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ABSTRACT

We investigate the class of single-round, sealed-bid auctions for a
set of identical items to bidders who each desire one unit. We adopt

the worst-case competitive framework defined by [9, 5] that com-
pares the profit of an auction to that of an optimal single-price sale
of least two items. In this paper, we first derive an optimal auction

for three items, answering an open question from [8]. Second, we

show that the form of this auction is independent of the competi-
tive framework used. Third, we propose a schema for converting
a given limited-supply auction into an unlimited supply auction.
Applying this technique to our optimal auction for three items, we
achieve an auction with a competitive ratio of 3.25, which improves
upon the previously best-known competitive ratio of 3.39 from [7].
Finally, we generalize a result from [8] and extend our understand-
ing of the nature of the optimal competitive auction by showing that
the optimal competitive auction occasionally offers prices that are
higher than all bid values.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems; J.8dcial and Behavioral
Sciencef Economics

General Terms
Algorithms, Economics, Theory

Keywords
Auctions, Mechanism Design, Competitive Analysis

1. INTRODUCTION

The research area optimal mechanism desidooks at design-
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that brings the seller the most profit. Here, the classical approach
is to design such a mechanism given fivér distribution from
which the bidders’ preferences are drawn (See e.g., [12, 4]). Re
cently Goldberg et al. [9] introduced the use of worst-case compet-
itive analysis (See e.qg., [3]) to analyze the performance of auctions
that have no knowledge of the prior distribution. The goal of such
work is to design an auction that achieves a large constant fraction
of the profit attainable by an optimal mechanism that knows the
prior distribution in advance. Positive results in this direction are
fueled by the observation that in auctions for a number of identical
units, much of the distribution from which the bidders are drawn
can be deduced on the fly by the auction as it is being run [9, 14,

The performance of an auction in such a worst-case competitive
analysis is measured by itdmpetitive ratio the ratio between a
benchmark performance and the auction’s performance on the input
distribution that maximizes this ratio. The holy grail of the worst-
case competitive analysis of auctions is the auction that achieves
the optimal competitive ratigas small as possible). Since [9] this
search has led to improved understanding of the nature of the op-
timal auction, the techniques for on-the-fly pricing in these scenar-
ios, and the competitive ratio of the optimal auction [5, 7, 8]. In this
paper we continue this line of research by improving in all of these
directions. Furthermore, we give evidence corroborating the con-
jecture that the form of the optimal auction is independent of the
benchmark used in the auction’s competitive analysis. This result
further validates the use of competitive analysis in gauging auction
performance.

We consider thsingle itemymulti-unit, unit-demandauction prob-
lem. In such an auction there are many units of a single item avail-
able for sale to bidders who each desire only one unit. Each bidder
has a valuation representing how much the item is worth to him.
The auction is performed by soliciting a sealed bid from each of
the bidders and deciding on the allocation of units to bidders and

ing a mechanism to produce the most desirable outcome for theine prices to be paid by the bidders. The bidders are assumed to bid
entity running the mechanism. This problem is well studied for the 54 as to maximize their personal utility, the difference between their
auction design problem where the optimal mechanism is the one5|yation and the price they pay. To handle the problem of design-
F ing and analyzing auctions where bidders may falsely declare their
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valuations to get a better deal, we will adopt the solution concept
of truthful mechanism desigfsee, e.g., [9, 15, 13]). In a truthful
auction, revealing one’s true valuation as one’s bid is an optimal
strategy for each bidder regardless of the bids of the other bidders.
In this paper, we will restrict our attention to truthful (a.k.a., incen-
tive compatible or strategyproof) auctions.

A particularly interesting special case of the auction problem is
theunlimited supplyase. In this case the number of units for sale is
at least the number of bidders in the auction. This is natural for the
sale of digital goods where there is negligible cost for duplicating



and distributing the good. Pay-per-view television and download-
able audio files are examples of such goods.

The competitive framework introduced in [9] and further refined
in [5] uses the profit of theptimal omniscient single priced mech-
anism that sells at least two unis the benchmark for competitive

DEeFINITION 1. Given a bid vector of bids,b = (b4, ...
let b-; denote the vector of withy replaced with a ‘?’, i.e.,

b = (b,... ,bn).

DEFINITION 2. Let f be a function from bid vectors (with a

ybn),

bii1, 2 big, ...

analysis. The assumption that two or more units are sold is neces-9 tg prices (non-negative real numbers). Thieterministic bid-
sary because in the worst case it is impossible to obtain a constantydependent auction defined thyBI s, works as follows. For each

fraction of the profit of the optimal mechanism when it sells only
one unit [9]. In this framework for competitive analysis, an auction
is said to be3-competitivef it achieves a profit that is within a fac-
tor of 3 > 1 of the benchmark profibn every input The optimal
auction is the one which i§-competitive with the minimum value
of 3.

Previous to this work, the best known auction for the unlimited
supply case had a competitive ratio of 3.39 [7] and the best lower
bound known was 2.42 [8]. For the limited supply case, auctions

bidderi:
1. Sett; = f(bz)

2. Ift; < b;, bidder: wins at pricet;.

w

. Ift; > b;, bidder: loses.

N

. Otherwise, #; = b;) the auction can either accept the bid at
pricet; or reject it.

can achieve substantially better competitive ratios. When there areA randomized bid-independent auction is a distribution over deter-

only two units for sale, the optimal auction gives a competitive ratio
of 2, which matches the lower bound for two units. When there

ministic bid-independent auctions.

are three units for sale, the best previously known auction had a  The proof of the following theorem can be found, for example,

competitive ratio of 2.3, compared with a lower boundl8f6 ~
2.17[8].
The results of this paper are as follows:

e \We give the auction for three units that is optimally compet-
itive against the profit of the omniscient single priced mech-
anism that sells at least two units. This auction achieves a
competitive ratio of 13/6, matching the lower bound from

[8] (Section 3).

We show that the form of the optimal auction is indepen-
dent of the benchmark used in competitive analysis. In doing
so, we give an optimal three bidder auction for generalized
benchmarks (Section 4).

We give a general technique for converting a limited supply
auction into an unlimited supply auction where it is possible
to use the competitive ratio of the limited supply auction to
obtain a bound on the competitive ratio of the unlimited sup-
ply auction. We refer to auctions derived from this frame-
work asaggregation auctiongSection 5).

We improve on the best known competitive ratio by prov-
ing that the aggregation auction constructed from our optimal
three-unit auction is 3.25-competitive (Section 5.1).

Assuming that the conjecture that the optirtalnit auction

has a competitive ratio that matches the lower bound proved
in [8], we show that this optimal auction fér> 3 on some
inputs will occasionally offer prices that are higher than any
bid in that input (Section 6). For the three-unit case where we
have shown that the lower bound of [8] is tight, this observa-
tion led to our construction of the optimal three-unit auction.

2. DEFINITIONS AND BACKGROUND

We consider single-round, sealed-bid auctions for a séid#n-
tical units of an item to bidders who each desire one unit. As men-
tioned in the introduction, we adopt the game-theoretic solution
concept of truthful mechanism design. A useful simplification of
the problem of designing truthful auctions is obtained through the
following algorithmic characterization [9]. Related formulations to

in [5].

THEOREM 1. An auctionis truthful if and only if it is equivalent
to a bid-independent auction.

Given this equivalence, we will use the the terminoldgy-
independenandtruthful interchangeably.

For a randomized bid-independent auctigiib-;) is a random
variable. We denote the probability densityfdb-;) atz by pp_, (2).
We denote the profit of a truthful auctios on inputb as.A(b).
The expected profit of the auctioR,.A(b)], is the sum of the ex-
pected payments made by each bidder, which we denoge(by
for bidderi. Clearly, the expected payment of each bid satisfies

"b;
pi(b) = ./0 Zpb., (x)dz.

2.1 Competitive Framework

We now review the competitive framework from [5]. In order
to evaluate the performance of auctions with respect to the goal of
profit maximization, we introduce the optimal single price omni-
scient auctionF and the related omniscient auctigi? .

DEFINITION 3. Give a vectob = (b4, ...
sent thei-th largest value irb.

,bn), letb; repre-

The optimal single price omniscient auctiptF, is defined as
follows. Auction F on inputb determines the valukg such that
kb i) is maximized. All bidders witth; > b, win at priceby,; all
remaining bidders lose. The profit &f on inputb is thusF(b) =
maxlgkgn kb(k)

In the competitive framework of [5] and subsequent papers, the
performance of a truthful auction is gauged in comparisaf {8,
theoptimal singled priced auction that sells at least two unitke
profit of 7 is maxa<x<y kb(x) There are a number of reasons
to choose this benchmark for comparison, interested readers should
see [5] or [6] for a more detailed discussion.

Let A be a truthful auction. We say that is 5-competitive
against 7 (or just -competitive) if for all bid vectors, the
expected profit of4 onb satisfies

F3 (b)
7

E[A(b)]

this one have appeared in numerous places in recent literature (e.g.ln Section 4 we generalize this framework to other profit bench-

[1, 14, 5, 10]).

marks.



2.2 Scale Invariant and Symmetric Auctions

A symmetricauction is one where the auction outcome is un-
changed when the input bids arrive in a different permutation. Gold-
berg et al. [8] show that a symmetric auction achieves the optimal
competitive ratio. This is natural as the profit benchmark we con-
sider is symmetric, and it allows us to consider only symmetric
auctions when looking for the one with the optimal competitive ra-
tio.

An auction defined by bid-independent functigris scale in-
variantif, for all : and allz, Pr[f(b-;) > z] = Pr[f(cb-;) > cz].

It is conjectured that the assumption of scale invariance is without
loss of generality. Thus, we are motivated to consider symmet-
ric scale-invariant auctions. When specifying a symmetric scale-
invariant auction we can assume thats only a function of the
relative magnitudes of the — 1 bids in b-; and that one of the
bids,b; = 1. It will be convenient to specify such auctions via the
density function off (b-;), p».; (2). It is enough to specify such a
density function of the formp: ., ... ., ,(z) with 1 < z; < z; 1.

2.3 Limited Supply Versus Unlimited Supply

Following [8], throughout the remainder of this paper we will
be making the assumption that= ¢, i.e., the number of bidders
is equal to the number of units for sale. This is without loss of
generality as (a) any lower bound that applies toithe- ¢ case
also extends to the case whete> ¢ [8], and (b) there is a re-
duction from the unlimited supply auction problem to the limited
supply auction problem that takes an unlimited supply auction that
is 3-competitive with7® and constructs a limited supply auction
parameterized by that is 3-competitive withZ(>*)| the optimal
omniscient auction that sells between 2 @nahits [6].

Henceforth, we will assume that we are in the unlimited supply
case, and we will examine lower bounds for limited supply prob-
lems by placing a restriction on the number of bidders in the auc-
tion.

2.4 Lower Bounds and Optimal Auctions

Frequently in this paper, we will refer to the best known lower
bound on the competitive ratio of truthful auctions:

THEOREM 2. [8] The competitive ratio of any auction on

bidders is at least
-1\ i (n-1
n i—1\i—1)"

DEFINITION 4. LetY,, denote thei-bidder auction that achieves
the optimal competitive ratio.

n

-y

=2

This bound is derived by analyzing the performance of any auc-
tion on the following distributionB. In each random bid vec-
tor B, each bidB; is drawn i.i.d. from the distribution such that
Pr[B; > s] <1/sforalls € S.

In the two-bidder case, this lower bound is 2. This is achieved by
T, which is the 1-unit Vickrey auctioh.In the three-bidder case,
this lower bound is 13/6. In the next section, we define the auc-
tion T3 which matches this lower bound. In the four-bidder case,
this lower bound is 96/215. In the limit as the number of bidders
grows, this lower bound approaches a number which is approxi-
mately 2.42.

2.5 Profit Extraction

In this section we review the truthful profit extraction mechanism
ProfitExtractg. This mechanism is a special case of a general
cost-sharing schema due to Moulin and Shenker [11].

The goal of profit extraction is, given bids to extract a target
value R of profit from some subset of the bidders.

ProfitExtractr: Given bidsb, find the largesk such

that the highesk bidders can equally share the cost
R. Charge each of these biddeRg'k. If no subset

of bidders can cover the cost, the mechanism has no
winners.

Important properties of this auction are as follows:
e ProfitExtractg is truthful.

o If R < F(b), ProfitExtractr(b) = R; otherwise it has no
winners and no revenue.

We will use this profit extraction mechanism in Section 5 with
the following intuition. Such a profit extractor makes it possible to
treat this subset of bidders as a single bid with val(&). Note
that given a single bid, a truthful mechanism might offer it price
t and ift < b then the bidder wins and paysotherwise the bid-
der pays nothing (and loses). Likewise, a mechanism can offer
the set of biddersS a target revenu. If R < F?)(S), then
ProfitExtractr raisesR from S; otherwise, the it raises no rev-
enue fromsS.

3. AN OPTIMAL AUCTION FOR THREE
BIDDERS

In this section we define the optimal auction for three bidders,
T3, and prove that it indeed matches the known lower bound of
13/6. We follow the definition and proof with a discussion of how
this auction was derived.

DEFINITION 5. T3 is scale-invariant and symmetric and given
by the bid-independent function with density function
Forz < 3/2
1 with probability9/13
z with probability density(z) for z > 3/2

pl,x(z): FOr:E>3/2
1 with probability9/13 — jf/z 2g9(z)dz
a  with probability [;", (2 + 1)g(2)dz
z  with probability densityy(z) for z > =
whereg(z) = 2555

THEOREM 3. TheY3 auction has a competitive ratio ®8/6 ~
2.17, which is optimal. Furthermore, the auction raises exactly
£ 7 on every input with non-identical bids.

PrROOF Consider the bids, z, y, with 1 < = < y. There are

three cases.

CASELl (z < y < 3/2): F® = 3. The auction must raise
expected revenue of at ledst/13 on these bids. The bidder with

valuationz will pay 1 with 9/13, and the bidder with valuatiop
will pay 1 with probability9/13. ThereforeYs raises18/13 on
these bids.

LThe 1-unit Vickrey auction sells to the highest bidder at the second CASE 2 (z < 3/2 < y): F®) = 3. The auction must raise ex-
highest bid value. pected revenue of at leas8/13 on these bids. The bidder with

It is conjectured that this lower bound is tight for any number of
bidders and the optimal auctioff,,, matches it.




valuationz will pay 9/13 — f;’/Q zg(z)dz in expectation. The bid-
der with valuatiory will pay 9/13 + fsy/g zg(z)dz in expectation.
ThereforeY 5 raisesl8/13 on these bids.

CASE3 (3/2 < z < y): F@ = 2. The auction must raise
expected revenue of at leakz /13 on these bids. Consider the
revenue raised from all three bidders:

E[T5(b)] = p(1,z,y) + p(z,1,y) + p(y, 1,z)

x

tion, then this solution is the optimal auction and that our conjec-
tured choice of worst-case distribution is correct.

In Section 6 we show that the optimal auction must sometimes
place probability mass on sale prices above the highest bid. This
motivates considering symmetric scale-invariant auctions for three
bidders with probability density functiop; .. (z), of the following
form:

1 with discrete probability:(z)

=0+9/13 — / 2g(2)dz +9/13 — / 2g9(2)dz p1,2(2) = ¢ = with discrete probabilitp(x)
3/2 3/2 z with probability densityy(z) for z > «
- v
+ ac/ (z+1)g(z)dz +/ zg(z)dz In this auction, the sale price for the first bidder is either one
3/2 @ of the latter two bids, or higher than either bid with a probability
_ ¢ ’ density which is independent of the input.
=18/13 —2 d d
13+ (@ ) /3/2 29(z)dz+ /3/2 9(z)dz The feasibility problem which arises from the linear optimization
= 122/13. problem by assuming the constraints are tight is as follows:
The final equation comes from substitutinggif) = =223 and Y
(w=1) a(y) + a(x) + xb(x +/ zg(z)dz = rmax(3,2x) Vr <
expanding the integrals. Note that the fraction/f raised on ®) (=) (=) . woog( ) ( ) Y
every input is identical. If any of the inequalitids < = < y a(z) + b(x) +/ g(z)dz =1
are not strict, the same proof applies giving a lower bound on the z
auction’s profit; however, this bound may no longer be tigHi] %Exg E 8
x) 2
Motivation for 9(z) 20

In this section, we will conjecture that a particular input distribution Solving this feasibility problem gives the auctidh; proposed

is worst-case, and show, as a consequence, that all inputs are worstabove. The proof of its optimality validates its proposed form.

case in the optimal auction. By applying this consequence, we will Finding a simple restriction on the form afbidder auctions for

derive an optimal auction for three bidders. n > 3 under which the optimal auction can be found analytically
A truthful, randomized auction on bidders can be represented as above remains an open problem.

by a randomized functiof : R"~! x n — R that maps masked

bid vectors to prices ifR. By normalization, we can assume that

the lowest possible bid is 1. Recall that, (z) = Pr[f(b-;) = z].
The optimal auction for the finite auction problem can be found

by the following optimization problem in which the variables are

Pb.; (Z)

4. GENERALIZED PROFIT BENCHMARKS

In this section, we widen our focus beyond auctions that compete
with 7? to consider other benchmarks for an auction’s profit. We
will show that, for three bidders, the form of the optimal auction
is essentially independent of the benchmark profit used. This re-
sults strongly corroborates the worst-case competitive analysis of
auctions by showing that our techniques allow us to derive auctions
which are competitive against a broad variety of reasonable bench-
marks rather than simply againsgt?.

Previous work in competitive analysis of auctions has focused on
the question of designing the auction with the best competitive ra-
tio againstF?, the profit of the optimal omniscient single-priced

This set of integral inequalities is difficult to maximize over. Mechanismthat sells at least two items. However, itis reasonable to
However, by guessing which constraints are tight and which are consider other benchmarks. For instance, one might wish to com-
slack at the optimum, we will be able to derive a set of differential Pete againsk™, the profit of thek-Vickrey auction with optimal-in-
equations for which any feasible solution is an optimal auction. hindsight choice of..> Alternatively, if an auction is being used as

As we discuss in Section 2.4, in [8], the authors define a distri- & subroutine in a larger mechanism, one might wish to choose the
bution and use it to find a lower bound on the competitive ratio of auction which is optimally competitive with a benchmark specific
the optimal auction. For two bidders, this bid distribution is the to that purpose.
worst-case input distribution. We guess (and later verify) that this ~ Recall thatF*) (b) = maxs>k>n kbgi). We can generalize this
distribution is the worst-case input distribution for three bidders as definition togs, parameterized by = (s2, ..., s») and defined as:
well. Since this distribution has full support over the set of all bid
vectors and a worst-case distribution puts positive probability only
on worst-case inputs, we can therefore assume that all but a mea-
sure zero set of inputs is worst-case for the optimal auction. In the
optimal two-bidder auction, all inputs with non-identical bids are
worst-case, so we will assume the same for three bidders.

The guess that these constraints are tight allows us to transform
the optimization problem into a feasibility problem constrained by 2Recall that thek-Vickrey auction sells a unit to each of the high-
differential equations. If the solution to these equations has value estk bidders at a price equal to thie+ 1st highest bidp;1),
matching the lower bound obtained from the worst-case distribu- achieving a profit okb . 1).

maximize r

n b,
subject to Z/ zpp., (2) > rFP(b)
i=1 /%=1

/_Z °°1 P (2) = 1

po.(2) >0

When consideringjs we assume without loss of generality that
s; < si+1 as otherwise the constraint imposedshy; is irrelevant.
Note thatF? is the special case ©f; with s; = 4, and thafV* =

Js with si=1— 1.




Competing with g, 1. Cast each bid uniformly at random into onerafbins, re-

. . . . . ina in bi (1) (m)
We will now design a three-bidder auctiof"* that achieves the sulting in bid vectord™, ..., b

optimal competitive ratio againgt ;. As before, we will first find
a lower bound on the competitive ratio and then design an auction
to meet that bound.

We can lower bound the competitive ratiov§* using the same

2. For each binj, compute the aggregate bil; = F(b")).
Let B be the vector of aggregate bids, all_; be the ag-
gregate bids for all bins other than

worst-case distribution from [8] that we used agai#ét). Eval- 3. Compute the aggregate pridg — f(B_,), where is the
uating the performance of any auction competing agamston ' bid-independent function fod.,. -

this distribution will yield the following theorem. We denote the

optimal auction for three bidders agaiight; asT5". 4. For each binj, run ProfitExtractr, onb{@.

THEOREM 4. The optimal three-bidder auctioff;5*, compet-

ing againsiG. , (b) = max(sb, th(s)) has a competitive ratio of SinceA,, andProfitExtractr are truthful,T; is computed in-

$2442 dependently of any bid in bifand thus the price offered any bidder
at least=——. in b is independent of his bid; therefore,

The proof can be found in the appendix.

Similarly, we can find the optimal auction agaidkt; using the
same technique we used to solve for the three bidder auction with
the best competitive ratio against®. Note that this schema yields a new way of understanding the
Random Sampling Profit Extraction (RSPE) auction [5] as the sim-
plest case of an aggregation auction. It is the 2-aggregation auction
for Y3, the 1-unit Vickrey auction.

THEOREM 6. If A,, is truthful, them-aggregation auction for
A, AggAm, is truthful.

DEFINITION 6. T35 is scale-invariant and symmetric and given
by the bid-independent function with density function

Forz <t To analyzeAgg , , consider throwingt balls intom labeled
1 with probability% bins. Letk represent a configuration of balls in bins, so thais
= with probability density(z) for z > equal to the n‘umber of balls in binandk;;) is equal to the number
Forz >t of balls in theith largest bin. LeK,,, ; represent the set of all pos-
p1,2(2) = S . .2 . sible configurations of balls inm bins. We write the multinomial
1 with probability 575 — [+ 29(2)dz coefficient ofk as (). The probability that a particular configu-
z  with probability [ (2 + 1)g(2)d= rationk arises by throwing balls into bins uniformly at random is
s k -
z  with probability density(z) for z > x Gm ™™
whereg(z) = 2(t=s)%/(s2+¢%) THEOREM 7. Let A, be an auction with competitive rati@.
@-D% - Then them-aggregation auction ford,., Agg , , raises the fol-
THEOREM 5. T3 is *+t° competitive WittG. , lowing fraction of the optimal revenug® (b):
. t s,t-
This auction, likeY's, can be derived by reducing the optimization E[Agg,, (b)] Smin Y FA (&) (5)
problem to a feasibility problem, guessing that the optimal solution F©2) = %121121 K Bkm*
m,k

has the same form a8, and solving. The auction is optimal be-
causetit matches the lower bound found above. Note that the form  pg o By definition, 7 sells tok > 2 bidders at a single
of T3 is egsentlally the same as fiog, but that the probability of price p. Letk; be the number of such bidders 7). Clearly,
each price is scaled depending on the valuesafdt. ]-‘(b(”) > pk;. Therefore,

That our auction for three bidders matches the lower bound com- -
puted by the input distribution used in [8] is strong evidence that

this input distribution is the worst-case input distribution for any FEO(F®D), ..., F(b")) S FO (pky, ..., pkn)
number of bidders and any generalized profit benchmark. Further- F@(b) - pk

more, we strongly suspect that for any number of bidders, the form F@ (k kn)

of the optimal auction will be independent of the benchmark used. = %

5. AGGREGATION AUCTIONS The inequality follows from the monotonicity af®, and the

; ; 2
We have seen that optimal auctions for small cases of the limited- duality from the homogeneity ‘.f( ). ]
supply model can be found analytically. In this section, we will ~ ProfitExtractr; will raise T; if T; < Bj, and no profit other-
construct a schema for turning limited supply auctions into unlim- wise. ThusE[Agg 4, (b)] > E[]—“”(B)/ﬁ}. The theorem fol-

ited supply auctions with a good competitive ratio. ) lows by rewriting this expectation as a sum ovetkaith K, .. [
As discussed in Section 2.5, the existence of a profit extrac-

tor, ProfitExtractr, allows an auction to treat a set of bids 51 A3.25 Competitive Auction

as a single bid with value=(S). Givenn bidders and an auc- We apply the aggregation auction schematg our optimal

tion, A, for m < n bidders, we can convert the-bidder auc- ion for th bidd hi . ith "
tion into ann-bidder auction by randomly partitioning the bidders aupnon ort ree bidaers, to achieve an auction wit competlt_|ve
atio 3.25. This improves on the previously best known auction

into m subsets and then treating each subset as a single bidder (via{ hich is 3.39 itive [7
ProfitExtract g) and running then-bidder auction. which is 3.39-competitive [7].

DEFINITION 7. Given a truthfulm-bidder auction, A,,, the THEOREM 8. The aggregation auction foX's has competitive
m-aggregation auction fad,,, Agg 4, works as follows: ratio 3.25.



PROOF. By theorem 7, K| m=2| m=3| m=4]| m=5| m=6| m=7

, ) 2 0.25 | 0.3077| 0.3349| 0.3508| 0.3612| 0.3686

E[Aggy, (b)] oo L FO gk =i =) (i) 3 | 0.25 | 0.3077| 0.3349| 0.3508| 0.3612| 0.3686

FO(b) = mind > Bk3* 4 | 0.3125| 0.3248| 0.3349| 0.3438| 0.3512| 0.3573

==t 5 | 0.3125| 0.3191| 0.3244| 0.3311| 0.3378| 0.3439

Fork = 2 andk = 3, E[Aggy, (b)] = 2k/3. Ask increases, 6 | 0.3438| 0.321 | 0.3057| 0.3056| 0.311 | 0.318

E[AggTS(b)] /}'(2) increases as well. Since we do not expect g 83222 833’;’239 ggggé 82822 82832 838;2
to find a closed-form formula for the revenue, we lower bound : ) ) ' : :

F(b) by 3b(sy. Using large deviation bounds, one can show 9 | 0.3633| 0.3233| 0.3057| 0.2977| 0.2927| 0.292

that this lower bound is greater th%lk/ﬂ for large-enougtk, and ﬁ) 82;; 822%3 (?3310288 %22%%2 8;222 8;2?;
the remainder can be shown by explicit calculation. : : : : : :

Plugging ing = 13/6, the competitive ratio i43/4. As k in- g 832;3 ggggg 82382 823% 8238‘51 8%2%

creases, the competitive ratio approach®ss. 14 0'3953 0'3391 0 312 0.2961 0.2888 0.2835

Note that the above bound on the competitive raticAgk-,, 15 0'3953 0'3427 0 '3135 0'2973 0.2882 0.2825

is tight. To see this, consider the bid vector with two very large 16 0.4018 0'3433 0-3128 0 208 0.2884 0.2823
and non-identical bids of andh + ¢ with the remaining bidg. ' ) : : : :

Given that the competitive ratio df 5 is tight on this example, 1; 838%2 83223 82%2 8382; 832;8 (?2288(328
the expected revenue of this auction on this input will be exactly : ) ) : : .

13/4. O 19| 0.4073| 0.3477| 0.3137| 0.2962| 0.2844| 0.2789

20| 0.4119| 0.3486| 0.3148| 0.2973| 0.2843| 0.2777

5.2 Ag..-based Aggregation Auction 21| 0.4119| 0.3506| 0.3171| 0.298 | 0.2851| 0.2775

. . . . . 22| 0.4159| 0.3519| 0.3189| 0.2986| 0.2863| 0.2781

In_thls section we show _thdt‘g(,)ls not tr(lje gptlmaLaucr:]tlon_to ) 23| 04159 0.3531| 03202| 0.2995| 0.2872| 0 2791

e a{‘ha‘{flgregatt.'onlfuc“on' ohe can €0 etter by i fj € 24| 0.4194| 0.3539| 0.3209| 0.3003| 0.2878| 0.2797

puction that 15 optimally competifive against & specialy falored | 25 | 0.4194| 0.3548| 0.3218| 0.3012| 0.2886 | 0.2801

To see why this might be the case, notice (Table 1) that the frac-
tion of 7 (b) raised for when there afe = 2 andk = 3 win-
ning bidders inF? (b) is substantially smaller than the fraction of
F@(b) raised when there are more winners. This occurs because
the expected ratio betweefi® (B) and F® (b) is lower in this
case while the competitive ratio &f; is constant. If we chose a
three bidder auction that performed better wifef? has smaller
numbers of winners, our aggregation auction would perform better
in the worst case.

One approach is to compete against a different benchmark that
puts more weight thatF(® on solutions with a small number of
winners. Recall thaf® is the instance of,, with s = 2 and
t = 3. By using the auction that competes optimally agaist
with s > 2, while holdingt = 3, we will raise a higher frac-
tion of revenue on smaller numbers of winning bidders and a lower
fraction of revenue on large numbers of winning bidders. We can
numerically optimize the values afandt in G; .(b) in order to
achieve the best competitive ratio for the aggregation auction. In
fact, this will allow us to improve our competitive ratio slightly.

THEOREM 9. For an optimal choice of andt¢, the aggregation
auction forY3" is 3.243-competitive.

The proof follows the outline of Theorem 7 and 8 with the opti-
mal choice ofs = 2.162 (while ¢ is held constant at 3).

5.3 Further Reducing the Competitive Ratio

There are a number of ways we might attempt to use this ag-
gregation auction schema to continue to push the competitive ratio
down. Inthis section, we give a brief discussion of several attempts.

5.3.1 Aggy, form>3

If the aggregation auction fof'; has a competitive ratio of 4
and the aggregation auction fii; has a competitive ratio of 3.25,
can we improve the competitive ratio by aggregatifig or 1.,
for largerm? We conjecture in the negative: for > 3, the ag-
gregation auction fof(',,, has a larger competitive ratio than the
aggregation auction fof's. The primary difficulty in proving this

Table 1: E[A(b) /f<2>(b)] for Aggy as afunction ofk, the

optimal number of winners in F® (b). The lowest value for
each column is printed in bold.

conjecture lies in the difficulty of finding a closed-form solution
for the formula of Theorem 7. We can, however, evaluate this for-
mula numerically for different values af andk, assuming that the
competitive ratio forY,,, matches the lower bound far given by
Theorem 2. Table 1 shows, for each valuerofindk, the fraction

of 7 raised by the aggregation auction fégg,when there
arek winning bidders, assuming the lower bound of Theorem 2 is
tight.

5.3.2 Convex combinations 8fg..

As can be seen in Table 1, whem > 3, the worst-case value
of k£ is no longer 2 and 3, but instead an increasing function of
m. An aggregation auction foX',,, outperforms the aggregation
auction forY's when there are two or three winning bidders, while
the aggregation auction fof s outperforms the other when there
are at least six winning bidders. Thus, for instance, an auction
which randomizes between aggregation auctionsYferand T4
will have a worst-case which is better than that of either auction
alone. Larger combinations of auctions will allow more room to
optimize the worst-case. However, we suspect that no convex com-
bination of aggregation auctions will have a competitive ratio lower
than 3. Furthermore, note that we cannot yet claim the existence of
a good auction via this technique as the optimal auctignfor
n > 3 is not known and it is only conjectured that the bound given
by Theorem 2 and represented in Table 1 is correctfpr

6. ALOWERBOUND FOR CONSERVATIVE
AUCTIONS

In this section, we define a class of auctions that never offer a
sale price which is higher than any bid in the input and prove a
lower bound on the competitive ratio of these auctions. As this



lower bound is stronger than the lower bound of Theorem 2 for
n > 3, it shows that the optimal auction must occasionally charge

a sales price higher than any bid in the input. Specifically, this result

partially explains the form of the optimal three bidder auction.

DEFINITION 8. We say an auctioBI; is conservativef its bid-
independent functioyfi satisfiesf (b-;) < max(b-;).

We can now state our lower bound for conservative auctions.

THEOREM 10. Let A be a conservative auction fer bidders.
Then the competitive ratio of is at least2"=2.

COROLLARY 1. The competitive ratio of any conservative auc-
tion for an arbitrary number of bidders is at least three.

For a two-bidder auction, this restriction does not prevent opti-
mality. Y5, the 1-unit Vickrey auction, is conservative. For larger

numbers of bidders, however, the restriction to conservative auc-

Inductive case ¢ > 0, hy = kh): Letb = (1,...
First, we will find an upper bound gm (b)

1 k h;
JREIOLES Y R
0 i=1 7 hi1
k hy
<1+ Z hi/ Pb.y (x)dz
i=1 hi—1
k—1
3nr—2r—n
< Snr—2r—mn .
<1+ ( — > ; ih

’]‘7hk7H)'

pu(b) )

nr—1 3nr—2r—n
—kh {nfj:f) (k ; 1) 3nr;fq— n] “1 )

Equation (1) follows from the conservatism.dfand (2) is from
invoking the strong inductive hypothesis wifi = kh and the

tions does affect the competitive ratio. For the three-bidder case, observation that the maximum possible revenue will be found by
T3 has competitive ratio 2.17, while the best conservative auction placing exactly enough probability at each multiplehafo satisfy

is no better than 2.33-competitive.
Thek-Vickrey auction and the Random Sampling Optimal Price

the constraints of the inductive hypothesis and placing the remain-
ing probability atkh. Next, we will find a lower bound opy,,, (b)

auction [9] are conservative auctions. The Random Sampling Profit by considering the revenue raised by the tid&Recall that4 must

Extraction auction [5] and the CORE auction [7], on the other hand,
use theProfitExtract g mechanism as a subroutine and thus some-
times offer a sale price which is higher than the highest input bid
value.

In [8], the authors define eestrictedauction as one on which,
for any input, the sale prices are drawn from the set of input bid

values. The class of conservative auctions can be viewed as a gen-
eralization of the class of restricted auctions and therefore our result
below gives lower bounds on the performance of a broader class of

auctions.
We will prove Theorem 10 with the aid of the following lemma:

LEMMA 1. Let A be a conservative auction with competitive
ratio 1/r for n bidders. Leth > n. Letho = 1 andh, = kh oth-
erwise. Then, foralk andH > kh, Pr(f(1,1,...,1, H) < hy] >
nr—1 _’_k(Snr—Qr—n).

n—1 n—1

PROOF The lemma is proved by strong induction én First
some notation that will be convenient. For any particlaaind
H we will be considering the bid vectds = (1,...,1,hy, H)
and placing bounds om_, (). Since we can assume without loss
of generality that the auction is symmetric, we will notate as
b with any one of the 1-valued bids masked. Similarly we notate
b-y,, (resp.b-x) asb with the hy-valued bid (respH-valued bid)
masked. We will also lep: (b), px, (b), andpq (b) represent the
expected payment of a 1-valudd,-valued, andH -valued bidder
in A on b, respectively (note by symmetry the expected payment
for all 1-valued bidders is the same).

Base caseK = 0, hy, = 1): A must raise revenue of at least
onb=(1,...,1,1, H):

rn < pa(b) + (n — 1)p1(b)

=14 (n-— 1)/0 Zpb, (x)dx

<1t [ oo (@)e

The second inequality follows from the conservatism of the un-
derlying auction. The base case follows trivially from the final in-
equality.

obtain a profit of at least7?)(b) = 2rkh. Given upper-bounds
on the profit from the -valued, equation bid (3), and the 1-valued
bids, the profit from thé.;-valued bid must be at least:

Phy, (b) > 2rkh — (n — 2)p1(b) — pu(b)

n(l—r)+(k:—1)3nr—2r—n

> kh|2r —
= S 2

—O(n).

n—1

In order to lower boun®r(f(b-»,) < kh], consider the auction
that minimizes it and is consistent with the lower bounds obtained
by the strong inductive hypothesis 8| f(b-, ) < ih]. To mini-
mize the constraints implied by the strong inductive hypothesis, we
place the minimal amount of probability mass required each price
level. This givespy, (b) with 22=! probability at 1 and exactly

n—1
3nr—2r—mn

—— ateachh; for 1 < < k. Thus, the profit from offering
prices at mosky_1 is 2=t — kh(k—1)322=22=" |n order to sat-
isfy our lower bound, (4), ops,, (b), it must put at leas®"—2r—"
onhyg.

Therefore, the probability that the sale price will be no more than
kh on masked bid vector on bid vector= (1,...,1, kh, H) must
be at least =t + k(22r=2r=2) ]

n—1

Given Lemma 1, Theorem 10 is simple to prove.

PROOF. Let.A be aconservative auction. Suppegé—2r—= —
e > 0. Letk = [1/€], H > kh, andh > n. By Lemma 1,
Pr(f(1,...,1,kh,H) < hi] > 2= + ke > 1. Butthisis a
contradiction, sg**“=2r=" < 0. Thus,r < 3. The theorem
follows. [

7. CONCLUSIONS AND FUTURE WORK

We have found the optimal auction for the three-unit limited-
supply case, and shown that its structure is essentially independent
of the benchmark used in its competitive analysis. We have then
used this auction to derive the best known auction for the unlimited
supply case.

Our work leaves many interesting open questions. We found that
the lower bound of [8] is matched by an auction for three bidders,



even when competing against generalized benchmarks. The most [7] A. V. Goldberg and J. D. Hartline. Competitiveness via

interesting open question from our work is whether the lower bound
from Theorem 2 can be matched by an auction for more than three
bidders. We conjecture that it can.

Second, we consider whether our techniques can be extended

to find optimal auctions for greater numbers of bidders. The use
of our analytic solution method requires knowledge of a restricted
class of auctions which is large enough to contain an optimal auc-
tion but small enough that the optimal auction in this class can be
found explicitly through analytic methods. No class of auctions
which meets these criteria is known even for the four bidder case.
Also, when the number of bidders is greater than three, it might
be the case that the optimal auction is not expressible in terms of
elementary functions.

Another interesting set of open questions concerns aggregation[lll

auctions. As we show, the aggregation auctionfgroutperforms

the aggregation auction fof, and it appears that the aggregation
auction forY'3 is better tharlY,, for m > 3. We leave verifica-
tion of this conjecture for future work. We also show thas is

not the best three-bidder auction for use in an aggregation auction
but the auction that beats it is able to reduce the competitive ra-
tio of the overall auction only a little bit. It would be interesting
to know whether for anyn there is ann-aggregation auction that
substantially improves on the competitive ratio’ofg. .

Finally, we remark that very little is known about the structure
of the optimal competitive auction. In our aucti@fy, the sales
price for a given bidder is restricted either to be one of the other bid
values or to be higher than all other bid values. The optimal auc-
tion for two bidders, the 1-unit Vickrey auction, also falls within
this class of auctions, as its sales prices are restricted to bid values
We conjecture that an optimal auction for any number of bidders
lies within this class. Our paper provides partial evidence for this
conjecture: the lower bound of Section 6 on conservative auctions
shows that the optimal auction must offer sales prices higher than
any bid value if the lower bound of Theorem 2 is tight, as is con-
jectured. It remains to show that optimal auctions otherwise only
offer sales prices at bid values.
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APPENDIX
A. PROOF OF THEOREM 4

We wish to prove thall$"*, the optimal auction for three bidders

againstgs :, has competitive ratio at Ieaétz);%. Our proof fol-
lows the outline of the proof of Lemma 5 and Theorem 1 from [8];
however, our case is simpler because we only looking for a bound
whenn = 3. Define the random bid vect@d = (B:, Bz, B3)
with Pr[B; > z] = 1/z. We computéEg[J. +(B)] by integrating
Pr[G,(B) > z]. Then we use the fact that no auction can have
expected profit greater than 3 @ to find a lower bound on the
competitive ratio againgi, ;. for any auction.

For the input distributiorB defined above, leB ;) be theith
largest bid. Define the disjoint everit, = B2y > z/s A By <
z/t, and'H3 = B(s) > z/t. Intuitively, H3 corresponds to the
event that all three bidders win i, ;, while H, corresponds to
the event that only the top two bidders wif, :(B) will be greater
thanz if either event occurs:

Pr[G;«(B) > 2] = Pr[H2] + Pr[Ha3] (5)

(-9 o

Using the identity defined for non-negative continuous random vari-

z
ables thaE[X] = [ Pr[X > z]dz, we have
o 3
Eg[G. :(B)] :t-l—/ 3( ) dz (7)
t z
s? 42

-9
5(730)

Given that, for any auctiol, Eg[E4[A(B)]] < 3[8], itis clear

Eg[0s,+(B)] 52142 . .
that BB AAB)] > *57—. Therefore, there exists some inpt

for each auctiond such thatg 420 >

t

z

t

z

t

z
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