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Abstract

We consider the online auction problem proposed by
Bar-Yossef, Hildrum, and Wu [4] in which an auction-
eer is selling identical items to bidders arriving one at a
time. We give an auction that achieves a constant fac-
tor of the optimal profit less an O(h) additive loss term,
where h is the value of the highest bid. Furthermore,
this auction does not require foreknowledge of the range
of bidders’ valuations. On both counts, this answers
open questions from [4, 5]. We further improve on the
results from [5] for the online posted-price problem by re-
ducing their additive loss term from O(h log h log log h)
to O(h log log h). Finally, we define the notion of an
(offline) attribute auction for modeling the problem of
auctioning items to consumers who are not a-priori in-
distinguishable. We apply our online auction solution to
achieve good bounds for the attribute auction problem
with 1-dimensional attributes.

1 Introduction

The online auction problem models the situation a seller
faces when selling multiple units of an item to bidders
who arrive one at a time and each desire one unit.
The unlimited supply case is an extremal version of the
problem where it is assumed that the number of units for
sale exceeds the number of consumers (it is effectively
infinite), e.g., a digital good or commodity item. This
problem is interesting as it combines both the lack
of information due to the fact that the bidders have
private valuations for the good for sale (a game-theoretic
issue), and the lack of information due to not knowing
what bidders may arrive in the future (an online issue).
The unlimited-supply online auction problem was first
considered in [4] where the online auction’s performance
is compared with the optimal single price sale (a.k.a.,
the optimal static offline strategy).
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To deal with the game-theoretic issues in an auction
we adopt the solution concept of truthful mechanism
design. An auction is said to be truthful if any bidder’s
optimal strategy, no matter what any of the other
bidders do, is to bid their true value for the good. In
this context, truthful mechanisms are exactly those that
compute a price to offer each bidder independently of
the bidder’s bid (See, e.g., [1, 7]). Naturally, a bidder’s
bid is rejected if it is below the offered price. The online
nature of the problem requires that the auction compute
the price to offer a bidder prior to obtaining the values
of any subsequent bidders. Combining the requirements
of truthful mechanisms with those of online algorithms
results in the following algorithmic definition of an
online auction.

Definition 1. (Online Auction) Any class of func-
tions fk(·) from R

k−1 to R defines an deterministic on-
line auction as follows. For each bidder i,

1. zi ← fi(b1, . . . , bi−1).

2. If zi ≤ bi sell to bidder i at price zi.

3. Otherwise, reject bidder i.

A randomized online auction is a distribution over
deterministic online auctions.

Let OPT denote the profit of the optimal single-
price sale. For b(k) denoting the kth largest bid, OPT =
maxk kb(k). Let h denote the value of the highest bid,
so OPT ≥ h. It is not possible to design an online (or
offline) auction that always obtains a constant fraction
of h [7, 5] so instead we look to obtain an online auction
that obtains profit of at least OPT /β−γh on any input
sequence (for constant β ≥ 1 and γ as small as possible).
We refer to β as the ratio and γh as the additive loss.

Prior to this work the best known online auction
obtained a constant ratio with additive loss γh for
γ ∈ Θ(log log h) and required the auction mechanism
to know the range of bids in advance [5]. Our paper
improves on these results by adapting and building on
an expert-advice learning algorithm due to Kalai [11]
and Kalai and Vempala [12], to give an auction with
constant γ. Specifically, for any constant β > 1 we can
obtain an expected profit of at least OPT/β − Θ(h)



for any bid sequence. This auction also does not need
to know the value of h, the highest bid, in advance.
Up to constant factors, this online auction is optimal.
This answers in the affirmative the outstanding open
questions from [4, 5].

We also consider the online posted-price problem
considered in [5, 13]. This problem is similar to the
online auction problem except that the “bidders” are
not required to make bids. Instead, the mechanism must
offer each bidder a price and bidders may decide whether
to accept or reject this price without informing the
mechanism of their true valuation for the good. Again,
the bidders will arrive one at a time and the mechanism
must offer them a price prior to the subsequent bidder’s
arrival. The posted price mechanism may use the
accept/reject responses of prior bidders in determining
a price to offer future bidders.

We show how to modify the Exp3 algorithm of
Auer et al. [2, 3] (and used by Blum et al. [5] for the
posted-price problem) to obtain a performance bound of
OPT /β−O(h log log h). This improves on the additive
loss term in [5] of O(h log h log log h). The key idea is
to change the exploration distribution of Exp3 to reflect
the greater variance of experts at higher price levels.

In Section 6 we define the (offline) attribute auction
problem. In an attribute auction, bidders have publicly-
available attributes that distinguish them from each
other. Examples of such attributes may be the bidders’
zip-codes or the cost of providing them with the good
or service. Attribute auctions arise as a special case
of many mechanism design problems with inherent
asymmetries, for example, the multicast pricing problem
of [7]. The goal of an attribute auction is to obtain
a larger profit than possible when the bidders are
indistinguishable by using the attributes to perform
price discrimination. Although we do not consider costs
in this paper, this price discrimination is natural when
the cost to the auctioneer of serving each bidder is
different. Prior work in (offline) auctions [9, 7] explicitly
assumes that the bidders are indistinguishable, making
it reasonable to compare an auction’s profit against the
optimal single-price sale, as an auctioneer has no basis
on which to charge bidders different prices. For an
attribute auction, however, we would like to compare
to the more difficult benchmark of the optimal pricing,
OPT, obtainable by segmenting the market in some
reasonable way and using a different price for each
market segment.

In this paper we consider the case of single-
dimensional ordered attributes, which means we can
think of OPT as a piecewise-constant function, and we
allow the algorithm to have an additive term that de-
pends on the number of pieces. What we will aim for

(and get) is a revenue of

Ω

(

max
m≥1

[OPTm−mh]

)

,

where OPTm denotes the optimal revenue for an auction
that is piecewise-constant with m pieces. Equivalently,
we can view this as being constant-competitive with
OPT, if we “charge” OPT an amount that is O(h) per
piece.

The way we will use our online algorithm to address
attribute auctions is to view the single-dimensional
attribute as a time axis, and to run an extension of
our online algorithm that not only competes against
the best fixed price, but also competes against the
best strategy in hindsight that switches among a small
number of prices. By achieving a bound that degrades
gracefully with the number of switches, we can then get
our desired bound for the attribute auction. We leave
open the question of guarantees for multi-dimensional
attributes.

This paper is organized as follows. In Section 2 we
review the application of expert-advice learning tech-
niques to the online auction problem. In Section 3 we
give our near optimal online auction, given foreknowl-
edge of the range of bidders bids. We remove the need
for this foreknowledge in Section 4. In Section 5 we
give our solution to the online posted pricing problem.
Finally, in Section 6 we formally define the attribute
auction and show how to adapt our solution to the on-
line auction problem to solve the single-dimensional at-
tribute auction problem. Conclusions and open prob-
lems are given in Section 7.

2 Combining Expert Advice

The online problem of combining expert advice has
been well-studied in Computational Learning Theory
[14, 8, 6, 12]. We focus here on the decision-theoretic
version [8, 12]. In this setting, at each time t, each of k
experts advocates a strategy. An algorithm must then
choose the strategy of one of the experts to follow. After
time t, the payoffs of the strategies of all of the experts
are revealed and the algorithm obtains the payoff of the
expert’s strategy that it selected. It is assumed that
all payoffs lie in some range (typically [0, 1]) known in
advance. The goal of an online learning algorithm is to
obtain a total payoff that is nearly as good as the payoff
obtained by the best expert in hindsight.

In [5], an auction is described, parameterized by
the advance knowledge that the bids are between 1 and
h, that for any given β > 1 obtains profit OPT /β −
O(h log log h). The main idea of this result is to cast
the auction problem as a problem of combining expert
advice. Specifically, for each price level of the form αj



(j ∈ {0, 1, . . . , logα h} and α ≈
√

β), the idea is to define
an “expert” who predicts that αj is a good single sale
price. Given a new bidder i, expert j achieves a payoff
of αj if bi ≥ αj and a payoff of 0 otherwise. Thus, the
payoff of expert j matches the gain one would achieve by
using its recommended price level and this fits into an
expert-advice setting in which all payoffs lie in the range
[0, h]. Furthermore, by definition of α, the experts’ price
levels are close enough together that the best expert’s
total gain is at most a

√
β factor worse than the gain of

the best fixed price in [1, h].
One can now plug this setup into the standard Ran-

domized Weighted Majority, or Hedge, expert-advice al-
gorithm [14, 8]. Let us define expert j’s score, sj ,
after seeing the first k bidders as the profit obtained
by offering price αj to said bidders, i.e., sj = αj ×
∣

∣{i ≤ k : bi ≥ αj}
∣

∣. The Randomized Weighted Ma-
jority (Hedge) algorithm, parameterized by constant
β̃ > 1, says to weight each expert j by β̃sj/h and pick
a random expert with probability proportional to its
weight. If there are N experts total and all gains are
in the range [0, h], then the guarantee is that the ex-
pected gain of the algorithm is at least 1/β̃ times the
gain of the best expert, minus an additive O(h log N)
term. Plugging in β̃ =

√
β and N = O(log h) yields the

given bound.

3 A Near-Optimal Online Auction

The auction technique we present here is based on an
alternative approach to the problem of combining expert
advice due to Kalai [11] and Kalai-Vempala [12], based
on Hannan [10]. While their method does not improve
over previous bounds for the standard expert-advice
setting, we show that we can use their technique to
remove the O(log log h) term when adapted to the online
auction problem.

The high-level idea of the approach of [11, 12] is
that instead of picking an expert at random at each time
interval, we “hallucinate” scores for each expert before
time zero according to a specific probability distribution
and then ever after use the deterministic go-with-the-
best-expert-so-far algorithm.1 We will first present an
online auction for the case that all bids are between 1
and h. Then we will show how to modify it for the case
where neither 1 nor h is known in advance. The auction
is parameterized by p and α.

Definition 2. The Hallucinated-Gains Online Auc-

1This description is assuming an “oblivious adversary” model,

in which the goal is to perform well for any sequence of events

determined in advance before the algorithm’s randomization.

This can be removed by re-randomizing at each time step, but

we choose not to do that for purpose of clarity.

tion, HG, is based on the scores sj of logα h + 1 ex-
perts, with expert j advocating the sale of the items at
single price αj ∈ [1, h]. Score sj will be the actual gain
achieved by expert j so far plus the “hallucinated” gain
made in the initialization step.

0. (Initialization) For each expert j, hallucinate an
initial score of sj = kαj with probability (1− p)kp.
I.e., flip a coin with probability 1− p of heads until
the first tails is encountered and give expert j an
initial score equal to αj times the number of heads.

1. When a new bidder arrives (bidder i), pick the
expert, j, with highest score thus far. (We break
ties arbitrarily, but consistently. For concreteness,
assume we break ties in favor of experts advocating
higher prices).

2. Offer bidder i the price αj advocated by the chosen
expert.

3. Update the scores of all experts that would have
produced a sale: for all j such that αj ≤ bi, let
sj ← sj + αj .

Lemma 3.1. Let R = maxj sj be a random variable
keeping track of the score of the best expert so far
(including hallucination) as the bidders arrive. Then,
the expected payoff from bidder i in HG is at least (1−p)
times the expected increase to R caused by bidder i.

The proof follows the basic structure of the argument
given by Kalai [11], except that (a) we are in a setting
of gains rather than losses and (b) the experts’ coins in
Step 0 are not all worth the same amount (expert j’s
coins are worth αj).

Proof. Imagine that at time i (after seeing the ith bid)
we conceptually reflip the coins for the hallucinated
gains but in the following order. Pick the expert j
with the lowest score (breaking ties in favor of those
advocating lower prices) and flip j’s coin once. If it
comes up tails, ignore this expert for the rest of the
argument. If heads, add αj to its score and re-sort the
experts by score. Repeat (starting with the new lowest
expert) until there is only one expert j′ left that still has
a coin to flip. Now, even though we are not quite done
with the coin flipping, we can at this point notice that
if bi < αj′ (so expert j′ gets a gain of 0 from bidder
i) then expert j′ must have been the leading expert
prior to bidder i arriving and so the increase to R was
0 as well, and we do not care about the increase to HG.
However, suppose bi ≥ αj′ . Now, consider the next coin
flip. If this coin comes up heads (which happens with
probability 1−p) this means that even though the score



of j′ increased, j′ was the leading expert prior to bidder
i arriving and our auction chose to use it. So, both R
and HG increased by αj′ . On the other hand, if the coin
was tails, then R increased by at most αj′ (since j′ is
the new “leader”) and all we can say about HG is that
it increased by at least 0.

Formally, define Aj to be the event that j = j′ (i.e.,
expert j is the last expert to flip a coin in the above
ordering). What we have shown is that for each j, the
expected increase to HG given event Aj is at least (1−p)
times the expected increase to R given Aj . Thus, the
expected gain of HG is at least (1−p) times the expected
increase to R overall. 2

Theorem 3.1. For any constant β > 1 there is a
constant γ such that the expected profit of HG with
suitably chosen parameters α and p is at least OPT /β−
γh on inputs with bids in the interval [1, h].

Proof. Let R be the score of the leading expert in
the algorithm, and let H be the Step-0 (hallucinated)
portion of that score. By Lemma 3.1, our expected
profit is at least (1 − p)E[R−H ]. For any expert j,
let d be the expected number of heads flipped in the
hallucination process, i.e., d = 1/p− 1. We can bound
the expected hallucinated gain of the leading expert
by the sum of the expected hallucinated gains for all
experts, H ′.

H ′ =

blogα hc
∑

j=0

αjd ≤
blogα hc

∑

j=−∞
αjd =

hd

(1− 1/α)
(3.1)

Of course, E[R] is at least OPT /α because in the worst
case, the best expert had zero hallucinated gain in Step
0, and then we lose at most a factor of α due to the
discretization of price levels. This gives a lower bound
on the expected profit of HG of

(3.2) (1− p)

(

OPT /α− (1/p− 1)

(1− 1/α)
h

)

.

For α = 2 and p = 1/2, this gives an expected profit of
at least OPT /4− h. For α =

√
β and p = 1− 1√

β
, this

gives an expected profit of the general form desired. 2

3.1 Improving the dependence on ε = β−1. The
bound (3.2) on the expected profit of HG is somewhat
loose, due to bounding the maximum hallucinated gain
of any expert by the sum of the hallucinated gains in the
proof. In particular, if we consider ε = β − 1 and look
at the bound as a function of ε (with α =

√
β ≈ 1+ ε/2,

and p = 1 − 1/
√

β ≈ ε/2), then we get a bound
of OPT /β − O(h/ε2). We can improve the additive

term to O(h
ε log 1

ε ), however, by simply performing a
more careful analysis in the proof of Theorem 3.1. In
particular, let Si be the set of all experts whose price
levels lie between h/2i and h/2i+1 (for i = 0, 1, 2, . . .).
Each set Si contains O(1/ε) experts, and thus for a given
Si, the expected maximum number of heads over all
experts in Si is O(d log 1

ε ). This means the expected
maximum hallucinated gain over any expert in Si is
O(dh

2i log 1
ε ). Now, summing over all sets Si gives us

O(dh log 1
ε ) = O(h

ε log 1
ε ) as desired.

This additive term is nicer because it matches
the dependence on ε of the additive term in [5].
In particular, the additive term in that result is
O(h

ε log(log1+ε h)) = O(h
ε log 1

ε + h
ε log log h).

4 Removing the need to know the range [1, h]
in advance

The online auction presented in the previous section,
HG, as well as those in [4, 5], relies on foreknowledge
of the range of bid values. Below we will show how to
modify HG so that it is not necessary to know this range
in advance. This modification is based on two observa-
tions. First, having a lower bound on the bid range is
not necessary (from a non-computational point of view).
Imagine we have experts at all powers of α less than h.
These extra experts only add to the additive loss; how-
ever, the additive loss from experts at values less than
1 was already taken into account by the additive loss
term in equation (3.1) of the proof of Theorem 3.1. Of
course, computationally we cannot keep track of an in-
finite number of experts but at least conceptually this
suggests the lower bound should not be necessary. Sec-
ond, we can adaptively adjust the upper bound on the
range by adding the “missing” experts after a new high-
est bid arrives. In particular, before the arrival of this
new high bid, the auction actually achieves better per-
formance without the missing experts. After the arrival
we could have performed worse than the auction that
had foreknowledge of the high bid; however, only by
at most the value of the largest missing expert. Since
each expert can only be missing once, we can charge
this possible missed profit to the expert added. This
gives a bound on the total possible profit missed in this
fashion as the sum of the expert values. Since these
values telescope to sum to h/(1 − 1/α), they just add
another constant factor to the additive term. We now
instantiate this intuition and make this argument more
precise.

Definition 3. The Hallucinated-Gains Online Auc-
tion, HG+, works identically to HG except for the fol-
lowing steps:

0. (Initialization) Initially assume the empty range.



Offer the first bidder an arbitrary positive price.

4. Let αk denote the value of the current bid rounded
down to the nearest power of α. Add a new expert
at value αk if one does not currently exist.

5. Let αj denote the value of the current lowest expert.
Add a new expert at value αj−1. Also add experts
at any missing values αj′ for j′ ∈ {j+1, . . . , k−1}.

Give initial (hallucinated) gains to the newly-added
experts as in HG, plus credit them for gains they would
have made had they been instantiated at time 0.

Theorem 4.1. For any constant β > 1 there is a
constant γ such that the expected profit of HG+ with
suitably chosen parameters α and p is at least OPT /β−
γh on any input.

Proof. We will show that the expected profit of HG+ is
at least the expected profit of HG on (0, h] minus the
sum of all of HG’s experts’ price levels. Since the sum
of those price levels is at most h/(1− 1/α), our overall
additive loss compared to HG is only O(h) larger. Note
that HG on (0, h] has an infinite number of experts and
has expected profit at least that given by Theorem 3.1.

To analyze HG+, let us partition the profit made
by HG into three parts: (1) profit made by following
experts currently in the set used by HG+, (2) profit
made following experts above the current range used by
HG+, and (3) profit made following experts below the
current range used by HG+. The first part is easy to
handle: HG+ has at least as much probability mass on
any expert in its collection as does HG, because such an
expert can only be more likely to be the “leader” under
HG+ than it is under HG. So, the expected profit of
HG+ from such experts is at least as large. The second
part is also easy to handle since we can charge it to the
newly added expert in Step 4. In particular, αk is the
maximum profit that HG could possibly obtain from
such an expert. Finally, the third part can be charged
to the newly added expert in Step 5 because αj−1 is
an upper bound on the profit obtainable by HG from
experts below the current range used by HG+.

Since we only charge experts when they are added,
the total additive loss of HG+ is at most h/(1− 1/α) =
O(h) more than that of HG. 2

We note in passing that a similar argument to
that made in Section 3.1 can be used to remove the
dependence on α in the additional additive term.

5 Online Posted-Price

We now consider the online posted price selling problem
[5, 13]. Here the bidders arrive one at a time and the

mechanism must offer each bidder a price. However, in
this scenario, the mechanism does not learn each agent’s
true valuation after the agent arrives. Instead, the
auctioneer only learns whether the agent chose to accept
or reject its offered price. That is, this corresponds to
the situation faced by a shopkeeper who can post a price
and see who buys and who does not, but cannot ask
an exiting shopper how much they would have paid. In
terms of the problem of learning from expert advice this
corresponds to the partial information or bandit version
of the problem, where the online algorithm learns only
the payoff of the chosen expert at any given time, and
not the potential payoff of all other experts. We will
assume that each agent has a private value vi for the
good and that when offered a price pi ≤ vi then the
agent will accept the offer.

Definition 4. (Online Posted Price Mechanism)
Any class of functions gk(·) from {0, 1}k−1 to R defines
an deterministic online posted price mechanism as
follows. For each agent i,

1. For j < i, let xj = 1 if agent j accepted offer
zj = gj(x1, . . . , xj−1), and 0 otherwise.

2. zi ← gi(x1, . . . , xi−1).

3. If zi ≤ bi sell to bidder i at price zi.

4. Otherwise, reject bidder i.

A randomized online posted price mechanism is a dis-
tribution over deterministic online posted price mecha-
nisms.

To solve this problem, Blum et al. [5] apply stan-
dard learning results due to Auer et al. [3] for the ad-
versarial multi-armed bandit problem. Auer et al. [3]
present an algorithm for the bandit problem called Exp3
(for exponential-weight exploration and exploitation)
that achieves a gain of OPT /β − O(N log N), where
N is the number of experts and the gains of the experts
lie in the range [0, 1]. Using N = O(log h), and scaling
the range of gains from [0, 1] to [0, h], gives the additive
loss term in [5] of O(h log h log log h). We show here how
this can be improved, by modifying the exploration dis-
tribution used in the Exp3 algorithm to take advantage
of the structure of the posted-price problem.

Theorem 5.1. For any constant β > 1, we can achieve
an expected profit in the online posted-price problem of
at least OPT /β −O(h log log h) on any input.

Proof Sketch: The Exp3 algorithm of [3] can be viewed
as acting as an interface between the Randomized



Weighted Majority (Hedge) algorithm, which is expect-
ing to receive a vector of gains at each time step, and
the real world, which only provides a gain for the ex-
pert actually chosen. At each time step, Exp3 queries
Hedge and receives a probability vector (p1, . . . , pN)
over the N experts. It then mixes this with a uni-
form “exploration” distribution, producing a distribu-
tion (q1, . . . , qN ) where qj = (1−γ)pj +γ/N , and γ < 1
is a parameter of the Exp3 algorithm. Exp3 then uses
the distribution ~q to choose an expert j, and receives
gain gj. Finally, it provides to Hedge a “simulated”
gain vector that is all-zeroes except with value gj/qj in
the jth coordinate (so, e.g., Hedge believes it has re-
ceived an expected gain of pj(gj/qj)), and the process
then repeats in the next time step.

The analysis of Exp3 is based on two properties.
First, the actual gain gj of Exp3 is at least (1−γ) times
the expected gain pj(gj/qj) of Hedge in its “simulated”
world. Second, for each i, the expected value of the ith
coordinate of the gain vector passed to Hedge is gi (since
it is gi/qi with probability qi and it is 0 with probability
1− qi), so the expected total gain of any given expert i
in the simulated world is equal to its actual total gain in
the real world. This means the expected value of OPT
in the simulated world is only larger than the actual
value of OPT. So, we have that the gain of Exp3 is
nearly as large as the expected gain of Hedge in the
simulated world, which (by the guarantees of Hedge)
is nearly as large as the expected value of OPT in the
simulated world, which is at least as large as OPT in
the real world. However, notice that the range of gain-
values in the simulated world is no longer [0, 1] but
rather [0, N/γ], and therefore the additive term becomes
O(N log N). This is then multiplied by an extra O(h)
in the auction setting.

To improve Exp3 for the posted-price problem,
we simply modify the exploration distribution to take
advantage of the different range of gains for the different
experts. Specifically, rather than giving exploration
probability γ/N to each expert, we use a geometric
distribution, giving the highest expert N a constant
fraction γ(1 − 1/α) of the probability mass, giving
expert N − 1 a probability mass γα−1(1 − 1/α), and
more generally giving expert j a probability mass of
γαj−N (1− 1/α). Since expert j corresponds to a price
level of αj , this ensures that gj/qj = O(αjαN−j) =
O(αN ) = O(h). Thus, we incur only a constant-factor
increase in the range of gain values, and so our additive
term is only O(h log N) = O(h log log h). 2

6 Attribute Auctions

The standard offline unlimited-supply auction problem
[9] considers the problem of designing a truthful auction
that performs well compared with the optimal single
price mechanism, OPT (as defined in the preceding
sections). An important justification for the comparison
of the auction to OPT is the fact that a priori the
auctioneer cannot distinguish between two bidders and
therefore has no rationale for attempting to charge
one bidder more than another. In this section we
relax this assumption and consider the design of near-
optimal auctions for the case that the bidders are not
indistinguishable.

Formally, suppose that each bidder i is labeled with
an attribute value ai ∈ A. The input to the auctioneer
is then the vector of attributes, a = (a1, . . . , an), and
the vector of bidders’ bids, b = (b1, . . . , bn). The
characterization of truthful mechanisms (e.g., from [7])
gives the following definition for a truthful attribute
auction.

Definition 5. (Attribute Auction) Any class of n
functions fk(·) from R

n−1 × An to R defines an deter-
ministic attribute auction for n bidders as follows. For
each bidder i,

1. zi ← fi(b1, . . . , bi−1, bi+1, . . . , bn, a1, . . . , an).

2. If zi ≤ bi sell to bidder i at price zi.

3. Otherwise, reject bidder i.

A randomized attribute auction is a distribution over
deterministic attribute auctions.

In the case that the attributes and bid values are not
correlated, attributes may not aid in obtaining higher
profits than the optimal single price sale. However, in
the case where there is correlation, we wish to use this
correlation to our advantage. In general the problem
we face is first that of learning the how the bidders’
values are correlated with their attributes and then that
of using this learned correlation to compute prices to
offer each bidder. While in general the correlations
could be arbitrary, we take the intuitive model that
the attributes can be used to segment the market into
non-overlapping “clusters” over the range of attribute
values. Specifically, we look at the case that attributes
are 1-dimensional (A = R) and look for an auction
that performs well in comparison to an optimal pricing
that is a piece-wise constant function over attribute
values. Let OPTm be the profit of the optimal piece-
wise constant pricing having at most m pieces.2 Given

2One should think of m as small compared to n. In particular,

OPTn corresponds to selling to each bidder at exactly its bid

value if all bidders’ attribute values are distinct.



bids in the interval [1, h], we obtain an auction below
that obtains an expected profit of:

Ω(max
m

(OPTm−hm)).

The algorithm is as follows. First, recall the online
auction HG: with parameter p = 1/2 and α = 2, HG
obtains expected profit of at least OPT /4−h. Consider
now the following attribute auction:

Definition 6. The Simulated Online Attribute Auc-
tion, SOA, works as follows:

1. Sort the bidders by their attribute values.

2. Simulate the HG auction (with p = 1/2 and α = 2)
on the ordered bidders.

3. Reset simulation whenever OPT has profit more
than 8h.

Theorem 6.1. SOA obtains expected profit at least
OPTm /16−mh/2 for all m.

Proof. Let R′ be the profit of the optimal piece-wise
constant pricing that changes prices only when the
SOA simulation resets. Since HG has expected profit
OPT /4 − h on each of the segments, it is easy to see
that SOA’s expected profit is R ≥ R′/8.

Now consider OPTm. We want to show that R′ ≥
OPTm /2−4mh. First of all, we can assume that OPTm

obtains profit at least 8h in each of its segments, since
otherwise by deleting any such low-profit segments we
increase the right-hand size of the desired inequality
(OPTm decreases by at most 8h which is paid for by
decreasing m by 1). Now, let us consider a phase of the
SOA algorithm. Since OPTm obtains at least 8h profit
in each of its segments, this phase can intersect no more
than two segments of OPTm (by definition of a phase,
any middle segment would have profit less than 8h).
Now, R′ uses a single price on this phase while OPTm

can use at most two prices. Thus, on this phase, R′ gets
at least half the profit of OPTm. Thus, overall we have
R′ ≥ OPTm /2− 4mh and R ≥ OPTm /16−mh/2. 2

7 Conclusions and Open Problems

In this paper we showed how a natural application
of expert learning algorithms can benefit from non-
uniform bounds on the expert payoffs. In particular
Kalai’s expert algorithm and analysis allowed this in
the full information case of the online auction problem
and the Auer et al. algorithm and analysis allowed this
in the partial information case of the online posted-
price problem. These are rather general observations

about non-uniform bounds on expert payoffs for the two
algorithms.

Our results on the attribute auction problem sug-
gests a number of open problems. Specifically,

1. Rather than incurring an additive cost of O(h)
per interval of OPTm, can one develop an online
algorithm whose additive cost is only O(

∑

i hi),
where hi is the value of the largest bid in interval
i of OPTm? In other words, can we be constant-
competitive if we charge OPT only O(hi) in its ith
interval rather than O(h)? While the techniques in
Section 4 seem useful (they would solve the problem
if we knew in advance a good way of segmenting the
range of attributes) the difficulty is in determining
where the algorithm’s phase boundaries should be.

2. Can one achieve good bounds for d-dimensional
attribute auctions for d ≥ 2, where we allow OPT
to break the space into rectangles?

3. Here is a conjectured algorithm for the problem in
(2). Begin by randomly partitioning the bidders
into two sets S1 and S2. Then, looking at all bids
in S1, find the optimal decomposition of S1 into
rectangles where we penalize OPT an amount O(h)
per rectangle. Finally, use this set of rectangles
as prices for S2 (and do the reverse procedure to
get prices for S1). Can this approach be shown to
achieve good guarantees?
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