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ABSTRACT
We study online pricing problems in markets with cancel-
lations, i.e., markets in which prior allocation decisions can
be revoked, but at a cost. In our model, a seller receives
requests online and chooses which requests to accept, sub-
ject to constraints on the subsets of requests which may be
accepted simultaneously. A request, once accepted, can be
canceled at a cost which is a fixed fraction of the request
value. This scenario models a market for web advertising
campaigns, in which the buyback cost represents the cost of
canceling an existing contract.

We analyze a simple constant-competitive algorithm for a
single-item auction in this model, and we prove that its com-
petitive ratio is optimal among deterministic algorithms, but
that the competitive ratio can be improved using a random-
ized algorithm. We then model ad campaigns using knap-
sack domains, in which the requests differ in size as well
as in value. We give a deterministic online algorithm that
achieves a bi-criterion approximation in which both approx-
imation factors approach 1 as the buyback factor and the
size of the maximum request approach 0. We show that
the bi-criterion approximation is unavoidable for determin-
istic algorithms, but that a randomized algorithm is capable
of achieving a constant competitive ratio. Finally, we dis-
cuss an extension of our randomized algorithm to matroid
domains (in which the sets of simultaneously satisfiable re-
quests constitute the independent sets of a matroid) as well
as present results for domains in which the buyback factor
of different requests varies.

Categories and Subject Descriptors
F.1.2 [Modes of Computation]: Online Computation; F.2
[Theory of Computation]: Analysis of Algorithms and
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Problem Complexity; J.4 [Social and Behavioral Sci-
ences]: Economics; K.4.4 [Computers and Society]: Elec-
tronic commerce
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1. INTRODUCTION
The problem we study is motivated by the following real

scenario in the Display Advertising industry. The large ban-
ner ads shown on a popular website such as MSN are sold
by negotiated contract up to a year in advance. The impres-
sion inventory is diverse, the advertisers are looking to meet
campaign limits in terms of demographics targets (who an
ad is shown to), temporal targets (when an ad is shown),
and location targets (where an ad is shown). Any particular
advertiser request may be able to be met in a variety of ways.
The ad seller has a complex online optimization task. As ad-
vertiser requests arrive the ad seller must decide whether the
requests should be accepted or not. When formulated most
naturally as an online optimization problem, two aspects
make this a nearly impossible task. It is a small market;
display advertisers on a major website number in the thou-
sands but big advertisers number in the tens. It is an online
market; inventory may be preallocated to advertisers at a
low value early. It may not ever be learned that advertis-
ers arriving later would have paid a premium for the same
inventory. Absent this knowledge, there is little basis for
accepting or declining ad orders placed by advertisers. This
reality of the industry is mirrored by online algorithm theory
which suggests that online algorithms for limited supply al-
location problems suffer from the worst possible competitive
ratios — linear in the number of requests.

This paper addresses both the theoretical problem in on-
line algorithms analysis for allocation problems and the prac-
tical problem in settings such as Display Advertising, above,
and gives algorithms with competitive ratios that are a con-
stant, parameterized by a coefficient representing a required
level of commitment. Notice that the scenarios that bring
bad competitive ratios are ones where the algorithm com-
mits to serve a request with low value, say $1, and then
an incompatible request arrives with high value, say $1M.



A committed algorithm is stuck. Practically speaking, we
cannot think of one real scenario where it is impossible to
bump out the $1 request (perhaps at some cost) to take the
$1M request, unless the $1 request has already been served.1

Thus, we are motivated to explicitly model the revocation
of a commitment into the model of online allocation and
design algorithms that make use of it. Our resulting work
pursues a theory of online algorithms with buyback. While
our results are theoretical, their motivation is directly rele-
vant to electronic commerce. In fact, the problem studied
here was described to us by the ad marketing group at a
major Internet software company as we have presented it.

Of course this kind of contract revocation is not new and
in many real settings a possibility of revocation is explicitly
written into agreed upon contracts. Notable instances of
this are the airline industry that routinely over-sells econ-
omy seats when premium last minute bookings are made,
bumps travelers on over-booked flights, and cancels under-
booked flights. Even in our motivating example of Display
Advertising, it is possible that the actual impression inven-
tory does not meet forecasted estimates. In this case the
actual inventory may be over-sold. There are clauses in
the advertisers’ contracts that specify that the seller will
“make good” by substituting alternative, comparable inven-
tory. Taking these kinds of contracts as given, our paper
studies the effect of structural constraints, similar to those
that arise in the Display Advertising setting, on optimal on-
line admission and revocation policies.

We consider the following model for studying algorithms
for online admission with costly revocation. An admitted
request of value v can be revoked at any time at a cost pro-
portional to v. Let f represent this buyback factor. Then the
cost of revoking a v-valued request is f · v. Our algorithm
now, faced with a sequence of requests arriving online, must
make admission and revocation decisions satisfying the con-
ditions that (a) at any time the set of admitted requests is
feasible, (b) a request may only be admitted at the time it
first arrives, and (c) a request may be revoked (a.k.a., bought
back) at a penalty of the buyback factor at any time, but
once revoked it may not subsequently be readmitted. After
the last request arrives and is processed, the set of admit-
ted requests that have not been revoked are served. The
total payoff of the algorithm is the cumulative value of these
served requests less the cumulative buyback cost, i.e., the
cumulative value of the revoked requests scaled by the buy-
back factor.

Prior work on buyback algorithms. As far as we are
aware, the first published work on online algorithms with
buyback costs consisted of two independent, concurrently
written papers that appeared in the 2008 Workshop on Ad
Auctions [3, 10]. One of those papers subsequently appeared
in SODA 2009 [11], while the other has evolved into the
present work, which contains some of the results from the
original workshop paper along with several new results. The
starting point for all of these papers is the observation that
there exist constant-competitive deterministic algorithms for
selling a single item in the buyback model. They identify
a one-parameter family of such algorithms, and they find

1The situations modeled in this paper are those in which a
seller makes a sequence of commitments to provide service
at some later time after the end of the request sequence. All
commitments are thus revocable in our model.

the optimum competitive ratio within this one-parameter
family. These papers [3, 10, 11] also proceed to analyze
a generalization of this deterministic single-item algorithm
to matroid domains, in which the sets of requests that can
be simultaneously satisfied form the independent sets of a
matroid.

The SODA paper [11] and its precursor [10] additionally
consider incentive issues relating to the design of buyback
algorithms. When one regards these algorithms as mecha-
nisms for selfish bidders, the mechanisms are not dominant-
strategy truthful, because bidders who are not going to win
any items have an incentive to act as speculators, declar-
ing a bid greater than their true value to maximize their
buyback payment. However, because all the algorithms for
single-item and matroid domains in [3, 10, 11] — as well as
in the present paper — can be implemented as posted-price
mechanisms, any strategy that bids below the agent’s true
value is dominated by the strategy of truthful bidding. We
can therefore conclude that agents who play undominated
strategies will bid at least their true value, which leads to
provable revenue guarantees for these algorithms even in the
presence of speculators. (The revenue guarantee bounds the
ratio between the mechanism’s revenue and the VCG rev-
enue; see [11] for details.) It is more difficult to provide wel-
fare guarantees because the action of speculators may lead
to a very inefficient allocation; however, it is shown in [11]
that the mechanism approximates the optimal social welfare
in any execution such that the speculators have non-negative
total utility.

As mentioned above, the algorithms developed for single-
parameter domains in this paper (such as the single-item
and matroid domains) can be implemented as posted-price
mechanisms and therefore inherit the good incentive prop-
erties of the mechanisms in [11]: agents who are playing
undominated strategies will not bid below their true value.
For this reason, in subsequent sections of this paper we will
not explicitly address incentive issues and will instead focus
on the design and analysis of competitive online buyback
algorithms.

Our contributions. One type of structural constraint that
arises in Display Advertising is a knapsack-type constraint.
Here advertisers’ ad campaigns may require different quanti-
ties of inventory. An advertiser may want its request to be all
fulfilled or all denied, as either they run their full campaign
or no campaign. We make the simplifying assumption that
there is a single commodity for sale, e.g., a fixed quantity of
impressions for a single type of banner ad slots (web traffic
that is not demographically or temporally segregated.) The
quantities and values of the requests form an instance of the
online knapsack problem. We give a deterministic online
buyback algorithm that achieves a bi-criterion approxima-
tion result. With an assumption on the size of the largest
demand relative to the total supply, we can turn this bi-
criterion result into a full constant approximation (for con-
stant f) that is not much worse than the best possible by
any deterministic online algorithm with buyback. With no
assumption, standard randomization approaches for knap-
sack can be used to convert our approximation algorithm
to one that has a constant approximation factor (for con-
stant f) that is bounded away from 1; however all online
algorithms, even randomized ones, have a competitive ratio
that is bounded away from 1 in this case.



Another type of structural constraint we may have in the
Display Advertising setting is a matching constraint. Adver-
tisers’ requests could potentially be satisfied from different
impression inventory. Supply constraints imply a matching
structure on the set of served requests. We make the sim-
plifying assumption that each request is for a unit of supply
which implies that the sets of compatible requests are the in-
dependent sets of a transversal matroid. We present several
new results on this problem, including the special case of de-
signing online buyback algorithms for selling a single indivis-
ible item. We give a lower bound of 1+2f +2

√
f(1 + f) for

the competitive ratio of deterministic single-item buyback
algorithms, which matches the competitive ratio achieved by
the algorithms described in [3, 10, 11] and in Section 2.1.2

We then consider randomized algorithms for the single-item
buyback problem, and we prove that they can achieve a su-
perior competitive ratio at least when 0 < f < 1

2
, which is

the range of values appropriate to the Display Advertising
application. Our algorithm’s competitive ratio approaches
1 as the buyback factor f tends to 0. Our results on ran-
domized algorithms also extend to the matroid case, with
no deterioration in the competitive ratio bound. Finally, we
consider the question of what happens when advertisers can
request a buyback factor other than f . We provide an al-
gorithm for the single-item case whose competitive ratio is
1 + 2f + 2

√
f(1 + f) against the maximum bid in a subset

of the requests that contains all those whose buyback factor
is at most f , but possibly others as well.

Because our algorithms are based on simple threshold
rules, we believe they strongly resemble the decision proce-
dures that would realistically be used by practitioners when
deciding which bids to accept in a market with buyback. The
theoretical analysis of these algorithms thus sheds light on
important questions about a realistic class of decision pro-
cedures. For instance, should the “threshold value” increase
additively or multiplicatively? (Answer: multiplicatively)
Should the rate of increase of the threshold be roughly pro-
portional to the buyback factor? (Answer: no, for small
values of f it should be proportional to the square root.)
Can we prove useful revenue guarantees for threshold rules,
or are the theoretical worst-case bounds too large to be of
practical importance? (Answer: The worst-case bounds are
quite mild. Our competitive ratio tends to 1 as f and rela-
tive request size tend to zero.)

Related Work.. Many authors have studied Internet adver-
tising in the context of online algorithms or in the context
of knapsack problems. Most of this work deals with spon-
sored search auctions whereas our work is motivated primar-
ily by problems that arise in selling banner advertisements.
There are clear relations between the underlying algorith-
mic issues in both applications, but also some interesting
differences: in sponsored search, the inventory (i.e., queries)
arrives online, whereas in banner advertising the demand
(i.e., requests from advertisers) arrives online. With the ex-
ception of the papers [3, 10, 11] discussed above, none of this
prior work models markets with online requests and buyback
costs ([14] studied similar problems in the offline setting.)

Advertising auctions and bid optimization problems have

2In [11] there is a lower bound defined implicitly by a re-
currence, and the authors conjecture that this lower bound
matches the upper bound achieved by their algorithm. Our
lower bound theorem confirms this conjecture.

been modeled as knapsack problems (both online and offline)
in work by Aggarwal and Hartline [1], Borgs et al. [7] (which
treats the problem of slot selection), and Rusmevichien-
tong and Williamson [24] (which treats keyword selection).
Chakrabarty et al. [9] modeled the bidding problem using
online knapsack and gave an online algorithm whose com-
petitive ratio is logarithmic in the ratio of maximum to min-
imum value density. The same problem was studied, under
a random-ordering assumption, by Babaioff et al. [5]. Ad
auctions with non-strategic budget-constrained bidders have
also been modeled as an online b-matching problem, the so-
called AdWords problem. Randomized algorithms achieving
the optimal competitive ratio of e/(e − 1) for this problem
were given by Mehta et al. [21] and by Buchbinder et al. [8].

In this work we introduce a buyback option in order to
overcome the Ω(n) lower bound for (randomized) online al-
gorithms facing adversarial input. Another approach for
overcoming this lower bound is to assume that the requests
come in a random order. The classical secretary problem [13]
studies how to select online an element with maximum value
in a randomly ordered sequence, succeeding with probability
1/e. Extensions to various problems that involve accepting
a set of requests — including knapsack and matroid domains
— have been studied in [2, 5, 4, 12, 17].

The problem of online knapsack (without removal) was
introduced and studied by [18, 19]. Our results for the on-
line buyback knapsack problem relate to papers that study
online knapsack problems with the possibility of removing
elements that were already accepted to the knapsack. All
prior work assumes that such removal has no cost (f = 0 in
our formulation). [15] presents tight competitive algorithms
for online unweighted knapsack. Bi-criteria results for the
case in which elements can be fractionally accepted are pre-
sented in [22], while bi-criteria results for the case of integral
acceptance are presented in [16].

The idea of a buyback is related to the idea of “oppor-
tunistic cancellations” which was presented in [6]. That pa-
per shows that if ones allow cancellation of some deals with
a fixed penalty this results in higher efficiency. The paper
makes some distributional assumptions, while we work in the
framework of worst case competitive analysis. [25] proposes
a leveled commitment contracting protocol that allows self-
interested agents to efficiently accommodate future events
by having the possibility of unilaterally decommitting from
a contract by paying some penalty.

Organization. The paper is organized as follows. In Sec-
tion 2 we present the deterministic algorithm for a single
item, as a warmup. Section 3 presents our formal general
model for considering constrained online optimization with
buyback. In Section 4 we consider knapsack set systems and
present results for deterministic and randomized algorithms.
Section 5 presents our new results for the single item case:
a matching lower bound for deterministic algorithms, a ran-
domized algorithm that beats that lower bound, and finally,
an algorithm for heterogenous buyback factors.

2. WARMUP: THE SINGLE ITEM DETER-
MINISTIC ALGORITHM

Consider n requests from customers coming online in ar-
bitrary order. There is a fixed buyback factor f > 0. Cus-
tomer e pays ve if she receives the item, and if we buy back



the item from her later, we must refund this payment and
pay an additional penalty of f ·ve in compensation. We next

present a
(
1 + 2f + 2

√
f(1 + f)

)
-competitive deterministic

algorithm. The algorithm first appeared in [3, 10, 11] and
we repeat its analysis here in order to introduce ideas and
techniques that will be used throughout later sections.

2.1 The Deterministic Algorithm
For the single item case the buyback algorithm is simple.

The algorithm assumes we are given a parameter r > 1
whose value may depend on the buyback factor f . We will
later see that the optimal competitive ratio is achieved when
r = 1 + f +

√
f(1 + f). The algorithm operates as follows.

• Accept the first request.

• Consider the rest of the requests in order of arrival. If
the value of the arriving request is more than r times
the value of currently accepted request, buy back the
item and accept the arriving request.

Observe that setting r = 1 + f in the above algorithm cor-
responds to the very natural idea of accepting a new bid
whenever it is profitable to do so. However, when r = 1 + f
the algorithm has an unbounded competitive ratio. This is
easily seen, for example, by considering a bid sequence de-
fined recursively by v1 = 1, vi+1 = (1 + f)vi + ε for some
arbitrarily small ε > 0. For every n > 0, the algorithm’s
profit after n + 1 bids is only 1 + εn, whereas the optimum
profit is greater than (1 + f)n.

Theorem 1 ([3, 10, 11]). The single item buyback al-

gorithm has a competitive ratio of r(r−1)
r−1−f

. For a fixed buy-
back factor f > 0, this function is minimized by setting
r = 1 + f +

√
f(1 + f), resulting in the competitive ratio

1 + 2f + 2
√

f(1 + f).

Proof. We first prove that the competitive ratio is r(r−1)
r−1−f

.
Let m be the request with highest value, i.e., OPT = vm.
Let w be the final request selected. We claim vw ≥ vm/r.
If w = m then this is trivially true, as r > 1. If on the
other hand w 6= m, then at the time m was considered
and rejected, the item was allocated to request u satisfying
vm ≤ r · vu. As the winner’s value monotonically increases,
at the end it holds that vm ≤ r · vw and the claim follows.

We next bound the total buyback payment, B. Denote the
requests that are selected but subsequently bought back by
`(1), `(2), . . . , `(j), numbered in decreasing order of arrival
time. For notational convenience we will also define `(0) =
w. For i = 1, 2, . . . , j, the fact that the algorithm chose to
buy back the item from `(i) at the arrival time of `(i − 1)
implies that v`(i−1) > r · v`(i). By induction on i we now

obtain v`(i) < r−i · vw. Now,

B = f ·
j∑

i=1

v`(i) ≤ fvw ·
j∑

i=1

r−i < fvw · 1

r − 1
.

Thus, the algorithm’s profit vw −B satisfies

vw −B > vw

(
1− f

r − 1

)
≥ 1

r

(
1− f

r − 1

)
vm,

and the competitive ratio r(r−1)
r−1−f

follows by rearranging terms.
It is now an exercise in calculus to verify that the optimal
value of r and the resulting competitive ratio are as stated
in the theorem.

3. THE GENERAL MODEL
We consider a set N = {1, 2, ..., n} of requests coming on-

line, where request k from some customer arrives at time
step k. Each request k ∈ N has a value vk ≥ 0 associated
with it. We assume that there is a set system S (a family of
subsets of N) which represents the feasible sets of requests.
For example, in the knapsack domain the elements of N
are requests for non-negative quantities (si)

n
i=1 of a divisi-

ble good, and there is a finite supply C. A subset S ⊆ N
is feasible (i.e., belongs to S) if and only if

∑
i∈S si ≤ C.

In a matroid domain, the elements of S constitute the in-
dependent sets in a matroid structure3 with ground set N .
Prototypical examples of matroid domains are the single-
item domain (in which the only feasible sets are singletons),
the k-item domain (in which feasible sets are those whose
cardinality is at most k) and transversal matroid domains
(in which there is a set G of goods for sale, request i desires
one element from a subset Gi ⊆ G, and a set of requests
S ⊆ N is feasible if and only if there exists a way to assign
a distinct element gi ∈ Gi to each request i ∈ S). The value
of a feasible set S is denoted by v(S) =

∑
i∈S vi, and we will

denote the maximum value of a feasible set by OPT.
The algorithm A is responsible for maintaining a sequence

of feasible sets, one at each time step. The feasible set at
time step k is denoted by S(k). The only request that may be
accepted at time step k is request k, i.e. S(k) ⊆ S(k−1)∪{k}.
If k ∈ S(k) \ S(n) then we say that request k is revoked,
canceled, or bought back. Note that a request, once canceled,
can never be accepted again. Also note that our assumption
that S(k) is feasible at every time step k (and not only at
the final time step) is without loss of generality for matroids:
if the algorithm holds an infeasible set at any time k, it is
never optimal to retain elements that do not belong to the
maximum-weight basis of this infeasible set. Thus we can
assume that whenever the set of accepted requests becomes
infeasible, the algorithm immediately cancels requests not in
the maximum-weight basis to restore feasibility in the same
time step. In contrast, our assumption that S(k) must always
be feasible is not without loss of generality for knapsack
domains.

The algorithm gets a net payoff of vi for each element
i in its final feasible set F = S(n), and it loses f · vi for
each canceled request, where f > 0 is a fixed buyback factor
that is part of the problem specification. Denoting the set

of canceled requests by R =
(
∪n

i=1S
(i)

)
\ S(n), the payoff

is thus defined to be Payoff(A) = v(F ) − f · v(R). We will
sometimes denote the total buyback cost by B = f · v(R).

We require A to be an online algorithm, in the sense that
it must choose the set S(k) based only on the following in-
formation: the values vi for 1 ≤ i ≤ k, the feasibility of
any subsets T ⊆ {1, 2, . . . , k} (we assume the algorithm may
query an oracle about the feasibility of any T ⊆ {1, 2, . . . , k}
at time step k), and the algorithm’s own random bits if it
is a randomized algorithm. Our goal is to design algorithms
that have good competitive ratio with respect to the optimal
offline solution. The competitive ratio of algorithm A is thus

3 A matroid (U , I) is constructed from a ground set U 6= ∅
and a nonempty family I of subsets of U , called the indepen-
dent subsets of U , such that if B ∈ I and A ⊆ B then A ∈ I
(I is hereditary). Additionally, if A, B ∈ I and |A| < |B|,
then there is some element x ∈ B \A such that A∪{x} ∈ I
(exchange property).



v(OPT )/Payoff(A). If A is randomized, the denominator is
interpreted to mean the expected payoff. We will always
assume oblivious adversaries, so the numerator is never a
random variable.

4. AD CAMPAIGNS (KNAPSACK)
The online knapsack buyback problem exemplifies a very

relevant aspect of display advertising: advertisers may want
to either run all of their campaign or none of it. When there
is a limited number of impressions this constraint yields a
knapsack like problem. Unlike in the single item case (and
in the matroid setting), even with a buyback factor of f = 0,
there is no online buyback algorithm achieves the optimal of-
fline performance (proof to follow). We begin by presenting
a deterministic algorithm for the knapsack buyback prob-
lem. We then present a lower bound for deterministic algo-
rithms. Finally, we discuss a randomized algorithm and a
lower bound for such algorithms.

4.1 A Deterministic Algorithm
In this section we present a deterministic algorithm for

the knapsack problem with buyback. Our first result is a
bicriterion result. We show that if the largest element is of
size at most γ times the knapsack capacity, where 0 < γ < 1,
then we get a competitive ratio of 1 + 2f + 2

√
f(1 + f)

with respect to the optimum solution for a knapsack whose
capacity is scaled down by a factor of (1 − 2γ). Then we
derive a simple corollary about the competitive ratio when
γ < 1/2.

Conventions. We consider a set U = {1, . . . , n} of requests
presented online. Request k ∈ U has size sk, value vk, and
density (a.k.a., bang-per-buck) vk/sk (we sometimes identify
the request with an item of the appropriate size and value).
We will assume without loss of generality that the requests
are totally ordered by density (e.g., by using request indices
to break ties among requests of equal density). Let γ be the
ratio of the largest request size to the capacity of the knap-
sack. Unless otherwise stated, we normalize the capacity of
the knapsack to C = 1; therefore all requests have size at
most γ. For a set S ⊆ U let OPTC(S) be the value of the
optimal offline fractional knapsack solution with capacity C
on requests S. Consider the greedy algorithm that sorts re-
quests in S by density and accepts the densest requests until
the next object exceeds the knapsack capacity. Let densC(S)
denote the density of this request, or densC(S) = 0 if the to-
tal size of requests in S does not exceed C. Let greedyC(S)
denote the requests accepted, and let rejectC(S) denote the
remaining requests (i.e., rejectC(S) = S \ greedyC(S)).

Algorithm. Our knapsack algorithm admits requests fol-
lowing the greedy fractional offline algorithm on a knapsack
with restricted capacity C = 1− 2γ, but penalizes requests
which are not yet in the knapsack by a multiplicative factor
of r > 1. When the knapsack’s capacity is exceeded, it buys
back items greedily, starting from the ones with the lowest
bang-per-buck, until the remaining items fit the capacity
constraint once again.

Lemma 2. When elements U are presented to the Knap-
sack Buyback Algorithm, the set of requests F selected sat-
isfies OPT1−2γ(F ) ≥ OPT1−2γ(U)/r.

Algorithm 1 Knapsack Buyback Algorithm

1: Given: parameters r > 1, 0 < γ < 1/2.

2: Initialize S(0) = ∅.
3: for all requests k do
4: if the density of request k is at least

r · dens1−2γ(S(k−1)) then
5: /* (Integrally) greedily buyback cheapest requests

so as to fit request k, i.e., buyback all requests of
reject1−sk

(S(k−1)) to make room for request k. */
6: Add request k to knapsack.
7: Set S(k) ← greedy1(S

(k−1) ∪ {k}).
8: Buy back all requests of S(k) \ S(k−1)

9: else
10: S(k) ← S(k−1).
11: end if
12: end for
13: Output F ← S(n).

Proof. Let U ′ = ∪n
k=1S

(k) ⊆ U be the set of all requests
that are ever admitted to the knapsack in Step 6, including
the ones that get bought back in Step 7. Let S′ be the
largest prefix of U ′ that fits completely within the knapsack
(i.e., S′ = greedy1(U

′)).
First, S′ = F . To see this, note that the algorithm never

buys back an element j ∈ U ′ unless it has already bought
back all elements of smaller density, and it never buys back
an element which currently fits in the knapsack. Thus el-
ements of S′, once added into the knapsack, will never be
bought back, implying that S′ ⊆ F . The reverse inclusion
follows from the fact that the most dense element j ∈ F \S′

would have to satisfy (i) S′∪{j} fits the capacity constraint,
(ii) j has higher density than any element of U ′ \S′. If such
an element existed, it would belong to greedy1(U

′), contra-
dicting the definition of S′.

Consider the requests F ∗ (resp. U∗) that are selected by
the optimal (offline) fractional knapsack solution with capac-
ity C = 1 − 2γ on F (resp. U). Each of these sets possibly
contains one fractional request. For this analysis, replace
the fractional request by an integral one with same density,
whose size is scaled down so that the sum of all request
sizes in F ∗ (resp. U∗) is exactly 1 − 2γ. In other words, if
F ∗ (resp. U∗) contains a fractional amount β of a request
with size s and value v, then for this analysis we will in-
stead treat the fractional request as an integral request of
size βs and value βv. Thus, according to this convention,
OPT1−2γ(U) =

∑
k∈U∗ vk and OPT1−2γ(F ) =

∑
k∈F∗ vk.

We now show that the total value in F ∗ \ U∗ is at least
1/r times that of U∗ \ F ∗. Using the fact that F = S′ =
greedy1(U

′), and that the largest request size is γ, we know
that F ∗ is the optimal fractional knapsack solution with
capacity C = 1 − 2γ on U ′. Thus, F ∗ contains all requests
from U∗ that are ever admitted to the knapsack, so the
requests in U∗ \ F ∗ were not admitted to the knapsack and
thus have density less than r · dens1−2γ(F ∗). Of course, the
total capacity consumed by requests in F ∗ \U∗ and U∗ \F ∗

is identical. Thus the value of requests in F ∗ \U∗ is at least
1/r times the value of the requests in U∗ \ F ∗. Thus the
value of all requests in F ∗ is at least 1/r times the value of
requests in U∗. This proves the lemma.

Lemma 3. The total amount spent on buyback is at most
f

r−1
OPT1−2γ(F )



Proof. We use an accounting scheme where when a re-
quest is admitted to the knapsack, we charge it with the
fraction of any requests that henceforth exceed the capacity
1 − γ. By the time such a request is (integrally) bought
back by the algorithm because some fraction of it exceeds
the capacity 1 we will have already charged the entirety of
its buyback cost to admitted requests.

To make the analysis simpler we initially fill the knapsack
up to capacity 1 − γ with requests of value zero (and buy-
back cost zero). Now, if request k of size sk is admitted
to the knapsack, the request receives a charge equal to the
buyback cost of sk fractional units of requests with the least
density. This maintains the invariant that the capacity of
requests whose buyback is uncharged remains constant at
1− γ. When a fractional buyback of request j is charged to
another request k, we also charge k for the sum of all the
charges that j ever received, scaled by a factor equal to the
fraction of request j that was bought back.

Notice that if request k is admitted to the knapsack then
its density is at least r · dens1−2γ(S(k−1)). Any requests
with fractional buyback charged to k have density at most
dens1−2γ(S(k−1)). Thus, the new buyback cost charged to
item k is at most vk

r
. Request k inherits buyback charges

previously assessed to these requests. The total buyback
charged to k is thus at most

vkf

∞∑
i=1

1

ri
=

vk

r − 1
.

When the algorithm ends, the final (fractional) knapsack
from F with capacity 1− 2γ has charged buyback of all re-
quests (integrally) bought back by the algorithm to requests
in F (as discussed, we have actually overcharged some re-
quests that have not been bought back yet). The total cost
of these buybacks is at most f

r−1
OPT1−2γ(F ).

Theorem 4. The Knapsack Buyback Algorithm with pa-
rameter r has net payoff (value less buyback cost) of at least

r − 1− f

r(r − 1)
OPT1−2γ(U).

For a fixed f the best way to pick r is to set r = 1 + f +√
f(1 + f). For such an r the net payoff is at least

1

1 + 2f + 2
√

f(1 + f)
OPT1−2γ(U)

Proof. By Lemma 2 it holds that

OPT1−2γ(F ) ≥ OPT1−2γ(U)/r.

By Lemma 3 the buyback cost B is at most f
r−1

OPT1−2γ(F )

and as F ⊆ U it holds that OPT1−2γ(F ) ≤ OPT1−2γ(U)
thus B ≤ f

r−1
OPT1−2γ(U). We conclude that for the Knap-

sack Buyback Algorithm A it holds that

Payoff (A) ≥ OPT1−2γ(F )−B

≥ OPT1−2γ(U)

r
− f

r − 1
OPT1−2γ(U)

=
r − 1− f

r(r − 1)
OPT1−2γ(U)

Now the optimal choice of r and the resulting competitive
ratio follow from elementary calculus.

Note that the above result can be viewed as a bi-criterion
result: the approximation is with respect to an optimal of-
fline fractional solution for a knapsack of size 1− 2γ. With
an additional loss of factor 1/(1− 2γ) in the approximation
ratio, we can clearly get a bound with respect to the opti-
mal solution for the original knapsack size for the case that
γ < 1/2. This is because OPT1−2γ(U) ≥ (1−2γ)OPT1(U),
which follows from the definition of OPTC(U) as the optimal
fractional solution.

Corollary 5. Assume γ < 1/2. The Knapsack Buyback

Algorithm with r = 1 + f +
√

f(1 + f) has net payoff (value
less buyback cost) of at least

1− 2γ

1 + 2f + 2
√

f(1 + f)
OPT1(U)

4.2 Randomized Knapsack Algorithms
In the preceding section, we assumed that the sizes of el-

ements were bounded above by a γ fraction of the knapsack
capacity. This restriction, for some γ < 1, is necessary in or-
der to obtain a bounded competitive ratio using a determin-
istic algorithm.4 In fact, the following easy theorem holds.
(The proof is omitted for space reasons, and will appear in
the full version of the paper.)

Theorem 6. For any f when γ = 1 no deterministic buy-
back algorithm for knapsack problems has a bounded compet-
itive ratio that is a function of f .

We can overcome this negative result and achieve a com-
petitive algorithm that works for any γ using randomiza-
tion. Consider the following randomized algorithm A′: with
probability 1/3 we run the Knapsack Buyback Algorithm
(Algorithm 1) and with probability 2/3 we run the buyback
algorithm for a single item (Section 2.1).

Theorem 7. For any γ the randomized algorithm A′ has
an expected net payoff (value less buyback cost) of at least

1

3(1 + 2f + 2
√

f(1 + f))
OPT1(U).

Proof. Define O1/2 = {u ∈ OPT1(U) s.t. su ≥ 1/2} to
be the set of requests in OPT1(U) with size at least 1/2. Let

O = OPT1(U)\O1/2. Let δ(f) = 1+2f +2
√

f(1 + f). Note
that when A′ runs the Knapsack Buyback Algorithm it gets
at least O/δ(f) and when A′ runs the single item algorithm
(from Section 2.1) it gets at least O1/2/(2δ(f)) (the lost of
factor 2 is due to the fact that |O1/2| ≤ 2 and the algorithm
is competitive with the respect to the best request of O1/2).
We conclude the the expected payoff of A′ is at least

1

3
· O

δ(f)
+

2

3
· O1/2

2δ(f)
=

OPT1(U)

3δ(f)

Note that our bi-criteria result shows that when f approaches
0, the Knapsack Buyback Algorithm (Algorithm 1) is close
to being perfectly competitive (the competitive ratio goes to
1) with respect to the optimal knapsack solution with capac-
ity 1−2γ (not 1). On the other hand the above randomized

4For γ in the range [1/2, 1), our paper does not resolve
the question of whether a bounded competitive ratio can
be achieved.



algorithm has competitive ratio of at least 3, even when f
is 0. This raises the following question: can a randomized
knapsack buyback algorithm have a competitive ratio (with
respect to the optimal algorithm on the full size of the knap-
sack) that approaches 1 when f goes to 0? We next show
that the answer for this question is no, and losing some con-
stant in the competitive ratio is inevitable.

Theorem 8. Any randomized buyback algorithm for knap-
sack problems has a competitive ratio of at least 5/4. This
is true for any f ≥ 0, even f = 0.

Proof. We present two inputs such that for at least one
of these inputs any randomized buyback algorithm has com-
petitive ratio of at least 5/4. In both cases the capacity C is
1. The first input has s1 = 1, v1 = 1 and s2 = 1/2, v2 = 1/2.
The second input is the same as the first with an additional
request s3 = 1/2, v3 = 1. Let p be the probability that the
algorithm picks the second request (clearly when faced with
the second request the algorithm cannot distinguish the two
inputs). The optimal offline algorithm gets a value of 1 on
the first input (by picking the first request) and a value of
3/2 on the second input (by picking the second and third
requests). The payoff of the algorithm on the first input is
at most (1− p) · 1+ p · 1/2 = 1− p/2, while its payoff on the
second input is at most (1− p) · 1 + p · 3/2 = 1 + p/2. Thus
the competitive ratio in the first case is at least 1/(1− p/2)
and while in the second case it is at least (3/2)/(1+p/2). It
is easy to verify that the optimal way for the algorithm to
pick p is to set p = 2/5 (in order to minimize the maximal of
the two ratios). In this case the ratio is at least 5/4. Thus
it is at least 5/4 for any p the algorithm picks.

5. RESULTS FOR THE SINGLE ITEM CASE
In this section we first present a lower bound for determin-

istic algorithms in the single-item case, and we then show
how to design a randomized algorithm that outperforms this
lower bound. Finally, we present an extension to a case in
which requests have varying buyback factors.

5.1 A Deterministic Lower Bound
In this section we prove that the competitive ratio 1 +

2f + 2
√

f(1 + f) obtained by the algorithm in Section 2 is
optimal for deterministic algorithms.

Theorem 9. For all β < 1+2f +2
√

f(1 + f), there does
not exist a β-competitive deterministic online buyback algo-
rithm.

Proof. Let us call a finite non-decreasing sequence of
numbers y1 ≤ y2 ≤ · · · ≤ yn an all-sell sequence if the
algorithm sells to every buyer (after buying back from the
preceding buyer) when presented with the input sequence
y1, y2, . . . , yn. Denote the set of all such finite sequences by
AS. Define an infinite sequence x1, x2, . . . recursively, by
stipulating that x1 = 1 and that for n > 1,

xn = inf{x ≥ xn−1|x1, x2, . . . , xn−1, x ∈ AS}. (1)

Note that the set on the right side of (1) is non-empty, unless
the algorithm has an unbounded competitive ratio.

When presented with the sequence x1, . . . , xn, (1−ε)xn+1,
the algorithm sells to every costumer except the last one,
and it buys back from every costumer except the last two.
Thus its profit is xn− f

∑n−1
i=1 xi — which is positive unless

the algorithm has an unbounded competitive ratio — while
the optimum profit is (1 − ε)xn+1. As this must hold for
every ε > 0 and for every n, the β-competitiveness of the
algorithm would imply

∀n xn+1 ≤ β
(
xn − f

∑n−1

i=1
xi

)
. (2)

A non-decreasing sequence of positive real numbers can never
satisfy (2) when β < 1+2f +2

√
f(1 + f), as we prove below

in Lemma 10. This completes the proof of Theorem 9.

Lemma 10. For every infinite non-decreasing sequence of
real numbers 0 < x1 ≤ x2 ≤ . . ., if β < 1+2f +2

√
f(1 + f)

then there exists some n such that (2) is violated.

Proof. The proof is by contradiction. Assume that there
is a nonempty set S of sequences x1 ≤ x2 ≤ . . . of positive
reals satisfying

xn+1 ≤ βxn − βf

n−1∑
i=1

xi (3)

for all n ≥ 1. For any such sequence x ∈ S, let n(x) be the
least n such that the inequality (3) is strict, or n(x) = ∞
if there is no such n. We claim that n(x) takes unbound-
edly large values as x ranges over S. Indeed, assume to the
contrary that x ∈ S is a sequence such that

n(x) = N = max
w∈S

n(w).

Let

λ =
xN+1

βxN − βf
∑

i<N xi
,

which is less than 1 by assumption. Then the sequence
x′ = λx1, λx2, . . . , λxN , xN+1, xN+2, . . . belongs to S, and
it satisfies n(x′) > N , contradicting our choice of N .

Having thus established that n(x) takes unboundedly large
values as x ranges over the elements of S, we may conclude
that the sequence defined by

y1 = 1, yn+1 = βyn − βf

n−1∑
i=1

yi for n ≥ 1

is non-decreasing. (To prove that ym+1 ≥ ym for every m,
let x ∈ S be a sequence such that n(x) > m and observe by
induction that yi = xi/x1 for i = 1, 2, . . . , m+1. Since every
sequence x ∈ S is non-decreasing, we obtain the inequality
ym+1 ≥ ym as claimed.) Now define zn =

∑n
i=1 yi, and

observe that the recursion defining yn+1 implies that

zn+1 = (1 + β)zn − β(1 + f)zn−1.

This is a linear recursion, whose general solution is zn =
asn + btn where a, b are arbitrary constants and s, t are the
roots of the quadratic equation

u2 − (1 + β)u + β(1 + f) = 0. (4)

The discriminant of this quadratic is (1 + β)2 − 4β(1 + f),
which is strictly negative given our hypothesis that 1 < β <
1 + 2f + 2

√
f(1 + f). Hence the two roots s, t are complex

conjugates with nonzero imaginary part. We claim also that
a, b are complex conjugates. To see this, note that

1 = z1 = a + b

1 + β = z2 = as + bs̄



which implies that the linear system

w1 + w2 = 1

sw1 + s̄w2 = 1 + β

is solved by (w1, w2) = (a, b) and also by (w1, w2) = (b̄, ā).
Since the linear system is nonsingular, it has a unique so-
lution. Hence (a, b) = (b̄, ā), confirming our claim that a, b
are complex conjugates.

At this point we have established that there are complex
numbers a, s such that zn = asn + ās̄n = 2<(asn) for all n,
and s has nonzero imaginary part. Write a = qeiφ, s = reiθ

where q, r > 0 and θ is not an integer multiple of π. Inter-
changing a, s with ā, s̄ if necessary, we may assume without
loss of generality that 0 < θ < π. Now we have asn =
qrnei(φ+nθ) which has negative real part if (2m + 1

2
)π <

φ + nθ < (2m + 3
2
)π for some integer m. In particular, let-

ting m be the least integer such that (2m + 1
2
)π > φ and

recalling that 0 < θ < π, we find that there must be some
n > 0 such that (2m+ 1

2
)π < φ+nθ < (2m+ 3

2
)π, implying

that <(asn) < 0. This contradicts the fact that zn > 0 for
every n.

5.2 Randomized Algorithms
In this section, we show that there exist randomized algo-

rithms whose competitive ratio is superior to the competitive
ratio β = 1+2f +2

√
f(1 + f) that is optimal for determin-

istic algorithms. This is true for both the single item case
and for matroid domains. Recall that matroid set systems
generalize many relevant allocation problems. The uniform
matroid of rank k represents feasible sets of winners of a
k-unit allocation problem. The transversal matroid repre-
sents feasible sets of winners when there is a matching con-
straint. Transversal matroids exemplify an important aspect
of the display advertising problem: that certain advertisers
are only interested in certain impressions (e.g., based on de-
mographic, time of day, web page, etc.).

Theorem 11. For 0 < f < 1 there exist randomized buy-
back algorithms for both the single item case and for matroid
domains which have a competitive ratio of

1

1− f2

(
1 + f +

√
2f(1 + f)

)
.

This is less than 1 + 2f + 2
√

f(1 + f) when f < 1
2
.

For example, when f = 0.1 the randomized algorithm is
1.59-competitive whereas no deterministic algorithms is bet-
ter than 1.86-competitive. Here we describe the algorithm
for the single item case and its extension to matroid do-
mains. The analysis of the algorithm is deferred to the full
version of this paper for space reasons.

Intuitively, it is clear why randomization should allow for a
superior competitive ratio: it protects the algorithm against
input instances like the one constructed in Section 5.1, where
the highest bid is (1 − ε) times the algorithm’s threshold
value at the time the bid is received. If the algorithm’s
threshold value at each point in time is allowed to be a
random variable, then we can ensure that it is unlikely that
any particular bid will be just slightly below the threshold.

Thus, our randomized algorithm will be similar to the
one analyzed in Section 2.1, except that the multiplier r will
be chosen randomly (and independently of earlier choices)
each time a bid is accepted. Also, in order to simplify the

analysis of the algorithm, it will be convenient to apply this
multiplicative factor of r to the value of the most recent
threshold rather than the value of the most recently ac-
cepted bid. If, after sampling r and adjusting the thresh-
old accordingly, it is still less than the value of the most
recently accepted bid, then we again multiply the threshold
by another random factor r′ sampled from the same dis-
tribution, repeating as many times as necessary until the
threshold becomes greater than the most recently accepted
bid. The sequence of thresholds (including the ones that
were skipped) thus defines a random increasing sequence of
positive numbers x1, x2, . . ., whose ratios are independent
and identically distributed. Taking logarithms, we obtain
a sequence z1, z2, . . . of real numbers whose differences are
independent and identically distributed, i.e. a renewal pro-
cess [20, 23]. Appendix A contains a review of the facts
from renewal theory that are relevant to an analysis of our
algorithm, including the definition of stationary renewal pro-
cesses which plays a key role in our algorithm. Throughout
the rest of this section, . . . , z−1, z0, z1, . . . will denote a sta-
tionary renewal process whose interarrival times have finite
expected value µ and cumulative distribution function F (x)
satisfying F (0) = 0. For a real number t, let z+(t), z−(t)
denote the sample points of the process (zi)i∈Z that occur
immediately after and before t, respectively. Thus,

z+(t) = min {zi | zi ≥ t, i ∈ Z}
z−(t) = max {zi | zi < t, i ∈ Z}.

Our algorithm maintains a threshold value u, initialized
to zero. At initialization time it also samples a stationary
renewal process . . . , z−1, z0, z1, . . . with interarrival distri-
bution F .5 When it receives a bid whose value v is greater
than u, it checks whether there is a sample point zi such
that u < ezi < v. If so, it accepts the bid and increases its

threshold by setting u = ez−(ln(v)), i.e. the largest value in
the set {ezi}i∈Z that is less than v. In Figure 2 we present
a generalization of this algorithm to matroid domains; see
Footnote 3 for definitions and notations relating to matroids.

To analyze the algorithm (against an oblivious adversary)
let w be the final bid accepted by the algorithm, and let x be
the sum of all bids accepted by the algorithm, including w.
The total payoff is therefore w− f(x−w) = (1 + f)w− fx.
More generally, in the matroid setting let Q denote the set
of all elements picked during an execution of Algorithm 2
(including those which are later discarded) and let R denote
the set of all elements that the algorithm picks but does not
discard. The total payoff is therefore (1 + f)v(R) − fv(Q).
In the full version of the paper, we prove a lower bound on
v(R) and an upper bound on v(Q) in terms of parameters
ν, η defined by

ν =
1

µ

∫ ∞

0

e−yG(y) dy, η = sup
x>0

{
F0(x)/

(
1− e−x)}

.

If OPT denotes the value of the maximum-weight matroid
basis (e.g., the highest bid in the single-item case) then we
prove in the full version of the paper that E[v(R)] ≥ ν ·OPT

5Of course, the actual algorithm doesn’t do an infinite
amount of work at initialization time, it lazily evaluates the
numbers zi only when necessary. In particular, any execu-
tion of the algorithm requires computing only O(log(vn/v1))
of these numbers in expectation.



Algorithm 2 Randomized Matroid Buyback Algorithm

1: Given: A random increasing sequence {zi}i∈Z of real
numbers tending to ∞.

2: Initialize S = ∅.
3: for all elements e, in order of arrival, do
4: z+

e = min{zi | ezi ≥ ve, i ∈ Z}.
5: if S ∪ {e} ∈ I then
6: Sell to e.
7: else
8: Let e′ be the element of smallest value such that

S ∪ {e} \ {e′} ∈ I.
9: if z+

e > z+
e′ then

10: Sell to e.
11: S = S ∪ {e} \ {e′}.
12: Pay back f · ve′ to the buyer e′.
13: end if
14: end if
15: end for

and E[v(Q)] ≤ η · OPT, from which it immediately follows
that the algorithm’s payoff is at least [(1 + f)ν − fη] ·OPT,
i.e. its competitive ratio is no greater than [(1+f)ν−fη]−1.

The problem of designing competitive randomized algo-
rithms thus reduces to the problem of designing non-negative
non-decreasing functions G(y) on the positive reals, to max-
imize (1 + f)ν − fη where ν, η are defined as above. This
infinite-dimensional optimization problem seems difficult; we
do not know a description of the optimal solution. In the
full version of the paper we show that a competitive ra-

tio of 1
1−f2

(
1 + f +

√
2f(1 + f)

)
can be achieved using a

truncated Poisson process, i.e. a stationary renewal process
whose interarrival times are exponentially distributed up to
a cutoff. (In other words, for some cutoff parameter a > 0,
the interarrival times have cumulative distribution function
F (y) = 1− e−y · 1y≤a.)

5.3 Varying the Buyback Factor
We can extend the deterministic algorithm to the case

that requests have some heterogeneity in their buyback fac-
tor. Assume that request i has value vi and is requiring
a buyback factor of (at least) fi. Previously, to maintain
the approximation with buyback factor f the algorithm ac-
cepted a request if it has value at least r times the previ-
ously accepted value. Now the idea is to use some of the
extra value received on top of the minimal value required
for acceptance in order to increase the buyback factor of the
request, while maintaining the approximation.

Consider a sequence of requests of the form (vi, fi). Given
a buyback factor f our algorithm from Section 2.1 can be
viewed as an algorithm that rejects any request with fi > f ,
and is 1 + 2f + 2

√
f(1 + f)-competitive with respect to the

highest value request out of all other requests. We next
present an extension of the algorithm that achieves the same
competitive ratio with respect to a superset of the above
requests; that superset includes some requests with fi >
f , as long as vi is large enough. We note that our lower
bound of Section 5.1 shows that there is no algorithm that is
1+2f +2

√
f(1 + f)-competitive with respect to all possible

sequences of requests of the form (vi, fi).
We now consider the following extension of the algorithm

of Section 2.1 which we call the Flexible Buyback Factor

Algorithm. Fix f > 0 and r > 1. In the original algo-
rithm, if the current winner has value vw (and it is the m-th
winner) and the current request has value vi (and an im-
plicit buyback factor fi = f), then the request is accepted
if vi ≥ g(r, f, vw, fi) for g(r, f, vw, fi) = r · vw. In the new
algorithm we redefine the function g to be

g(r, f, vw, fi) =
f · vw ·

∑m
l=0 r−l

f ·∑m+1
l=0 r−l −max{f, fi}

If the denominator is negative we define g to be infinity
(the request is always rejected). Thus for a request to be
considered it must be the case that fi ≤ f · ∑m+1

l=0 r−l <
f · r

r−1
. Note that for fi = f the new algorithm is the same

as the original one.
We next define the set of requests R that the Flexible

Buyback Factor Algorithm is competitive against. Assume
that request (vi, fi) is considered when the current winner
has value z. Then the request belongs to R if fi ≤ f or
vi ≥ g(r, f, z, fi), or vi < z.

Note that R contains all requests whose buyback factor is
less than or equal to f , thus the following result generalizes
the result of Section 2.1.

Theorem 12. The Flexible Buyback Factor Algorithm is
1+2f+2

√
f(1 + f) competitive with respect to the maximum

value request in R.

We defer the proof to the full version of the paper. The
proof of Theorem 12 shows how one can use an increase in
the request value over the minimal needed for acceptance
towards accepting that request even with somewhat higher
buyback factor than f . Finally, we note that alternatively
it is possible to use the same increase in value to make it
harder to bump out the request. That is, it is possible to
keep the same buyback factor f and increase r (and the
threshold) for future requests that attempt to bump out the
current one.
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APPENDIX
A. REVIEW OF RENEWAL THEORY

In this section we review some basic facts from renewal
theory. A brief treatment of this material can be found in
Section 1.7 of [20]; for a more thorough presentation see
Chapter 3 of [23].

Let x1, x2, . . . be an infinite sequence of independent, iden-
tically distributed random variables each having cumulative
distribution function F satisfying F (0) = 0, and let x0

be another non-negative random variable, independent of
{xn}n≥1, but possibly having a different distribution. The
partial sums zk = x0 + x1 + · · · + xk constitute a stochas-
tic process {zn}n≥0 called a renewal process. The process is
called delayed if Pr(x0 = 0) > 0, otherwise it is called pure.

In our randomized algorithm, we are interested in using a
renewal process that differs from the preceding definition in
two respects. First, the points {zi} are indexed by the set of
all integers, negative as well as positive. Second, and more
importantly, the process is stationary, meaning that the dis-
tribution of the random set {zi}i∈Z is translation-invariant:
for every fixed t ∈ R, the random set {zi + t}i∈Z has the
same distribution. We will always assume that the points
of the set {zi}i∈Z are numbered so that z−1 < 0 ≤ z0. Note
that this numbering convention doesn’t interfere with the
property of translation-invariance, since that property only
asserts that {zi}i∈Z and {zi + t}i∈Z have the same distribu-
tion as sets, not as integer-indexed sequences.

A notable feature of stationary renewal processes is the so-
called inspection paradox : the length of the random interval
[z−1, z0] that contains 0 has a different distribution from the
lengths of the other intervals [zi−1, zi], i 6= 0: it is biased to
have a greater length in expectation. This reflects the fact
that long intervals are more likely than short ones to contain
the point 0. In fact, z0−z−1 is sampled from the size-biased
distribution that reweights intervals in proportion to their
length. If F (x) denotes the cumulative distribution func-
tion of the interarrival time zi − zi−1 (i 6= 0), and µ denotes
the expected interarrival time, then z0 − z−1 has cumula-
tive distribution function H(x) = 1

µ

∫ x

0
(F (x)− F (y)) dy.

(In the case when F has a density function f(x), then H
is the distribution with density xf(x), matching our earlier
informal description of the size-biased distribution.)

Conditional on the length of the interval [z−1, z0], the dis-
tance of the point 0 from the right endpoint is uniformly
distributed. In other words, z0 has the same distribution
as the product rs, where r is a uniformly random sample
from [0, 1] and s is sampled from the size-biased distribution,
H(x), defined above. As it happens, this means that z0 has
cumulative distribution function F0(x) =

∫ x

0
(1 − F (y)) dy.

Since the distance from 0 to the left endpoint z−1 is also uni-
formly distributed, this means that the random −z−1 also
has distribution F0.

For any t, define z−(t), z+(t) to be the sample points of
{zi}i∈Z that occur immediately before and after t; i.e.,

z+(t) = min{zi | zi ≥ t, i ∈ Z}
z−(t) = max{zi | zi < t, i ∈ Z}.

We have z+(0) = z0, z−(0) = −z−1, so both z+(0) and
z−(0) have cumulative distribution function F0. By translation-
invariance, the same holds for the distribution of z+(t) − t
and t− z−(t), for every real number t.


