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Abstract fundamental, aspect of this problem.

We consider a game theoretic knapsack problem that has Consider the following abstraptivate valueversion of
application to auctions for selling advertisements on Interr{B® knapsack problem A profit-maximizing auctioneer is
search engines. Consideragents each wishing to place auctioning off space in a knapsack of fixed capaCityach
object in the knapsack. Each agent hawiaate valuation agent would like to place exactly one object in the knapsack.
for having their object in the knapsack and each object ha®@@€nt: values the placement of her object in the knapsack
publicly knowrsize. For this setting, we consider the desigi vi- A priori, the valuations are thgrivate dataof each
of auctions in which agents have an incentive to truthfullSPective agent. Each object takes up a certain amount of
reveal their private valuations. Following the framework éiPace in the knapsack, e.g., agéstobject takes space,
Goldberg et al [10], we look to design an auction that obtaid8d these sizes are publicly known. Thus, ¢feeare public
a constant fraction of the profit obtainable by a naturg®lues while the;s are private valugs.
optimal pricing algorithm that knows the agents’ valuations 1 neknapsack auction problemodels several interest-
and object sizes. ing applications. For example, consider running a single auc-
We give an auction that obtains a constant factor apprdin to sell advertising space on a web page over the course
imation in the non-trivial special case where the knapsa@ka dqy. Suppose statistical information is ava|Ia_bIe for each
has unlimited capacity. We then reduce the limited capacftjvertiser as to how many showings (a.krapressionsare
version of the problem to the unlimited capacity version vigcessary for to resultin a ussick-throughand as well how
an approximatelyefficientauction (i.e., one that maximizednany times the web page itself will be viewed in a day. The
the social welfare). This reduction follows from generaliZlumber of impressions necessary to generate a click-through

able principles. corresponds to the;s and the number of total views corre-
sponds to the capacity of the knapsa€k Assume that each
1 Introduction advertiser wants exactly one click-through and we have an

The ability to perform targeted advertising on Internet sear'&?tance of the (fracUonﬂ)mapsack auction problem.

. L . In this work we assume that agents are indistinguishable
engines has recently spurred a flurry of activity in studylneg(C

ricing mechanisms for the problem. Given the dynamic na:- ept for the fact that each agents demand (i.e., the size
pricing b ' y GF her object) is publicly known. This distinguishability

ture of the problem, auctions are a natural solution that Ie’\%% s an auction to charge agents with different sized
0

ggaiiﬁrﬁgveenggéestes;c?hf ?gt?lgelri, ;agé); Sn?r?rc:, ?)r;cé B d_ects different prices and raises the question of how prices
pted. b ghingag Lf%uld be related to the agent demands. We will consider

tion for this setting is multi-faceted. Advertisers may hav?ree ways in this paper. The first, essentially ignoring the

combinatorial preferences: it is normal to show multiple ag- . . . e
: . emands, is to offer a single price per agent. In this pricing
vertisements per search and advertisements may be show . . S !
model, we consciously decide not to discriminate against

for multiple combinations of keywords. Advertisers may s based on their demands. We refer to such pricing

have budgets limiting the amount they can spend on adve(?ﬁemes asonstant pricingas valid pricing functions (from
tising [4]. In addition, the searches arrive over time which P R P 9

gives the problem an online matching flavbr[13]. Finall$'2€s to prices) are only constant functions. Another natural

this is a game-theoretic problem and any solution must ta %ndldate pricing strategy is to charge a single price per

into account the issue @fcentives Each of these aspects of nit capacity. Thus, agents demanding more of the capacity

the problem in themselves represents a significant challehg& propoirtlonally. more. We refer to such pricing sc'h('ames
ag proportional pricing Finally, the most general pricing

to auction design. In this paper we focus on a particular, ye

INotice that were they;s public as well, this problem would be the
~ *Google Inc., Mountain View, CA. and Computer Science Dept., Stagtandard weighted knapsack problem — the auctioneer could charge each
ford University, Stanford, CA 94305. This work was done while author wagyent her full valuation if her object is selected.
visiting Microsoft Researclgagan@cs.stanford.edu 2In this paper we restrict our attention to the integral knapsack problem.
fMicrosoft Research — Silicon Valley, Mountain View, CA 94043Naturally, all of our positive results apply to the fractional case as well, and
hartline@microsoft.com some can be easily improved.



strategy we will consider follows the least restrictive naturallocation is feasible, then any subset of the allocation is
assumption we could place on prices: that agents desiralgo feasible. The reduction works by (a) selecting a set of
more capacity not pay less than those desiring less. We refgents that can all be allocated together, and (b) running the
to this asmonotone pricingsince the valid pricing functionsunlimited capacity solution on this selected set. This must
are the class are monotone non-decreasing functionsbefdone carefully so as to preserve game theoretic properties
object size. Clearly, both constant pricing and proportioread guarantee good performance.
pricing are special cases of monotone pricing. As such we The rest of the paper is organized as follows. In Sec-
will focus throughout the paper on monotone pricing notirtgon[2 we define the knapsack auction problem formally and
that a constant approximation to it also gives a constafigcuss related work. In Sectiph 3 we present a comparison
approximation to constant and proportional pricing. of the different pricing rules that we consider in this paper.
Following Goldberg et al. [10], we consider analyzingn Sectior] 4, we discuss the algorithmic complexity of com-
knapsack auctions in the frameworkadmpetitive analysis puting the optimal pricing function from a class when the
by comparing the performance of the auction to the profit afent valuations are public knowledge. We present a approx-
an optimal pricing function. Accordingly, we defiPT to imately optimal auction for the knapsack auction problem in
be the profit obtained by the best monotone pricing functi®ectionb. For this, we first show (in Sectipn]5.1) how to
for agents’ actual valuations when we assume that an ageatuce the limited-supply auction problem to the unlimited-
pays the offered price if it is at most their valuation. Becausapply auction problem with a small loss in approximation
it is not possible to obtain a constant fraction@PT in factor. Thenin Sectign 5.2, we give an unlimited-supply auc-
the worst case, we look to design auctions that obtaintiain that achieves a constant fraction of the benchmark rev-
least a constant fraction @PT less a small additive lossenue (with a small additive loss).
term, i.e.,a OPT —\h (whereh is an upper bound on the
highest agent’s valuation). Ideally both and A would 2 Preliminaries

be constants. In this paper, we achieve a constaahd |n this section, we formally define the knapsack auction

A € O(logloglogn), wheren is the number of agents. problem, discuss game theoretic constraints, and review
Through the study of the knapsack auction problem, Weior results that we will be building on.

wish to develop a better understanding of how to design
mechanisms for profit maximization when there are nofine Problem. Consider the following setting. There is a
trivial constraints on the allocation. The non-trivial conset of , agentsN = {1,...,n}, each of whom has an
straint we face is that objects selected for inclusion in tagject. Letc,; represent the publicly-known size of agent
knapsack must all fit. A similar direction was attempted By opject. Each of these agents desires to have her object
Fiat et al. in [6] for themulticast pricingproblem. They placed in a knapsack with total capacity Our goal is to
exploit inherent market segmentation in the problem defigjesign a single-round, sealed-bid auction for this setting. In
tion to reduce the problem frompaivate-valueoptimization  thjs auction, winning agents have their objects placed into
problem (mechanism design) tgablic-valueoptimization the knapsack and losing agents do not. Letdlenote agent
problem (algorithm design). In the knapsack auction profs vajuation for having her object placed in the knapsack.
lem, however, there is no obvious market segmentation afils valuation represents the benefit to the agent for winning.
indeed, figuring out how to segment the agents into markg{g assume that the agents attempt to maximize thiity,
in a truthful manner constitutes a key portion of our solutiofyeasured as the difference between their valuation and their
To the best of our knowledge, this work represents the figdyment (zero, if their item is not selected). We assume that
solution to a non-trivial private-value optimization problerg| the agents’ valuations fall within a known rangeh).
when market segments are not given in advance. We denote byb = (b1,...,b,) the vector of bids
Along this vein, we outline a general approach fajypmitted by the agents and by= (c1, ..., ¢,) the vector
dealing with non-trivial optimization problems. The first stegf publicly known object sizes. We assume for convenience
of this approach is to solve thalimited-supplyspecial case that the agents are indexed by size, ke ¢;.1. Following

of the problem. For example, In the unlimited supply speC@L, we sometimes refer to these object sizeatagbutes
case of the knapsack problem, the capacity of the knapsack,

C, exceeds the total demar,; ¢;. As this special case is|ncentive Properties. We adopt the game-theoretic solution
not constrained in what object§ it may select, it allows Us ¢gncept oftruthful mechanism desigrin a truthful mecha-
focus on the problem of how prices offered to agents relatefigm it is a dominant strategy for every agent to report their
their demands. The second step of this approach is to rediige valuation as their bid, i.eb; = v;. We will employ

the limited-supply(a.k.a., general) version of the problenhe following theorem to argue that our auctions are truth-
to the unlimited-supply version. This approach works iy, To obtain a unique payment rule, we make the stan-
general for “monotone” optimization problems, where if 85rg assumptions @io-positive-transferghat no agents are



“paid to play”; andindividual rationality, that agents are notsocial welfare, i.e., the sum of the valuations of selected
changed more than their bids. objects, rather than the auctioneer’s profit. They give a

THEOREM2.1. [15] A deterministic mechanism is truthful_trumfu' auction that ap_proxma';es their o_bject_|ve. Our “?S“'t
based on a mechanism that is almost identical to theirs.

if and only if fixing the bids of all other agents, the selectidh The limited supply digital good auction Gf [0, 9] solves

rule is monotone in agetiss bid, i.e., raising her winning bid . . :
also results in her winning; anéls payment is her minimumthe profit-maximizing kpapsgck auctlgn prpblem for the spe-
winning bid value. C|al_ case where the o_bject sizes are |Qent|cal. We generalize
their approach of solving general auction problems by reduc-
We define a randomized mechanism to be truthful ifjiig them to the unlimited supply special case.
is a randomization over truthful deterministic mechanisms. A problem closely related to the unlimited supply ver-
In a randomized auction the auction’s allocation, prices, agidn of the knapsack auction problem is tmribute auc-
profit are all random variables. tion problem It was introduced by Blum and Hartling![3],
who demonstrated that it is possible to get a higher profit
Analysis Framework. Our goal is to design auctions thathan is possible with a single sale price when the auctioneer
perform well in the worst case over all possible inputs. Fgk able to distinguish between agents based on their differ-
lowing the competitive framework in_[10], we analyze thig, publicly observable, attribute values. They gave a so-
performance of an auction by comparing it to a meaningfution for the unlimited-supply, single-dimensional-attribute
benchmark. For the case that the agents are indiStingU@bction prob|em, and ana|yzed its performance by compar-
able, [10] uses the benchmark profit of the optimal constang its profit to that of the optimal piecewise-constant (not
price per agent. This seems reasonable when the ag@etessarily monotone) pricing rule. We will henceforth refer
are indistinguishable and![9] shows that indeed no truthigl this attribute auction as theneral attribute auctionWe
mechanism in a large natural class of auction mechanisf be make use of the following result.
can outperform this benchmark. For knapsack auctions, the
least restrictive natural pricing rule is to assume that agehtEOREM 2.2. [B] The general attribute auctioobtains a
with larger objects pay no less than those with smaller od©fit of at leastOPT,, /16 — mh/2 simultaneously for
jects. This is monotone pricing and we BPT denote the all 7, whereOPT,, defined as the total profit of the best
profit obtained by the optimal monotone pricing function. Ri€cewise-constant pricing function with pieces.

is not possible to design a truthful auction that approximatpfese results have been recently generalized to more general

OPT in all cases([9]. Instead, our goal is to design a knagyicing functions over more general attribute spates [2].
sack auction that obtains a profitoPT /5 —~h for small3

and~ (whereh is an upper bound on the highest valuatn)s Pricing Rules

_— A pricing rule is a functionr(-) which specifies the price
Related Work. Th bl f d fit-
elate or e provem o esigning  prof tg[at should be paid in order to have an object of a given size

maximizing auctions for selling advertisements on Intern din the k K E . inst Fthe k K
search engines has been a subject of recent interest. MBH edinthe khapsack. -or a given Instance ot ine knapsac
lem, we call a pricing rule and a selection of objects to

et al. [13] consider an online matching problem that ignor 0 ) X L )
the game-theoretic issues of mechanism design and ins %8onta|ned in the knapsacalid if and only if

focus on the algorithmic problem of matching advertisersl. the valuation of each object in the knapsack is at least
(with known valuations and budgets) to key word searches the price set for objects of that size,

that arrive over time. Borgs et al.l[4] study the (offline) . . . .
mechanism design problem of selling multiple identical2 the valuation of each object not in the knapsack is at
units when the agents are interested in obtaining as many most the price set for objects of that size, and

units as possible while keeping their total payments within3, the sum of the sizes of the selected objects is at most
budget. In their work, both the valuation and the budget of  the knapsack capacity.

an advertiser are considered private values. They give near

optimal auctions under certain assumptions. Abrams HA Payoffof a valid pricing rule,r, and selection, is
ply the sum, over all objects i, of the pricer assigns

recently improved on both the severity of the assumptioﬁién ] . han - :
and the approximation factor for this problef [1]. the object. Given a class of pricing functions, the optimal

The private value knapsack problem was studied Bg'cing function from the class is the. one thgt. maximizes
Mu'alam and Nisan[[14] with the objective of maximizindt_s total payoff. We note that the vall_dl_ty conditions can pe
viewed as a requirement that the pricing rule and selection

3By necessity[[7], the auctions we obtain are pseudo-approximatioﬁg envy-free[12] in the sense that each agent prefers her

We do not require them to have monotone prices nor charge the same gfikcome to the OUtcom? of any other agent, or equivalently
for objects of the same size. that none of the agents is envious of the outcome of another.



As mentioned in the introduction, we will be primarilyan algorithm for efficiently computing the optimal pricing
interested in three classes of pricing functiooenstant pric- function from a class. Note that this knapsack pricing
ing, proportional pricing andmonotone pricing The class problem differs from the conventional knapsack problem in
of constant pricing functions are those that give a single s#tat the payoff earned from placing an object in the knapsack
price irrespective of an object’s size (i.e., constant functions) not the object’s value, but instead a price that is a function
The class of proportional pricing functions contains thosé the size of the object.
that charge a single price per unit size. Finally, our most . S
general c?ass of p?icinz funcF'zions is that of mono'?one pricirjrgE"/”vIA 4.1. Optimal constant pricing is in P.
where the price is required to be a non-decreasing function gfuma 4.2. Optimal proportional pricing is NP-hard.
object size. One can view the restriction to monotone prices
as an additional requirement for envy-freedom, since withdtEMMA 4.3. Optimal monotone pricing is NP-hard.

monotone prices, a small object would be envious of a larger Lemma[Z:]. follows from the following simple proce-

object being placed into the knapsack at a smaller price. q,re for computing the profit for any constant prigeFirst
_We now consider the worst case relationship betweggy g objects with value strictly greater thanthese must

optimal constant pricing, optimal proportional pricing, ande i any knapsack when prigeis offered. If this exceeds

optimal monotone pricing. As constant and proportiong|q capacity of the knapsack, theris an infeasible offer

pricing are a special case of monotone pricing, it is clear ”}fﬂce. Otherwise, add the objects with value equab to

the profit of the optimal monotone pricing is better than thgte knapsack from smallest to largest. This maximizes the

of both the optimal constant and the optimal proportiong),mper of objects in the knapsack given the offer pricg.of

pricing. We now get bounds on how much worse constagien this procedure, we can find the optimal constant offer

and proportional pricing can be. price by searching through theobject valuesy:, . . ., vy,

as possible offer prices.

Lemmad 4P anfl 4.3 follow from the hardness of the
subset-sum problem by the following simple reduction.
Proof. Consider objects withv; = ¢; = 1/i andC' = oc. GiV(_an an instance of the ;ubset—sum problem with objgct
Optimal monotone and proportional pricing use the pricififVing sizec;, create an instance of the knapsack pricing
rule w(c) = c for a total payoff of S, 1/i = ©(logn). Problem Wlth the same number ofob_Jects, andiset ¢; =
Constant pricing on the other hand must choose a single pfic€or all . Set the knapsack capacity, equal to the de-
7(c) = p. Since the number of objects with value at |eﬁstswed subset s_urrﬁ. The opt.|mal pricing function is simply
is at mostl /p, the total payoff of constant pricing is at mosf (#) = @ (which is proportional and therefore monotone);
1. This provides the desired logarithmic factor separatid?{?wever' the algorithm still has the discretion to “break ties”

Tightness follows from the following observation: for an$y choosing which subset of the objects to put in the knap-
v1,...,v, reordered such that;, < v;.1, the payoff of sack (the validity conditions except for Conditign 3 are satis-
thé op;timal constant price is gi\7en hytax; iv;.  Since fied for any subset of the objects). The reduction is complete

v < WA for gl 4, the maximum possible payoff v; < when we observ&_e that thgre exist§ a supset of object§ with
! sumy if and only if the optimal profit for this knapsack pric-

ing instance isS.

LEMMA 3.2. Proportional pricing can be a linear factor

worse than monotone and constant pricing and this is tigh#.1  Pricing Algorithms for Unlimited Supply. An inter-
esting special case of the knapsack pricing problem, referred

Proof. Take C = oo, v; = 1, and¢; = n~ =Y for to as theunlimited-supplyproblem, is the case wher® is

1 <4 < n. Optimal monotone and constant pricing sefffectively infinite, i.e. C > >, ¢;. It turns out that the

7(c) = 1 and obtain a payoff of.. The optimal proportional unlimited-supply cases of the knapsack pricing problem are

pricing function uses the pricing function(c) = c. This relatively easy to solve in polynomial time. Contrast this

gives a payoff ofS", n=(—Y = O(1). To see tightness,with the envy-free pricing problems fror [12], where even

note that proportional pricing can always obtain a payoff efimple special cases of the unlimited-supply pricing prob-

at leastmax; v;, which is at least(1/n)"" of the optimal lems considered are APX-hard, i.e., unless RP, there is

monotone and constant pricing payoffs. O no polynomial time approximation scheme (PTAS).

LEMMA 3.1. Constant pricing can be bgn factor worse
than monotone and proportional pricing and this is tight.

log n - max; 1v;. O

4 Pricing Algorithms LEMMA 4.4. Unlimited-supply proportional pricing is in P.

In this section, we explore the non-game-theoretic probldtroof. To compute the optimal proportional pricing for ob-
of designing goodknapsack pricing algorithms For a jectsl,..., n with object: with valuev; and size:;, we com-
particular instance of the knapsack problem, we would lieite each object’s value per unit sizg,= v;/¢;. For each



price rated;, the payoff of the algorithm idixzj:dpdi ¢;. LEMMA 4.6.If A; and A, are monotone pricing algo-
Payoffs for all values ofd; can easily be computed inrithms, thenA; o A, also yields monotone pricing.

O(nlogn) time by first sorting the objects h. O
DEFINITION 4.3. (FERFORMANCEPRESERVATION) An

LEMMA 4.5. Unlimited-supply monotone pricing is in P. algorithm A approximately preservesperformance bench-
_ _ mark,OPT, if when givenV, A selects objecté C NN that
Proof. The proof of this lemma is from the correctness of theyisfyOPT(H) > OPT(N)/3 — ~h for small constants

following dynamic programming algorithm. Intuitively, theang~, whereh is the maximum valuation for any object.
table entryT[i, p] corresponds to the optimal payoff from

the smallest objects using monotone prices less than and We next discuss monotone pricing algorithms that ap-
including pricep. O proximately preserve the performance of the optimal mono-
tone pricing and produce a feasible selection of objects. Re-
DEFINITION 4.1. (USMP) The Unlimited-Supply Mono-call the standard weighted knapsack problem: given object
tone Pricing (USMP) algorithm works as follows. valuesu, . .., v,, object sizesy, . .., ¢,, and knapsack ca-
pacity C, find the set of objectsH, with maximum total
value that simultaneously fit in the knapsack. We present a
2. Solve dynamic program for gl € {vy, ..., v, }. pricing algorithm based on a natural greedy approximation
algorithm for this standard knapsack problem.

1. Order objects by increasing size, i.e;,< ¢y - -+ < ¢,,.

T[0,p] =0

T[i, p] = profit(v;, p) + max Tl —1,q]
q€{v1,...,vn}; q<p

DEFINITION 4.4. (APPROX KNAPSACK ALGORITHM, AK)

1. Ignore large objects witla; > C/2.

with profit(v;, p) = p if v; > p and 0 otherwise. 2. List the remaining objects in the order of decreasing

3. Output the pricing corresponding to the computation of ~ value-per-unit-sized; = v;/c;.

MAXpe oy,....v,} T P]- 3. Select the largest prefix of the object list that fits in the

. L . . knapsack as the winner sht.
4.2 Limited-Supply Approximation via Reduction to ps S w

Unlimited Supply. We now show how to approximate the 4. Let d* be the largest value-per-unit-size of the losers.
optimal monotone knapsack pricing in the general case by Outputr(z) = d*z for x < C/2 and oo otherwise.

using an optimal or approximate pricing algorithm for the _ )
unlimited-supply case. Similar results can be obtained foFMMA 4.7. AK  approximately preserves the optimal
the proportional pricing variant of the problem. Consider tfBonotone pricing. On inpulV, AK selects object#/ sat-
following technique for composing two pricing algorithmdSfingOPT(H) = OPT(N)/3 — h.

A andA,: Proof. Let N/ C N be the objects with size at masy/2. At
most one object from the s&f \ N’ can fit in the knapsack.
Thus, the algorithm can restrict its attention to the &ét
without losing more than an additive term/af
If all of N’ fits into the knapsack then the theorem
1. RunA; to obtain pricing functionr,(-) and let be follows. Otherwise, the objects in the winner gétfill at
the set of winners. least half of the knapsack. This is because there is some
object in N’ that could not fit into the remaining space of
the knapsack, and the objects have size at most'/2.
3. Outputr(z) = max(m (), mo(z)). Therefore,n(x) is a monotone pricing rule that obtains a
payoff of at leasti*C/2; this is because the value-per-unit-
If algorithm A, produces a set of winnerd that is size of agents itH is at leasi/*. Thus,OPT(H) > d*C/2.
feasible (for our knapsack problem, feasibility means that et L = N’ \ H be the objects not included in the
all objects inH can fit in the knapsack simultaneouslyknapsack (which all have value-per-unit-size at mdst
then we can choosel, as the optimal unlimited-supplyClearly, OPT(L) < d*C < 20PT(H). Therefore,
monotone pricing algorithm. Since the feasible solutions 3®©PT(H) > OPT(H) + OPT(L) > OPT(N'). O
the knapsack problem aosed under inclusignmeaning
that any subset of a feasible set is also feasiblg,will THEOREM4.1. The algorithm composition of the approx-
always produce a feasible set. All we need to argue tHEate knapsack algorithm, AK, and the unlimited supply
is that the composite pricing algorithm yields a monotorfBonotone pricing algorithm, USMP, achieves a payoff of at
pricing and that it performs well. The former is clear. leastOPT /3 — h.

DEFINITION 4.2. (RRICING ALGORITHM COMPOSITION)
Given two pricing algorithms4; and 4, we define the
composite algorithrd; o A, as:

2. RunA; on H to obtain pricing functionrs(+).



5 Approximately Optimal Knapsack Auctions and M, both be truthful is not enough to guarantee the

In this section, we extend the technique of composing priguthfulness of the composite mechanism. In this discussion,
ing algorithms to mechanism design problems. These teWf refer to the agents iff (Definition[5.1) as theurvivors
niques suggest a general procedure for reducing limitédld the prices offered by Step 1 as shevival prices Note

M, the winner sef{ could be a function of some survivor's
5.1 Reduction via Composition.Consider any con- b?d value. In this case, su_ch an agent could mgnipulatg her
strained profit maximization problem in a private-value sdiid to change the set which could affect the price she is
ting, e.g., the single-parameter agent settings dfl[6, 8]. cpféered by Ms. Thus, we must require thatt; satisfy a
can think of the unlimited-supply case as that where all o{fonger property than truthfulness.
comes are feasible; whereas the I|m¢ed—supply case IS C.@'E'HNmON 5.2. (COMPOSABILITY) A mechanism is
strained to produce some outcome in a restricted feasible P .
: composabldf it is truthful and the survivor set produced
set. In the case where the set of feasible outcomes (seta 0 o e 1 :
: . . . oes not change as a winning agent’s bid varies above her
agents) iclosed under inclusignmeaning that all subsets_~ :
; . . survival price.
of a feasible set are also feasible, the following general ap-
proach can be attempted: first find a good feasible set, then |t turns out that the approximate knapsack algorithm,
run an unlimited-supply auction on it. Below we formalizak, which computes a monotone pricing and a selection of
the game-theoretic issues that arise with this approach. gpjects is not just a pricing algorithm. We can also consider
. running it as an auction. In fact, it is very closely related to
EEFINITIEN 5'1'8(\ZAECHSNEM COMZOfS_'T'?[E) Given i an auction that Mu’alem and Nis&n [14] show is both truthful
wo rr]neg ni\n/llsm Ml an. 2, We define the composite, g approximately optimal (for the objective of maximizing
mechanismit, o M, as. the sum of the valuations of selected objects).

1. SimulateM; and letH be the set of winners. LEMMA 5.2. AK is composable.

2. SimulateM, on the seff. . .
2 Proof. First we show truthfulness then we show composabil-

3. Offer a price to each winner of Stdg 2 that is thidy. Given Theorenj 2]1, we must only observe that the se-
maximum of the price she is offered vy; and M. lection rule is monotone and agent’'s payment is the mini-
mum bid necessary to be selected. It is easy to see that if
We will be looking to use this composition techniqugn agent is selected with a particular bid and they raise their
with a mechanism\; that always outputs a set of winnergjd, their object will continue to be selected. For winning
for which all subsets are feasible, and a mechanists agenti, the minimum necessary bid value is preciséty;
which takes such a set of agents (i.e., a set with respechéoset by the algorithm. Bidding abow#c;, agenti contin-
which the mechanism effectively has unlimited supply) angs to win; while biding belowl*¢; results ini losing (the
computes offer prices with the goal of maximizing profit. pid with value-per-unit-size of* would then have priority
There are four potential issues when using this agver; and both these agents’ objects do not simultaniously
proach: correctness, truthfulness, and performance, #th remaining available space).
polynomial time computability. For composability, we need to show that when the bids
of all the agents except one are fixed arbitrarily, the set
Correctness. The technique is correct if it produces a feaf selected objects as a function of this one agent's bid
sible outcome. A mechanism for the unlimited-supply casg,unchanged for all the winning bid values of this agent.
M, could output any subset @f as its final outcome; this whenever the approximate knapsack algorithm, AK, selects
immediately imposes the constraint that the set of feasii§ent;, the other agents selected are exactly those that would
outcomes must be closed under inclusion. This Conditiqfave been selected had we run the a|gorithm without agent
which is satisfied by the knapsack problem, is also sufficignén a knapsack of siz€” = C' — ¢; (after ignoring agents
as asserted by the following lemma. with size greater thad’/2). Since agent cannot affect the

. outcome of this process, the algorithm is composable
LEMMA 5.1. If the set of feasible outcomes are closedu P 9 P

under inclusion and\; produces a feasible outcome then  The rationale for the term “composable” comes from the
M o M5 produces a feasible outcome. following Iemmaﬂ

Truthfulness. We .W0U|d also like the ConStrUC_tipn to yieldNote that composability plays a role similardancellabilityin Fiat et
a truthful mechanism. Unfortunately, the condition tAdt al. [6]. In a cancellable auction, the auction’s profit is not a function of



LEmMMA 5.3. If mechanismM; is composable and mech-every agent, the number of piecewise-constant pieces needed
anism M, is truthful then the composite mechanisnio emulate this rule could be as high as the number of agents
M1 o Mo, is truthful. n. Thus, a direct application of the attribute auction result
(Theorenj 2.p) to the knapsack auction problem would only
guarantee a minimum profit 6PT /16 —nh/2 < 0, where
OPT < nh is the payoff of the optimal monotone pricing
rule. Still, the unlimited-supply knapsack auction problem
remains closely related to the attribute auction problem, and
we will be making use of Theorefn 2.2 in this section.

Let n’ be the number of winners for the optimal mono-
tone pricing function. Our results come from observing

Perform?rr:cef. GI\'/t?In sortne benchrgark ;or gaur?lngl:]dperf[or[emma@ below, which implies that there is an approxi-
mance, the teasibie outcome produce Jobi should no mately optimal monotone pricing function
output a solution that is substantially worse, in terms of the

chosen benchmark, than the optimal solution on the full inia) that divides the size range intgn’ intervals and for
put. If this is indeed the case, then with an approximately- each interval, offers the same price to all agents whose
optimal unlimited-supply mechanisni\1,, the composite size lies in the interval, and

mechanism will approximates the chosen benchmark on ] .

the full input. Recall that this notion is made precise byP) for which most (all butO(Iglglgn')) of the intervals
the definition ofperformance preservatiofDefinition[4-3). have many (at leag@(lg 1g n')) winners.

Lemm@_asserts that the approximate knapsack aIgorit@anW using part (a) of this fact and applying the result
AK, approximately preserves the performance of the optimg! gjym and Hartline[[3], we can obtain an auction that is
monotone pricing. OPT /16 — hlgn’/2. The main result of this section will be

. i . . ) to use part (b) of this fact to improve the additive loss term
Polynomial Time Computability. Until we impose the O(hlglglgn’).
constraint of polynomial time computability, another auction  \ve optain this improvement by analyzing two possible
seems like an attractive candidate ff, in our COMPOSite cases. In the first case, most of the payoff from our approxi-
mechanism: the Vickrey-Clarke-Groves (VCG)[16/5] 1]ri|1ately optimal monotone pricing comes from intervals with

mechanism. The VCG mechanism always selects setypfeasin(ig 1o ') winners. For these large intervals, we can

items with the maximum valuation sum (AK only approxanq1y random sampling techniques and the Chernoff bound

imates this solution). Further, like AK the VCG mechanisg, gho\ that a generalization of the random sampling auction

is composable and approximately preserves the performagepi) will obtain a constant fraction of the optimal mono-
of the optimal monotone pricing (proofs omitted). Unfortuq payoff.

nately, given standard complexity assumptions, VCG is N0t | the second case. most of the payoff from our ap-

polynomial time computable. _ proximately optimal monotone pricing comes from the
AK satisfies all the requirements fo¥; in the con- g 41515 57/) small intervals. Here, the result of Blum and

struction of a (limited-supply) knapsack auction. The MiSggarjine can be applied to get an auction that obtains a con-

ing ingredient is an approximately-optimal unlimited-supplyant fraction ofOPT less an additive term that is linear in

knapsack auction that can be used\ds. We present such e numper of relevant intervals. This gives an additive loss
an auction in the next section which when composed wigh, of O(hlglglgn').

AK gives a constructive proof of following theorem.

Proof. Fix the values of all bids but that of agentBy the
composability ofM, if agent; is selected by\; thenH is
fixed. This fixes the monotone selection rule gft5 given
H". Intersecting the monotone selection rule &t with
that of “M5 given H” gives the selection rule used foby
the composite mechanism. It is monotone. O

A convex combination of these two approaches gives an
THEOREMS5. 1. For constantsy and~, there exists a knap-uction that is good in both cases. We start with a definition

sack auction with expected profit at least and a lemma.

a OPT —~vhlglglgn. DEFINITION 5.3. Amonotone pricing rule with exponential

intervalsis a monotone pricing rule in which the winners can

5.2 Unlimited-Supply Knapsack Auction. In this sec- be partitioned into equal-priced intervals over the attributes

tion, we consider the knapsack auction problem wlies: such that thei*” interval (in decreasing order of attribute

co. We first attempt to use the general attribute auction \@lue) contains at leat’~! winners.

Blum and Hartline[[3] to solve this problem. Since the op- ) o

timal monotone pricing rule might offer a different price t&-EMMA 5.4. Given any monotone pricing rules(.),
that obtains total payoffP on instance (v1,...,v,;

fie valte of any winning bid. This allows the auction to be canceled a§& - - - s n; C_ = 00), there i§ a monotone pricing rule with
function of its profit. exponential intervalsy’(-) with payoff at leas/2.



Proof. Order the winners of () on the instance by decreasw 4, except that it offers a price @b to the small markets.
ing size (breaking ties arbitrarily). Divide the attribute randeet P(7, A) denote the total profit of pricing function
into intervals such that th&" interval has at least'—! win- applied to setd. Let £ be an ordering of the agents in the
ners but strictly fewer thag’~! winners with size strictly decreasing order of attribute value (breaking ties arbitrarily).
bigger than the smallest winner in This can be done by Let £, denote the ordering restricted to agents having bids
considering the attributes in decreasing order and addpngr higher.

them to the current interval until the first time the number of

winners in the interval becomes at le@st*. At this point, pcenviTioN 5.5. (BAD EVENT, BAD SET) A Bad Events
we move on to the next interval. Leti) be the size of this ¢iq 1o have occurred in RSK if there existsiar= 2% for
smallest object in interval Considerr’(-) defined such thatintegerk; > 4, a pricep = 2" with h/n? < p < h and
all objects in intervat are offered pricer(c(i)). r integer, and a subset of agents, satisfying the following
Now we show that the payoff af(-) is no more than properties:
twice that of=’(-). The loss for interval is the difference
in payoff betweent’(-) andx(-) over the attribute interval
[e(i),c(i—1)). Thereis no loss from objects with size exactly
¢(i) and the loss from other objects in intervas bounded
by 7(c(i—1)) —n(c(4)). Since intervat contains fewer than
2¢=1 objects with size strictly more thatti), the total loss (i) |X| > %max{%ﬂ% lglg 77}, wherem,, is the
is no more thar(2'~! — 1) x (m(c(i — 1)) — m(c(i))). We total number of agents with bigor higher.
charge this loss to the winners in all the previous intervals.
There are at Ieai;;ll 29=1 = 2i=1 — 1 such winners; so
each winner is charged at mostc(i — 1)) — 7(c(4)). Now
consider the total amount charged to a winner in inteirzg
;snu:)ns;?:;?tslztment/sl;. ;ZZ;?;;?)G_SHTUTSILOS?; ?(')Vsesnc\’::,&esretX that satisfies the first two properties is called a
' Potential Bad Setvhile any sefX that satisfies all the above
be accounted for by the total payoff of(-). Therefore the

payoff of 7/ (-) is at least half that of (). o Propertiesis called #ad Set

(i) All the agents inX have bidsp or higher, and appear
consecutively irC,.

(i) One of the two sets created by RSK has more than
2|X|/3 of the agents inX.

Now, we are ready to define the random-sampling part In the subsequent lemma we will make use of the
of the unlimited-supply auction. following specification of the Chernoff bound:

DEFINITION 5.4. (RSK) The random sampling knapsackCLaim 5.1. Consider a se of 3z agents. The probability

auction, RSK, does the following: that setA has more thar2z agents fromX is no more than
. . . —e/12, roof omitted
1. Partition the agents into two sets and B uniformly at € (b itted)
random.

LEMMA 5.6. The probability of a Bad Event occurring in
2. Compute the optimal monotone pricing rule with exp®SK is no more tha.01.
nential intervals (restricting prices to powers of two)

for each partition. Let the pricing rules fod and 5 be Proof. We will prove that the probability of the existence of

74 andmg respectively. a Bad SetX for which setA gets more thaR| X |/3 of the
3. User, as the pricing rule forB and vice versa. agents is no more thah005. By symmetry, the probability
of the existence of a Bad Sat with respect taB is also no
LEMMA 5.5. RSK is truthful. (proof omitted) more thar0.005. Then, we can take the union bound to get
the lemma.

Let 74 on A haven, winners. Letn 4 be the largest Fix a numberp = 2* for some integeix > 4 and
power of 2 that is no larger tham,. Then, the winners area pricep = 2" such thath/n> < p < h. Letm, be
divided up into at moslg 4 + 1 equal-priced markets. Athe total number of agents with prige or higher. Ar-
market is said to bearge for A if it has at leasR561glgns range these agents by decreasing order of object size. Let
winners whenr 4 is applied toA. Note that all markets otherL,, = max{ 671’;17 ,2561glgn}. Consider a subset of 3x
than the firstg lglg n.4 + 8 markets (by decreasing attributeonsecutive agents wheze > L,,. By Claim[5.1, the prob-
value) are large. Markets that are not large are calladll ability that this subset splits such that séthas more than
We wish to analyze the performance of RSK on the large of these agents is no more than®/!2. Taking the union

markets. Definer’, to be the pricing rule that is the same alsound, the probability of such a subset existing for these




fixed values of; andp is no more than Assume that no Bad Event has occurred. For a contra-
M _x|/36 diction, suppose that there is a significant large ma‘r@tA
mp Z\X\:San e that hasn;(ma, A) > 2n,(m4, B). Let[a, b] be the attribute
range corresponding to this market. Let the price offered to

< mpe” B2 (1— 1) thei*" market byr 4 bep = 2* for some integek. Letm,,
< 36.6 % (6L, lgn)e L/ be the total number of agents with kicr higher. We claim
< 220L”2Ln/256271.44L,,/24 thatp > % Suppose to the contrary, the pripe< %
_ (QZOLWZ_L,?/so)2_1.44Ln/24+Ln/256+Ln/3o Then thei** market has a payoff of at most
< Lo/ h _ h, - P(’/TA: A)

na 2lgna 2lgna

To get the last inequality, we used the fact thaf >
2561glgn > 512 whenn > 2%, Taking the union bound This would imply that market is not a significant market, a
over all possible values gf(there are at mogtlg  of them), contradiction to the supposition above.
we get that the probability of such a subset existing for a Recall that’, is an ordering of all the agents with bids
given value ofy is no more than p or higher in decreasing order of attribute value. Consider a
_Lja 256 1g g 1 e, setX of %_ni(m}, A) agents with_bid$ or higher that appear
2(lgm)2~ /7 <2(27 w Igm) < 2(lgn)” consecutively inC, over the attribute rangfe, b]. Then, by
< 2(lgn)~*® assumption, more tha§1|X| agents from this set are in set
A. We show thatX is a Potential Bad Sewith n = 74.
Taking the union bound over afl= 2" for k = 4,5,---,we We already know thatx| > 3(2561glgna). Thus, all

get that the probability is no more than we need to show is thatX| > 41’;—%;‘, or alternatively,
© s 48 | 48 | a48 that n;(ma,A) > s=2—. To see this, note that since
2Zk: k = 2484578 6708 ) gma Plra.A)

marketi is significant forA, pni(ma, A) > %= In
other words2pn;(ma, A)lgna > P(mwa, A). If more than
The inequality is obtained by using an integral to approX#i(ma, A)lgn4 agents in setd had bids ofp or higher,
mate the summation. O then offering a price op to everybody would yield a profit

of more thanP (w4, A), contradicting the optimality ofr 4

We now prove the following lemma about the revenygy set A. Thus, the number of agents in sétwith bid p
of RSK. A similar lemma holds when the roles dfand B, higher is no more tha@n, (4, A)lgii4. Consider the

< 0.005

are interchanged. set of all agents with bidg or higher. This is a Potential
LEMMA 5.7. For RSK, Bad _Sgt. Since the Bad E_vent has .nqt occurred, _the third
condition for a Bad Event is not satisfied. Thus, if gkt
E [P(r!y,B)] > %2 (P(r!y,A) — 1P(ma, A) — 3). has no more tharn;(ma, A)lgna agents with bidp or

B higher, then the total number of agents with pidr higher
Proof. Assume thatn, > 16 and P(m4,A) > h as my, < 3(2n5(ma, A)lgia), OF (74, A) > T2

. e = » 7 : ) > sgra
otherwise the claim is trivially true. Recall that a market Thus, X is a Potential Bad Set. Since the Bad Event has

IS Iarge_for Alfithas at Iee_13'r256 lglgn 4 winners whenr 4 not occurred X does not satisfy the third condition of being

is applied toA(.TrIf Z‘T)A applied to a Iarge_market ha§ _a proflé Bad Set, implying that the number of agents\im A is

greater t.har%, then that market is callesignificant g more tharg | X|, thus contradicting the supposition that

for A. Since the number of large markets is at migst 4, ni(ra, A) > 2ni(ra, B). 0

the total profit on applying’, to the significant markets of

is at leastP(7’,, A) — P(mwa, A)/2. Thus, we can prove the  Consider the following combination of the general at-

lemma by showing that with constant probabiliB(=’,, B) tribute auction with the random sampling knapsack auction.

is at least a constant fraction of the profit from applyirig o

to the significant markets of. DEF!NITION 5.6. (USK) The unlimited supply knapsack
Let n;(m4, A) denote the number of winners in th@uction, USK, works as follows,

i*" market whenr 4 is applied toA. We will show that 1 perform Step 1 of RSK.

assuming ndad Event(see Definitior{ 5)5) has occurred,

there is no significant marketof A, such that; (74, A) > 2. With probability p, run the general attribute auction

2n;(ma, B). Since no Bad Event occurs with probability at ~ on the setsA and B separately. With the remaining

least0.99, it would immediately imply that probability, run the remaining steps of RSK.

E [P(ry, B)] > Y2 (P(ny,A) — $P(ma, A)). LEMMA 5.8. Auction USK is truthful. ~ (proof omitted)



THEOREM5.2. The revenue generated by USK is Applying Theorenj 52 with the observation that and
aOPT —vyh(lglglgna + lglglgnpg + 19), where o np are no more than, we get Theorerp 5 1.
and~ are constants.
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