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Abstract

We consider the problem of designing mechanisms with
the incentive property that no coalition of agents can en-
gage in a collusive strategy that results in an increase in
the combined utility of the coalition. For single param-
eter agents, we give a characterization that essentially
restricts such mechanisms to those that post a “take it
or leave it” price to for each agent in advance. We then
consider relaxing the incentive property to only hold
with high probability. In this relaxed model, we are
able to design approximate profit maximizing auctions
and approximately efficient auctions. We generalized
these results to give a methodology for designing collu-
sion resistant mechanisms for single parameter agents.
In addition, we give several results for a weaker incen-
tive property from the literature known as group strat-
egyproofness.

1 Introduction

A significant recent trend in theoretical computer sci-
ence is to include economic and game theoretic consid-
erations in the design of algorithms and protocols. This
work considers the case where part of the input to the
algorithm is provided by selfish agents. Not only must
the algorithm produce a desired outcome, but it must
do so in the presence of potential manipulation of its in-
puts by the selfish agents attempting to game the system
in order to obtain outcomes that favor their own inter-
ests. In this body of research, the dominant paradigm
is truthful mechanism design, and many problems have
been considered. These include scheduling, e.g., [24, 2];
shortest paths, e.g., [3, 10]; minimum spanning trees
[28]; digital good auctions [16]; online auctions [4, 6];
multicast auctions, e.g., [11, 19, 12]; and combinatorial
auctions, e.g., [21, 25, 1]. An assumption made in most
works in the area of truthful mechanism design, dating
back to and including its origin in the Vickrey-Clarke-
Groves (VCG) mechanism [29, 7, 18], is that the selfish
agents do not collude with each other.

It is well acknowledged that collusion is a prob-
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lem in mechanism design. The prevailing economics ap-
proach to studying collusion is to consider the ability for
coalitions to form and operate in standard mechanisms.
There are many case studies of auctions run in practice
where collusion has had significant effects (e.g., Trea-
sury auctions [13, 17] and FCC spectrum auctions [9]).
Robinson [26] gives theoretical evidence that demon-
strates that the most celebrated truthful mechanism,
the Vickrey auction, which sells to the highest bidder
at the second highest price, is vulnerable to collusion.
Nonetheless, even for the problem of understanding col-
lusion in existing mechanisms, theoretical understand-
ing is limited [8, 20]. With the Internet and advances
in cryptography which may make collusion easier and
even more of a problem, it is especially important to un-
derstand collusion and how to design mechanisms that
prevent it.

There is a recent and growing body of work that
considers designing mechanisms that prevent a partic-
ular form of collusion. This work defines a mechanism
as group strategyproof (see e.g, [23, 11, 19]) if in any
coalition, manipulation, i.e., a non-truthtelling strategy,
that strictly benefits some member of the coalition will
also strictly hurt another member. This definition has
several drawbacks. First, implicit in this definition is
the assumption that an agent that benefited from the
coalition strategy will not payoff an agent that suffered
a loss. Second, there are natural instances where col-
lusion in group strategyproof mechanisms results in a
negligible loss for one member of the coalition and sub-
stantial gain for another. We give one such example in
Section 7 along with further motivation for moving to
stronger notions of collusion resistance.

In this paper we propose a strong generalization
the notion of truthfulness to include the possibility
that groups of the agents may collude and exchange
side-payments. We say a mechanism is t-truthful if
truthtelling is an optimal strategy for all agents even
when it is possible for agents to form coalitions of size t
or less and possibly exchange side-payments with other
agents in their coalition. This is equivalent to requiring
that non-truthtelling does not result in an increase the
total utility of the agents in a coalition. With this strong
notion of collusion resistance, it is not necessary to have
a model (e.g., as in [22]) for how agents might be able



to agree on a collusive strategy because rational agents
will have no incentive to form coalitions.

We will consider mechanisms for any single-
parameter agent problem (see e.g., [21, 2, 1]). In a
single-parameter agent problem each agent has a pub-
licly known partitioning of possible outcomes into two
sets, the reject set and the accept set. It is assumed
that agent i has valuation zero for any outcome in the
reject set and private valuation vi for any outcome in
the accept set. For auction-like problems, agent i’s ac-
cept set is simply the set of allocations where agent i
is allocated their desired good and the reject set is the
set of allocations where i is not allocated their desired
good. The truthtelling strategy for agent i would be to
report to the mechanism (a.k.a. bid) their true private
value, vi.

As our main impossibility result (Section 3), we will
characterize t-truthful mechanisms for t ≥ 2 as pre-
cisely those mechanisms that offer each agent a “take
it or leave it” price that is independent of the bids of all
agents.1 A similar result has been obtained earlier by
Schummer [27]. We refer to these mechanisms as posted-
price mechanisms. This result implies that, without
any advance knowledge of the input bids, no t-truthful
mechanism can optimize any nontrivial objective func-
tion. Furthermore, it implies that the standard objec-
tives of profit maximization and economic efficiency are
impossible to approximate even in the least restrictive
scenarios (Section 4).

In spite of this impossibility result, we would still
like to obtain mechanisms that prevent the agents
from effectively colluding. To this end, we follow
the approach of [1, 15] and relax the definition of t-
truthfulness to allow for mechanisms that are only t-
truthful with high probability. Such a mechanism would
produce an outcome such that with high probability
in coin flips made by the mechanism, no coalition can
obtain a higher total utility by non-truthful bidding.

As our main positive result, we use the consensus
estimate technique from [14] to obtain mechanisms that
are t-truthful with high probability and either approx-
imate profit maximization (Section 5) or economic ef-
ficiency (Section 6) for single-item multi-unit auctions.
These results follow from a general approach which may
be useful in obtaining mechanisms that are t-truthful
with high probability for other mechanism design prob-
lems. The approach is based on using the consensus es-
timate technique to approximate summary information
in a way that with high probability is non-manipulable
by a coalition of t agents. This approximate summary

1We view this as an impossibility result because it implies that

no “nontrivial” mechanism is t-truthful.

information can then be used in a parameterized posted-
price mechanism that with high probability results in a
feasible near-optimal solution. For this approach to be
successful, there must exist summary information that
changes very little as a function of the bids of any coali-
tion of t agents. There also must be a posted price
mechanism that can use approximate summary infor-
mation to obtain a near optimal outcome.

We conclude the paper by reconsidering the stan-
dard notion of group strategyproofness (Section 7). We
study the interplay between group strategyproofness
and randomness. We also modify the k-Vickrey auc-
tion to obtain a randomized auction that approximates
Vickrey’s outcome. The resulting auction approximates
Vickrey auction’s efficiency and profit maximization
properties and is group strategyproof. Nonetheless, the
auction does not seem to be much more resistant to col-
lusion than the Vickrey auction, which is known to be
vulnerable [26, 8, 13, 17]. This is additional evidence
that group strategyproofness is not a sufficient prop-
erty to prevent collusion, and motivating notions such
as t-truthfulness with high probability.

2 Definitions

We adopt the general model of single-parameter agents
(e.g., [21, 2, 1]). For single-parameter agents, the
possible outcomes of the mechanisms can be partitioned
into two sets accept and reject. It is assumed that these
partitionings are public knowledge. We will let xi be
an indicator for whether the outcome is in agent i’s
accept (xi = 1) or reject (xi = 0) set. Each agent
has a private value vi representing the difference in
its value for the reject and accept outcomes. Thus,
an agent’s valuation for outcomes with xi = 1 is vi

and zero otherwise. A mechanism for single parameter
agents will compute an outcome, which we denote by
x = (x1, . . . , xn) and prices p = (p1, . . . , pn). After
the mechanism is run, agent i will be required to pay
the mechanism pi. Agent i’s utility is given by the
difference between their valuation and their payment,
i.e., ui = xivi − pi. We assume that each agent’s goal is
to maximize their utility.

For structured optimization problems, the mecha-
nism may incur a cost for producing a given outcome.
We assume that there is a cost function, c(·), on out-
comes, x, that specifies this cost. Additionally, some
outcomes may be infeasible. We will assume that the
cost of infeasible outcomes is infinity.

To make this formulation more concrete, here are a
few examples of auction related problems cast into this
framework. By taking c(x) = 0 for all x, we obtain
the unlimited supply auction problem which models the
problem of selling identical units of a single item to



bidders that each want at most one unit (e.g., for a
digital good) [16]. Similarly, the k-unit limited supply
auction has c(x) = 0 if

∑

i xi ≤ k and c(x) = ∞
otherwise. The non-excludable public good problem
(with fixed cost C) has c(x) = 0 when xi = 0 for all
i, c(x) = C when x1 = 1 for all i, and c(x) = ∞
otherwise. The single-parameter combinatorial auction
[1] has c(x) = 0 for all feasible allocations, i.e., ones
that do not over-allocate any items, and ∞ otherwise.

The profit of a mechanism is simply the difference
between the payments made to the mechanism by the
agents and the cost incurred by the mechanism for the
outcome selected. For prices p and allocation x:

Profit =
∑

i
pi − c(x).

The economic efficiency of a mechanism is the social
welfare of the solution it produces. This is the difference
between the sum of the valuations of the agents and the
cost. For valuations v and allocation x:

Efficiency =
∑

i
xivi − c(x).

The outcome that maximizes the efficiency is said to
be efficient. The two economic objectives we will
consider in this paper profit maximization and efficiency
maximization.

The mechanisms we consider are single-round,
sealed bid mechanisms. The mechanism takes as in-
put bids, b = (b1, . . . , bn), and a cost function c(·) and
computes an outcome x and prices p. We will make the
standard assumptions of no positive transfers and vol-
untary participation which together imply that pi = 0 if
xi = 0 and pi ≤ bi otherwise, see e.g., [23].

We will be considering randomized mechanisms.
In a randomized mechanism the allocation, x =
(x1, . . . , xn), and prices, p = (p1, . . . , pn), are random
variables. Therefore the agent utilities, ui = vixi − pi,
are also random variables. We denote by x̄i, p̄i, and ūi

be the expected value of xi, pi, and ui respectively. Note
that because xi is an indicator variable, x̄i is simply the
probability that agent i is accepted.

The following notation will be convenient. Given
a mechanism in general, xi and thus x̄i can be a
function of the entire input b. Let b−i denote the
bid vector with bid i replaced by a ‘?’, i.e., b−i =
(b1, . . . , bi−1, ?, bi+1, . . . , bn). If we fix b−i we can view

x̄i as a function of bi which we will denote by x̄
(b−i)
i (bi)

(and similarly for p̄
(b−i)
i (bi) and ū

(b−i)
i (bi)). If b−i is

implicit, we will just write x̄i(bi), p̄i(bi), etc.
We now discuss the incentive properties that will be

the focus of this paper. These incentive properties are
useful because analysis of mechanisms that do not have
these properties involves making assumptions about

agents’ strategies and the agents’ knowledge of other
agent strategies, assumptions that we do not wish to
make here. More motivation can be found, for example,
in [24, 2, 16].

Definition 1. (Truthful in Expectation) A ran-
domized mechanism is truthful in expectation if for any
agent i, regardless of the actions of any other agents,
agent i’s expected utility, ūi, is at its maximum when
agent i bids its true valuation, bi = vi. Formally, for all

b−i, vi, and bi: ū
(b−i)
i (vi) ≥ ū

(b−i)
i (bi).

Theorem 2.1. (See e.g. [2]) For b−i fixed, a mecha-
nism is truthful in expectation if and only if the proba-
bility that an agent wins as a function of its bid, x̄i(bi),
is monotonically increasing and the payment rule satis-

fies:2 p̄i(bi) = bix̄i(bi) −
∫ bi

0 x̄i(b)db.

Definition 2. (Deterministic Truthfulness) A
deterministic mechanism is truthful if for any agent i,
regardless of the actions of any other agents, agent i’s
utility, ui, is at its maximum when agent i bids its true
valuation, bi = vi.

Definition 3. (Randomized Truthfulness) A
randomized mechanism is truthful if it is a probability
distribution over deterministic truthful mechanisms.

We now describe our extensions of the standard no-
tions of truthfulness to take into account the possibility
that agents may collude. These definitions capture the
case where the agents may exchange side payments to
insure that the collusive strategy is beneficial for all par-
ticipants of the coalition.

Definition 4. (t-Truthfulness) A mechanism is t-
truthful in expectation if, for any coalition of size t and
any value of the bids of agents not in the coalition, the
sum of the expected utilities of the agents in the coalition
is maximized when all agents in the coalition bid their
true valuations.

A deterministic mechanism is t-truthful if it is t-
truthful in expectation, and a randomized mechanism
is t-truthful if it a distribution over deterministic t-
truthful mechanisms.

The main impossibility result of this paper is a char-
acterization of t-truthful mechanisms for t ≥ 2. This
characterization is most intuitive in the deterministic
case where it simply means that prior to obtaining the
bids, the mechanism must post “take it or leave it”
prices for each agent. Each agent will then accept or
reject its posted price depending on whether it is above

2I.e., given the allocation rule, the payment rule is fixed.



or below its valuation. This is generalized by the fol-
lowing definition.

Definition 5. (Posted Price) A mechanism is
posted price in expectation if for all i, bi, b−i, and

b′
−i, x̄

(b−i)
i (bi) = x̄

(b′

−i)

i (bi).

Again, a deterministic mechanism is posted price if
it is posted price in expectation, and a randomized
mechanism is posted price if it is a randomization over
deterministic posted price mechanisms.

The main positive result of the paper is to show
that it is possible to construct interesting mechanisms
that are collusion resistant for a relaxed definition of
t-truthfulness. We follow Archer et al. [1] and make
the following definition. Here high probability is defined
with respect to some parameter of the input, e.g., the
number of winners.

Definition 6. (t-Truthful with High Prob.) A
randomized mechanism is t-truthful with high proba-
bility if given any coalition C of size t or fewer, with
high probability in the randomness of the mechanism,
there is no non-truthtelling strategy for the agents in C
that increases their total utility.

3 The Characterization

In this section we present the characterization of t-
truthful mechanisms as posted price. Note that the
profit of the mechanism is irrelevant for the incentive
properties. Thus we can ignore c(·) and just consider the
allocation and the prices that the mechanism produces.

First we show that any posted price in expectation
mechanism is t-truthful in expectation (for all t). Then
we show that any mechanism that is 2-truthful in ex-
pectation is posted price in expectation. This collapses
the hierarchy of t-truthful mechanisms showing that any
mechanism that is 2-truthful is also t-truthful for all t
(the other direction is trivial). Furthermore, it charac-
terizes mechanisms that are t-truthful in expectation as
being posted price in expectation. A similar result has
been obtain by Schummer [27]. He defines the notion of
bribe-proof, which is similar to our notion of 2-truthful,
and shows that a deterministic bribe-proof mechanism
offers a constant price to each bidder.

We omit the rather elementary proof of the follow-
ing lemma from this extended abstract.

Lemma 3.1. Any posted price in expectation mecha-
nism is t-truthful in expectation.

Lemma 3.2. Any mechanism that is 2-truthful in ex-
pectation is posted price in expectation.

Proof. Let M be any mechanism that is 2-truthful in
expectation. Consider an agent i and fix the values of
all other bids to be b−i = v−i. Consider the expected
utility of agent i, ūi, as a function of its bid bi. From
Theorem 2.1 we have:

ūi(bi) = vix̄i(bi) − p̄i(bi).

= vix̄i(bi) − bix̄i(bi) +

∫ bi

0

x̄i(b)db.

Note that for bi = vi this simplifies to

ūi(vi) =

∫ vi

0

x̄i(b)db.(3.1)

If agent i bids bi 6= vi, its expected loss due to making
a suboptimal bid is

i-lossvi
(bi) = ūi(vi) − ūi(bi)

= (bi − vi)x̄i(bi) −

∫ bi

vi

x̄i(b)db.(3.2)

Now consider some agent j, j 6= i. The probability that
j is allocated an item, in general, is a function of all the
bids. Keeping b−{i,j} (all bids but bid i and bid j) fixed,
we write the probability that j is accepted as a function

of bi and bj as x̄
(bi)
j (bj) (and likewise agent j’s utility as

ū
(bi)
j (bj)). In the discussion that follows we will assume

that agent j bids bj = vj . From equation (3.1) we have,

ū
(bi)
j (vj) =

∫ vj

0

x̄
(bi)
j (b)db.

Consider agent j’s expected gain when agent i bids bi

instead of vi (this “gain” may be negative),

j-gainvi
(bi) = ū

(bi)
j (vj) − ū

(vi)
j (vj)

=

∫ vj

0

[

x̄
(bi)
j (b) − x̄

(vi)
j (b)

]

db.(3.3)

Since we have assumed that the mechanism M is 2-
truthful, it must be that the combined expected utility
of agent i and j when bidding (vi, vj) is at least their
utility when bidding (bi, vj). For all vi, bi, and vj ,

j-gainvi
(bi) ≤ i-lossvi

(bi)

≤ i-lossvi
(bi) + i-lossbi

(vi)

= [bi − vi] [x̄i(bi) − x̄i(vi)] .

In the above sequence of equations, i-lossbi
(vi), intu-

itively represents the loss for agent i would incur by
non-truthfully bidding vi when their actual valuation is
bi. This quantity is always positive, see equation (3.2).



Equation (3.3) implies that for any bid b′i,
j-gainvi

(bi) = j-gainvi
(b′i) + j-gainb′

i
(bi). For the re-

mainder of this argument we assume that bi > vi; the
analogous argument can be made for the vi > bi case. If
we divide the interval from [vi, bi] in to k equally sized

segments, b
(0)
i , . . . , b

(k)
i then the total gain for agent j

when agent i bids bi instead of vi is the sum of the
gains for each segment:

j-gainvi
(bi) =

k
∑

`=1

j-gain
b
(`−1)
i

(b
(`)
i )

≤

k
∑

`=1

[

b
(`−1)
i − b

(`)
i

] [

x̄i(b
(`−1)
i ) − x̄i(b

(`)
i )

]

= 1
k [bi − vi] [x̄i(bi) − x̄i(vi)] .

This holds for any k, so in the limit we get:
j-gainvi

(bi) ≤ 0.
Of course, j-gainvi

(bi) = −j-gainbi
(vi) which im-

plies that j-gainvi
(bi) = 0. Because this is true for all

values of agent j’s valuation, vj , from equation (3.3) it

must be that x̄
(bi)
j (vj) = x̄

(b′i)
j (vj) for all bi and b′i.

To finish the theorem, we show that for any b and

b′, x̄
(b−i)
i (·) = x̄

(b′

−i)

i (·). By the above argument, this
result holds for b and b′ that differ in one bid value, j.
The transitivity of equality gives the general result.

Theorem 3.1. A mechanism is 2-truthful in expecta-
tion if and only if it is posted price in expectation.

Corollary 3.1. A mechanism is t-truthful in expec-
tation for any t ≥ 2 if and only if it is posted price in
expectation.

The analogous results follow for deterministic t-truthful
mechanisms and randomized t-truthful mechanisms.

4 Lower Bounds

In this section we use the characterizations proved in
previous section to show that the natural objectives of
profit maximization and efficiency are impossible to ap-
proximate with a t-truthful mechanism for the simplest
interesting cost functions. The relatively simple proofs
in this section are omitted from this extended abstract.

4.1 Profit Maximization. First we consider the
objective of profit maximization. Recall that the goal
of profit maximization is to maximize

∑

i pi − c(x).
Consider the case of the unlimited supply auction
problem, i.e., the cost function that satisfies c(x) =
0 for all x. Arguably this is the simplest problem
we could consider. Following [16], we would like to

obtain an auction that approximates the profit of the
optimal single price sale, OPT. We prove that no
t-truthful mechanism can obtain better than a log h
factor approximation even when all agent valuations are
known to be within [1, h].

Theorem 4.1. The worst case expected profit of any
posted price in expectation auction is at most OPT / lnh
even if the bids are guaranteed to be in [1, h].

4.2 Efficiency. Now we consider the problem of ob-
taining an approximately efficient outcome via a posted
price mechanism. Recall that economic efficiency means
that the social welfare, defined as

∑

i xivi − c(x), is
maximized. Note that for the unlimited supply auc-
tion problem considered above, the trivial mechanism
that allocates to all agents at price zero is both posted
price and efficient. Instead we consider the next sim-
plest problem, the limited supply auction problem (with
k units). For the k-item auction, the cost function satis-
fies c(x) = 0 for x with at most k winners and c(x) = ∞
otherwise. We show the following impossibility result.

Theorem 4.2. No posted price in expectation mecha-
nism for the limited supply auction problem gives a con-
stant approximation to the efficient outcome (in expec-
tation).

5 Approximate Profit Maximization

We now consider the problem of profit maximization in
an unlimited supply auction, i.e., the number of units
for sale is at least the number of agents, n; however our
results can easily be extended to the limited supply case
with k < n units for sale. We present an auction that
approximates profit maximization and is t-truthful with
high probability. First a few definitions.

Definition 7. The number of bids in b with value at
least x is denoted #x(b).

Definition 8. Given a set S ⊂ R, and a real number
x, the value bxcS is the largest value x′ ∈ S such that
x′ ≤ x, i.e., x rounded down to the nearest element of S.
Similarly, the value dxeS is x rounded up to the nearest
element of S.

Definition 9. (APM) Given input b and parameters
c and α, the Approximate Profit Maximization (APM)
auction does as follows:

1. Sample y uniformly from [0, 1].

2. Let ni = b#αi(b)c{cj+y : j∈Z}.

3. Output price αi that maximizes αini.



The following lemma follows immediately from the
definition of APM.

Lemma 5.1. APM has a worst case profit (over input
and random coin flips of the mechanism) of at least
factor of cα from the optimal single price sale, OPT.

Definition 10. For a fixed input b and a fixed choice
of y we say APM has a t-consensus at price αi if

b#αi(b) − tc{cj+y : j∈Z} = b#αi(b) + tc{cj+y : j∈Z} .

To get some intuition for the importance of this
definition, note that if APM is a t-consensus at αi

then it is not possible for any set of t agents to change
their bids and get b′ such that b#αi(b)c{cj+y : j∈Z} 6=

b#αi(b′)c{cj+y : j∈Z}.

Lemma 5.2. [14] The probability that APM is a t-

consensus at price αi is 1 − logc
#

αi (b)+t

#
αi (b)−t .

Definition 11. A price αi is relevant for some random
coin flips in APM and for some set C of t colluders, if

1. APM can output price αi, and

2. price αi is lower than the sale price had these t
colluders bid truthfully.

We will be showing that with high probability APM
obtains a t-consensus simultaniously on all relevant
prices. Note that the second part of the definition is
important because it is always possible for a coalition
to raise the price APM outputs (by bidding ∞).

Lemma 5.3. For input b, let αr be the largest relevant
price. Let m = #αr (b) − t. Then for any relevant αi,

#αi(b) ≥ αr−im/c − t.

Proof. For any coalition of t agents manipulating b to
be b′ and any randomization in APM, i.e., any choice
of y we have:

αr b#αr (b′)c{cj+y : j∈Z} ≥ αrm/c,

αi b#αi(b′)c{cj+y : j∈Z} ≤ αi(#αi(b) + t).

Thus, for αi to be relevant, it must be that

αrm/c ≤ αi(#αi(b) + t).

Thus, αr−im/c − t ≤ #αi(b).

Definition 12. For a fixed input b and a fixed choice
of y we say APM is a t-consensus if for all relevant
prices αi, APM is a t-consensus for αi.

Notice that for b and y such that APM is a t-
consensus, any coalition of t or fewer agents cannot
change their bid values and cause the sale price output
by APM to lower. We now prove that the probability
that APM is a t-consensus approaches one as the
number of agents bidding above the highest relevant
price increases. In our proof we will make use of the
following fact:

Fact 5.1. For 0 < ai < 1 and 1 ≤ i ≤ N ,

∏N

i=1
(1 − ai) ≥ 1 −

∑N

i=1
ai.

Lemma 5.4. Let αr be the highest relevant price and
m = #αr (b) − t. The probability that APM is a t-
consensus is 1 − Θ(t/m).

Proof. Let R = {i : αi is relevant}. Consider the
probability APM is a t-consensus at αi for i ∈ R and
apply Lemma 5.3.

Pr
[

t-consensus at αi
]

= 1 − logc
#

αi(b)+t

#
αi (b)−t

≥ 1 − logc
αr−im/c

αr−im/c−2t = 1 + logc

(

1 − 2tc
αr−im

)

.

We want to get a bound on the probability that APM
is a t-consensus simultaneously at αi for all i ∈ R. To
do this, we look at the probability that APM is not a t-
consensus at each relevant αi and use the union bound:

Pr[t-consensus] ≥ 1 −
∑

i∈R
Pr

[

not t-consensus at αi
]

≥ 1 +
∑

i∈R
logc

(

1 − 2ct
αr−im

)

≥ 1 +
∑∞

j=0
logc

(

1 − 2ct
m α−j

)

= 1 + logc

[

∏∞

j=0

(

1 − 2ct
m α−j

)

]

.

Applying Fact 5.1,

Pr[t-consensus] ≥ 1 + logc

[

1 −
∑∞

j=0

2ct
m α−j

]

= 1 + logc

[

1 − 2ct
m

(

α
α−1

)]

= 1 − Θ(t/m).

This gives the theorem.

Lemma 5.5. If APM is a t-consensus then for any
coalition of t agents, truthful bidding maximizes the total
utility of the coalition.

Proof. Note that APM uses a single sale price for all
agents. Agents bidding at least this sale price win and
agents below the sale price lose. In the case of a t-
consensus, no group of t colluders can change their bid
values to lower the sale price. This follows from the
definition of t-consensus and relevant prices and implies
the theorem.



Theorem 5.1. For b such that there are m agents
above the highest relevant price, the probability that
APM is t-truthful is 1 − Θ(t/m).

Unfortunately, this does not directly give us an
auction that is t-truthful with high probability on all
inputs. In particular, on inputs where m is of the
same order as t, the theorem is useless, even if there
is some m′ � t such that selling m′ items also gives
a large profit. This problem is easily addressed by
parameterizing APM to only consider solutions with a
large number of winners. A parameterized version of
APM is defined as follows.

Definition 13. (APM`) Given input b and parame-
ters α, `, and c, APM` works as follows:

1. Sample y uniformly from [0, 1].

2. Let ni = b#αi(b)c{cj+y : j∈Z}.

3. Output price αi that maximizes αini subject to the
constraint that ni ≥ `.

It is easy to see that in APM`, m ∈ Ω(`), which implies
the following result.

Theorem 5.2. The probability that APM` is t-truthful
is 1 − O(t/`).

Setting ` higher leads to the higher probability of
t-truthfulness at the expense of possibly missing an
optimal solution that sells to less than ` agents.

6 Approximate Efficiency

We now consider the problem of designing an efficient
mechanism for the k-unit limited supply auction prob-
lem. Recall that for this problem, the k-Vickrey auction,
which sells to the highest k bidders at the k + 1st high-
est bid value, exactly solves the problem of designing an
efficient truthful auction when collusion is disallowed.
For the case where agents may collude, we show that
it is possible to obtain a constant factor approximation
to the efficient allocation while simultaneously being t-
truthful with high probability in k, the number of units
for sale. The proofs in this section are omitted from this
extended abstract.

Definition 14. The Approximate Efficiency Maxi-
mization (AEM) auction does the following:

1. Use random sampling to estimate the kth highest
bid value:

(a) Let S be a sample with each agent chosen
independently with probability 1/k.

(b) Let p be the highest bid value in S.

2. Use the consensus technique to estimate the number
of bidders above p:

(a) Let y be a uniform random variable from [0, 1].

(b) Let np = d#p(b)e{2i+y : i∈Z}.

3. Use p and np in a posted price mechanism in which
with high probability the item is not oversold:

(a) If np ≤ k output price p for all bidders.

(b) Otherwise, output offer price zi independently
for each bidder i with

zi =

{

p with probability k/(2np)

∞ otherwise.

4. Touch up: If the item is oversold in Step 3b, run
k-Vickrey.

Lemma 6.1. AEM is t-truthful with probability 1 −
Θ(t/k).

Lemma 6.2. AEM is a constant approximation the op-
timal efficiency (in expectation).

7 Group Strategyproof Mechanisms

Definition 15. (Group Strategyproof) A mech-
anism is group strategyproof if for any coalition, any
non-truthful coalition strategy that results in a strict
gain in utility for some agent in the coalition also re-
sults in a strict loss in utility for some other agent in
the coalition.

One of the motivations for considering the strong
collusion resistance notion of t-truthfulness is the weak-
ness of the more prevalent notion of group strategyproof-
ness. Consider the following compelling example. The
cost sharing mechanism of Moulin and Shenker [23], in
the setting of a digital good with a fixed production
cost C, works by finding the largest number of agents,
k, such that each agent’s bid is at least C/k, their
fair share of the cost. It sells each of these k agents
a copy of the good at price C/k and rejects all other
agents. Suppose we have a hundred agents with valua-
tions {0.99, 1, 1, 1, . . . , 1, 1, 100} and C = 100. If agents
bid truthfully, the mechanism will accept the last agent
at price $100 and reject all other agents. In this case,
all agent utilities are zero. If the first agent were to bid
$1, all agents are accepted at $1. Except for the first
and the last agent, all agent utilities are zero. The first
agent has a loss of $0.01 and the last one has a gain of
$99. Even though the cost sharing mechanism is known



to be group strategyproof, the first and the last agent
can benefit from collusion if side-payments are allowed.

In this section we consider group strategyproofness
and the goals of profit maximization and economic ef-
ficiency. We show that the definition of group strat-
egyproof permits mechanisms that approximate profit
maximization or efficiency and are group strategyproof.
Nonetheless, given the weakness of group strategyproof-
ness we are reluctant to believe that these mechanisms
offer significantly more protection from collusion than
other truthful mechanisms with no guarantees about
collusion resistance. In particular, our Approximate
Vickrey auction (Section 7.2) which is group strate-
gyproof in expectation does not seem to be much more
collusion resistant than the classical Vickrey auction
which is well known to be vulnerable to collusion both
theoretically [26, 8] and in practice [13, 17].

We begin our discussion by making some general
observations about group strategyproofness. In sev-
eral aspects, the definition of group strategyproofness
is more subtle then the definitions of truthfulness or t-
truthfulness. The first subtlety is that randomization
over deterministic group strategyproof auctions need
not be group strategyproof in expectation (and vice
versa). The second is that, with respect to mechanisms
that are group strategyproof (in expectation), random-
ized coalition strategies offer the coalition strictly more
power than deterministic strategies. Until Section 7.4
we assume that the coalitions can only follow determin-
istic strategies.

7.1 Randomized Mechanisms. Some basic prop-
erties of group strategyproofness are very different from
those for truthfulness and t-truthfulness. In particular,
a randomization over deterministic group strategyproof
mechanisms is not necessarily group strategyproof (in
expectation). Consider the following three auctions
with two bidders.
Auction 1: Set p1 = 10. Set p2 to 10 if b1 ≥ 10 and to
1 otherwise.
Auction 2: (the mirror of Auction 1) Set p2 = 10. Set
p1 to 10 if b2 ≥ 10 and to 1 otherwise.
Auction 3: Run Auction 1 or Auction 2 with proba-
bility 1/2 each.

First observe that Auction 1 (and Auction 2, by
symmetry) is group strategyproof. Bidder 2 cannot af-
fect bidder 1’s price. Bidder 1 can only lower bidder 2’s
price by rejecting price 10. Note that if bidder 1’s utility
is above 10, this bidder would have perform the subop-
timal action of rejecting the item at price 10. Thus,
we can conclude that Auction 3 is a randomization over
deterministic group strategyproof auctions.

Now we show that Auction 3 is not group strate-

gyproof in expectation. Assume that bidder 1 and 2
both have utility values of 11 for the item. Their prof-
its for obtaining an item at price 1 and 10 are 10 and
1 respectively. If they follow the truthtelling strategy,
their expected profit will be 1 because they will always
both obtain the item at price 10. If the two bidders
collude and bid 2 each, one will lose and one will obtain
the item at price 1. This winner is determined based on
the coin flip, so the expected profit of each bidder is 5.
Thus, both bidders gain from this strategy.

Next, we give a mechanism that is group strate-
gyproof in expectation but not a randomization over
deterministic group strategyproof mechanisms.

7.2 Approximate Efficiency. We now give a mech-
anism that is an (1 − ε)-approximation in expectation
to the k-unit Vickrey auction outcome (efficiency and
profit) and also group strategyproof in expectation.
However, it is not a randomization over deterministic
group strategyproof mechanisms
Approximate Vickrey Auction:

1. With probability 1 − ε, run k-Vickrey.

2. Otherwise, with probability ε pick k bidders at
random and offer each of them price p chosen from
a continuous distribution with support [0,∞).

Clearly, because the k-Vickrey auction is run with
probability 1 − ε, we have a (1 − ε)-approximation to
efficiency and profit in expectation. Next we show
that the auction is group strategyproof in expectation.
Consider any coalition. First, if the Vickrey price does
not decrease by the coalition strategy, then no bidder
benefits. Second, if the Vickrey price decreases, this is
because the value of the k+1st bid has decreased. This
can only happen if some bidder with value equal to or
above the k + 1st bid value lowers their bid below that
value. This bidder, however, will not be a winner in
k-Vickrey and, because of Step 2, is strictly worse off
by not bidding their true value.

7.3 Approximate Profit Maximization. We de-
fine a sequential posted price mechanism as follows.
Given a predetermined ordering of the bidders, π, in
round i bidder πi is offered price zi. The bidder may
accept or reject the offered price. Thus during step i,
the mechanism only learns whether the bidder has ac-
cepted or rejected the offered price. The price offered in
round i can be based on the response of bidders in all
previous rounds.

Lemma 7.1. A posted price mechanism with determin-
isticly chosen ordering π is group strategyproof.



Proof. Since π is deterministically chosen, in any coali-
tion there is a “first bidder”. This bidder is offered a
price z that is not a function of the actions of any of
the other bidders in the coalition. Further, in a posted
price mechanism, the only way a bidder can affect the
coalition with a non-truthful strategy is by rejecting an
offered price below their utility or by accepting a price
above their utility. In either case such a strategy makes
this first bidder in the coalition that would attempt to
do so strictly worst off and thus, a sequential posted
price mechanism is group strategyproof.

Blum et al. in [6, 5] apply the approach of ex-
pert based learning to solve the online posted pric-
ing problem. In this problem bidders arrive one at a
time and the auctioneer must offer each bidder a price.
The bidder either rejects or accepts the price. Clearly,
a online posted price auction is a sequential posted
price mechanism. The online posted price mechanism
given in [5] assumes all bids are between 1 and h and
obtains an approximation scheme with profit at least
(1 − ε)OPT−O(h log log h/ε).

We note very briefly that using the same tech-
niques as for the Approximate Vickrey auction pre-
sented above, we can also look at sequential auctions
where the auctioneer learns the bidders’ bids after they
arrive (instead of just whether or not they accepted
the offered price). This allows us to make use of the
online auction results of [6], improved by [5], to give
an approximation scheme with an expected profit of
(1 − ε)OPT−O(h/ε).

7.4 Randomized Coalition Strategies. In this
section we briefly show that group strategyproofness
when randomized coalition strategies are allowed is
strictly more restrictive than group strategyproofness
without randomized coalition strategies. In particular
we show that the group strategyproof approximation of
the k-Vickrey auction, discussed in Section 7.2, is not
group strategyproof for randomized strategies. Take k =
1 and consider three bidders with valuations v1 = 10,
v2 = 9, and v3 = 1. Assume ε is negligibly small. The
following randomized coalition strategy benefits both
bidder 1 and bidder 2 (assuming bidder 3 follows its op-
timal strategy of bidding b3 = 1). Bidders 1 and 2 pick
their bid independently and uniformly from [1, 2]. Each
wins with probability 1/2 and their profit on winning is
at least 7 for bidder 2 and 8 for bidder 1. This improves
the expected profit of both bidders. Thus a mechanism
that is group strategyproof for deterministic strategies
is not necessarily group strategyproof for randomized
(a.k.a., mixed) strategies.

8 Discussion and Conclusions

We studied t-truthfulness, a natural notion of collusion
resistance that allows for the possibility that colluders
may exchange side-payments to redistribute their gains
from colluding. We have shown that the only mecha-
nisms that are t-truthful are posted price mechanisms,
ones that post “take it or leave it” offers for each agent
before accessing any of the agents’ bids. Under this re-
striction it is impossible to construct interesting mech-
anisms. We have shown that if we relax t-truthfulness
and consider t-truthfulness with high probability, mech-
anisms for approximating both profit maximization and
efficiency maximization exist. These mechanisms are
based on the following general design framework.

• A summary value, S(b), is a value that does not
change much (e.g., a constant factor) when some
agents change their bids. In both APM and AEM
we used the summary values, #p(·), “the number
of bids that are at least p”.

• The consensus estimate of a summary value S(·)
is a randomized function fS(·) which approximates
S(·) and with high probability satisfies fS(b′) =
fS(b) when b and b′ only differ in a small number
of bids. In many cases it is useful for the consensus
estimate to be a lower bound, e.g. for APM (or an
upper bound, e.g., for AEM) on the actual sum-
mary value. A general solution to the consensus
estimate problem is given in [14].

• An approximate summary mechanism MS is a
(possibly randomized) posted price mechanism
that is parameterized by summary values, S =
(S1, S2, . . .), and that (approximately) achieves the
desired objectives given approximations to the
summary values. It may require the approximate
summary values be upper or lower bounds and it
may fail to meet the objective with some low prob-
ability in random coin flips it makes (e.g., in AEM).

Using this approach, the design problem for t-
truthful with high probability mechanisms becomes
that of identifying the appropriate summary values and
designing the approximate summary mechanism for the
desired objective.

A special but relevant scenario where the collusion
resistance auctions developed in this paper apply are to
multi-unit auctions where each agent desires more than
one item. In this case an agent can submit multiple bids
and we ensure that it is not possible for the any agent
to collude with itself. This alleviates the need to try to
prevent false name bidding which is a serious problem
for multi-unit auctions.



For auction settings where the goods being allo-
cated could potentially be reallocated among the agents
after the mechanism is run, an even stronger notion
of collusion resistance is interesting. What if we al-
low both side-payments and goods to be exchanged,
and still would like truthtelling to be optimal for agents
in a coalition. We observe in passing that it is rather
simple to adapt our characterization to show that the
class of mechanisms with this property is precisely that
where the prices posted to each agent are identical, i.e.,
xi(·) = xj(·). It is easy to see that APM satisfies this
stronger property with high probability; AEM does not.

Finally we conclude by considering the observation
that in standard truthful mechanism design profit max-
imization is more difficult than efficiency maximization.
This disparity is more apparent for worst case profit
maximization, where the work of [16, 12] for profit max-
imization can be contrasted with the k-Vickrey auction
for (the worst case) efficiency. Our experience in de-
signing the collusion resistant auctions APM and AEM
indicates an interesting reversal of this phenomenon.
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Annales d’Économie et de Statistique, 15/16:217–230,
1989.

[9] P. Cramton and J. Schwartz. Collusive Bidding:
Lessons from the FCC Spectrum Auctions. Journal

of REgulatory Economics, 17:229–252, May 2000.
[10] E. Elkind, A. Sahai, and K. Steiglitz. Frugality in

Path Auctions. In Proc. 15th Symp. on Discrete Alg.

ACM/SIAM, 2004.
[11] J. Feigenbaum, C. Papadimitriou, and S. Shenker.

Sharing the Cost of Multicast Transmissions. In Proc.

of 32nd Symposium Theory of Computing, pages 218–
226. ACM Press, New York, 2000.

[12] A. Fiat, A. Goldberg, J. Hartline, and A. Karlin.
Competitive Generalized Auctions. In Proc. 34th ACM

Symposium on the Theory of Computing. ACM Press,
New York, 2002.

[13] M. Friedman. Comment on ‘Collusion in the auction
market for treasury bills’. J. of Political Economy,
9:757–785, 1996.

[14] A. Goldberg and J. Hartline. Competitiveness via
Concensus. In Proc. 14th Symp. on Discrete Alg.

ACM/SIAM, 2003.
[15] A. Goldberg and J. Hartline. Envy-Free Auction for

Digital Goods. In Proc. of 4th ACM Conference on

Electronic Commerce. ACM Press, New York, 2003.
[16] A. Goldberg, J. Hartline, and A. Wright. Competitive

Auctions and Digital Goods. In Proc. 12th Symp. on

Discrete Alg., pages 735–744. ACM/SIAM, 2001.
[17] G. Goswami, T.H. Noe, and M.J. Rebello. Collusion

in Uniform-Price Auctions: Experimental Evidence
and Implications for Treasury Auctions. Review of

Financial Studies, 72:513–514, 1964.
[18] T. Groves. Incentives in Teams. Econometrica,

41:617–631, 1973.
[19] K. Jain and V. Vazirani. Applications of approxima-

tion to cooperative games, 2001.
[20] P. Klemperer. Auction theory: A guide to the litera-

ture. J. of Economic Surveys, 13:227–286, 1999.
[21] D. Lehmann, L. I. O’Callaghan, and Y. Shoham. Truth

Revelation in Approximately Efficient Combinatorial
Auctions. In Proc. of 1st ACM Conf. on E-Commerce,
pages 96–102. ACM Press, New York, 1999.

[22] R. McAfee and J. McMillan. Bidding Rings. The

American Economic Review, 82(3):579–599, 1992.
[23] H. Moulin and S. Shenker. Strategyproof Sharing of

Submodular Costs: Budget Balance Versus Efficiency.
Economic Theory, 18:511–533, 2001.

[24] N. Nisan and A. Ronen. Algorithmic Mechanism De-
sign. In Proc. of 31st Symp. on Theory of Computing,
pages 129–140. ACM Press, New York, 1999.

[25] N. Nisan and A. Ronen. Computationally feasible
VCG Mechanisms. In ACM Conference on Electronic

Commerce, pages 242–252, 2000.
[26] M. Robinson. Collusion and the Choice of Auction.

Rand Journal of Economics, 16:141–145, 1985.
[27] J. Schummer. Manipulation Through Bribes. J. of

Economic Theory, 91(3):180 – 198, 2000.
[28] K. Talwar. The Price of Truth: Frugality in Truthful

Mechanisms. In Proc. of 20th Int. Symp. on Theoreti-

cal Aspects of Computer Science. Springer, 2003.
[29] W. Vickrey. Counterspeculation, Auctions, and Com-

petitive Sealed Tenders. J. of Finance, 16:8–37, 1961.


