
From Optimal Limited To Unlimited Supply Auctions

Jason D. Hartline
Microsoft Research
1065 La Avenida)

Mountain View, CA 94043

hartline@microsoft.com

Robert McGrew
∗

Computer Science Department
Stanford University
Stanford, CA 94305

bmcgrew@stanford.edu

ABSTRACT
We investigate the class of single-round, sealed-bid auctions for a
set of identical items to bidders who each desire one unit. We adopt
the worst-case competitive framework defined by [9, 5] that com-
pares the profit of an auction to that of an optimal single-price sale
of least two items. In this paper, we first derive an optimal auction
for three items, answering an open question from [8]. Second, we
show that the form of this auction is independent of the competi-
tive framework used. Third, we propose a schema for converting
a given limited-supply auction into an unlimited supply auction.
Applying this technique to our optimal auction for three items, we
achieve an auction with a competitive ratio of 3.25, which improves
upon the previously best-known competitive ratio of 3.39 from [7].
Finally, we generalize a result from [8] and extend our understand-
ing of the nature of the optimal competitive auction by showing that
the optimal competitive auction occasionally offers prices that are
higher than all bid values.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems; J.4 [Social and Behavioral
Sciences]: Economics

General Terms
Algorithms, Economics, Theory

Keywords
Auctions, Mechanism Design, Competitive Analysis

1. INTRODUCTION
The research area ofoptimal mechanism designlooks at design-

ing a mechanism to produce the most desirable outcome for the
entity running the mechanism. This problem is well studied for the
auction design problem where the optimal mechanism is the one
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that brings the seller the most profit. Here, the classical approach
is to design such a mechanism given theprior distribution from
which the bidders’ preferences are drawn (See e.g., [12, 4]). Re-
cently Goldberg et al. [9] introduced the use of worst-case compet-
itive analysis (See e.g., [3]) to analyze the performance of auctions
that have no knowledge of the prior distribution. The goal of such
work is to design an auction that achieves a large constant fraction
of the profit attainable by an optimal mechanism that knows the
prior distribution in advance. Positive results in this direction are
fueled by the observation that in auctions for a number of identical
units, much of the distribution from which the bidders are drawn
can be deduced on the fly by the auction as it is being run [9, 14,
2].

The performance of an auction in such a worst-case competitive
analysis is measured by itscompetitive ratio, the ratio between a
benchmark performance and the auction’s performance on the input
distribution that maximizes this ratio. The holy grail of the worst-
case competitive analysis of auctions is the auction that achieves
theoptimal competitive ratio(as small as possible). Since [9] this
search has led to improved understanding of the nature of the op-
timal auction, the techniques for on-the-fly pricing in these scenar-
ios, and the competitive ratio of the optimal auction [5, 7, 8]. In this
paper we continue this line of research by improving in all of these
directions. Furthermore, we give evidence corroborating the con-
jecture that the form of the optimal auction is independent of the
benchmark used in the auction’s competitive analysis. This result
further validates the use of competitive analysis in gauging auction
performance.

We consider thesingle item, multi-unit, unit-demandauction prob-
lem. In such an auction there are many units of a single item avail-
able for sale to bidders who each desire only one unit. Each bidder
has a valuation representing how much the item is worth to him.
The auction is performed by soliciting a sealed bid from each of
the bidders and deciding on the allocation of units to bidders and
the prices to be paid by the bidders. The bidders are assumed to bid
so as to maximize their personal utility, the difference between their
valuation and the price they pay. To handle the problem of design-
ing and analyzing auctions where bidders may falsely declare their
valuations to get a better deal, we will adopt the solution concept
of truthful mechanism design(see, e.g., [9, 15, 13]). In a truthful
auction, revealing one’s true valuation as one’s bid is an optimal
strategy for each bidder regardless of the bids of the other bidders.
In this paper, we will restrict our attention to truthful (a.k.a., incen-
tive compatible or strategyproof) auctions.

A particularly interesting special case of the auction problem is
theunlimited supplycase. In this case the number of units for sale is
at least the number of bidders in the auction. This is natural for the
sale of digital goods where there is negligible cost for duplicating



and distributing the good. Pay-per-view television and download-
able audio files are examples of such goods.

The competitive framework introduced in [9] and further refined
in [5] uses the profit of theoptimal omniscient single priced mech-
anism that sells at least two unitsas the benchmark for competitive
analysis. The assumption that two or more units are sold is neces-
sary because in the worst case it is impossible to obtain a constant
fraction of the profit of the optimal mechanism when it sells only
one unit [9]. In this framework for competitive analysis, an auction
is said to beβ-competitiveif it achieves a profit that is within a fac-
tor of β ≥ 1 of the benchmark profiton every input. The optimal
auction is the one which isβ-competitive with the minimum value
of β.

Previous to this work, the best known auction for the unlimited
supply case had a competitive ratio of 3.39 [7] and the best lower
bound known was 2.42 [8]. For the limited supply case, auctions
can achieve substantially better competitive ratios. When there are
only two units for sale, the optimal auction gives a competitive ratio
of 2, which matches the lower bound for two units. When there
are three units for sale, the best previously known auction had a
competitive ratio of 2.3, compared with a lower bound of13/6 ≈
2.17 [8].

The results of this paper are as follows:

• We give the auction for three units that is optimally compet-
itive against the profit of the omniscient single priced mech-
anism that sells at least two units. This auction achieves a
competitive ratio of 13/6, matching the lower bound from
[8] (Section 3).

• We show that the form of the optimal auction is indepen-
dent of the benchmark used in competitive analysis. In doing
so, we give an optimal three bidder auction for generalized
benchmarks (Section 4).

• We give a general technique for converting a limited supply
auction into an unlimited supply auction where it is possible
to use the competitive ratio of the limited supply auction to
obtain a bound on the competitive ratio of the unlimited sup-
ply auction. We refer to auctions derived from this frame-
work asaggregation auctions(Section 5).

• We improve on the best known competitive ratio by prov-
ing that the aggregation auction constructed from our optimal
three-unit auction is 3.25-competitive (Section 5.1).

• Assuming that the conjecture that the optimal`-unit auction
has a competitive ratio that matches the lower bound proved
in [8], we show that this optimal auction for` ≥ 3 on some
inputs will occasionally offer prices that are higher than any
bid in that input (Section 6). For the three-unit case where we
have shown that the lower bound of [8] is tight, this observa-
tion led to our construction of the optimal three-unit auction.

2. DEFINITIONS AND BACKGROUND
We consider single-round, sealed-bid auctions for a set of` iden-

tical units of an item to bidders who each desire one unit. As men-
tioned in the introduction, we adopt the game-theoretic solution
concept of truthful mechanism design. A useful simplification of
the problem of designing truthful auctions is obtained through the
following algorithmic characterization [9]. Related formulations to
this one have appeared in numerous places in recent literature (e.g.,
[1, 14, 5, 10]).

DEFINITION 1. Given a bid vector ofn bids,b = (b1, . . . , bn),
let b-i denote the vector of withbi replaced with a ‘?’, i.e.,

b-i = (b1, . . . , bi−1, ?, bi+1, . . . , bn).

DEFINITION 2. Let f be a function from bid vectors (with a
‘?’) to prices (non-negative real numbers). Thedeterministic bid-
independent auction defined byf , BIf , works as follows. For each
bidderi:

1. Setti = f(b-i).

2. If ti < bi, bidderi wins at priceti.

3. If ti > bi, bidderi loses.

4. Otherwise, (ti = bi) the auction can either accept the bid at
price ti or reject it.

A randomized bid-independent auction is a distribution over deter-
ministic bid-independent auctions.

The proof of the following theorem can be found, for example,
in [5].

THEOREM 1. An auction is truthful if and only if it is equivalent
to a bid-independent auction.

Given this equivalence, we will use the the terminologybid-
independentandtruthful interchangeably.

For a randomized bid-independent auction,f(b-i) is a random
variable. We denote the probability density off(b-i) atz byρb-i(z).
We denote the profit of a truthful auctionA on inputb asA(b).
The expected profit of the auction,E[A(b)], is the sum of the ex-
pected payments made by each bidder, which we denote bypi(b)
for bidderi. Clearly, the expected payment of each bid satisfies

pi(b) =

∫ bi

0

xρb-i(x)dx.

2.1 Competitive Framework
We now review the competitive framework from [5]. In order

to evaluate the performance of auctions with respect to the goal of
profit maximization, we introduce the optimal single price omni-
scient auctionF and the related omniscient auctionF (2).

DEFINITION 3. Give a vectorb = (b1, . . . , bn), let b(i) repre-
sent thei-th largest value inb.

The optimal single price omniscient auction, F , is defined as
follows. AuctionF on inputb determines the valuek such that
kb(k) is maximized. All bidders withbi ≥ b(k) win at priceb(k); all
remaining bidders lose. The profit ofF on inputb is thusF(b) =
max1≤k≤n kb(k).

In the competitive framework of [5] and subsequent papers, the
performance of a truthful auction is gauged in comparison toF (2),
theoptimal singled priced auction that sells at least two units. The
profit of F (2) is max2≤k≤n kb(k) There are a number of reasons
to choose this benchmark for comparison, interested readers should
see [5] or [6] for a more detailed discussion.

Let A be a truthful auction. We say thatA is β-competitive
againstF (2) (or just β-competitive) if for all bid vectorsb, the
expected profit ofA onb satisfies

E[A(b)] ≥
F (2)(b)

β
.

In Section 4 we generalize this framework to other profit bench-
marks.



2.2 Scale Invariant and Symmetric Auctions
A symmetricauction is one where the auction outcome is un-

changed when the input bids arrive in a different permutation. Gold-
berg et al. [8] show that a symmetric auction achieves the optimal
competitive ratio. This is natural as the profit benchmark we con-
sider is symmetric, and it allows us to consider only symmetric
auctions when looking for the one with the optimal competitive ra-
tio.

An auction defined by bid-independent functionf is scale in-
variant if, for all i and allz, Pr[f(b-i) ≥ z] = Pr[f(cb-i) ≥ cz].
It is conjectured that the assumption of scale invariance is without
loss of generality. Thus, we are motivated to consider symmet-
ric scale-invariant auctions. When specifying a symmetric scale-
invariant auction we can assume thatf is only a function of the
relative magnitudes of then − 1 bids in b-i and that one of the
bids,bj = 1. It will be convenient to specify such auctions via the
density function off(b-i), ρb-i(z). It is enough to specify such a
density function of the formρ1,z1,...,zn−1

(z) with 1 ≤ zi ≤ zi+1.

2.3 Limited Supply Versus Unlimited Supply
Following [8], throughout the remainder of this paper we will

be making the assumption thatn = `, i.e., the number of bidders
is equal to the number of units for sale. This is without loss of
generality as (a) any lower bound that applies to then = ` case
also extends to the case wheren ≥ ` [8], and (b) there is a re-
duction from the unlimited supply auction problem to the limited
supply auction problem that takes an unlimited supply auction that
is β-competitive withF (2) and constructs a limited supply auction
parameterized bỳ that isβ-competitive withF (2,`), the optimal
omniscient auction that sells between 2 and` units [6].

Henceforth, we will assume that we are in the unlimited supply
case, and we will examine lower bounds for limited supply prob-
lems by placing a restriction on the number of bidders in the auc-
tion.

2.4 Lower Bounds and Optimal Auctions
Frequently in this paper, we will refer to the best known lower

bound on the competitive ratio of truthful auctions:

THEOREM 2. [8] The competitive ratio of any auction onn
bidders is at least

1 −

n
∑

i=2

(

−1

n

)i−1
i

i − 1

(

n − 1

i − 1

)

.

DEFINITION 4. LetΥn denote then-bidder auction that achieves
the optimal competitive ratio.

This bound is derived by analyzing the performance of any auc-
tion on the following distributionB. In each random bid vec-
tor B, each bidBi is drawn i.i.d. from the distribution such that
Pr[Bi ≥ s] ≤ 1/s for all s ∈ S.

In the two-bidder case, this lower bound is 2. This is achieved by
Υ2 which is the 1-unit Vickrey auction.1 In the three-bidder case,
this lower bound is 13/6. In the next section, we define the auc-
tion Υ3 which matches this lower bound. In the four-bidder case,
this lower bound is 96/215. In the limit as the number of bidders
grows, this lower bound approaches a number which is approxi-
mately 2.42.

It is conjectured that this lower bound is tight for any number of
bidders and the optimal auction,Υn, matches it.
1The 1-unit Vickrey auction sells to the highest bidder at the second
highest bid value.

2.5 Profit Extraction
In this section we review the truthful profit extraction mechanism

ProfitExtractR. This mechanism is a special case of a general
cost-sharing schema due to Moulin and Shenker [11].

The goal of profit extraction is, given bidsb, to extract a target
valueR of profit from some subset of the bidders.

ProfitExtractR: Given bidsb, find the largestk such
that the highestk bidders can equally share the cost
R. Charge each of these biddersR/k. If no subset
of bidders can cover the cost, the mechanism has no
winners.

Important properties of this auction are as follows:

• ProfitExtractR is truthful.

• If R ≤ F(b), ProfitExtractR(b) = R; otherwise it has no
winners and no revenue.

We will use this profit extraction mechanism in Section 5 with
the following intuition. Such a profit extractor makes it possible to
treat this subset of bidders as a single bid with valueF(S). Note
that given a single bid,b, a truthful mechanism might offer it price
t and if t ≤ b then the bidder wins and payst; otherwise the bid-
der pays nothing (and loses). Likewise, a mechanism can offer
the set of biddersS a target revenueR. If R ≤ F (2)(S), then
ProfitExtractR raisesR from S; otherwise, the it raises no rev-
enue fromS.

3. AN OPTIMAL AUCTION FOR THREE
BIDDERS

In this section we define the optimal auction for three bidders,
Υ3, and prove that it indeed matches the known lower bound of
13/6. We follow the definition and proof with a discussion of how
this auction was derived.

DEFINITION 5. Υ3 is scale-invariant and symmetric and given
by the bid-independent function with density function

ρ1,x(z) =















































For x ≤ 3/2
{

1 with probability9/13

z with probability densityg(z) for z > 3/2

For x > 3/2










1 with probability9/13 −
∫ x

3/2
zg(z)dz

x with probability
∫ x

3/2
(z + 1)g(z)dz

z with probability densityg(z) for z > x

whereg(x) = 2/13

(x−1)3
.

THEOREM 3. TheΥ3 auction has a competitive ratio of13/6 ≈
2.17, which is optimal. Furthermore, the auction raises exactly
6
13
F (2) on every input with non-identical bids.

PROOF. Consider the bids1, x, y, with 1 < x < y. There are
three cases.
CASE 1 (x < y ≤ 3/2): F (2) = 3. The auction must raise
expected revenue of at least18/13 on these bids. The bidder with
valuationx will pay 1 with 9/13, and the bidder with valuationy
will pay 1 with probability9/13. ThereforeΥ3 raises18/13 on
these bids.
CASE 2 (x ≤ 3/2 < y): F (2) = 3. The auction must raise ex-
pected revenue of at least18/13 on these bids. The bidder with



valuationx will pay 9/13−
∫ y

3/2
zg(z)dz in expectation. The bid-

der with valuationy will pay 9/13 +
∫ y

3/2
zg(z)dz in expectation.

ThereforeΥ3 raises18/13 on these bids.
CASE 3 (3/2 < x ≤ y): F (2) = 2x. The auction must raise
expected revenue of at least12x/13 on these bids. Consider the
revenue raised from all three bidders:

E[Υ3(b)] = p(1, x, y) + p(x, 1, y) + p(y, 1, x)

= 0 + 9/13 −

∫ y

3/2

zg(z)dz + 9/13 −

∫ x

3/2

zg(z)dz

+ x

∫ x

3/2

(z + 1)g(z)dz +

∫ y

x

zg(z)dz

= 18/13 + (x − 2)

∫ x

3/2

zg(z)dz + x

∫ x

3/2

g(z)dz

= 12x/13.

The final equation comes from substituting ing(x) = 2/13

(x−1)3
and

expanding the integrals. Note that the fraction ofF (2) raised on
every input is identical. If any of the inequalities1 ≤ x ≤ y
are not strict, the same proof applies giving a lower bound on the
auction’s profit; however, this bound may no longer be tight.

Motivation for Υ3

In this section, we will conjecture that a particular input distribution
is worst-case, and show, as a consequence, that all inputs are worst-
case in the optimal auction. By applying this consequence, we will
derive an optimal auction for three bidders.

A truthful, randomized auction onn bidders can be represented
by a randomized functionf : R

n−1 × n → R that maps masked
bid vectors to prices inR. By normalization, we can assume that
the lowest possible bid is 1. Recall thatρb-i(z) = Pr[f(b-i) = z].

The optimal auction for the finite auction problem can be found
by the following optimization problem in which the variables are
ρb-i(z):

maximize r

subject to
n
∑

i=1

∫ bi

z=1

zρb-i(z) ≥ rF (2)(b)

∫ ∞

z=1

ρb-i(z) = 1

ρb-i(z) ≥ 0

This set of integral inequalities is difficult to maximize over.
However, by guessing which constraints are tight and which are
slack at the optimum, we will be able to derive a set of differential
equations for which any feasible solution is an optimal auction.

As we discuss in Section 2.4, in [8], the authors define a distri-
bution and use it to find a lower bound on the competitive ratio of
the optimal auction. For two bidders, this bid distribution is the
worst-case input distribution. We guess (and later verify) that this
distribution is the worst-case input distribution for three bidders as
well. Since this distribution has full support over the set of all bid
vectors and a worst-case distribution puts positive probability only
on worst-case inputs, we can therefore assume that all but a mea-
sure zero set of inputs is worst-case for the optimal auction. In the
optimal two-bidder auction, all inputs with non-identical bids are
worst-case, so we will assume the same for three bidders.

The guess that these constraints are tight allows us to transform
the optimization problem into a feasibility problem constrained by
differential equations. If the solution to these equations has value
matching the lower bound obtained from the worst-case distribu-

tion, then this solution is the optimal auction and that our conjec-
tured choice of worst-case distribution is correct.

In Section 6 we show that the optimal auction must sometimes
place probability mass on sale prices above the highest bid. This
motivates considering symmetric scale-invariant auctions for three
bidders with probability density function,ρ1,x(z), of the following
form:

ρ1,x(z) =











1 with discrete probabilitya(x)

x with discrete probabilityb(x)

z with probability densityg(z) for z > x

In this auction, the sale price for the first bidder is either one
of the latter two bids, or higher than either bid with a probability
density which is independent of the input.

The feasibility problem which arises from the linear optimization
problem by assuming the constraints are tight is as follows:

a(y) + a(x) + xb(x) +

∫ y

x

zg(z)dz = r max(3, 2x) ∀x < y

a(x) + b(x) +

∫ ∞

x

g(z)dz = 1

a(x) ≥ 0
b(x) ≥ 0
g(z) ≥ 0

Solving this feasibility problem gives the auctionΥ3 proposed
above. The proof of its optimality validates its proposed form.
Finding a simple restriction on the form ofn-bidder auctions for
n > 3 under which the optimal auction can be found analytically
as above remains an open problem.

4. GENERALIZED PROFIT BENCHMARKS
In this section, we widen our focus beyond auctions that compete

with F (2) to consider other benchmarks for an auction’s profit. We
will show that, for three bidders, the form of the optimal auction
is essentially independent of the benchmark profit used. This re-
sults strongly corroborates the worst-case competitive analysis of
auctions by showing that our techniques allow us to derive auctions
which are competitive against a broad variety of reasonable bench-
marks rather than simply againstF (2).

Previous work in competitive analysis of auctions has focused on
the question of designing the auction with the best competitive ra-
tio againstF (2), the profit of the optimal omniscient single-priced
mechanism that sells at least two items. However, it is reasonable to
consider other benchmarks. For instance, one might wish to com-
pete againstV∗, the profit of thek-Vickrey auction with optimal-in-
hindsight choice ofk.2 Alternatively, if an auction is being used as
a subroutine in a larger mechanism, one might wish to choose the
auction which is optimally competitive with a benchmark specific
to that purpose.

Recall thatF (2)(b) = max2≥k≥n kb(k). We can generalize this
definition toGs, parameterized bys = (s2, . . . , sn) and defined as:

Gs(b) = max
2≤k≤n

skb(k).

When consideringGs we assume without loss of generality that
si < si+1 as otherwise the constraint imposed bysi+1 is irrelevant.
Note thatF (2) is the special case ofGs with si = i, and thatV∗ =
Gs with si = i − 1.

2Recall that thek-Vickrey auction sells a unit to each of the high-
estk bidders at a price equal to thek + 1st highest bid,b(k+1),
achieving a profit ofkb(k+1).



Competing with Gs

We will now design a three-bidder auctionΥs,t
3 that achieves the

optimal competitive ratio againstGs,t. As before, we will first find
a lower bound on the competitive ratio and then design an auction
to meet that bound.

We can lower bound the competitive ratio ofΥs,t
3 using the same

worst-case distribution from [8] that we used againstF (2). Eval-
uating the performance of any auction competing againstGs,t on
this distribution will yield the following theorem. We denote the
optimal auction for three bidders againstGs,t asΥs,t

3 .

THEOREM 4. The optimal three-bidder auction,Υs,t
3 , compet-

ing againstGs,t(b) = max(sb(2), tb(3)) has a competitive ratio of

at leasts2+t2

2t
.

The proof can be found in the appendix.
Similarly, we can find the optimal auction againstGs,t using the

same technique we used to solve for the three bidder auction with
the best competitive ratio againstF (2).

DEFINITION 6. Υs,t
3 is scale-invariant and symmetric and given

by the bid-independent function with density function

ρ1,x(z) =















































For x ≤ t
s

{

1 with probability t2

s2+t2

z with probability densityg(z) for z > t
s

For x > t
s













1 with probability t2

s2+t2
−
∫ x

t
s

zg(z)dz

x with probability
∫ x

t
s

(z + 1)g(z)dz

z with probability densityg(z) for z > x

whereg(x) = 2(t−s)2/(s2+t2)

(x−1)3
.

THEOREM 5. Υs,t
3 is s2+t2

2t
-competitive withGs,t.

This auction, likeΥ3, can be derived by reducing the optimization
problem to a feasibility problem, guessing that the optimal solution
has the same form asΥs,t

3 , and solving. The auction is optimal be-
cause it matches the lower bound found above. Note that the form
of Υs,t

3 is essentially the same as forΥ3, but that the probability of
each price is scaled depending on the values ofs andt.

That our auction for three bidders matches the lower bound com-
puted by the input distribution used in [8] is strong evidence that
this input distribution is the worst-case input distribution for any
number of bidders and any generalized profit benchmark. Further-
more, we strongly suspect that for any number of bidders, the form
of the optimal auction will be independent of the benchmark used.

5. AGGREGATION AUCTIONS
We have seen that optimal auctions for small cases of the limited-

supply model can be found analytically. In this section, we will
construct a schema for turning limited supply auctions into unlim-
ited supply auctions with a good competitive ratio.

As discussed in Section 2.5, the existence of a profit extrac-
tor, ProfitExtractR, allows an auction to treat a set of bidsS
as a single bid with valueF(S). Given n bidders and an auc-
tion, Am, for m < n bidders, we can convert them-bidder auc-
tion into ann-bidder auction by randomly partitioning the bidders
into m subsets and then treating each subset as a single bidder (via
ProfitExtractR) and running them-bidder auction.

DEFINITION 7. Given a truthfulm-bidder auction,Am, the
m-aggregation auction forAm, AggAm

, works as follows:

1. Cast each bid uniformly at random into one ofm bins, re-
sulting in bid vectorsb(1), . . . ,b(m).

2. For each binj, compute the aggregate bidBj = F(b(j)).
Let B be the vector of aggregate bids, andB−j be the ag-
gregate bids for all bins other thanj.

3. Compute the aggregate priceTj = f(B−j), wheref is the
bid-independent function forAm.

4. For each binj, run ProfitExtractTj
onb

(j).

SinceAm andProfitExtractR are truthful,Tj is computed in-
dependently of any bid in binj and thus the price offered any bidder
in b

(j) is independent of his bid; therefore,

THEOREM 6. If Am is truthful, them-aggregation auction for
Am, AggAm

, is truthful.

Note that this schema yields a new way of understanding the
Random Sampling Profit Extraction (RSPE) auction [5] as the sim-
plest case of an aggregation auction. It is the 2-aggregation auction
for Υ2, the 1-unit Vickrey auction.

To analyzeAggAm
, consider throwingk balls intom labeled

bins. Letk represent a configuration of balls in bins, so thatki is
equal to the number of balls in bini, andk(i) is equal to the number
of balls in theith largest bin. LetKm,k represent the set of all pos-
sible configurations ofk balls inm bins. We write the multinomial
coefficient ofk as

(

k
k

)

. The probability that a particular configu-
rationk arises by throwing balls into bins uniformly at random is
(

k
k

)

m−k.

THEOREM 7. LetAm be an auction with competitive ratioβ.
Then them-aggregation auction forAm, AggAm

, raises the fol-

lowing fraction of the optimal revenueF (2)(b):

E
[

AggAm
(b)
]

F (2)
≥ min

k≥2

∑

k∈Km,k

F (2)(k)
(

k
k

)

βkmk

PROOF. By definition,F (2) sells tok ≥ 2 bidders at a single
price p. Let kj be the number of such bidders inb(j). Clearly,
F(b(j)) ≥ pkj . Therefore,

F (2)(F(b(i)), . . . ,F(b(n)))

F (2)(b)
≥

F (2)(pk1, . . . , pkn)

pk

=
F (2)(k1, . . . , kn)

k

The inequality follows from the monotonicity ofF (2), and the
equality from the homogeneity ofF (2).

ProfitExtractTj
will raise Tj if Tj ≤ Bj , and no profit other-

wise. Thus,E
[

AggAm
(b)
]

≥ E

[

F (2)(B)/β
]

. The theorem fol-

lows by rewriting this expectation as a sum over allk in Km,k.

5.1 A 3.25 Competitive Auction
We apply the aggregation auction schema toΥ3, our optimal

auction for three bidders, to achieve an auction with competitive
ratio 3.25. This improves on the previously best known auction
which is 3.39-competitive [7].

THEOREM 8. The aggregation auction forΥ3 has competitive
ratio 3.25.



PROOF. By theorem 7,

E
[

AggΥ3
(b)
]

F (2)(b)
≥ min

k≥2

k
∑

i=1

k−i
∑

j=1

F (2)(i, j, k − i − j)
(

k
i,j,k−i−j

)

βk3k

Fork = 2 andk = 3, E
[

AggΥ3
(b)
]

= 2
3
k/β. As k increases,

E
[

AggΥ3
(b)
]

/F (2) increases as well. Since we do not expect
to find a closed-form formula for the revenue, we lower bound
F (2)(b) by 3b(3). Using large deviation bounds, one can show
that this lower bound is greater than2

3
k/β for large-enoughk, and

the remainder can be shown by explicit calculation.
Plugging inβ = 13/6, the competitive ratio is13/4. As k in-

creases, the competitive ratio approaches13/6.
Note that the above bound on the competitive ratio ofAggΥ3

is tight. To see this, consider the bid vector with two very large
and non-identical bids ofh andh + ε with the remaining bids1.
Given that the competitive ratio ofΥ3 is tight on this example,
the expected revenue of this auction on this input will be exactly
13/4.

5.2 A Gs,t-based Aggregation Auction
In this section we show thatΥ3 is not the optimal auction to

use in an aggregation auction. One can do better by choosing the
auction that is optimally competitive against a specially tailored
benchmark.

To see why this might be the case, notice (Table 1) that the frac-
tion of F (2)(b) raised for when there arek = 2 andk = 3 win-
ning bidders inF (2)(b) is substantially smaller than the fraction of
F (2)(b) raised when there are more winners. This occurs because
the expected ratio betweenF (2)(B) andF (2)(b) is lower in this
case while the competitive ratio ofΥ3 is constant. If we chose a
three bidder auction that performed better whenF (2) has smaller
numbers of winners, our aggregation auction would perform better
in the worst case.

One approach is to compete against a different benchmark that
puts more weight thanF (2) on solutions with a small number of
winners. Recall thatF (2) is the instance ofGs,t with s = 2 and
t = 3. By using the auction that competes optimally againstGs,t

with s > 2, while holding t = 3, we will raise a higher frac-
tion of revenue on smaller numbers of winning bidders and a lower
fraction of revenue on large numbers of winning bidders. We can
numerically optimize the values ofs andt in Gs,t(b) in order to
achieve the best competitive ratio for the aggregation auction. In
fact, this will allow us to improve our competitive ratio slightly.

THEOREM 9. For an optimal choice ofs andt, the aggregation
auction forΥs,t

3 is 3.243-competitive.

The proof follows the outline of Theorem 7 and 8 with the opti-
mal choice ofs = 2.162 (while t is held constant at 3).

5.3 Further Reducing the Competitive Ratio
There are a number of ways we might attempt to use this ag-

gregation auction schema to continue to push the competitive ratio
down. In this section, we give a brief discussion of several attempts.

5.3.1 AggΥm
for m > 3

If the aggregation auction forΥ2 has a competitive ratio of 4
and the aggregation auction forΥ3 has a competitive ratio of 3.25,
can we improve the competitive ratio by aggregatingΥ4 or Υm

for largerm? We conjecture in the negative: form > 3, the ag-
gregation auction forΥm has a larger competitive ratio than the
aggregation auction forΥ3. The primary difficulty in proving this

k m = 2 m = 3 m = 4 m = 5 m = 6 m = 7
2 0.25 0.3077 0.3349 0.3508 0.3612 0.3686
3 0.25 0.3077 0.3349 0.3508 0.3612 0.3686
4 0.3125 0.3248 0.3349 0.3438 0.3512 0.3573
5 0.3125 0.3191 0.3244 0.3311 0.3378 0.3439
6 0.3438 0.321 0.3057 0.3056 0.311 0.318
7 0.3438 0.333 0.3081 0.3009 0.3025 0.3074
8 0.3633 0.3229 0.3109 0.3022 0.3002 0.3024
9 0.3633 0.3233 0.3057 0.2977 0.2927 0.292
10 0.377 0.3328 0.308 0.2952 0.2866 0.2837
11 0.377 0.3319 0.3128 0.298 0.2865 0.2813
12 0.3872 0.3358 0.3105 0.3001 0.2894 0.2827
13 0.3872 0.3395 0.3092 0.2976 0.2905 0.2841
14 0.3953 0.3391 0.312 0.2961 0.2888 0.2835
15 0.3953 0.3427 0.3135 0.2973 0.2882 0.2825
16 0.4018 0.3433 0.3128 0.298 0.2884 0.2823
17 0.4018 0.3428 0.3129 0.2967 0.2878 0.282
18 0.4073 0.3461 0.3133 0.2959 0.2859 0.2808
19 0.4073 0.3477 0.3137 0.2962 0.2844 0.2789
20 0.4119 0.3486 0.3148 0.2973 0.2843 0.2777
21 0.4119 0.3506 0.3171 0.298 0.2851 0.2775
22 0.4159 0.3519 0.3189 0.2986 0.2863 0.2781
23 0.4159 0.3531 0.3202 0.2995 0.2872 0.2791
24 0.4194 0.3539 0.3209 0.3003 0.2878 0.2797
25 0.4194 0.3548 0.3218 0.3012 0.2886 0.2801

Table 1: E

[

A(b)/F (2)(b)
]

for AggΥm
as a function ofk, the

optimal number of winners in F (2)(b). The lowest value for
each column is printed in bold.

conjecture lies in the difficulty of finding a closed-form solution
for the formula of Theorem 7. We can, however, evaluate this for-
mula numerically for different values ofm andk, assuming that the
competitive ratio forΥm matches the lower bound form given by
Theorem 2. Table 1 shows, for each value ofm andk, the fraction
of F (2) raised by the aggregation auction forAggΥm

when there
arek winning bidders, assuming the lower bound of Theorem 2 is
tight.

5.3.2 Convex combinations ofAggΥm

As can be seen in Table 1, whenm > 3, the worst-case value
of k is no longer 2 and 3, but instead an increasing function of
m. An aggregation auction forΥm outperforms the aggregation
auction forΥ3 when there are two or three winning bidders, while
the aggregation auction forΥ3 outperforms the other when there
are at least six winning bidders. Thus, for instance, an auction
which randomizes between aggregation auctions forΥ3 and Υ4

will have a worst-case which is better than that of either auction
alone. Larger combinations of auctions will allow more room to
optimize the worst-case. However, we suspect that no convex com-
bination of aggregation auctions will have a competitive ratio lower
than 3. Furthermore, note that we cannot yet claim the existence of
a good auction via this technique as the optimal auctionΥn for
n > 3 is not known and it is only conjectured that the bound given
by Theorem 2 and represented in Table 1 is correct forΥn.

6. A LOWER BOUND FOR CONSERVATIVE
AUCTIONS

In this section, we define a class of auctions that never offer a
sale price which is higher than any bid in the input and prove a
lower bound on the competitive ratio of these auctions. As this



lower bound is stronger than the lower bound of Theorem 2 for
n ≥ 3, it shows that the optimal auction must occasionally charge
a sales price higher than any bid in the input. Specifically, this result
partially explains the form of the optimal three bidder auction.

DEFINITION 8. We say an auctionBIf isconservativeif its bid-
independent functionf satisfiesf(b-i) ≤ max(b-i).

We can now state our lower bound for conservative auctions.

THEOREM 10. LetA be a conservative auction forn bidders.
Then the competitive ratio ofA is at least3n−2

n
.

COROLLARY 1. The competitive ratio of any conservative auc-
tion for an arbitrary number of bidders is at least three.

For a two-bidder auction, this restriction does not prevent opti-
mality. Υ2, the 1-unit Vickrey auction, is conservative. For larger
numbers of bidders, however, the restriction to conservative auc-
tions does affect the competitive ratio. For the three-bidder case,
Υ3 has competitive ratio 2.17, while the best conservative auction
is no better than 2.33-competitive.

Thek-Vickrey auction and the Random Sampling Optimal Price
auction [9] are conservative auctions. The Random Sampling Profit
Extraction auction [5] and the CORE auction [7], on the other hand,
use theProfitExtractR mechanism as a subroutine and thus some-
times offer a sale price which is higher than the highest input bid
value.

In [8], the authors define arestrictedauction as one on which,
for any input, the sale prices are drawn from the set of input bid
values. The class of conservative auctions can be viewed as a gen-
eralization of the class of restricted auctions and therefore our result
below gives lower bounds on the performance of a broader class of
auctions.

We will prove Theorem 10 with the aid of the following lemma:

LEMMA 1. Let A be a conservative auction with competitive
ratio 1/r for n bidders. Leth � n. Leth0 = 1 andhk = kh oth-
erwise. Then, for allk andH ≥ kh, Pr[f(1, 1, . . . , 1, H) ≤ hk] ≥
nr−1
n−1

+ k( 3nr−2r−n
n−1

).

PROOF. The lemma is proved by strong induction onk. First
some notation that will be convenient. For any particulark and
H we will be considering the bid vectorb = (1, . . . , 1, hk, H)
and placing bounds onρb-i(z). Since we can assume without loss
of generality that the auction is symmetric, we will notateb-1 as
b with any one of the 1-valued bids masked. Similarly we notate
b-hk

(resp.b-H ) asb with thehk-valued bid (resp.H-valued bid)
masked. We will also letp1(b), phk

(b), andpH(b) represent the
expected payment of a 1-valued,hk-valued, andH-valued bidder
in A on b, respectively (note by symmetry the expected payment
for all 1-valued bidders is the same).

Base case (k = 0, hk = 1): A must raise revenue of at leastrn
onb = (1, . . . , 1, 1, H):

rn ≤ pH(b) + (n − 1)p1(b)

= 1 + (n − 1)

∫ 1

0

xρb-1(x)dx

≤ 1 + (n − 1)

∫ 1

0

ρb-1(x)dx

The second inequality follows from the conservatism of the un-
derlying auction. The base case follows trivially from the final in-
equality.

Inductive case (k > 0, hk = kh): Let b = (1, . . . , 1, hk, H).
First, we will find an upper bound onpH(b)

pH(b) =

∫ 1

0

xρb-H (x)dx +

k
∑

i=1

∫ hi

hi−1

xρb-H (x)dx (1)

≤ 1 +
k
∑

i=1

hi

∫ hi

hi−1

ρb-H (x)dx

≤ 1 +

(

3nr − 2r − n

n − 1

) k−1
∑

i=1

ih

+ kh

(

1 −
nr − 1

n − 1
− (k − 1)

3nr − 2r − n

n − 1

)

(2)

= kh

[

n(1 − r)

n − 1
+

(k − 1)

2

3nr − 2r − n

n − 1

]

+ 1. (3)

Equation (1) follows from the conservatism ofA and (2) is from
invoking the strong inductive hypothesis withH = kh and the
observation that the maximum possible revenue will be found by
placing exactly enough probability at each multiple ofh to satisfy
the constraints of the inductive hypothesis and placing the remain-
ing probability atkh. Next, we will find a lower bound onphk

(b)
by considering the revenue raised by the bidsb. Recall thatA must
obtain a profit of at leastrF (2)(b) = 2rkh. Given upper-bounds
on the profit from theH-valued, equation bid (3), and the 1-valued
bids, the profit from thehk-valued bid must be at least:

phk
(b) ≥ 2rkh − (n − 2)p1(b) − pH(b)

≥ kh

[

2r −
n(1 − r)

n − 1
+

(k − 1)

2

3nr − 2r − n

n − 1

]

− O(n).

(4)

In order to lower boundPr[f(b-hk
) ≤ kh], consider the auction

that minimizes it and is consistent with the lower bounds obtained
by the strong inductive hypothesis onPr[f(b-hk

) ≤ ih]. To mini-
mize the constraints implied by the strong inductive hypothesis, we
place the minimal amount of probability mass required each price
level. This givesρhk

(b) with nr−1
n−1

probability at 1 and exactly
3nr−2r−n

n−1
at eachhi for 1 ≤ i < k. Thus, the profit from offering

prices at mosthk−1 is nr−1
n−1

−kh(k−1) 3nr−2r−n
n−1

. In order to sat-
isfy our lower bound, (4), onphk

(b), it must put at least3nr−2r−n
n−1

onhk.
Therefore, the probability that the sale price will be no more than

kh on masked bid vector on bid vectorb = (1, . . . , 1, kh, H) must
be at leastnr−1

n−1
+ k( 3nr−2r−n

n−1
).

Given Lemma 1, Theorem 10 is simple to prove.

PROOF. LetA be a conservative auction. Suppose3nr−2r−n
n−1

=

ε > 0. Let k = d1/εe, H ≥ kh, andh � n. By Lemma 1,
Pr[f(1, . . . , 1, kh, H) ≤ hk] ≥ nr−1

n−1
+ kε > 1. But this is a

contradiction, so3nr−2r−n
n−1

≤ 0. Thus,r ≤ n
3n−2

. The theorem
follows.

7. CONCLUSIONS AND FUTURE WORK
We have found the optimal auction for the three-unit limited-

supply case, and shown that its structure is essentially independent
of the benchmark used in its competitive analysis. We have then
used this auction to derive the best known auction for the unlimited
supply case.

Our work leaves many interesting open questions. We found that
the lower bound of [8] is matched by an auction for three bidders,



even when competing against generalized benchmarks. The most
interesting open question from our work is whether the lower bound
from Theorem 2 can be matched by an auction for more than three
bidders. We conjecture that it can.

Second, we consider whether our techniques can be extended
to find optimal auctions for greater numbers of bidders. The use
of our analytic solution method requires knowledge of a restricted
class of auctions which is large enough to contain an optimal auc-
tion but small enough that the optimal auction in this class can be
found explicitly through analytic methods. No class of auctions
which meets these criteria is known even for the four bidder case.
Also, when the number of bidders is greater than three, it might
be the case that the optimal auction is not expressible in terms of
elementary functions.

Another interesting set of open questions concerns aggregation
auctions. As we show, the aggregation auction forΥ3 outperforms
the aggregation auction forΥ2 and it appears that the aggregation
auction forΥ3 is better thanΥm for m > 3. We leave verifica-
tion of this conjecture for future work. We also show thatΥ3 is
not the best three-bidder auction for use in an aggregation auction,
but the auction that beats it is able to reduce the competitive ra-
tio of the overall auction only a little bit. It would be interesting
to know whether for anym there is anm-aggregation auction that
substantially improves on the competitive ratio ofAggΥm

.
Finally, we remark that very little is known about the structure

of the optimal competitive auction. In our auctionΥ3, the sales
price for a given bidder is restricted either to be one of the other bid
values or to be higher than all other bid values. The optimal auc-
tion for two bidders, the 1-unit Vickrey auction, also falls within
this class of auctions, as its sales prices are restricted to bid values.
We conjecture that an optimal auction for any number of bidders
lies within this class. Our paper provides partial evidence for this
conjecture: the lower bound of Section 6 on conservative auctions
shows that the optimal auction must offer sales prices higher than
any bid value if the lower bound of Theorem 2 is tight, as is con-
jectured. It remains to show that optimal auctions otherwise only
offer sales prices at bid values.
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APPENDIX

A. PROOF OF THEOREM 4
We wish to prove thatΥs,t

3 , the optimal auction for three bidders

againstGs,t, has competitive ratio at leasts2+t2

2t
. Our proof fol-

lows the outline of the proof of Lemma 5 and Theorem 1 from [8];
however, our case is simpler because we only looking for a bound
whenn = 3. Define the random bid vectorB = (B1, B2, B3)
with Pr[Bi > z] = 1/z. We computeEB[Gs,t(B)] by integrating
Pr[Gs,t(B) > z]. Then we use the fact that no auction can have
expected profit greater than 3 onB to find a lower bound on the
competitive ratio againstGs,t for any auction.

For the input distributionB defined above, letB(i) be theith
largest bid. Define the disjoint eventsH2 = B(2) ≥ z/s ∧ B(3) <
z/t, andH3 = B(3) ≥ z/t. Intuitively, H3 corresponds to the
event that all three bidders win inGs,t, while H2 corresponds to
the event that only the top two bidders win.Gs,t(B) will be greater
thanz if either event occurs:

Pr[Gs,t(B) > z] = Pr[H2] + Pr[H3] (5)

= 3
( s

z

)2
(

1 −
t

z

)

+

(

t

z

)3

(6)

Using the identity defined for non-negative continuous random vari-
ables thatE[X] =

∫∞

0
Pr[X > x] dx, we have

EB[Gs,t(B)] = t +

∫ ∞

t

3
( s

z

)2
(

1 −
t

z

)

+

(

t

z

)3

dz (7)

= 3

(

s2 + t2

2t

)

(8)

Given that, for any auctionA, EB[EA[A(B)]] ≤ 3 [8], it is clear

that
EB[Gs,t(B)]

EB[EA[A(B)]]
≥ s2+t2

2t
. Therefore, there exists some inputb

for each auctionA such that Gs,t(b)

EA[A(b)]
≥ s2+t2

2t
.


