F: Metal Physi¢svol. 5, pp. 965-974, 1975.

M. Mezard, G. Parisi, and M. A. Virasor&pin Glass Theory and
Beyond Singapore: World Scientific, 1987.

T. Tanaka, “A statistical mechanics approach to lasgstem analysis of
CDMA multiuser detectors,JEEE Transactions on Information Theory
vol. 48, pp. 2888—-2910, Nov. 2002.

A. L. Moustakas, S. H. Simon, and A. M. Sengupta, “MIMOpaaity
through correlated channels in the presence of correlatedérers and
noise: A (not so) large N analysislEEE Transactions on Information
Theory vol. 49, Oct. 2003.

(33]
(4]

(5]
(6]

(7]

(8]

El

[10]
[11]
[12]

[13]

[14]

JOURNAL OF SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 4MAY 2008

R. R. Muller and W. H. Gerstacker, “On the capacity lakee to sep-
aration of detection and decodindEEE Transactions on Information
Theory vol. 50, pp. 1769-1778, Aug. 2004.

D. Guo and S. Verdd, “Randomly spread CDMA: Asymptstizia
statistical physics,IEEE Transactions on Information Theoryol. 51,
pp. 1983-2010, June 2005.

Y. Kabashima and D. Saad, “Statistical mechanics obrerorrecting
codes,”Europhysics Lettersvol. 45, 1999.

A. Montanari and N. Sourlas, “The statistical mecharof turbo codes,”
The European Physics Journal Bol. 18, 2000.

G. H. Golub and C. F. van LoaMatrix Computations Baltimore: The
Johns Hopkins University Press, 3rd ed., 1996.

M. L. Mehta, Random MatricesBoston, MA: Academic Press, 2nd ed.,
1991.

C. B. Peel, B. M. Hochwald, and A. L. Swindlehurst, “Aec-
tor-perturbation technique for near-capacity multiantennaltioser
communication-Part I: Channel inversion and regularzgti IEEE
Transactions on Communicatigneol. 53, pp. 195-202, Jan. 2005.
M. Debbah and R. Miiller, “MIMO channel modelling andetlprinci-
ple of maximum entropy,1EEE Transactions on Information Theory
vol. 51, pp. 1667-1690, May 2005.

H. Nishimori, Statistical Physics of Spin Glasses and Information
Processing Oxford, U.K.: Oxford University Press, 2001.
HarishChandra, “Fourier transforms on a semisimple Lie algebia |
American Journal of Mathematicsol. 79, pp. 193-257, 1957.

C. Itzykson and J. Zuber, “The planar approximatior),(IDournal of
Mathematical Physigsvol. 21, pp. 411-421, Mar. 1980.

B. Hassibi and T. L. Marzetta, “Multiple-antennas arsbtropically
random unitary inputs: The received signal density in ddsem,” IEEE
Transactions on Information Theqryol. 48, pp. 1473-1484, June 2002.
K. Takeda, S. Uda, and Y. Kabashima, “Analysis of CDMA®&ms that
are characterized by eigenvalue spectruByfophysics Lettersvol. 76,
no. 6, pp. 1193-1199, 2006.

A. Guionnet and M. Maida, “A Fourier view on the R-trémsn
and related asymptotics of spherical integral&urnal of Functional
Analysis vol. 222, pp. 435-490, 2005.

K. Fischer and J. HertzSpin Glasses Cambridge, U.K.: Cambridge
University Press, 1991.

S. Kirkpatrick and D. Sherrington, “Infinite-ranged des of spin-
glasses,Physics Review Brol. 17, no. 11, 1978.

E. Marinari, G. Parisi, and F. Ritort, “Replica field tirg for determinis-
tic models (Il): A non-random spin glass with glassy behgVidournal
of Physics A: Mathematical and Generabl. 27, pp. 7647-7668, 1994.
G. Parisi, “A sequence of approximated solutions to $1 model for
spin glassesJournal of Physics A: Mathematical and Genenabl. 13,
1980.

D. V. Woiculescu, K. J. Dykema, and A. Nic&ree Random Variables
Providence, RI: American Mathematical Society, 1992.

A. M. Tulino and S. Verd(, “Random matrix theory and gl&ss commu-
nications,”Foundations and Trends in Communications and Information
Theory vol. 1, June 2004.



MULLER et al: VECTOR PRECODING FOR WIRELESS MIMO SYSTEMS AND ITS REPLICANALYSIS

Ralf Muller (S'96-M'03-SM’05) was born in

Schwabach, Germany, 1970. He received the Dipl.
Ing. and Dr.-Ing. degree with distinction from Uni-
versity of Erlangen-Nuremberg in 1996 and 1999
respectively. From 2000 to 2004, he was with
Forschungszentrum Telekommunikation Wien (ftw.)
in Vienna, Austria and teaching at Vienna University
of Technology. Since 2005 he has been a full profes
sor at the Department of Electronics and Telecom
munications at the Norwegian University of Scienc
and Technology (NTNU) in Trondheim, Norway. He

11

Aris Moustakas (SM'04) received a B.S. degree in
physics from Caltech in 1990 and M.S. and Ph.D.
degrees in theoretical condensed matter physics from
Harvard University in 1992 and 1996, respectively.
In 1998, he joined Bell Labs, Lucent Technolo-
gies, NJ, first in the Physical Sciences Division
and then also in the Wireless Advanced Technology
Laboratory. Since 2005 he is an assistant professor
at the Physics Dept. of the National Capodistrian
University of Athens. His current research interests
lie in the areas of multiple antenna systems, signal

held visiting appointments at Princeton University, U.S.Wstitut Eurecom, processing for smart antennas and the applications ofstitati physics
France, the University of Melbourne, Australia, Oulu Umsity, Finland, methods to the theory of communications and networks.

the National University of Singapore, Babes-Bolyai Unsiy, Cluj-Napoca,
Romania, and Kyoto University, Japan. Dr. Muller receitbd Leonard G.
Abraham Prize (jointly with Sergio Verda) from the IEEE Comnications
Society. He was presented awards for his dissertation byMiaienesmann
(now Vodafone) Foundation for Mobile Communications and tBerman
Information Technology Society (ITG). He also received th& award as
well as the Philipp-Reis Prize (jointly with R. Fischer)..DMuller served as
an associate editor for the IEEE Transactions on Informafibeory from
2003 to 2006.

Dongning Guo has been an Assistant Professor in
the Department of Electrical Engineering & Com-
puter Science at Northwestern University since 2004.
He received the Ph.D. and M.Sc. degrees from
Princeton University, the M.Eng. degree from the
National University of Singapore and the B.Eng.
degree from University of Science & Technology
of China. He was an R&D Engineer in the Centre
for Wireless Communications (now the Institute for
Infocom Research), Singapore from 1998 to 1999.
He was a Visiting Professor at Norwegian University
of Science and Technology in summer 2006. He received theeHahd
Suhner Best Student Paper Award in the International ZuBeminar on
Broadband Communications in 2000 and the National Sciermendation
Faculty Early Career Development (CAREER) Award in 2007s Hisearch
interests are in information theory, communications anivoking.




