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Abstract

We consider a game theoretic knapsack problem that has
application to auctions for selling advertisements on Internet
search engines. Considern agents each wishing to place an
object in the knapsack. Each agent has aprivate valuation
for having their object in the knapsack and each object has a
publicly knownsize. For this setting, we consider the design
of auctions in which agents have an incentive to truthfully
reveal their private valuations. Following the framework of
Goldberg et al. [10], we look to design an auction that obtains
a constant fraction of the profit obtainable by a natural
optimal pricing algorithm that knows the agents’ valuations
and object sizes.

We give an auction that obtains a constant factor approx-
imation in the non-trivial special case where the knapsack
has unlimited capacity. We then reduce the limited capacity
version of the problem to the unlimited capacity version via
an approximatelyefficientauction (i.e., one that maximizes
the social welfare). This reduction follows from generaliz-
able principles.

1 Introduction

The ability to perform targeted advertising on Internet search
engines has recently spurred a flurry of activity in studying
pricing mechanisms for the problem. Given the dynamic na-
ture of the problem, auctions are a natural solution that lead-
ing search engines such as Google, Yahoo Search, and MSN
Search have adopted. The problem of designing a good auc-
tion for this setting is multi-faceted. Advertisers may have
combinatorial preferences: it is normal to show multiple ad-
vertisements per search and advertisements may be shown
for multiple combinations of keywords. Advertisers may
have budgets limiting the amount they can spend on adver-
tising [4]. In addition, the searches arrive over time which
gives the problem an online matching flavor [13]. Finally,
this is a game-theoretic problem and any solution must take
into account the issue ofincentives. Each of these aspects of
the problem in themselves represents a significant challenge
to auction design. In this paper we focus on a particular, yet
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fundamental, aspect of this problem.
Consider the following abstractprivate valueversion of

the knapsack problem. A profit-maximizing auctioneer is
auctioning off space in a knapsack of fixed capacityC. Each
agent would like to place exactly one object in the knapsack.
Agent i values the placement of her object in the knapsack
at vi. A priori, the valuations are theprivate dataof each
respective agent. Each object takes up a certain amount of
space in the knapsack, e.g., agenti’s object takes spaceci,
and these sizes are publicly known. Thus, thecis are public
values while thevis are private values.1

Theknapsack auction problemmodels several interest-
ing applications. For example, consider running a single auc-
tion to sell advertising space on a web page over the course
of a day. Suppose statistical information is available for each
advertiser as to how many showings (a.k.a.,impressions) are
necessary for to result in a userclick-throughand as well how
many times the web page itself will be viewed in a day. The
number of impressions necessary to generate a click-through
corresponds to thecis and the number of total views corre-
sponds to the capacity of the knapsack,C. Assume that each
advertiser wants exactly one click-through and we have an
instance of the (fractional)2 knapsack auction problem.

In this work we assume that agents are indistinguishable
except for the fact that each agent’s demand (i.e., the size
of her object) is publicly known. This distinguishability
allows an auction to charge agents with different sized
objects different prices and raises the question of how prices
should be related to the agent demands. We will consider
three ways in this paper. The first, essentially ignoring the
demands, is to offer a single price per agent. In this pricing
model, we consciously decide not to discriminate against
agents based on their demands. We refer to such pricing
schemes asconstant pricingas valid pricing functions (from
sizes to prices) are only constant functions. Another natural
candidate pricing strategy is to charge a single price per
unit capacity. Thus, agents demanding more of the capacity
pay proportionally more. We refer to such pricing schemes
as proportional pricing. Finally, the most general pricing

1Notice that were thevis public as well, this problem would be the
standard weighted knapsack problem – the auctioneer could charge each
agent her full valuation if her object is selected.

2In this paper we restrict our attention to the integral knapsack problem.
Naturally, all of our positive results apply to the fractional case as well, and
some can be easily improved.



strategy we will consider follows the least restrictive natural
assumption we could place on prices: that agents desiring
more capacity not pay less than those desiring less. We refer
to this asmonotone pricingsince the valid pricing functions
are the class are monotone non-decreasing functions of
object size. Clearly, both constant pricing and proportional
pricing are special cases of monotone pricing. As such we
will focus throughout the paper on monotone pricing noting
that a constant approximation to it also gives a constant
approximation to constant and proportional pricing.

Following Goldberg et al. [10], we consider analyzing
knapsack auctions in the framework ofcompetitive analysis
by comparing the performance of the auction to the profit of
an optimal pricing function. Accordingly, we defineOPT to
be the profit obtained by the best monotone pricing function
for agents’ actual valuations when we assume that an agent
pays the offered price if it is at most their valuation. Because
it is not possible to obtain a constant fraction ofOPT in
the worst case, we look to design auctions that obtain at
least a constant fraction ofOPT less a small additive loss
term, i.e.,α OPT−λh (whereh is an upper bound on the
highest agent’s valuation). Ideally bothα and λ would
be constants. In this paper, we achieve a constantα and
λ ∈ O(log log log n), wheren is the number of agents.

Through the study of the knapsack auction problem, we
wish to develop a better understanding of how to design
mechanisms for profit maximization when there are non-
trivial constraints on the allocation. The non-trivial con-
straint we face is that objects selected for inclusion in the
knapsack must all fit. A similar direction was attempted by
Fiat et al. in [6] for themulticast pricingproblem. They
exploit inherent market segmentation in the problem defini-
tion to reduce the problem from aprivate-valueoptimization
problem (mechanism design) to apublic-valueoptimization
problem (algorithm design). In the knapsack auction prob-
lem, however, there is no obvious market segmentation and
indeed, figuring out how to segment the agents into markets
in a truthful manner constitutes a key portion of our solution.
To the best of our knowledge, this work represents the first
solution to a non-trivial private-value optimization problem
when market segments are not given in advance.

Along this vein, we outline a general approach for
dealing with non-trivial optimization problems. The first step
of this approach is to solve theunlimited-supplyspecial case
of the problem. For example, In the unlimited supply special
case of the knapsack problem, the capacity of the knapsack,
C, exceeds the total demand,

∑
i ci. As this special case is

not constrained in what objects it may select, it allows us to
focus on the problem of how prices offered to agents relate to
their demands. The second step of this approach is to reduce
the limited-supply(a.k.a., general) version of the problem
to the unlimited-supply version. This approach works in
general for “monotone” optimization problems, where if an

allocation is feasible, then any subset of the allocation is
also feasible. The reduction works by (a) selecting a set of
agents that can all be allocated together, and (b) running the
unlimited capacity solution on this selected set. This must
be done carefully so as to preserve game theoretic properties
and guarantee good performance.

The rest of the paper is organized as follows. In Sec-
tion 2 we define the knapsack auction problem formally and
discuss related work. In Section 3 we present a comparison
of the different pricing rules that we consider in this paper.
In Section 4, we discuss the algorithmic complexity of com-
puting the optimal pricing function from a class when the
agent valuations are public knowledge. We present a approx-
imately optimal auction for the knapsack auction problem in
Section 5. For this, we first show (in Section 5.1) how to
reduce the limited-supply auction problem to the unlimited-
supply auction problem with a small loss in approximation
factor. Then in Section 5.2, we give an unlimited-supply auc-
tion that achieves a constant fraction of the benchmark rev-
enue (with a small additive loss).

2 Preliminaries

In this section, we formally define the knapsack auction
problem, discuss game theoretic constraints, and review
prior results that we will be building on.

The Problem. Consider the following setting. There is a
set of n agentsN = {1, . . . , n}, each of whom has an
object. Letci represent the publicly-known size of agent
i’s object. Each of these agents desires to have her object
placed in a knapsack with total capacityC. Our goal is to
design a single-round, sealed-bid auction for this setting. In
this auction, winning agents have their objects placed into
the knapsack and losing agents do not. Letvi denote agent
i’s valuation for having her object placed in the knapsack.
This valuation represents the benefit to the agent for winning.
We assume that the agents attempt to maximize theirutility,
measured as the difference between their valuation and their
payment (zero, if their item is not selected). We assume that
all the agents’ valuations fall within a known range[1, h].

We denote byb = (b1, . . . , bn) the vector of bids
submitted by the agents and byc = (c1, . . . , cn) the vector
of publicly known object sizes. We assume for convenience
that the agents are indexed by size, i.e.,ci ≥ ci+1. Following
[3], we sometimes refer to these object sizes asattributes.

Incentive Properties. We adopt the game-theoretic solution
concept oftruthful mechanism design. In a truthful mecha-
nism it is a dominant strategy for every agent to report their
true valuation as their bid, i.e.,bi = vi. We will employ
the following theorem to argue that our auctions are truth-
ful. To obtain a unique payment rule, we make the stan-
dard assumptions ofno-positive-transfers, that no agents are



“paid to play”; andindividual rationality, that agents are not
changed more than their bids.

THEOREM 2.1. [15] A deterministic mechanism is truthful
if and only if fixing the bids of all other agents, the selection
rule is monotone in agenti’s bid, i.e., raising her winning bid
also results in her winning; andi’s payment is her minimum
winning bid value.

We define a randomized mechanism to be truthful if it
is a randomization over truthful deterministic mechanisms.
In a randomized auction the auction’s allocation, prices, and
profit are all random variables.

Analysis Framework. Our goal is to design auctions that
perform well in the worst case over all possible inputs. Fol-
lowing the competitive framework in [10], we analyze the
performance of an auction by comparing it to a meaningful
benchmark. For the case that the agents are indistinguish-
able, [10] uses the benchmark profit of the optimal constant
price per agent. This seems reasonable when the agents
are indistinguishable and [9] shows that indeed no truthful
mechanism in a large natural class of auction mechanisms
can outperform this benchmark. For knapsack auctions, the
least restrictive natural pricing rule is to assume that agents
with larger objects pay no less than those with smaller ob-
jects. This is monotone pricing and we letOPT denote the
profit obtained by the optimal monotone pricing function. It
is not possible to design a truthful auction that approximates
OPT in all cases [9]. Instead, our goal is to design a knap-
sack auction that obtains a profit ofOPT /β−γh for smallβ
andγ (whereh is an upper bound on the highest valuation).3

Related Work. The problem of designing profit-
maximizing auctions for selling advertisements on Internet
search engines has been a subject of recent interest. Mehta
et al. [13] consider an online matching problem that ignores
the game-theoretic issues of mechanism design and instead
focus on the algorithmic problem of matching advertisers
(with known valuations and budgets) to key word searches
that arrive over time. Borgs et al. [4] study the (offline)
mechanism design problem of selling multiple identical
units when the agents are interested in obtaining as many
units as possible while keeping their total payments within
budget. In their work, both the valuation and the budget of
an advertiser are considered private values. They give near
optimal auctions under certain assumptions. Abrams has
recently improved on both the severity of the assumptions
and the approximation factor for this problem [1].

The private value knapsack problem was studied by
Mu’alam and Nisan [14] with the objective of maximizing

3By necessity [7], the auctions we obtain are pseudo-approximations.
We do not require them to have monotone prices nor charge the same price
for objects of the same size.

social welfare, i.e., the sum of the valuations of selected
objects, rather than the auctioneer’s profit. They give a
truthful auction that approximates their objective. Our result
is based on a mechanism that is almost identical to theirs.

The limited supply digital good auction of [10, 9] solves
the profit-maximizing knapsack auction problem for the spe-
cial case where the object sizes are identical. We generalize
their approach of solving general auction problems by reduc-
ing them to the unlimited supply special case.

A problem closely related to the unlimited supply ver-
sion of the knapsack auction problem is theattribute auc-
tion problem. It was introduced by Blum and Hartline [3],
who demonstrated that it is possible to get a higher profit
than is possible with a single sale price when the auctioneer
is able to distinguish between agents based on their differ-
ing, publicly observable, attribute values. They gave a so-
lution for the unlimited-supply, single-dimensional-attribute
auction problem, and analyzed its performance by compar-
ing its profit to that of the optimal piecewise-constant (not
necessarily monotone) pricing rule. We will henceforth refer
to this attribute auction as thegeneral attribute auction. We
will be make use of the following result.

THEOREM 2.2. [3] The general attribute auctionobtains a
profit of at leastOPTm /16 − mh/2 simultaneously for
all m, whereOPTm defined as the total profit of the best
piecewise-constant pricing function withm pieces.

These results have been recently generalized to more general
pricing functions over more general attribute spaces [2].

3 Pricing Rules

A pricing rule is a functionπ(·) which specifies the price
that should be paid in order to have an object of a given size
placed in the knapsack. For a given instance of the knapsack
problem, we call a pricing rule and a selection of objects to
be contained in the knapsackvalid if and only if

1. the valuation of each object in the knapsack is at least
the price set for objects of that size,

2. the valuation of each object not in the knapsack is at
most the price set for objects of that size, and

3. the sum of the sizes of the selected objects is at most
the knapsack capacity.

The payoff of a valid pricing rule,π, and selection,H, is
simply the sum, over all objects inH, of the priceπ assigns
the object. Given a class of pricing functions, the optimal
pricing function from the class is the one that maximizes
its total payoff. We note that the validity conditions can be
viewed as a requirement that the pricing rule and selection
be envy-free[12] in the sense that each agent prefers her
outcome to the outcome of any other agent, or equivalently
that none of the agents is envious of the outcome of another.



As mentioned in the introduction, we will be primarily
interested in three classes of pricing functions:constant pric-
ing, proportional pricing, andmonotone pricing. The class
of constant pricing functions are those that give a single sale
price irrespective of an object’s size (i.e., constant functions).
The class of proportional pricing functions contains those
that charge a single price per unit size. Finally, our most
general class of pricing functions is that of monotone pricing
where the price is required to be a non-decreasing function of
object size. One can view the restriction to monotone prices
as an additional requirement for envy-freedom, since without
monotone prices, a small object would be envious of a larger
object being placed into the knapsack at a smaller price.

We now consider the worst case relationship between
optimal constant pricing, optimal proportional pricing, and
optimal monotone pricing. As constant and proportional
pricing are a special case of monotone pricing, it is clear that
the profit of the optimal monotone pricing is better than that
of both the optimal constant and the optimal proportional
pricing. We now get bounds on how much worse constant
and proportional pricing can be.

LEMMA 3.1. Constant pricing can be alog n factor worse
than monotone and proportional pricing and this is tight.

Proof. Considern objects withvi = ci = 1/i andC = ∞.
Optimal monotone and proportional pricing use the pricing
rule π(c) = c for a total payoff of

∑
i 1/i = Θ(log n).

Constant pricing on the other hand must choose a single price
π(c) = p. Since the number of objects with value at leastp
is at most1/p, the total payoff of constant pricing is at most
1. This provides the desired logarithmic factor separation.
Tightness follows from the following observation: for any
v1, . . . , vn reordered such thatvi ≤ vi+1, the payoff of
the optimal constant price is given bymaxi ivi. Since
vi ≤ maxi ivi

i for all i, the maximum possible payoff
∑

vi ≤
log n ·maxi ivi. 2

LEMMA 3.2. Proportional pricing can be a linear factor
worse than monotone and constant pricing and this is tight.

Proof. Take C = ∞, vi = 1, and ci = n−(i−1) for
1 ≤ i ≤ n. Optimal monotone and constant pricing set
π(c) = 1 and obtain a payoff ofn. The optimal proportional
pricing function uses the pricing functionπ(c) = c. This
gives a payoff of

∑
i n−(i−1) = O(1). To see tightness,

note that proportional pricing can always obtain a payoff of
at leastmaxi vi, which is at least(1/n)th of the optimal
monotone and constant pricing payoffs. 2

4 Pricing Algorithms

In this section, we explore the non-game-theoretic problem
of designing goodknapsack pricing algorithms. For a
particular instance of the knapsack problem, we would like

an algorithm for efficiently computing the optimal pricing
function from a class. Note that this knapsack pricing
problem differs from the conventional knapsack problem in
that the payoff earned from placing an object in the knapsack
is not the object’s value, but instead a price that is a function
of the size of the object.

LEMMA 4.1. Optimal constant pricing is in P.

LEMMA 4.2. Optimal proportional pricing is NP-hard.

LEMMA 4.3. Optimal monotone pricing is NP-hard.

Lemma 4.1 follows from the following simple proce-
dure for computing the profit for any constant pricep. First
add all objects with value strictly greater thanp; these must
be in any knapsack when pricep is offered. If this exceeds
the capacity of the knapsack, thenp is an infeasible offer
price. Otherwise, add the objects with value equal top to
the knapsack from smallest to largest. This maximizes the
number of objects in the knapsack given the offer price ofp.
Given this procedure, we can find the optimal constant offer
price by searching through then object values,v1, . . . , vn,
as possible offer prices.

Lemmas 4.2 and 4.3 follow from the hardness of the
subset-sum problem by the following simple reduction.
Given an instance of the subset-sum problem with objecti
having sizeĉi, create an instance of the knapsack pricing
problem with the same number of objects, and setvi = ci =
ĉi for all i. Set the knapsack capacity,C, equal to the de-
sired subset sum,S. The optimal pricing function is simply
π(x) = x (which is proportional and therefore monotone);
however, the algorithm still has the discretion to “break ties”
by choosing which subset of the objects to put in the knap-
sack (the validity conditions except for Condition 3 are satis-
fied for any subset of the objects). The reduction is complete
when we observe that there exists a subset of objects with
sumS if and only if the optimal profit for this knapsack pric-
ing instance isS.

4.1 Pricing Algorithms for Unlimited Supply. An inter-
esting special case of the knapsack pricing problem, referred
to as theunlimited-supplyproblem, is the case whereC is
effectively infinite, i.e. C ≥

∑
i ci. It turns out that the

unlimited-supply cases of the knapsack pricing problem are
relatively easy to solve in polynomial time. Contrast this
with the envy-free pricing problems from [12], where even
simple special cases of the unlimited-supply pricing prob-
lems considered are APX-hard, i.e., unless P= NP, there is
no polynomial time approximation scheme (PTAS).

LEMMA 4.4. Unlimited-supply proportional pricing is in P.

Proof. To compute the optimal proportional pricing for ob-
jects1, . . . , n with objecti with valuevi and sizeci, we com-
pute each object’s value per unit size,di = vi/ci. For each



price ratedi, the payoff of the algorithm isdi×
∑

j : dj≥di
cj .

Payoffs for all values ofdi can easily be computed in
O(n log n) time by first sorting the objects bydi. 2

LEMMA 4.5. Unlimited-supply monotone pricing is in P.

Proof. The proof of this lemma is from the correctness of the
following dynamic programming algorithm. Intuitively, the
table entryT [i, p] corresponds to the optimal payoff from
the smallesti objects using monotone prices less than and
including pricep. 2

DEFINITION 4.1. (USMP) The Unlimited-Supply Mono-
tone Pricing (USMP) algorithm works as follows.

1. Order objects by increasing size, i.e.,c1 ≤ c2 · · · ≤ cn.

2. Solve dynamic program for allp ∈ {v1, . . . , vn}.

T [0, p] = 0
T [i, p] = profit(vi, p) + max

q∈{v1,...,vn}; q≤p
T [i− 1, q]

with profit(vi, p) = p if vi ≥ p and 0 otherwise.

3. Output the pricing corresponding to the computation of
maxp∈{v1,...,vn} T [n, p].

4.2 Limited-Supply Approximation via Reduction to
Unlimited Supply. We now show how to approximate the
optimal monotone knapsack pricing in the general case by
using an optimal or approximate pricing algorithm for the
unlimited-supply case. Similar results can be obtained for
the proportional pricing variant of the problem. Consider the
following technique for composing two pricing algorithms,
A1 andA2:

DEFINITION 4.2. (PRICING ALGORITHM COMPOSITION)
Given two pricing algorithmsA1 and A2, we define the
composite algorithmA1 ◦ A2 as:

1. RunA1 to obtain pricing functionπ1(·) and letH be
the set of winners.

2. RunA2 onH to obtain pricing functionπ2(·).

3. Outputπ(x) = max(π1(x), π2(x)).

If algorithm A1 produces a set of winnersH that is
feasible (for our knapsack problem, feasibility means that
all objects inH can fit in the knapsack simultaneously),
then we can chooseA2 as the optimal unlimited-supply
monotone pricing algorithm. Since the feasible solutions to
the knapsack problem areclosed under inclusion, meaning
that any subset of a feasible set is also feasible,A2 will
always produce a feasible set. All we need to argue then
is that the composite pricing algorithm yields a monotone
pricing and that it performs well. The former is clear.

LEMMA 4.6. If A1 and A2 are monotone pricing algo-
rithms, thenA1 ◦ A2 also yields monotone pricing.

DEFINITION 4.3. (PERFORMANCEPRESERVATION) An
algorithmA approximately preservesa performance bench-
mark,OPT, if when givenN ,A selects objectsH ⊂ N that
satisfyOPT(H) ≥ OPT(N)/β − γh for small constantsβ
andγ, whereh is the maximum valuation for any object.

We next discuss monotone pricing algorithms that ap-
proximately preserve the performance of the optimal mono-
tone pricing and produce a feasible selection of objects. Re-
call the standard weighted knapsack problem: given object
valuesv1, . . . , vn, object sizesc1, . . . , cn, and knapsack ca-
pacity C, find the set of objects,H, with maximum total
value that simultaneously fit in the knapsack. We present a
pricing algorithm based on a natural greedy approximation
algorithm for this standard knapsack problem.

DEFINITION 4.4. (APPROX. KNAPSACK ALGORITHM, AK)

1. Ignore large objects withci > C/2.

2. List the remaining objects in the order of decreasing
value-per-unit-size,di = vi/ci.

3. Select the largest prefix of the object list that fits in the
knapsack as the winner setH.

4. Let d∗ be the largest value-per-unit-size of the losers.
Outputπ(x) = d∗x for x ≤ C/2 and∞ otherwise.

LEMMA 4.7. AK approximately preserves the optimal
monotone pricing. On inputN , AK selects objectsH sat-
isfingOPT(H) ≥ OPT(N)/3− h.

Proof. Let N ′ ⊂ N be the objects with size at mostC/2. At
most one object from the setN \N ′ can fit in the knapsack.
Thus, the algorithm can restrict its attention to the setN ′

without losing more than an additive term ofh.
If all of N ′ fits into the knapsack then the theorem

follows. Otherwise, the objects in the winner setH fill at
least half of the knapsack. This is because there is some
object inN ′ that could not fit into the remaining space of
the knapsack, and the objects inN ′ have size at mostC/2.
Therefore,π(x) is a monotone pricing rule that obtains a
payoff of at leastd∗C/2; this is because the value-per-unit-
size of agents inH is at leastd∗. Thus,OPT(H) ≥ d∗C/2.

Let L = N ′ \ H be the objects not included in the
knapsack (which all have value-per-unit-size at mostd∗).
Clearly, OPT(L) ≤ d∗C ≤ 2 OPT(H). Therefore,
3 OPT(H) ≥ OPT(H) + OPT(L) ≥ OPT(N ′). 2

THEOREM 4.1. The algorithm composition of the approx-
imate knapsack algorithm, AK, and the unlimited supply
monotone pricing algorithm, USMP, achieves a payoff of at
leastOPT /3− h.



5 Approximately Optimal Knapsack Auctions

In this section, we extend the technique of composing pric-
ing algorithms to mechanism design problems. These tech-
niques suggest a general procedure for reducing limited-
supply (or, constrained) problems to unlimited-supply (or,
unconstrained) mechanism design problems.

5.1 Reduction via Composition.Consider any con-
strained profit maximization problem in a private-value set-
ting, e.g., the single-parameter agent settings of [6, 8]. One
can think of the unlimited-supply case as that where all out-
comes are feasible; whereas the limited-supply case is con-
strained to produce some outcome in a restricted feasible
set. In the case where the set of feasible outcomes (sets of
agents) isclosed under inclusion, meaning that all subsets
of a feasible set are also feasible, the following general ap-
proach can be attempted: first find a good feasible set, then
run an unlimited-supply auction on it. Below we formalize
the game-theoretic issues that arise with this approach.

DEFINITION 5.1. (MECHANISM COMPOSITION) Given
two mechanismsM1 and M2, we define the composite
mechanismM1 ◦M2 as:

1. SimulateM1 and letH be the set of winners.

2. SimulateM2 on the setH.

3. Offer a price to each winner of Step 2 that is the
maximum of the price she is offered byM1 andM2.

We will be looking to use this composition technique
with a mechanismM1 that always outputs a set of winners
for which all subsets are feasible, and a mechanismM2

which takes such a set of agents (i.e., a set with respect to
which the mechanism effectively has unlimited supply) and
computes offer prices with the goal of maximizing profit.

There are four potential issues when using this ap-
proach: correctness, truthfulness, and performance, and
polynomial time computability.

Correctness. The technique is correct if it produces a fea-
sible outcome. A mechanism for the unlimited-supply case,
M2, could output any subset ofH as its final outcome; this
immediately imposes the constraint that the set of feasible
outcomes must be closed under inclusion. This condition,
which is satisfied by the knapsack problem, is also sufficient
as asserted by the following lemma.

LEMMA 5.1. If the set of feasible outcomes are closed
under inclusion andM1 produces a feasible outcome then
M1 ◦M2 produces a feasible outcome.

Truthfulness. We would also like the construction to yield
a truthful mechanism. Unfortunately, the condition thatM1

andM2 both be truthful is not enough to guarantee the
truthfulness of the composite mechanism. In this discussion,
we refer to the agents inH (Definition 5.1) as thesurvivors
and the prices offered by Step 1 as thesurvival prices. Note
that ifM1 is truthful, the survival price of an agent does not
depend on her bid. However, even for a truthful mechanism
M1, the winner setH could be a function of some survivor’s
bid value. In this case, such an agent could manipulate her
bid to change the setH which could affect the price she is
offered byM2. Thus, we must require thatM1 satisfy a
stronger property than truthfulness.

DEFINITION 5.2. (COMPOSABILITY) A mechanism is
composableif it is truthful and the survivor set produced
does not change as a winning agent’s bid varies above her
survival price.

It turns out that the approximate knapsack algorithm,
AK, which computes a monotone pricing and a selection of
objects is not just a pricing algorithm. We can also consider
running it as an auction. In fact, it is very closely related to
an auction that Mu’alem and Nisan [14] show is both truthful
and approximately optimal (for the objective of maximizing
the sum of the valuations of selected objects).

LEMMA 5.2. AK is composable.

Proof. First we show truthfulness then we show composabil-
ity. Given Theorem 2.1, we must only observe that the se-
lection rule is monotone and agent’s payment is the mini-
mum bid necessary to be selected. It is easy to see that if
an agent is selected with a particular bid and they raise their
bid, their object will continue to be selected. For winning
agenti, the minimum necessary bid value is preciselyd∗ci

as set by the algorithm. Bidding aboved∗ci, agenti contin-
ues to win; while biding belowd∗ci results ini losing (the
bid with value-per-unit-size ofd∗ would then have priority
over i and both these agents’ objects do not simultaniously
fit in remaining available space).

For composability, we need to show that when the bids
of all the agents except one are fixed arbitrarily, the set
of selected objects as a function of this one agent’s bid
is unchanged for all the winning bid values of this agent.
Whenever the approximate knapsack algorithm, AK, selects
agenti, the other agents selected are exactly those that would
have been selected had we run the algorithm without agent
i on a knapsack of sizeC ′ = C − ci (after ignoring agents
with size greater thanC/2). Since agenti cannot affect the
outcome of this process, the algorithm is composable.2

The rationale for the term “composable” comes from the
following lemma.4

4Note that composability plays a role similar tocancellabilityin Fiat et
al. [6]. In a cancellable auction, the auction’s profit is not a function of



LEMMA 5.3. If mechanismM1 is composable and mech-
anism M2 is truthful then the composite mechanism,
M1 ◦M2, is truthful.

Proof. Fix the values of all bids but that of agenti. By the
composability ofM1, if agenti is selected byM1 thenH is
fixed. This fixes the monotone selection rule of “M2 given
H”. Intersecting the monotone selection rule ofM1 with
that of “M2 givenH” gives the selection rule used fori by
the composite mechanism. It is monotone. 2

Performance. Given some benchmark for gauging perfor-
mance, the feasible outcome produced byM1 should not
output a solution that is substantially worse, in terms of the
chosen benchmark, than the optimal solution on the full in-
put. If this is indeed the case, then with an approximately-
optimal unlimited-supply mechanism,M2, the composite
mechanism will approximates the chosen benchmark on
the full input. Recall that this notion is made precise by
the definition ofperformance preservation(Definition 4.3).
Lemma 4.7 asserts that the approximate knapsack algorithm,
AK, approximately preserves the performance of the optimal
monotone pricing.

Polynomial Time Computability. Until we impose the
constraint of polynomial time computability, another auction
seems like an attractive candidate forM1 in our composite
mechanism: the Vickrey-Clarke-Groves (VCG) [16, 5, 11]
mechanism. The VCG mechanism always selects set of
items with the maximum valuation sum (AK only approx-
imates this solution). Further, like AK the VCG mechanism
is composable and approximately preserves the performance
of the optimal monotone pricing (proofs omitted). Unfortu-
nately, given standard complexity assumptions, VCG is not
polynomial time computable.

AK satisfies all the requirements forM1 in the con-
struction of a (limited-supply) knapsack auction. The miss-
ing ingredient is an approximately-optimal unlimited-supply
knapsack auction that can be used asM2. We present such
an auction in the next section which when composed with
AK gives a constructive proof of following theorem.

THEOREM 5.1. For constantsα andγ, there exists a knap-
sack auction with expected profit at least

α OPT−γh lg lg lg n.

5.2 Unlimited-Supply Knapsack Auction. In this sec-
tion, we consider the knapsack auction problem whenC =
∞. We first attempt to use the general attribute auction of
Blum and Hartline [3] to solve this problem. Since the op-
timal monotone pricing rule might offer a different price to

the value of any winning bid. This allows the auction to be canceled as a
function of its profit.

every agent, the number of piecewise-constant pieces needed
to emulate this rule could be as high as the number of agents
n. Thus, a direct application of the attribute auction result
(Theorem 2.2) to the knapsack auction problem would only
guarantee a minimum profit ofOPT /16−nh/2 ≤ 0, where
OPT ≤ nh is the payoff of the optimal monotone pricing
rule. Still, the unlimited-supply knapsack auction problem
remains closely related to the attribute auction problem, and
we will be making use of Theorem 2.2 in this section.

Let n′ be the number of winners for the optimal mono-
tone pricing function. Our results come from observing
Lemma 5.4 below, which implies that there is an approxi-
mately optimal monotone pricing function

(a) that divides the size range intolg n′ intervals and for
each interval, offers the same price to all agents whose
size lies in the interval, and

(b) for which most (all butO(lg lg lg n′)) of the intervals
have many (at leastO(lg lg n′)) winners.

Simply using part (a) of this fact and applying the result
of Blum and Hartline [3], we can obtain an auction that is
OPT /16−h lg n′/2. The main result of this section will be
to use part (b) of this fact to improve the additive loss term
to O(h lg lg lg n′).

We obtain this improvement by analyzing two possible
cases. In the first case, most of the payoff from our approxi-
mately optimal monotone pricing comes from intervals with
at leastΩ(lg lg n′) winners. For these large intervals, we can
apply random sampling techniques and the Chernoff bound
to show that a generalization of the random sampling auction
of [10] will obtain a constant fraction of the optimal mono-
tone payoff.

In the second case, most of the payoff from our ap-
proximately optimal monotone pricing comes from the
Θ(lg lg lg n′) small intervals. Here, the result of Blum and
Hartline can be applied to get an auction that obtains a con-
stant fraction ofOPT less an additive term that is linear in
the number of relevant intervals. This gives an additive loss
term ofO(h lg lg lg n′).

A convex combination of these two approaches gives an
auction that is good in both cases. We start with a definition
and a lemma.

DEFINITION 5.3. A monotone pricing rule with exponential
intervalsis a monotone pricing rule in which the winners can
be partitioned into equal-priced intervals over the attributes
such that theith interval (in decreasing order of attribute
value) contains at least2i−1 winners.

LEMMA 5.4. Given any monotone pricing rule,π(·),
that obtains total payoffP on instance (v1, . . . , vn;
c1, . . . , cn;C = ∞), there is a monotone pricing rule with
exponential intervals,π′(·) with payoff at leastP/2.



Proof. Order the winners ofπ(·) on the instance by decreas-
ing size (breaking ties arbitrarily). Divide the attribute range
into intervals such that theith interval has at least2i−1 win-
ners but strictly fewer than2i−1 winners with size strictly
bigger than the smallest winner ini. This can be done by
considering the attributes in decreasing order and adding
them to the current interval until the first time the number of
winners in the interval becomes at least2i−1. At this point,
we move on to the next interval. Letc(i) be the size of this
smallest object in intervali. Considerπ′(·) defined such that
all objects in intervali are offered priceπ(c(i)).

Now we show that the payoff ofπ(·) is no more than
twice that ofπ′(·). The loss for intervali is the difference
in payoff betweenπ′(·) andπ(·) over the attribute interval
[c(i), c(i−1)). There is no loss from objects with size exactly
c(i) and the loss from other objects in intervali is bounded
by π(c(i−1))−π(c(i)). Since intervali contains fewer than
2i−1 objects with size strictly more thanc(i), the total loss
is no more than(2i−1 − 1) × (π(c(i − 1)) − π(c(i))). We
charge this loss to the winners in all the previous intervals.
There are at least

∑i−1
j=1 2j−1 = 2i−1 − 1 such winners; so

each winner is charged at mostπ(c(i − 1)) − π(c(i)). Now
consider the total amount charged to a winner in intervali by
subsequent intervals. The charges made to any given winner
in interval i sum to at mostπ(c(i)); thus the total loss can
be accounted for by the total payoff ofπ′(·). Therefore the
payoff ofπ′(·) is at least half that ofπ(·). 2

Now, we are ready to define the random-sampling part
of the unlimited-supply auction.

DEFINITION 5.4. (RSK) The random sampling knapsack
auction, RSK, does the following:

1. Partition the agents into two setsA andB uniformly at
random.

2. Compute the optimal monotone pricing rule with expo-
nential intervals (restricting prices to powers of two)
for each partition. Let the pricing rules forA andB be
πA andπB respectively.

3. UseπA as the pricing rule forB and vice versa.

LEMMA 5.5. RSK is truthful. (proof omitted)

Let πA on A havenA winners. Letn̄A be the largest
power of 2 that is no larger thannA. Then, the winners are
divided up into at mostlg n̄A + 1 equal-priced markets. A
market is said to belarge for A if it has at least256 lg lg n̄A

winners whenπA is applied toA. Note that all markets other
than the firstlg lg lg nA + 8 markets (by decreasing attribute
value) are large. Markets that are not large are calledsmall.
We wish to analyze the performance of RSK on the large
markets. Defineπ′A to be the pricing rule that is the same as

πA, except that it offers a price of∞ to the small markets.
Let P (π,A) denote the total profit of pricing functionπ
applied to setA. Let L be an ordering of the agents in the
decreasing order of attribute value (breaking ties arbitrarily).
LetLp denote the orderingL restricted to agents having bids
p or higher.

DEFINITION 5.5. (BAD EVENT, BAD SET) A Bad Eventis
said to have occurred in RSK if there exists anη = 2k for
integerk ≥ 4, a price p = 2r with h/η2 < p ≤ h and
r integer, and a subsetX of agents, satisfying the following
properties:

(i) All the agents inX have bidsp or higher, and appear
consecutively inLp.

(ii) |X| ≥ 3
2 max

{
mp

6 lg η , 256 lg lg η
}

, where mp is the

total number of agents with bidp or higher.

(iii) One of the two sets created by RSK has more than
2|X|/3 of the agents inX.

A set X that satisfies the first two properties is called a
Potential Bad Set, while any setX that satisfies all the above
properties is called aBad Set.

In the subsequent lemma we will make use of the
following specification of the Chernoff bound:

CLAIM 5.1. Consider a setX of 3x agents. The probability
that setA has more than2x agents fromX is no more than
e−x/12. (proof omitted)

LEMMA 5.6. The probability of a Bad Event occurring in
RSK is no more than0.01.

Proof. We will prove that the probability of the existence of
a Bad SetX for which setA gets more than2|X|/3 of the
agents is no more than0.005. By symmetry, the probability
of the existence of a Bad SetX with respect toB is also no
more than0.005. Then, we can take the union bound to get
the lemma.

Fix a numberη = 2k for some integerk ≥ 4 and
a pricep = 2r such thath/η2 ≤ p ≤ h. Let mp be
the total number of agents with pricep or higher. Ar-
range these agents by decreasing order of object size. Let
Lη = max{ mp

6 lg η , 256 lg lg η}. Consider a subsetX of 3x
consecutive agents where2x ≥ Lη. By Claim 5.1, the prob-
ability that this subset splits such that setA has more than
2x of these agents is no more thane−x/12. Taking the union
bound, the probability of such a subset existing for these



fixed values ofη andp is no more than

mp

∑mp

|X|=3Lη/2
e−|X|/36

≤ mpe
−Lη/24/(1− e−1/36)

≤ 36.6 ∗ (6Lη lg η)e−Lη/24

≤ 220Lη2Lη/2562−1.44Lη/24

= (220Lη2−Lη/30)2−1.44Lη/24+Lη/256+Lη/30

≤ e−Lη/44

To get the last inequality, we used the fact thatLη ≥
256 lg lg η ≥ 512 whenn ≥ 24. Taking the union bound
over all possible values ofp (there are at most2 lg η of them),
we get that the probability of such a subset existing for a
given value ofη is no more than

2(lg η)2−Lη/44 ≤ 2(2
256 lg lg η

44 lg η) ≤ 2(lg n)−
256
44 +1

≤ 2(lg η)−4.8

Taking the union bound over allη = 2k for k = 4, 5, · · · , we
get that the probability is no more than

2
∑∞

k=4
k−4.8 = 2

(
4−4.8 + 5−4.8 + 6−4.8 + · · ·

)
≤ 0.005

The inequality is obtained by using an integral to approxi-
mate the summation. 2

We now prove the following lemma about the revenue
of RSK. A similar lemma holds when the roles ofA andB
are interchanged.

LEMMA 5.7. For RSK,

E [P (π′A, B)] ≥ 0.99
2

(
P (π′A, A)− 1

2P (πA, A)− h
2

)
.

Proof. Assume thatn̄A ≥ 16 and P (πA, A) > h as
otherwise the claim is trivially true. Recall that a market
is large for A if it has at least256 lg lg n̄A winners whenπA

is applied toA. If πA applied to a large market has a profit
greater thanP (πA,A)

2 lg n̄A
, then that market is calledsignificant

for A. Since the number of large markets is at mostlg n̄A,
the total profit on applyingπ′A to the significant markets ofA
is at leastP (π′A, A)− P (πA, A)/2. Thus, we can prove the
lemma by showing that with constant probability,P (π′A, B)
is at least a constant fraction of the profit from applyingπ′A
to the significant markets ofA.

Let ni(πA, A) denote the number of winners in the
ith market whenπA is applied toA. We will show that
assuming noBad Event(see Definition 5.5) has occurred,
there is no significant marketi of A, such thatni(πA, A) >
2ni(πA, B). Since no Bad Event occurs with probability at
least0.99, it would immediately imply that

E [P (π′A, B)] ≥ 0.99
2 (P (π′A, A)− 1

2P (πA, A)).

Assume that no Bad Event has occurred. For a contra-
diction, suppose that there is a significant large marketi of A
that hasni(πA, A) > 2ni(πA, B). Let [a, b] be the attribute
range corresponding to this market. Let the price offered to
theith market byπA bep = 2k for some integerk. Let mp

be the total number of agents with bidp or higher. We claim
that p > h

n2
A

. Suppose to the contrary, the pricep ≤ h
n2

A
.

Then theith market has a payoff of at most

h

nA
<

h

2 lg n̄A
<

P (πA, A)
2 lg n̄A

This would imply that marketi is not a significant market, a
contradiction to the supposition above.

Recall thatLp is an ordering of all the agents with bids
p or higher in decreasing order of attribute value. Consider a
setX of 3

2ni(πA, A) agents with bidsp or higher that appear
consecutively inLp over the attribute range[a, b]. Then, by
assumption, more than23 |X| agents from this set are in set
A. We show thatX is a Potential Bad Setwith η = n̄A.
We already know that|X| ≥ 3

2 (256 lg lg n̄A). Thus, all
we need to show is that|X| ≥ mp

4 lg n̄A
, or alternatively,

that ni(πA, A) ≥ mp

6 lg n̄A
. To see this, note that since

market i is significant forA, pni(πA, A) > P (πA,A)
2 lg n̄A

. In
other words,2pni(πA, A) lg n̄A > P (πA, A). If more than
2ni(πA, A) lg n̄A agents in setA had bids ofp or higher,
then offering a price ofp to everybody would yield a profit
of more thanP (πA, A), contradicting the optimality ofπA

for setA. Thus, the number of agents in setA with bid p
or higher is no more than2ni(πA, A) lg n̄A. Consider the
set of all agents with bidsp or higher. This is a Potential
Bad Set. Since the Bad Event has not occurred, the third
condition for a Bad Event is not satisfied. Thus, if setA
has no more than2ni(πA, A) lg n̄A agents with bidp or
higher, then the total number of agents with bidp or higher
mp ≤ 3(2ni(πA, A) lg n̄A), or ni(πA, A) ≥ mp

6 lg n̄A
.

Thus,X is a Potential Bad Set. Since the Bad Event has
not occurred,X does not satisfy the third condition of being
a Bad Set, implying that the number of agents inX ∩ A is
no more than2

3 |X|, thus contradicting the supposition that
ni(πA, A) > 2ni(πA, B). 2

Consider the following combination of the general at-
tribute auction with the random sampling knapsack auction.

DEFINITION 5.6. (USK) The unlimited supply knapsack
auction, USK, works as follows,

1. Perform Step 1 of RSK.

2. With probability p, run the general attribute auction
on the setsA and B separately. With the remaining
probability, run the remaining steps of RSK.

LEMMA 5.8. Auction USK is truthful. (proof omitted)



THEOREM 5.2. The revenue generated by USK is
α OPT−γh(lg lg lg nA + lg lg lg nB + 19), where α
andγ are constants.

Proof. Recall thatOPT is the payoff of the optimal mono-
tone pricing scheme. Using Lemma 5.4 and losing another
factor of 2 due to restriction to prices that are powers of 2,
OPT ≤ 4(E [P (πA, A)] + E [P (πB , B)].

Recall that any market with fewer than256 lg lg n̄A

winners is small forA. There are at mostlg lg lg n̄A + 9
small markets ofA with respect toπA. Similarly, there are
at mostlg lg lg n̄B + 9 small markets ofB with respect to
πB . Note that markets that are not small arelarge for their
respective sets. LetP (πA, AS) be the payoff of applying
πA to the small markets ofA. DefineP (πB , BS) similarly.
Then,E [P (πA, A)] + E [P (πB , B)] = E [P (πA, AS)] +
E [P (πB , BS)] + E [P (π′A, A)] + E [P (π′B , B)].

With probability p, we use the general attribute auc-
tion, in which case, by Theorem 2.2, we get an expected
revenue of at least116 (E [P (πA, AS)] + E [P (πB , BS)]) −
h
2 (lg lg lg nA + lg lg lg nB + 18).

On the other hand, when we use RSK (which we do
with probability 1 − p), we can apply Lemma 5.7 and
the same lemma withA andB interchanged, to show that
we get an expected revenue of at leastβ(E [P (π′A, A)] −
1
2E [P (πA, A)] + E [P (π′B , B)] − 1

2E [P (πB , B)] − h) for
β = 0.99/2. Thus, the overall expected revenue is at least

p
16 (E [P (πA, AS)] + E [P (πB , BS)])

− ph
2 (lg lg lg nA + lg lg lg nB + 18)

+ (1− p)β(E [P (π′A, A)] + E [P (π′B , B)]
−E [P (πA, A)] /2−E [P (πB , B)] /2− h)

Settingp = 24β
24β+1 , we get an expected revenue of at least

3β
2(24β+1) (E [P (πA, AS)] + E [P (πB , BS)])

− 12βh
24β+1 (lg lg lg nA + lg lg lg nB + 18)

+ β
24β+1 (E [P (π′A, A)] + E [P (π′B , B)])

− β
24β+1

(
E [P (πA, A)]

2
− E [P (πB , B)]

2
− h

)
≥ β

24β+1 (E [P (πA, A)] + E [P (πB , B)])

− 12βh
24β+1

(
lg lg lg nA + lg lg lg nB + 18 +

1
12

)
To get the inequality, we have used the fact that

E [P (πA, A)] + E [P (πB , B)] ≤ E [P (πA, AS)] +
E [P (πB , BS)] + E [P (π′A, A)] + E [P (π′B , B)]. Putting
in the valueβ = 0.99/2, and using the fact thatOPT ≤
4(E [P (πA, A)] + E [P (πB , B))], we get the theorem with
α = 0.009 andγ = 0.47. 2

Applying Theorem 5.2 with the observation thatnA and
nB are no more thann, we get Theorem 5.1.
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