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ABSTRACT
The generalized second-price auction (GSP) is used pre-
dominantly for sponsored search by leading search engines
like Google, MSN-Live Search and Yahoo!. Previous results
showed, in a model where all clicks on an ad gain the ad-
vertiser the same benefit, that GSP maximizes the social
welfare in equilibrium. In practice, however, the probabil-
ity that a click will convert to a sale for the advertiser de-
pends on the position (a.k.a. slot) of the ad on the search
results page. We support this observation by empirical re-
sults collected in MSN-Live adCenter. We then prove that
with non-uniform conversion rates GSP does not admit an
optimal equilibrium; none-the-less, we are still able to bound
the incurred loss. Finally, we devise an incremental change
in the GSP mechanism that achieves socially-optimal results
in equilibrium, while maintaining the same interface for ad-
vertisers and the same pay-per-click business model.

1. INTRODUCTION
The generalized second price auction (GSP) sells trillions

of advertising impressions to millions of advertisers gener-
ating gross revenues in the billions annually. Its ability as
an auction mechanism to effectively allocate the available
supply of advertising impressions to advertisers is of crucial
importance – if the allocation produced is only two-thirds
the value of the optimal allocation it represents billions of
dollars lost!

In this paper we combine an empirical study of the spon-
sored search auction market place with a theoretical study
of the GSP auction. Our study suggests, contrary to the
implication of initial analyses of GSP’s equilibria in a model
intended to represent the auctioning of ad slots for a single
search query [8, 6], that GSP is not ideally suited to the slot
auction problem. The total value (welfare) of the equilib-
rium of GSP can be as small as two-thirds of optimal. This
non-optimality of GSP comes from a failure of GSP to ac-
count for the reality that a click on an ad in a top slot is not
worth the same as a click on the same ad in a bottom slot.
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A conclusion can be made for pay-per-click online advertis-
ing in general (including, for example, banner ads); namely,
that the value generated by clicks may vary due to various
reasons (e.g., the position on the web page) and that this
should taken into account in the design of the advertising
mechanism.

GSP’s inadequacies are many and, in response, other stud-
ies have proposed extending GSP in non-trivial ways to allow
advertisers a more expressive bidding language in which to
specify their preferences. However, in a market where al-
ready advertisers are required to solve daunting problems
of specifying bids across a huge and diverse inventory of
search impressions, making the bidding language more com-
plex seems unlikely to significantly improve the market’s ef-
ficiency. We propose a solution that takes a different ap-
proach. For many advertisers, the result of a successful ad-
vertisement is a conversion, e.g., the user both clicks on the
ad and then subsequently buys one of the advertiser’s prod-
ucts, fills out a form, or otherwise completes some electron-
ically trackable action. All major web search engines allow
advertisers to opt-in to a conversion tracking system where
the search engine tracks and keeps statistics on how well the
advertiser’s ads are converting. These conversion tracking
systems can be employed to automatically learn the rela-
tive value of the clicks in each slot position. In our work,
we show that GSP can be modified, retaining its original
bidding interface, to take into account relative differences in
conversion rates across advertisers and slots. The resulting
mechanism, in a model that is consistent with the results of
our empirical study, has optimal equilibria.

GSP works as follows. GSP assumes that the probability
that an ad will be clicked on is a product of a slot specific
click-through rate and an advertiser specific click-through
rate. It assumes that an advertiser’s value for a click is the
same for any ad slot. When a search query is entered into
a search engine, all advertiser bids that match the query
are entered into an auction. An advertiser’s bid is inter-
preted as a bid-per-click. GSP computes the advertiser’s
bid-per-impression by multiplying the advertiser’s bid by
their click-through rate. The ads are then ranked by de-
creasing bid-per-impression and are assigned to the slots in
this order (usually on the right hand side of the search results
page). If an ad is clicked on, the advertiser is charged the
minimum bid that would have been necessary to maintain
their position. This is precisely the bid-per-impression of
the next advertiser divided by this advertiser’s click-through
rate. If the advertisers bid their true value-per-click then the
ranking rule makes sense: the total value of the ranking is



the sum value-per-impression of each ad scaled by the click-
through rate of the slot. Under the assumption that lower
slots have lower click-through rates, this assignment of ads
to slots maximizes the total value.

The prior analyses of GSP assumed a full information set-
ting where each advertiser’s actual value-per-click is publicly
known. This full information assumption is reasonable for
repeated games such as slot auctions. As implicit in the
definition of GSP, these studies also assume that the value-
per-click of an advertiser is the same for all slots. In this
model, Varian [8] and Edelman, Ostrovsky, and Schwarz [6]
show that in equilibrium GSP ranks the bidders in order of
value-per-impression, even though the advertisers are prob-
ably not reporting their true value-per-click as their bid.
Thus, in equilibrium GSP’s assignment of ads to slots max-
imizes the total value.

The first part of our study is to empirically refute the
assumption that the advertisers’ value-per-click is uniform
across slots. A large percentage of advertisers in MSN Search
have conversion tracking enabled. With conversion tracking
data we can calculate an advertiser’s relative value-per-click
for each slot. We find that these are never uniform. In-
stead, they often are ascending across slots, meaning that
clicks from lower slots are often more valuable than clicks
from top slots. For the same advertiser, the ratio in value-
per-click between slots, according to our data, can be as
much as a factor of three.

Motivated by this observation we revisit the theoretical
model of Varian [8] and Edelman et al. [6], but in the more
realistic setting where the advertisers’ values for clicks are
non-uniform across slots. Even in the special case where
all advertisers have the same non-uniformity in value for
clicks across slots, we show that there are price levels where
advertisers prefer bottom slots to top slots. This induces
equilibrium where bid-per-impressions are not always in the
same order as value-per-impressions. Thus, there are sce-
narios where the rankings produced by GSP in equilibrium
do not maximize the total value. We stress that this impos-
sibility holds even when we assume that the optimal total
value is obtained by assigning the bidders to slots in the
order defined by their values (that is, the product of the
click-through rate and the conversion rate decreases with
the slot number). In fact, we give a price-of-stability1 result
that constructs settings where all the equilibria of GSP ob-
tain at most two-thirds of the total value possible. We give
the complementary result that the loss in total value cannot
be drastically low; there always exist equilibria that capture
at least two thirds of the total value. These upper and lower
bounds are shown for 2-slot auctions, where it already re-
quires a non-trivial analysis. We conjecture that a similar
constant upper and lower bound holds more generally for
k > 2 slots. Note that this price-of-stability result is in the
same spirit of the work of [8] and [6] that proved that there
always exists at least one welfare-maximizing equilibrium.

Our analyses assume that, like the click-through rates, the
conversion rates are a product of an advertiser specific term
and a slot specific term. If this is not the case (for either con-
version rates or click-through rates) then no GSP variant can
hope to optimally allocate advertisers to slots. GSP’s rank-

1The price of stability measures the ratio of the best equi-
librium welfare to the optimal welfare. A related notion, the
price of anarchy, measures the ratio of the worst equilibrium
welfare to the optimal welfare.

ing algorithm is inherently greedy; whereas, optimally allo-
cating ads to slots when click-through rates (or conversion
rates) do not factor requires a weighted matching algorithm.
Fortunately, some of the relevant click-through/conversion
rate learning algorithms compute these rates as products.

The final part of our study demonstrates a simple fix
to GSP to take into account non-uniform conversion rates
across slots and results in optimal equilibria. This fix is
as simple as multiplying the price an advertiser pays for a
click in GSP by the slot specific conversion rate of the slot
that the ad was shown in. This effectively simulates a pay-
per-conversion model without having to make a significant
change away from the predominant pay-per-click business
model of the sponsored search industry.

Related Work. Our work starts from the original analyses
of GSP under uniform conversion rates by Varian [8] and
Edelman et al. [6], and extends their study to the practi-
cally relevant case where conversion rates are non-uniform.
In this case GSP equilibria are non-optimal, so to quantify
the extent to which GSP is non-optimal we adopt the mathe-
matical analysis techniques of the price-of-anarchy literature
(see [7] for a survey).

Our work is very similar in spirit to the recent work of
Abrams et al. [1] that discusses the “cost of conciseness” in
GSP, i.e., the possible effect of using a single bid to repre-
sent an advertiser’s value per click when in fact the advertis-
ers value per click is non-uniform across slots. [1] considers
cases where the valuations are arbitrary complicated and
not given formulaicly from known conversion rates. They
give a general information theoretic lower bound of 1/k on
the performance of any k-slot auction that allows only a sin-
gle bid per advertiser. This result holds even in the special
case where advertisers values are two-parameter: an adver-
tiser i has a constant value vi for the top ki slots and no
value for lower slots. We emphasize that their result is infor-
mation theoretic and applies to advertiser preferences that
are more general than our single-value-per-conversion pref-
erences. Further more, since the conversion rates are known
in our setting, there is a single-bid-per-advertiser auction
that is optimal. Thus, we arrive at the opposite conclusion:
there is no cost of conciseness, instead there is a cost due to
failure of GSP to account for non-uniform conversion rates.
A final note: the techniques necessary for the information
theoretic lower bounds of [1] are completely difference from
those necessary for our price-of-anarchy style results.

There have been many papers advocating alternative auc-
tion formats for slot auctions. For example, in the two-
parameter case considered in [1], Aggarwal et al. [3] give a
new mechanism with good equilibrium properties. The line
of work in studying non-GSP-based auction formats for the
next generation slot auctions is extremely important; how-
ever, it is also orthogonal to direction proposed in this paper
that provides an easily implementable modification to GSP
that can significantly improve the equilibrium performance
of the current de facto standard slot auction.

In a very recent paper Milgrom [5] studies general proper-
ties of games where (where the set of actions is restricted),
and analyses settings where such simplifications eliminate
inefficient equilibria.



2. SPONSORED SEARCH AUCTIONS: GSP
AND CONVERSION RATES

Consider a set of n advertisers competing for k slots. Each
player gains a value-per-conversion of vi, i.e., vi is their value
for the transaction that results from their ad; what is exactly
a “conversion” varies between advertisers, ranging between
filling out an online form and buying an airline ticket for
thousands of dollars.

A central ingredient of the sponsored search auction model,
and what distinguishes it from standard multi-item auctions,
is the special parameters that affect the utilities of the bid-
ders. These parameters describe the behavior of numerous
users that search for information on the web. The first im-
portant set of parameters are the click-through rates, where
cj
i denotes the probability that advertiser i’s ad is clicked

on when it is shown in the j’th slot. Our work focuses on
conversion rates, where aj

i denotes the probability that a
click on advertiser i’s ad will convert to a transaction or
acquisition when the ad is shown in slot j.

2.1 Click-Through Rates and
Conversion Rates

We wish to call explicit attention to several common as-
sumptions that concern clicks on ads:

1. The click-through rates, cj
i , are factorable as the prod-

uct of an advertiser specific term, ci, and a slot specific
term, cj . So, cj

i = cic
j .

2. The click-through rates are monotone non-increasing
in slot number. I.e., top (lower numbered) slots gener-
ate more clicks than bottom (higher numbered) slots.
So, cj ≥ cj+1.

A special case analyzed by prior studies of GSP’s equilib-
rium makes an additional uniform conversion rate assump-
tion: the advertiser’s value for a click is the same regardless
of the slot it comes from. Under this assumption the adver-
tisers’ value-per-click are equal to their value-per-conversion
so we slightly abuse notation to let vi represent both of these
quantities for advertiser i. We show empirically that this as-
sumption does not hold. In its place we provide the following
more general assumptions:

3. The conversion rates, aj
i , are factorable as the product

of an advertiser specific term, ai, and a slot specific
term, aj . So, aj

i = aia
j .

4. The values per impression are monotone non-increasing
in slot number. This is implied by the assumptions
on factorability when the product of the slot specific
click-through rate and the slot specific conversion rate
is monotone. I.e., top (lower numbered) slots generate
more conversions per impression than bottom (higher
numbered) slots. So, cjaj ≥ cj+1aj+1.

Notice that if the click-through rates are not factorable
(Assumption 1) then GSP is not well defined. If the conver-
sion rates are not factorable (Assumption 3) then no greedy
ranking rule (like that of GSP) can give an economically effi-
cient allocation. The assumption of monotone click-through
rates (Assumption 2) is a consensus in the industry, and we
observe it in our data. If the values per impression are not
monotone (Assumption 4) then the ranking order used by

GSP is inappropriate. (However, in such a case we could,
without loss of generality, rename the slots so that slot j
is the one with the jth highest number of conversions per
impression.) Therefore, we are somewhat justified in these
assumptions.

5. The advertiser specific click-through and conversion
rates are uniform. So, aj

i = aj and cj

i = cj .

This assumption is employed in our theoretical bounds
only and is without loss of generality. Clearly for lower
bounds it cannot weaken our results to add this assumption;
more generally, equilibrium problems with general advertiser
specific coefficients can be reduced to an analogous problem
in the uniform case.

2.2 The Generalized Second Price Auction
We will now formally define GSP:

The Generalized Second Price Auction (GSP). The gen-
eralized second price auction, for k slots, is given input bids
from advertisers. Let bi represent the bid-per-click of adver-
tiser i.

1. Let bici be the bid-per-impression of advertiser i.

2. Sort the bidders by bid-per-impression:

• Let ij be the index of the bidder with the jth
highest bid-per-impression.

• For all j, bij
cij

≥ bij+1cij+1 .

• For all j, let pj be the minimum bid necessary for
advertiser ij to maintain their position in slot j:

pj =
bij+1cij+1

cij

.

3. For j ≤ k, show advertiser ij in slot j.

4. For j ≤ k, if ad ij is clicked, charge pj to advertiser ij .

Note that GSP does not explicitly take into account the
conversion rates or slot specific click-through rates. We
will make two important assumptions on implementations
of GSP:

6. Ties are broken uniformly at random.

7. The bid space is discrete, e.g., restricted to be multi-
ples of some minimal bid increment, ǫ.

The assumption that ties are broken uniformly at random
(Assumption 6) is consistent with some implementations of
GSP. It is also consistent with other equilibrium analyses of
pricing games, e.g., Bertrand games. None-the-less, we do
not believe changing this assumption significantly affect our
results. The assumption of a discrete bid space (Assump-
tion 7) is necessary for the existence of pure Nash equilibria
in our model. It is well justified as every implementation
of GSP we are aware of has a minimum bid increment of
one penny. We do not require that the agent valuations be
discrete.



Game-theoretic Analysis of GSP. A truthful auction is
one where it is a dominant strategy for all bidders to submit
bids equal to their true values. GSP is a generalization of
the second price auction which is truthful [9]; however it is
not truthful nor does it belong to the family of truthful VCG
mechanisms. This means that we cannot expect advertiser
i to submit a bid-per-click, that is equal to their value-per-
click. None-the-less, the main theoretical result of [8] and
[6] is that in equilibrium, under the uniform conversion rate
assumption, when the advertisers have values-per-click of
v1, . . . , vn and values-per-impression of v1c1, . . . , vncn, the
sorted orders of advertisers by value-per-impression and by
bid -per-impression are identical. Thus, we can conclude that
in equilibrium the advertiser with the jth highest value-per-
impression indeed gets the jth highest slot, which has the jth
highest click-through rate. Such an equilibrium is optimal.

The equilibrium concept used in [8, 6] and this paper, is
Nash equilibrium in the full information game induced on
GSP by the click-through rates, conversion rates, and ad-
vertiser valuations. This concept is well suited for repeated
games where private information will not stay private for
long. This is the predominant model in the literature on
sponsored search and on price-of-anarchy questions. In this
game, the actions (pure strategies) of the bidders are their
bids, and their payoffs are determined by their utility from
the GSP outcome, uj

i (p) = cj

i (a
j

i vi −p) (where bidder i wins
slot j and pays p, and vi denotes their value per conversion).

Definition 1. A profile of bids b1, ..., bn is a (pure Nash)
equilibrium of GSP, if no bidder i can gain a better utility
by deviating to any other bid. Formally, fixing the bids b−i

of the other bidders, and assuming that by bidding bi bidder
i wins slot j and pays p, then for every other bid b′i for
which bidder i is assigned to slot j′ and pays p′ we have

uj
i (p) ≥ uj′

i (p′).2

Throughout the paper we will use the term equilibrium to
denote a pure Nash equilibrium. We will not consider mixed
Nash equilibria in this paper, unless explicitly mentioned.

Social Welfare. Let i1, . . . , ik be the ordering defined by
the bids-per-impression in GSP, then the social welfare is
Pk

j=1 vij
cj
ij

aj
ij

. The maximum sum is achieved when the

ordering of values-per-impression coincides with the order-
ing of bids-per-impression. Notice that the social welfare
includes both the welfare of the advertisers (which is their
total value less their total payments) and the payoff of the
search engine (which is the total payments).

Finally, we formally note the result of [8, 6] on the eco-
nomic efficiency of GSP (assuming uniform conversion rates):

Theorem 1. [8, 6] For uniform conversion rates, GSP
always admits a welfare maximizing equilibrium.

3. EMPIRICAL RESULTS
In this section, we present empirical data collected in Mi-

crosoft adCenter during August 2007. Some of the advertis-
ers that advertise in Microsoft-Live Search use a conversion-
tracking system to monitor conversions that are done elec-
tronically. We present data collected from all advertisers

2We can assume that slot k + 1 exists and gains the bidders
values of zero to handle losing players.

Slot Adv. 1 Adv. 2 Ind. 1
Main Line 1 100% 100% 100%
Main Line 2 90% 84% 110%
Main Line 3 87% 151% 117%
Side Bar 1 83% 151% 122%
Side Bar 2 70% 77% 112%
Side Bar 3 71% 109% 125%
Side Bar 4 51% 114% 132%
Side Bar 5 90% 195% 152%

Figure 1: Data on the relative conversion rates of two

individual advertisers over a period of month, and aggre-

gate data for all the advertisers from the same industry

over a period of two months.

Slot CR CTR CR*CTR
Main Line 1 100% 100% 100%
Main Line 2 80% 49% 40%
Main Line 3 87% 33% 28%
Side Bar 1 78% 9% 7.2%
Side Bar 2 82% 6% 5.6%
Side Bar 3 96% 5% 5.0%
Side Bar 4 110% 4% 4.6%
Side Bar 5 106% 4% 4.1%

Figure 2: Aggregate data on conversion rates (CR) and

on click-through rates (CTR) in different slots, relative

to those parameters in the top slot in the main line. The

data was collected in Microsoft adCenter over a period

of a month, and consists of an aggregation of many ad-

vertisers from different industries.

that are affiliated to an industry (e.g., travel, finance, in-
surance, etc.). This study is preliminary and meant only as
motivation for our theoretical results in subsequent sections.
A more thorough empirical study will be included with the
full paper.

The Live search engine currently shows up to 8 ads in
one page. Three appear above the true (“organic”) search
results and these slots are referred to as the main line. Up to
five additional ads appear to the right of the organic search
result, and we denote these slots as the side bar. We denote
the slots in the main line as slots 1-3, and in the side bar
as slots 4-8. We emphasize that we only collected data for
search queries where all the 8 ads were presented.

Our main goal in this section is to exhibit aggregate data
that describes how conversion rates tend to change over
slots. This aggregation is not a straightforward task due
to several reasons. First, the concept of “conversion rate”
does not refer to the same thing for different advertisers
and different industries, and we observe from the data that
conversion rates vary considerably over different advertisers.
Second, even after normalizing, the slot effect on conversion
rates varies from advertiser to advertiser and industry to
industry (Figure 1). It is not clear that an aggregate slot
conversion rate is meaningful. Third, most of the data is
sparse, representing queries in the “long-tail” of the distri-
bution. A full description of our empirical methodology is
given in Appendix C.

The aggregate results in Figure 2 show that the conversion
rates tends to increase with the slot number. The highest
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Figure 3: The utilities of the bidders as a function of the

price with uniform conversion rates in a 2-slot auction.

The figure depicts the preferences of 3 bidders with two

curves per bidder, one per each slot. The figure shows

that with uniform conversion rates, bidders prefer having

the first slot over the second slot at every price level.

conversion rate, on average, is achieved in the two lowest
slots on the side bar (slots seven and eight).

4. GSP IS SUBOPTIMAL
In this section, we show that with non-uniform conversion

rates there are profiles of valuations for which no welfare-
maximizing equilibria exist in GSP. We prove this claim for
the special case of 2-slot 3-bidder auctions. We will analyze
this 2-slot case in detail as it highlights significant differ-
ences between the non-uniform conversion rate case and the
uniform case studied by previous work of [8, 6].

We will first give an intuition for the mathematical effect
of non-uniform conversion rates. Figure 3 shows the utility
of bidder i when allocated to slot j (j ∈ {1, 2}) as a function
of his payment in the standard model with uniform conver-
sion rates. This utility is a linear function of the price with
a negative slope, cj(vi − p), where vi here represents bidder
i’s value per click. An immediate property of this model,
as shown in Figure 3, is that at all price levels, the utility
from slot one is at least that of slot two. With non-uniform
conversion rates, however, this property no longer holds. As
Figure 4 shows that with non-uniform conversion rates the
curves shift; for sufficiently high price levels, bidders will ac-
tually prefer the lower slot! Intuitively, when the price of a
click is high, the bidder may prefer to have a smaller num-
ber of clicks in the lower slot when these clicks have higher
quality (that is, higher conversion rates).

Theorem 2. 2-slot GSP admits a welfare-maximizing equi-

librium if and only if v3 ≤ a1c1−a2c2

a2c1−a2c2
v1 and the three highest

valuations satisfy v1 > v2 > v3.

Proof. Consider two price levels. Let β be the maximal
price that advertiser three would be willing to pay for slot
two, i.e., β = v3 · a2. Let α be the minimal price for which
advertiser one prefers slot two over slot one, i.e., the payment

α for which c1(a1v1−α) = c2(a2v1−α), i.e., α = c1a1−c2a2

c1−c2
·

v1. Notice that β ≤ α is the condition of the lemma.
First, we show that α < β implies no welfare maximizing

equilibria. Since v1 > v2 > v3, for maximizing the social
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Figure 4: The figure describes the utility for three ad-

vertisers in GSP as a function of the price they pay. Each

advertiser has a different utility curve for each one of the

two slot. At high prices, bidders will prefer having the

second slot over the first one. It turns out that in this

example, no efficient Nash equilibrium exists.

welfare, we must have that b1 > b2 > b3. We will now use the
fact that advertiser three would be willing to be assigned to
the second slot with any payment less than β and advertiser
one prefers slot two over slot one for payments higher than β.
Therefore, if b2 < β, advertiser three is better off by bidding
b2 since his utility for the second slot is non-negative. If
b2 ≥ β, then advertiser one is better off by bidding b2, since
for such prices he prefers a lottery of the second and first
slots over receiving the first slot for sure. Thus, neither case
could be an equilibrium.

Second, if α ≥ β then the following set of bids is an equi-
librium: b3 = a2v3, b2 = b3+ǫ and b1 is any bid greater than
p∗, where p∗ is the price for which winning slot one at price
p∗ gains advertiser two exactly the same utility as winning
slot two and paying b2.

The proof implies that GSP will lack welfare-maximizing
equilibria whenever the crossing point of the two utility
curves of advertiser one (denoted in the proof by α) is smaller
than β = v3a

2 (the highest payment for which advertiser
three desires slot two). It is this observation that enables
our bounds on inefficiency of GSP’s equilibria; when GSP is
inefficient, it must be that the advertiser values are not too
far apart, so it cannot be too inefficient.

5. BOUNDS ON THE WELFARE LOSS
In the previous section, we saw that sometimes GSP does

not admit an efficient equilibrium with non-uniform conver-
sion rates. How do equilibria look like in GSP in such cases?
We present a simple characterization of such equilibria. It
turns out that given any equilibrium, there also exists an
order-preserving equilibrium where the advertisers’ bids are
weakly ordered by the advertisers’ values. Note that these
equilibria will not maximize social welfare, since some of the
bids may be tied and we break ties uniformly. It turns out
that such ties are inevitable under non-uniform conversion
rates, and they will be central in our analysis.

Definition 2. An equilibrium b = (b1, ..., bn) is order



preserving, if for every two bidders i1, i2, if vi1 > vi2 then
bi1 ≥ bi2

Lemma 1. Consider a profile of valuations v1, ..., vn for
which an equilibrium exists, denoted by b = (b1, ..., bn). Then,
there also exists an order preserving equilibrium b∗. More-
over, b∗ achieves at least the same social welfare as b.

Proof. Notation: Let ui(vi,b) denote the expected util-
ity of bidder i with value vi when the bidders bid b. That
is, the expected utility is (let ni(b) denote the number of
bidders bidding exactly bi and let the consecutive slots that
they are assigned be t, ..., t).

ui(vi,b) =
1

|ni(b)|

0

@

X

t≤j≤t

cjajvi − (|ni(b)| − 1)bi − bi′

1

A

where bi′ denotes the highest bid in b which is smaller than
bi.

We will now prove the lemma. Consider an equilibrium
b∗ = (b∗1, ..., b

∗
n). Consider two bidders h and l such that

b∗h > b∗l but h > l. We will show that the bid profile where
bidder l bids b∗k and bidder k bids b∗l is also an equilibrium. It
follows that we can continue swapping bidders until reaching
an order-preserving equilibrium.

Let b′ be a profile of bids identical to b∗ except bidder
h bids b∗l . Since b∗ is an equilibrium, clearly uh(vh,b∗) ≥
uh(vh,b′). Note that both uh(vh,b∗) and uh(vh,b′) are lin-

ear functions of vh. The slope of uh(vh,b∗) is
P

j=t,...,t+nh(b) cjaj

nh(b)

(the first slot assigned to bidders that bid bh is t) and the

slope of uh(vh,b′) is
P

j=t′,...,t′+s cjaj

nh(b)
(where s is the num-

ber of slots assigned to bidders who bid b∗l and t′ is the first
such slot), which is clearly smaller since we assume that ajcj

is decreasing in j.
It follows, that if we increase vh to be vl, we will have

that uh(vl,b
∗) ≥ uh(vl,b

′). That is, for the bid profile
bswap which is similar to b∗ except h bids vl and l bids
vh, bidder l will not be willing to bid bl. Since b∗ was an
equilibrium, bidder l will not be willing to bid any other bid
level in bswap for the same reason. Similar arguments show
that h will not be willing to change his bid as well.

5.1 The Social Welfare Loss Might be Sub-
stantial

We now give our first bound on the welfare loss in GSP
with non-uniform conversion rates. For given parameters
(CTR’s and conversion rates), we construct a profile of val-
uation such that all equilibria incur a large welfare loss. We
show that as the parameters of the problem become extreme
(but still agree with all the assumptions in our model), the
welfare loss can be arbitrarily close to 1

3
of the total welfare.

The reason for GSP inefficiency is that advertisers with
distinct values bid in pools. 3 To analyze the equilibria
we distinguish between the pooling outcomes of the three
advertisers with the highest values.

Definition 3. An order preserving equilibrium is

• non-pooling if the top three advertisers have distinct
bids, i.e., b1 > b2 > b3,

3Identifying pooling and separating equilibria plays a central
role in microeconomics, mainly in the context of signaling
games (see [4]).

• 3-pooling if the top three advertisers bid the same, i.e.,
b1 = b2 = b3,

• (1, 2)-pooling if the top advertiser beats the second two
who pool, i.e., b1 > b2 = b3, and

• (2, 1)-pooling if the top two advertisers pool and beat
the third, i.e., b1 = b2 > b3.

The above definitions include the case where the fourth and
lower valued advertisers pool with the third highest value
advertiser.

For 2-slot auctions, we simplify notation and denote c1/c2 =
x and a1/a2 = y. Notice that by our previous monotonicity
assumptions x ≥ 1 and y ≤ 1. We also denote m to be
the number of players whose values vi are at least the third
highest value b3 (3 ≤ m ≤ n).

Theorem 3. For every ǫ > 0, and given any set of click-
through rates and conversion rates, there exist valuations
profile for which the social welfare achieved by every equilib-
rium of GSP is at most a xy+y

xy+xy+y
xy+1

+ǫ fraction of the optimal

welfare. When xy = 1 and y → 0, this fraction approaches
2
3

+ ǫ.

Proof. Consider the following set of m bidders in a 2-

slot auction. We first denote β = c1a1+c2a2

c1+c2
, and note that

βv is exactly the price where bidders with value v are indif-
ferent between losing and winning the lottery of slot 1 and
2. Bidder 1 has value v1, and all the other n − 1 bidders
have the same value v2, such that a1v1 < βv2, or equiv-
alently v2 > xy+y

xy+1
v1. Denote δ = v2 − xy+y

xy+1
v1, and note

that δ can be made arbitrarily small and that it is defined
independently of m. Figure 5 in the appendix describes util-
ity functions for this construction. Assumption: the exact
bid level βv2 is not in the bid space for any discretization.
Denote the highest winning bid by p∗.

For the above valuations, every 3-pooling equilibrium will
gain social welfare which is arbitrarily close to 2

3
of the social

welfare in the optimal slot allocation when xy = 1 and y →
0.

1
m

(a + b)(v1 + (m − 1)v2)

av1 + bv2

≤

1
m

(xy + 1)
“

v1 + (m − 1)xy+y

xy+1
v1 + (m − 1)δ

”

xyv1 + xy+y

xy+1
v1 + δ

=
(xy + y)v1

xyv1 + xy+y

xy+1
v1 + δ

+
xy+1

m
v1 + m−1

m
(xy + 1)δ − 1

m
(xy + y)v1

xyv1 + xy+y

xy+1
v1 + δ

<
xy + y

xy + xy+y

xy+1

+ O(max{
1

m
, δ})

Claims 1–5, below, establish that the only equilibria in
the above setting are 3-pooling. Finally, if the parameters
are chosen such that xy = 1 and y approaches zero, then
clearly xy+y

xy+
xy+y
xy+1

approaches 2
3
.

Claim 1. For the above valuations, GSP admits no non-
pooling equilibrium.



This above claim follows immediately from Theorem 2.

Claim 2. For the above valuations, GSP admits no (2, 1)-
pooling equilibrium.

Proof. If p∗ > βv2, then bidder 2 prefers losing over his
current payoff. If p∗ < βv2, then all the other losing bidders
will gain positive utility from bidding p∗. Due to the above
assumption, p∗ = βv2 cannot be an equilibrium since it is
not in the bid space.

Claim 3. For the above valuations, GSP admits no (1, 2)-
pooling equilibrium.

Proof. First, p∗ ≤ a1v1, otherwise bidder 1 will prefer
losing. Since we selected v2 such that a1v1 < βv2, it follows
that each one of the bidders with the value v2 would earn
some positive utility by bidding p∗ and sharing Slots 1 and
2 with bidder 1. Since this positive utility is independent of
the number of bidders m, for sufficiently large m bidder 2
will prefer bidding p∗ over sharing Slot 2 with the other m−2
bidders, in contradiction to the existence of an equilibrium.
(Note that the bidders that win together Slot 2 gain positive
utility, thus if such an equilibrium had existed, then all the
bidders except bidder 1 would have shared Slot 2.)

Claim 4. For the above valuations, GSP admits a 3-pooling
equilibrium.

Proof. It is easy to see that bidding the highest available
bid p∗ such that p∗ ≤ a1v1 by all bidders is an equilibrium.
Since a1v1 < β∗v2, every bidder with value v2 gains positive
utility, and thus bidder 1 also gains positive utility. However,
all bidders would gain zero utility by under-bidding p∗ and
gain negative utility by over-bidding.

Claim 5. For the above valuations, GSP admits no non-
order-preserving equilibria (for the top three advertisers).

Proof. This claim is a direct corollary of Lemma 1. A 3-
pooling equilibria is the only order-preserving equilibria that
exists and it cannot be a result of a swapping process starting
from other equilibria. The other order-preserving equilibria
do not exist and therefore neither to non-order-preserving
equilibria that can be converted to them via Lemma 1.

5.2 Existence of Equilibria with a Bounded Loss
In the proof of Theorem 3 we constructed a family of bid-

der profiles for which all the equilibria achieve social welfare
which is arbitrarily close to 2

3
of the optimum. In this section

we show that this bound is almost tight, at least for 2-slot
auctions. We show that there always exists an equilibrium

that achieves min{ 2
3
, 1/2 + a1

a2 } of the optimal social wel-
fare; this does not rule out the existence of other equilibria
with worse performance. This kind of results is commonly
referred to as the price of stability [2], and it is similar in
spirit to the work of [8, 6] that showed the existence of at
least one welfare-maximizing equilibrium in GSP. We were
able to prove this result only for 2-slot auctions, and we
conjecture that a similar constant lower bound on the sub-
optimality of GSP may be proved for any number of slots;
however, we leave this problem open. Note that it is reason-
able in this model to study a small constant number of slot,
rather than asymptotically growing number of slots, there-
fore the 2-slot case can give us good intuition on the more
general case.

We will start by proving that pure Nash equilibria always
exist, even under the assumption of non-uniform conversion
rates. Again, we were only able to prove this for the 2-slot
case. The main reason is that our current proof relies on a
case analysis that does not extend to a general number of
slots. A new technique should probably be used for gener-
alizing this lemma.

Lemma 2. With a discrete bid space, GSP for two slots
always admits a (pure Nash) equilibrium, even with non-
uniform conversion rates.

Proof. (sketch) Consider the following iterative ascending-
price process. All bids are initialized to zero. Each bidder in
his turn (i = 1, ..., n) raises his bid by ǫ (the minimal incre-
ment allowed) if it improves his utility. Also, losing players
will raise their bid in their turn as long as they do not de-
crease their utility by doing so. We claim that this process
will always end up in an equilibrium.

Consider the three bidders with the highest values (bid-
ders 1,2,3), and consider the first iteration where one of them
will not increase his bid. If the three bidders stop bidding
at the same iteration, then it is clearly an equilibrium (they
do not to bid higher bids since they stopped, but they do
earn positive utilities; if they bid a lower bid they will get
zero). If player 2 is the first to stop bidding, this is an equi-
librium as well, since bidder one preferred the higher bid,
and player 1 and 2 preferred not to raise their bid. Finally,
if bidder 3 stopped increasing his bid, it is not necessarily
an equilibrium since the iterative process may proceed, but
since we require that the losing bidders will continue rais-
ing their bids in the algorithm, all we have to show is that
bidder 1 will not prefer decreasing his bid when he shares
the highest bid with bidder 2. This is clear, since bidder 1
preferred moving to the current bid over sharing slot 2 with
the others, and thus gain non-negative value from slot 1. He
will therefore prefer the lottery of slots 1,2 over having slot
2 with probability of at most 1/2 (since losers will always
continue bidding).

Corollary 1. GSP with 2 slots always admits an order
preserving (pure) equilibrium.

Proof. Immediate from Lemmas 2 and 1.

The following theorem shows that the equilibrium social
welfare is not fatally low. As long as the conversion rates in
the slots are not extremely far from each other (i.e., a2 ≤ 3a1

and this is compatible with what we observed from the data),
GSP achieves at least 2

3
of the optimal welfare (with 2 slots).

Theorem 4. In GSP for 2 slots and any number of bid-
ders there always exists an equilibrium that achieves at least

a fraction of min{ 2
3
, 1

2
+ a1

a2 } of the optimal social welfare.

The theorem is immediately concluded from the follow-
ing lemma proved in Appendix 4. This is proved by a case
analysis that bounds the social welfare loss in each equilib-
ria for each possible pooling. Recall that the loss in social
value in order-preserving equilibria is due to the randomized
assignments in case of ties.

An important part of the analysis is the use of the param-
eterized constraints on the values of the bidders that are
derived by the equilibrium constraints. We formulate these
constraints to show that the values of the bidders that bid



the same bid level cannot have values that are too far from
each other, and therefore the loss in social welfare is lim-
ited. One subtle issue is that in the third part of the lemma,
we require a more strict requirement than the equilibrium
requirements that correspond to 3-pooling equilibria, and
we use the fact that we can assume that no (2,1)-pooling
equilibrium exists (if such an equilibrium exists, we have a
bound by the first item of the lemma).

Lemma 3.

1. Every (2-1)-pooling equilibrium achieves at least 3
4

of
the optimal social welfare.

2. Every (1,2)-pooling equilibrium achieves at least 1
2

+ y

of the optimal social welfare.4

3. Every 3-pooling equilibrium achieves at least 2
3

of the
optimal social welfare (when (2,1)-pooling equilibria do
not exist).

Actually, the proof of Lemma 3 gives us a better lower
bound that depends on all the parameters of the model
(CTR’s, conversion rates, number of bidders). The min{ 2

3
, 1

2
+

a1

a2 } bound is only a simplification. The better bound is a
minimum of several parameterized functions, and is given in
Appendix B.

6. GASP: CONVERSION RATE AWARE GSP
AUCTIONS

Conversion tracking allows us to estimate the likelihood
that a click will generate a conversion when the user visits
the advertiser’s website. We presented empirical data (in
Section 3) that showed that the conversion rates on bottom
slots are non-uniform across slots.

Unfortunately, the equilibrium results of [8, 6] which show
that GSP maximizes the social welfare (i.e., performs opti-
mally) fails when conversion rates are not uniform across
slots. In Section 5, we have shown that for reasonable click-
through rates, conversion rates, and advertiser valuations;
the social welfare of GSP can be as much as 33% less than
optimal.

In this section we demonstrate how we can modify the
payment rule in GSP using conversion rates that are au-
tomatically calculated by the conversion tracking system.
The equilibrium in the resulting auction maximizes the so-
cial welfare.

One immediate suggestion might be to move from a pay-
per-click auction to a pay-per-conversion model. However,
this transition may be too drastic and fast for such large
businesses; an incremental improvement of the current sys-
tem, which will maintain the same pay-per-click business
model and the same user interface but will take into ac-
count the conversion tracking data seems to be desirable.
This is exactly what we suggest in the following variant
of GSP which we call GASP. The difference from standard
GSP is in how the payments are normalized. Note that that
since GASP preserves the pay-per-click business model, it

4We conjecture that a better analysis may improve this
bound to 2

3
.

can concurrently sell ads to bidders with and without con-
version rate tracking systems (e.g., for advertiser with offline
conversions).

The Generalized Acquisition-aware Second Price Auc-
tion. The generalized acquisition-aware second price (GASP)
auction, for k slots, is given input bids from advertisers. Let
bi represent the bid-per-conversion of advertiser i.

1. Let biciai be the bid-per-impression of advertiser i.

2. Sort the bidders by bid-per-impression:

• Let ij be the index of the bidder with the jth
highest bid-per-impression.

• For all j, bij
cij

aij
≥ bij+1cij+1aij+1 .

• For all j, let pj be the minimum bid necessary for
advertiser ij to maintain their position in slot j:

pj =
bij+1cij+1aij+1

cij
aij

.

3. For j ≤ k, show advertiser ij in slot j.

4. For j ≤ k, if ad ij is clicked, charge aj
ij

pj to advertiser

ij .
5

Game-theoretic Analysis of GASP. A game-theoretic anal-
ysis of GASP follows directly from the analysis of GSP in [8,
6]. Under the assumption that click-through rates and con-
version rates are factorable (which was also required in GSP,
see Section 2), and that the impressions in top (lower num-
bered) slots lead to more conversions than bottom (higher
numbered) slots; in equilibrium, GASP maximizes the social
welfare.

Proposition 1. GASP always admits a welfare-maximizing
equilibrium, even with non-uniform conversion rates.

The proof of this claim is based on the following obser-
vation about an advertiser’s utility. Using the prices in the
definition of the GASP mechanism, actually the conversion
rates can be factored out in the utility functions of the bid-
ders, returning to the same utility structure discussed for
uniform conversion rates by [8, 6]. In other words, we move
from a utility structure as in Figure 4 back to the structure
in Figure 3. Formally, advertiser i’s utility for slot j at price
aj

ip is now

uj
i (p) = vic

j
i a

j
i (vi − p),

since if there is a conversion (with probability cj
i a

j
i ), the

advertiser gets their value vi, but if there is a click (with
probability cj

i ), the advertiser must pay aj
ip. Notice that

our assumption on the monotonicity of values per impres-
sion across the slots allows us to assume that at any p all ad-
vertisers have higher utility for top (lower numbered) slots.

5First aj
ij

pj simplifies to bij+1cij+1aj
ij+1

/cij
. Second, if

wanted a pay-per-conversion auction instead of a pay-per-
click auction we would simply charge pj advertiser ij upon
conversion. Constrained to a pay-per-click model, we scale
this payment by ij ’s conversion rate for slot j to get the
appropriate payment.
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APPENDIX

A. PROOF OF LEMMA 3
Notations: recall that m denotes be the number of bidders

that have at least the 3rd-highest value (i.e., where vi ≥ v3)

and that a = c1a1, b = a2c2, x = c1

c2
and y = a1

a2 , and let p
be the lowest winning bid. In the following three subsections
we prove the items in Lemma 3.

A.1 A bound on the welfare loss in 3-pooling
equilibria

This subsection proves the following lemma.

Lemma 4. Every 3-pooling equilibrium achieves at least
2
3

of the optimal social welfare (if (2-1)-pooling equilibria do
not exist).

Note that the optimal welfare is av1 + bv2, and the wel-
fare when m > 2 bidders bid the highest bid is 1

m
(a +

b) (v1 + v2 + (m − 2)v3). In this proof, we will denote the
ratio between them as WR (for Welfare Ratio), and we will
bound it from below.

WR =
1
m

(a + b) (v1 + v2 + (m − 2)v3)

av1 + bv2
(1)

We first observe that the inefficiency ratio is either always
increasing or always decreasing in v2. It is easy to see (by
first-order conditions) that the function is increasing in v2

if v3 < (m−1)b
a−b

v1 and decreasing otherwise. We will treat
these two cases separately.

Case 1: The function in Equation 1 is decreasing in v2.

We can now change v2 to be v3 and the ratio will not
increase.

WR >
1
m

(a + b) (v1 + (m − 1)v3)

av1 + bv3
(2)

Since this is a 3-pooling equilibrium, we will now write
constraints derived by the equilibrium definition. These con-
straints will help us bound the WR function.

If bidding p is an equilibrium bid for the top m bidders,
then bidder 1 will not benefit from deviating and bid p + ǫ.
Therefore,

1

m
c1(a1v1 − p) +

1

m
c2(a2v1 − p) ≥ c1(a1v1 − p)

Since bidder 4 gains non negative utility,

1

m
c1(a1v3 − p) +

1

m
c2(a2v3 − p) ≥ 0 (3)

The two above inequalities give an upper bound and a
lower bound on p; taken together, we get that v3 ≥ tv1

where

t =
((m − 1)a − b)

`

c1 + c2
´

((m − 1)c1 − c2) (a + b)

=
((m − 1)xy − 1) (x + 1)

((m − 1)x − 1) (xy + 1)
(4)

Since Equation 2 is increasing in v3 (assuming b < 1 and
m > 2), we get that:

WR >
1
m

(a + b) (v1 + (m − 1)tv1)

av1 + btv1

=
1
m

(a + b) (1 + (m − 1)t)

a + bt

=
1
m

(xy + 1) (1 + (m − 1)t)

xy + t
(5)

It is easy to see that in this case WR ≥ xy+1
xy+2

= a+b

a+2b
> 2

3
.6

Case 2: The function in Equation 1 is increasing in v2.

We can now change the v2 in equation 1 to be v1 and the
ratio will not increase.

WR >
1
m

(a + b) (2v2 + (m − 2)v3)

av2 + bv2
(7)

6From Equation 4 clearly t ≥ (m−1)xy−1
(m−1)(xy+1)

. Substituting into

Equation 5 we get:

1
m

(xy + 1) (1 + (m − 1)t)

xy + t

=
xy(m − 1)(xy + 1)

(m − 1)(x2y2 + xy) + (m − 1)xy − 1

≥
xy(xy + 1)

(x2y2 + xy) + xy
=

(xy + 1)

xy + 2
(6)



In the analysis of this part of the proof we will actu-
ally need a stronger constraints than the one that follows
from the 3-pooling equilibrium properties. We will assume
that there is no (2,1)-pooling equilibrium. (We can do this,
since part 1 of Lemma 3 shows that (2,1)-pooling equilib-
ria achieve at least 3

4
of the social welfare.) It follows that

bidder 2 prefers sharing the second slot at price p with the
bidders with the value v3 over sharing the highest bid with
bidder 1:7

1

m − 1

`

c2(a2v2 − p)
´

>

1

2
c1(a1v2 − (p + ǫ)) +

1

2
c2(a2v2 − p)

After rearranging the terms and together with Equation
3 we get:

v3 >
(a +

“

1 − 2
m−1

”

b)(c1 + c2)

(a + b)
“

c1 +
“

1 − 2
m−1

)c2
””v2

And we denote v3 > tv2, and note that t >
a+(1− 2

m−1 )b

a+b
v2.

Using Equation 7 we get the following bound on the inef-
ficiency:

WR >
1
m

(a + b) (2v2 + (m − 2)tv2)

av2 + bv2

=
1

m
(2 + (m − 2)t)

>
1

m

0

@2 + (m − 2)
a +

“

1 − 2
m−1

”

b

a + b

1

A

= 1 −
(m − 2)2b

m(m − 1)(a + b)

>
5

6

Where the last equality holds since 2(m−2)
m(m−1)

< 1
3

for m > 2

and since b < a.

A.2 A bound on the loss in (1,2)-pooling equi-
libria

Lemma 5. Every (1,2)-pooling equilibrium achieves at least
1
2

+ a1

a2 of the optimal social welfare.

Proof. First, bidder 3 must have non zero utility from
bidding p, where he receives Slot 2 with a positive probabil-
ity and pays p. Thus, p ≤ a2v3. On the other hand, bidder
2 prefers bidding p to bidding p + ǫ. That is, he prefers no
slot (zero utility) to Slot 1 at price p+ǫ. Thus, p+ǫ > a1v2.
It follows that a2v3 + ǫ > a1v2,

v3 > yv2 −
ǫ

a2
(8)

7If such an equilibrium does not exists, bidder 2 must want
to deviate. The bidders with the value v3 will not bid above
p since p must be exactly the price for which bidder 3 is
willing to get Slot 1 and Slot 2 at random, but this lottery
will gain him negative utility for price p + ǫ. Also, if bidder
1 will deviate, necessarily bidder 2 will deviate too.

WR ≥
av1 + 1

m−1
bv2 + m−2

m−1
bv3

av1 + bv2

≥
av1 + bv2

“

1
m−1

+ m−2
m−1

y
”

av1 + bv2
− O(ǫ) (9)

≥
av1 + av1

“

1
m−1

+ m−2
m−1

y
”

av1 + av1
− O(ǫ)

≥
1

2
+

1 + (m − 2)y

2(m − 1)
− O(ǫ)

>
1

2
+

y

2
− O(ǫ) (10)

Where the 2nd inequality is due to Equation 8, and the 3rd
inequality is due to the fact that Equation 9 is decreasing in
the value of bv2 (since 1

m−1
+ m−2

m−1
y < 1) , which is bounded

by av1.

A.3 A bound on the loss in (2,1)-pooling equi-
librium

Lemma 6. Every (2,1)-pooling equilibrium achieves at least
3
4

of the optimal social welfare.

Bidders 1 and 2 win by bidding p, and bidder 3 bids p− ǫ.
Again, we will consider constraints on the valuations of the
bidders that follow from the equilibrium properties.

Bidder 2 must gain non-negative utility by bidding p.

1

2
c1

`

a1v2 − p
´

+
1

2
c2

`

a2v2 − (p − ǫ)
´

≥ 0

Therefore:

p ≤
a + b

c1 + c2
v2 +

ǫc2

c1 + c2
(11)

Bidder 1 will not increase his utility from bidding above
p and winning Slot 1 alone:

1

2
c1 `

a1v1 − p
´

+
1

2
c2 `

a2v1 − (p − ǫ)
´

≤ c1(a1v1 − p)

Therefore:

p ≥
a − b

c1 − c2
v1 (12)

From Inequalities 11 and 12 we get:

v2 ≥
(a − b)(c1 + c2)

(a + b)(c1 − c2)
v1 − O(ǫ)

>
xy − 1

xy + 1
v1 − O(ǫ)

Now we can bound the social-welfare loss. Note that the
expected welfare in (2, 1)-pooling equilibrium is 1

2
(a+b)(v1+

v2), and recall that the optimal welfare is given by av1+bv2.
We will use the above constraints to prove the following
lower bound on the ratio between the equilibrium welfare
and the optimal welfare.



WR =
1
2
(a + b)(v1 + v2)

av1 + bv2

>

1
2
(a + b)(v1 + xy−1

xy+1
v1 − O(ǫ))

av1 + bxy−1
xy+1

v1 − O(ǫ)

>

1
2
(a + b)(1 + xy−1

xy+1
− O(ǫ))

a + bxy−1
xy+1

=

1
2
(xy + 1)(1 + xy−1

xy+1
)

xy + xy−1
xy+1

− O(ǫ)

=
x2y2 + xy

x2y2 + 2xy − 1
− O(ǫ) (13)

> 3
4
− O(ǫ) (14)

Where Inequalities 13 and 14 follow from simple algebra.

B. BETTER LOWER BOUND ON THE SO-
CIAL WELFARE LOSS

The proof of Theorem 4 (and Lemma 3) actually directly
derives the following lower bound on the social-value loss.

Simplifying this bound proves a min{ 2
3
, 1

2
+ a1

a2 } on the equi-
librium social welfare.

Let f1, ..., f4 be the following functions:

f1 =
1

m

0

@2 + (m − 2)
(xy +

“

1 − 2
m−1

”

)(x + 1)

(xy + 1)
“

x +
“

1 − 2
m−1

)
””

1

A

f2 =

1
m

(xy + 1)
“

1 + (m − 1) ((m−1)xy−1)(x+1)
((m−1)x−1)(xy+1)

”

xy + ((m−1)xy−1)(x+1)
((m−1)x−1)(xy+1)

f3 =
1

2
+

1 + (m − 2)y

2(m − 1)

f4 =

1
2
(xy + 1)(1 + (xy−1)(x+1)

(xy+1)(x−1)
)

xy + (xy−1)(x+1)
(xy+1)(x−1)

Theorem 5. In GSP for 2 slots and any number of bid-
ders there always exists an equilibrium that achieves at least
a fraction of min{f1, f2, f3, f4} of the optimal social welfare.

C. EMPIRICAL METHODOLOGY
We describe our experimental methodology for aggregat-

ing advertiser conversion rates. Recall that the concept of
“conversion rate” does not refer to the same thing for dif-
ferent advertisers and different industries, and we observe
from the data that conversion rates vary considerably over
different advertisers. Therefore, we normalized the conver-
sion rates of each advertiser using the top slot (Slot 1 in
the main line) as a benchmark before aggregating. We then
computed the weighted average of these normalized conver-
sion rates per each slot, removing advertisers with extremely
low number of conversion to avoid bias from statistically in-
significant data.

Overall, the data aggregation process of the data pre-
sented in Figure was as follows:8

8For example, consider the following three advertisers in a
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Figure 5: The figures show the utility structure of set-

tings where the social welfare loss approaches 2
3
. The

solid lines describe the utility of bidder 1, the dashed

lines show the utility of the other bidders; the middle

dashed line shows their utility from being allocation ran-

domly to slot 1 or 2. Following the notations in the proof

of theorem 3, x = a1v1 and y = β∗v2.

1. Restriction to search queries with eight ads. To
control for conversion and click phenomena that result
of a varying number of slots, we only considered search
queries for which eight ads were shown.

2. Normalization at the advertiser level. For each
advertiser and for each one of the eight slots, we cal-
culated the conversion rate in this slot, relative to the
conversion rate at slot one of the main line. I.e., the

relative conversion rate at slot j for advertiser i is âj
i/â1

i

(where âj

i stands for the empirical conversion rate).

3. Ignoring data with very small number of sam-

ples. For each advertiser we calculate the total empir-
ical conversion rate âi (“total number of conversions” /
“total number of clicks”). For advertiser i we ignore the
data in slot i if the expected number of clicks was too
close to zero in terms of standard deviation.9 Such ad
impressions are be treated as if they received no clicks.

4. Computing a weighted average of the relative

conversion rates. Finally, we computed a weighted
average of the conversion rates separately for each slot
(j = 1, ..., 8). The relative conversion rate of each ad-
vertiser at slot j is weighted by the number of clicks
this advertiser received in slot j divided by the total
number of clicks of all advertisers at slot j.

three slot auction. Advertiser 1 had 1000, 900, and 500 clicks
respectively on slots 1, 2 and 3, where 20%, 15% and 30% of
the clicks were converted. Advertiser 2 had 2000, 800 and
400 clicks, and conversion rates of 5%, 7% and 12%. The
third advertiser had 400, 200 and 30 clicks and conversion
rates of 4%, 5% and 0%. The aggregate conversion rates are
(100%, 108% and 190%. Note that the data of the slot 3
of the 3rd advertiser was disregarded since the number of
clicks is too low.
9Specifically, we excluded data from slots where
E[conversions] − 2 · STDEV < 0 (STDEV is the standard
deviation of the number of conversions in this slot). Namely,

(#clicks) ∗ âi − 2
p

(#clicks) ∗ âi ∗ (1 − âi) < 0 (where
#clicks is the number of clicks for advertiser i in slot j.


