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ABSTRACT

We study the makespan minimization problem with unrelated self-
ish machines under the assumption that job sizes are stochastic. We
design simple truthful mechanisms that under various distributional
assumptions provide constant and sublogarithmic approximations
to expected makespan. Our mechanisms are prior-independent in
that they do not rely on knowledge of the job size distributions.
Prior-independent approximation mechanisms have been previously
studied for the objective of revenue maximization [13, 11, 26]. In
contrast to our results, in prior-free settings no truthful anonymous
deterministic mechanism for the makespan objective can provide a
sublinear approximation [3].

Categories and Subject Descriptors

J.4 [Social and Behavioral Sciences]: Economics; F.2.0 [Analysis

of Algorithms and Problem Complexity]: General

General Terms

Algorithms, Economics, Theory

Keywords

Bayesian mechanism design, scheduling, prior-independent mech-
anisms

1. INTRODUCTION
We study the problem of scheduling jobs on machines to min-

imize makespan in a strategic context. The makespan the longest
it takes any of the machines to complete the work assigned by the
schedule. The running time or size of a job on a machine is drawn
from a fixed distribution, and is a private input known to the ma-
chine but not to the optimizer. The machines are unrelated in the
sense that the running time of a job on distinct machines may be
distinct. A scheduling mechanism solicits job running times from
the machines and determines a schedule as well as compensation
for each of the machines. The machines are strategic and try to
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maximize the compensation they receive minus the work they per-
form. We are interested in understanding and quantifying the loss
in performance due to the strategic incentives of the machines who
may misreport the job running times.

A primary concern in the theory of mechanism design is to un-
derstand the compatibility of various objectives of the designer
with the incentives of the participants. As an example, maximizing
social welfare is incentive compatible; the Vickrey-Clarke-Groves
(VCG) mechanism obtains this socially optimal outcome in equi-
librium [27, 9, 15]. For most other objectives, however, the optimal
solution ignoring incentives (a.k.a. the first-best solution) cannot be
implemented in an incentive compatible manner. This includes, for
example, the objectives of revenue maximization, welfare maxi-
mization with budgets, and makespan minimization with unrelated
machines. For these objectives there is no incentive compatible
mechanism that is best on every input. The classical economic
approach to mechanism design thus considers inputs drawn from
a distribution (a.k.a. the prior) and looks for the mechanism that
maximizes the objective in expectation over the distribution (a.k.a.
the second-best solution).

The second-best solution is generally complex and, by defini-
tion, tailored to specific knowledge that the designer has on the dis-
tribution over the private information (i.e., the input) of the agents.
The non-pointwise optimality, complexity, and distributional de-
pendence of the second-best solution motivates a number of mech-
anism design and analysis questions.

price of anarchy: For any distribution over inputs, bound the gap
between the first-best (optimal without incentives) and second-
best (optimal with incentives) solutions (each in expectation
over the input).

computational tractability: For any distribution over inputs, give
a computationally tractable implementation of the second-
best solution, or if the problem is intractable give a computa-
tionally tractable approximation mechanism.

simplicity: For any distribution over inputs, give a simple, practi-
cal mechanism that approximates the second-best solution.

prior independence: Give a single mechanism that, for all distri-
butions over inputs, approximates the second-best solution.

These questions are inter-related. As the second-best mechanism
is often complex, the price of anarchy can be bounded via a lower
bound on the second-best mechanism as given by a simple approx-
imation mechanism. Similarly, to show that a mechanism is a good
approximation to second-best the upper bound given by the first-
best solution can be used. Importantly though, if the first-best solu-
tion does not permit good approximation mechanisms then a better



bound on the second-best solution should be sought. Each of the
questions above can be further refined by consideration with re-
spect to a large class of priors (e.g. identical distributions).

The prior-independence question gives a middle ground between
worst-case mechanism design and Bayesian mechanism design. It
attempts to achieve the best of both worlds in the tradeoff between
informational efficiency and approximate optimality. Its minimal
usage of information about the setting makes it robust. A typical
side-effect of this robustness is simple and natural mechanisms; in-
deed, our prior-independent mechanisms will be simple, computa-
tionally tractable, and also enable a bound on the price of anarchy.

The literature on prior-independent mechanism design has fo-
cused primarily on the objective of revenue maximization. Hartline
and Roughgarden [17] show that with sufficient competition, the
welfare maximizing (VCG) mechanism also attains good revenue.
This result enables the prior-independent approximation mecha-
nism for single-item auctions of Dhangwatnotai, Roughgarden, and
Yan [13] and the multi-item approximation mechanisms of Deva-
nur et al. [11] and Roughgarden et al. [26]. Importantly, in single-
item auctions the agents’ private information is single-dimensional
whereas in multi-item auctions it is multi-dimensional. There are
several interesting and challenging directions in prior-independent
mechanism design: (1) non-linear objectives, (2) general multi-
parameter preferences of agents, (3) non-downwards-closed feasi-
bility constraints, and (4) non-identically distributed types of agents.
Our work addresses the first three of these four challenges.

We study the problem of scheduling jobs on machines where the
runtime of a job on a machine is that machine’s private information.
The prior over runtimes is a product distribution that is symmetric
with respect to the machines (but not necessarily symmetric with
respect to the jobs). Ex ante, i.e., before the job sizes are instanti-
ated, the machines appear identical; ex post, i.e., after the job sizes
are realized, the machines are distinct and job runtimes are unre-
lated. The makespan objective is to schedule the jobs on machines
so as to minimize the time at which the last machine completes all
of its assigned jobs. Our goal is a prior-independent approximation
of the second-best solution for the makespan objective.

To gain intuition for the makespan objective, consider why the
simple and incentive compatible VCG mechanism fails to produce
a good solution in expectation. The VCG mechanism for schedul-
ing minimizes the total work done by all of the machines and ac-
cordingly places every job on its best machine. Note that because
the machines are a priori identical, this is an i.i.d. uniformly random
machine for every job. Therefore, in expectation, every machine
gets an equal number of jobs. Furthermore, every job simultane-
ously has its smallest size possible. However, the maximum load in
terms of the number of jobs per machine and so also the makespan
can be quite large. The distribution of jobs across machines is akin
to the distribution of balls into bins in the standard balls-in-bins
experiment—when the number of balls and bins is equal, the maxi-
mum loaded bin contains Θ(log n/ log log n) balls with high prob-
ability even though the average load is 1.

Our designed mechanism must prevent the above balls-in-bins
style behavior. Consider a variant of VCG that we call the bounded

overload mechanism. The bounded overload mechanism minimizes
the total work with the additional feasibility constraint that the load
(i.e., number of jobs scheduled) of any machine is bounded to be
at most a c factor more than the average load. This mechanism is
“maximal in range”, i.e., it is simply the VCG mechanism with
a restricted space of feasible outcomes; it is therefore incentive
compatible. Moreover, the bounded overload mechanism can be
viewed as belonging to a class of “supply limiting” mechanisms

(cf. the prior-independent supply-limiting approximation mecha-
nism of [26] for multi-item revenue maximization).

While the bounded overload mechanism evens out the number
of jobs per machine, an individual job may end up having a run-
ning time far larger than that on its best machine. The crux of our
analysis is to show that this does not hurt the expected makespan of
our schedule relative to an ideal setting where every job assumes its
minimum size. Our analysis of job sizes has two components. First
we show that every job with high probability gets assigned to one
of its best machines. Second, we show that the running time of a
job on its ith best machine can be related within a factor depending
on i to its running time on its best machine. These components to-
gether imply that the bounded overload mechanism simultaneously
obtains a schedule that is balanced in terms of the number of jobs
per machine and where every job has a small size (in comparison
to the best possible for that job). This is sufficient to imply a con-
stant factor approximation to expected makespan when the number
of jobs is proportional to the number of machines.

The second component of our analysis of job sizes in the bounded
overload mechanism entails relating different order statistics of (ar-
bitrary) i.i.d. distributions, a property that may have broader appli-
cations. In particular, letting X[k:n] denote the kth minimum out
of n independent draws from a distribution, we show that for any k
and n, X[k:n] is nearly stochastically dominated by an exponential
function of k times X[1:n/2]. In simple terms, the minimum out
of a certain number of draws cannot be arbitrarily smaller than the
kth minimum out of twice as many draws.

As an intermediary step in our analysis we bound the perfor-
mance of our approximation mechanism with respect to the first-
best solution with half the machines (recall, machines are a pri-
ori identical). Within the literature on prior-independent revenue
maximization this approach closely resembles the classical Bulow-
Klemperer theorem [4]. For auctioning k units of a single-item to
n agents (with values drawn i.i.d. from a “nice” distribution), the
revenue from welfare maximization exceeds the optimal revenue
from n − k agents. In other words, a simple prior-independent
mechanism with extra competition (namely, k extra agents) is bet-
ter than the prior-optimal mechanism for expected revenue. Our
result is similar: when the number of jobs is at most the num-
ber of machines and machines are a priori identical, we present
a prior-independent mechanism that is a constant approximation
to makespan with respect to the first-best (and therefore also with
respect to the second-best) solution with half as many machines.
Unlike the Bulow-Klemperer theorem we place no assumptions the
distribution of jobs on machines besides symmetry with respect to
machines.

To design scheduling mechanisms for the case where the number
of jobs is large relative to the number of machines we can poten-
tially take advantage of the law of large numbers. If there are many
more large jobs (i.e., jobs for which the best of the machines’ run-
times is significant) then assigning jobs to machines to minimize
total work will produce a schedule where the maximum work on
any machine is concentrated around its expectation; moreover, the
expected load of any machine in the schedule that minimizes total
work is at most the expected load of any machine in the schedule
that minimizes makespan.

On the other hand, if there are a moderate number, e.g., pro-
portional to the number of machines, of jobs with very large run-
times on all machines, both the minimum work mechanism and
the bounded overload mechanism can fail to have good expected
makespan. For the bounded overload mechanism, although the
distribution of jobs across machines is more-or-less even, the dis-
tribution of the few “worst” jobs that contribute the most to the



makespan may be highly uneven. Indeed, for a distribution where
the expected number of large jobs is about the same as the number
of machines, the bounded overload mechanism exhibits the same
bad balls-in-bins behavior as the minimum work mechanism.

The problem above is that the existence of many small, but rela-
tively easy to schedule jobs, prevents the bounded overload mech-
anism from working. To solve this problem we employ a two stage
approach. The first stage acts as a sieve and schedules the small
jobs to minimize total work and while leaving the large jobs un-
scheduled. Then in the second stage the bounded overload mech-
anism is run on the unscheduled jobs. With the proper parameter
tunings (i.e., job size threshold for the sieve and partitioning of
machines to the two stages) this mechanism gives a schedule with
approximately optimal expected makespan. We give two parameter
tunings and analyses, one which gives an O(

√
log m) approxima-

tion and the other that gives an O((log log m)2) approximation un-
der a certain tail condition on the distribution of job sizes (satisfied,
for example, by all monotone hazard rate distributions).

The proper tuning of the parameters of the mechanism require
knowledge of a single order statistic of the size distribution, namely
the expected size of a job on its best out of k machines for an ap-
propriate value of k, to decide which jobs get scheduled in which
stage. This statistic can be easily estimated as the mechanism is
running by using the reports of a small fraction of the machines as
a “market analysis.” To keep our exposition and analysis simple,
we skip this detail and assume that the statistic is known.

Related work

There is a large body of work on prior-free mechanism design for
the makespan objective. This work does not assume a prior distri-
bution, instead it looks at worst-case approximation of the first-
best solution (i.e., the optimal makespan without incentive con-
straints). The problem was introduced by Nisan and Ronen [25]
who showed that the minimum work (a.k.a. VCG) mechanism gives
an m-approximation to makespan (where m is the number of ma-
chines). They gave a lower bound of two on the worst case ap-
proximation factor of any dominant strategy mechanism for unre-
lated machine scheduling. They conjectured that the best worst-
case approximation is indeed Θ(m). Following this work, a series
of papers presented better lower bounds for deterministic as well
as randomized mechanisms [8, 7, 18, 24]. Ashlagi, Dobzinski and
Lavi [3] recently proved a restricted version of the Nisan-Ronen
conjecture by showing that no anonymous deterministic dominant-
strategy incentive-compatible mechanism can achieve a factor bet-
ter than m. This lower bound suggests that the makespan objec-
tive is fundamentally incompatible with incentives in prior-free set-
tings. In this context, our work can be viewed as giving a meaning-
ful approach for obtaining positive results that are close to prior-
free for a problem for which most results are very negative.

Given these strong negative results, several special cases of the
problem have been studied. Lavi and Swamy [19] give constant
factor approximations when job sizes can take on only two differ-
ent values. Lu and Yu [22, 21, 20] consider the problem over two
machines, and give approximation ratios strictly better than 2.

Related machine scheduling is the special case where the runtime
of a job on a machine is the product of the machine’s private speed
and the job’s public length. Importantly, the private information of
each machine in a related machine scheduling problem is single-
dimensional, and the total length of the jobs assigned to any given
machine in the makespan minimizing schedule is monotone in the
machine’s speed. This monotonicity implies that the related ma-
chine makespan objective is incentive compatible (i.e., the price of
anarchy is one). For this reason work on related machine schedul-

ing has focused on computational tractability. Archer and Tardos
[2] give a constant approximation mechanism and Dhangwotnotai
et al. [12] give an incentive compatible polynomial time approx-
imation scheme thereby matching the best approximation result
absent incentives. There are no known approximation-preserving
black-box reductions from mechanism design to algorithm design
for related machine scheduling; moreover, in the Bayesian model
Chawla, Immorlica, and Lucier [6] recently showed that the makespan
objective does not admit black-box reductions of the form that Hart-
line and Lucier [16] showed exist for the objective of social welfare
maximization.

Another line of work studies the makespan objective subject to
an envy-freedom constraint instead of the incentive-compatibility
constraint. A schedule and payments (to the machines) are envy
free if every machine prefers its own assignment and payment to
that of any other machine. Mu’alem [23] introduced the envy-free
scheduling problem for makespan. Cohen et al. [10] gave a poly-
nomial time algorithm for computing an envy-free schedule that
is an O(log m) approximation to the first-best makespan (i.e., the
optimal makespan absent envy-freedom constraints). Fiat and Lev-
avi [14] complement this by showing that the optimal envy-free
makespan (a.k.a. second-best makespan) can be an Ω(log m) fac-
tor larger than the first-best makespan.

2. PRELIMINARIES AND MAIN RESULTS
We consider the scheduling of n jobs on m unrelated machines

where the running time of a job on a machine is drawn from a
distribution. A schedule is an assignment of each job to exactly one
machine. The load of a machine is the number of jobs assigned to
it. The load factor is the average number of jobs per machine and
is denoted η = n/m. The work of a machine is the sum of the
runtimes of jobs assigned to it. The total work is the sum of the
works of each machine. The makespan is the most work assigned
to any machine.

The vector of running times for each of the jobs on a given ma-
chine is that machine’s private information. A scheduling mech-
anism may solicit this information from the machines, may make
payments to the machines, and must select a schedule of jobs on
the machines. A scheduling mechanism is evaluated in the equilib-
rium of strategic behavior of the machines. A particularly robust
equilibrium concept is dominant strategy equilibrium. A schedul-
ing mechanism is incentive compatible if it is a dominant strategy
for each machine to report its true processing time for each job.

We consider the following simple mechanisms:

minimum work The minimum work mechanism solicits the run-
ning times, selects the schedule to minimize the total work
and pays each machine its externality, i.e., the difference be-
tween the minimum total work when the machine does noth-
ing and the total work of all other machines in the selected
schedule.

bounded overload The bounded overload mechanism is parame-
terized by an overload factor c > 1 and is identical to the
minimum work mechanism except it optimizes subject to
placing at most cη jobs on any machine.

sieve / anonymous reserve The sieve mechanism, also known as
the anonymous reserve mechanism, is parameterized by a re-
serve β ≥ 0 and is identical to the minimum work mecha-
nism except that there is a dummy machine added with run-
time β for all jobs. Jobs assigned to the dummy machine are
considered unscheduled.



sieve and bounded overload The sieve and bounded overload mech-
anism is parameterized by overload c, reserve β, and a par-
tition parameter δ. It partitions the machines into two sets
of sizes (1 − δ)m and δm. It runs the sieve with reserve β
on the first set of machines and runs the bounded overload
mechanism with overload c on the unscheduled jobs and the
second set of machines.

The above mechanisms are incentive compatible. The minimum
work mechanism is incentive compatible as it is a special case of
the well known Vickrey-Clarke-Groves (VCG) mechanism which
is incentive compatible. The bounded overload mechanism is what
is known as a “maximal in range” mechanism and is also incentive
compatible (by the VCG argument). The sieve / anonymous reserve
mechanism is incentive compatible because the incentives of the
agents in the minimum work mechanism are unaffected by the ad-
dition of a dummy agent. Finally, the sieve and bounded overload
mechanism is incentive compatible because from each machine’s
perspective it is either participating in the sieve mechanism or the
bounded overload mechanism.

The runtimes of jobs on machines are drawn from a product dis-
tribution (a.k.a., the prior) that is symmetric with respect to the ma-
chines. (Therefore, the running times of a job on each machine are
i.i.d. random variables.) The distribution of job j on any machine
is denoted Fj ; a draw from this distribution is denoted Tj . The best

runtime of a job is its minimum runtime over all machines, this first
order statistic of m random draws from Fj is denoted by Tj [1:m].

Our goal is to exhibit a mechanism that is prior-independent and
a good approximation to the expected makespan of the best incen-
tive compatible mechanism for the prior, i.e., the second-best so-
lution. Because both the second-best and the first-best expected
makespans are difficult to analyze, we will give our approximation
via one of the following two lower bounds on the first-best solution.

expected worst best runtime The expected worst best runtime is
the expected value of the best runtime of the job with the
longest best runtime, i.e., E[maxj Tj [1:m]]

expected average best runtime The expected average best runtime
is the expected value of the sum of the best runtimes of each
job averaged over all machines, i.e., E[

P

j Tj [1:m]]/m.

Intuitively, the former gives a good bound when the load factor
is small, the latter when the load factor is large. We will refer to
any of these bounds on the first-best makespan as OPT, with the
assumption that which of the bounds is meant, if it is important, is
clear from the context.

As an intermediary in our analysis of the makespan of our schedul-
ing mechanisms with respect to OPT, we will give bicriteria results
that compare our mechanism’s makespan to the makespan of an op-
timal schedule with fewer machines. This restriction is well defined
because the machines are a prior identical. For a given parameter
δ, OPTδ will denote the optimal schedule with δm machines (via
bounds as described above). Much of our analysis will be with re-
spect to OPT1/2, i.e., the optimal schedule with half the number
of machines.

While it is possible to construct distributions where OPT is
much smaller than OPT1/2, for many common distributions they
are quite close. In fact, for the class of distributions that satisfy the
monotone hazard rate (MHR) condition,1 OPT and OPT1/2 are

1The hazard rate of a distribution F is given by h(x) = f(x)
1−F (x)

,
where f is the probability density function for F ; a distribution F
satisfies the MHR condition if h(x) is non-decreasing in x. Many
natural distributions such as the uniform, Gaussian, and exponen-

always within a factor of four; more generally OPT and OPTδ

are within a factor of 1/δ2 for these distributions. (See proof in
Section 5.)

LEMMA 2.1. When the distributions of job sizes have monotone

hazard rates the expected worst best and average best runtimes on

δm machines are no more than 1/δ2 times the expected worst best

and average best runtimes, respectively, on m machines.

2.1 Main Results
Our main theorems are as follows. When the number of jobs

is comparable to the number of machines, i.e., the load factor η is
constant, then the bounded overload mechanism is a good approxi-
mation to the optimal makespan on m/2 machines.

THEOREM 2.2. For n jobs, m machines, load factor η = n/m,

and runtimes distributed according to a machine-symmetric prod-

uct distribution, the expected makespan of the bounded overload

mechanism with overload c = 7 is a 200η approximation to the ex-

pected worst best runtime, and hence also to the optimal makespan,

on m/2 machines.

COROLLARY 2.3. Under the assumptions of Theorem 2.2 where

additionally the distributions of job sizes have monotone hazard

rates, the expected makespan of the bounded overload mechanism

with c = 7 is a 800η approximation to the expected optimal makespan.

When the load factor η is large and the job runtimes are identi-
cally distributed, the sieve and bounded overload mechanism is a
good approximation to the optimal makespan. The following the-
orems and corollaries demonstrate the sieve and bounded overload
mechanism under two relevant parameter settings.

THEOREM 2.4. For n jobs, m machines, and runtimes from an

i.i.d. distribution, the expected makespan of the sieve and bounded

overload mechanism with overload c = 7, partition parameter

δ = 2/3, and reserve β = n
m log m

E[T [1: δ
2
m]] is an O(

√
log m)

approximation to the larger of the expected worst best and average

best runtime, and hence also to the optimal makespan, on m/3 ma-

chines. Here T denotes a draw from the distribution on job sizes.

COROLLARY 2.5. Under the assumptions of Theorem 2.4 where

additionally the distribution of job sizes has monotone hazard rate,

the expected makespan of the sieve and bounded overload mech-

anism is an O(
√

log m) approximation to the expected optimal

makespan.

THEOREM 2.6. For n ≥ m log m jobs, m machines, and run-

times from an i.i.d. distribution, the expected makespan of the sieve

and bounded overload mechanism with overload c = 7, partition

parameter δ = 1/ log log m, and reserve

β = 2n
m log m

E[T [1: δ
2
m]], is a constant approximation to the larger

of the expected worst best and average best runtime, and hence also

to the optimal makespan, on δm/2 machines. Here T denotes a

draw from the distribution on job sizes.

COROLLARY 2.7. Under the assumptions of Theorem 2.6 where

additionally the distribution of job sizes has monotone hazard rate

the expected makespan of the sieve and bounded overload mecha-

nism is a O((log log m)2) approximation to the expected optimal

makespan.

We prove Theorem 2.2 in Section 3 and Theorems 2.4 and 2.6 in
Section 4.

tial distributions, satisfy the monotone hazard rate condition. Intu-
itively, these are distributions with tails no heavier than the expo-
nential distribution.



2.2 Probabilistic Analysis
Our goal is to show that the simple processes described by the

bounded overload and sieve mechanisms result in good makespan
and our upper bound on makespan is given by the first order statis-
tics of each job’s runtime across the machines. The sieve’s perfor-
mance analysis is additionally governed by the law of large num-
bers. We describe here basic facts about order statistics and con-
centration bounds. Additionally we give a number of new bounds,
proofs of which are in Section 5.

For random variable X and integer k, we consider the following
basic constructions of k independent draws of the random variable.
The ith order statistic, or the ith minimum of k draws, is denoted
X[i:k]. The first order statistic, i.e., the minimum of the k draws,
is denoted X[1:k]. The kth order statistic, i.e., the maximum of k
draws, is denoted X[k:k]. Finally, the sum of k draws is denoted
X[Σk]. We include the possibility that i or k can be random vari-
ables. We also allow the notation to cascade, e.g., for the special
case where the jobs are i.i.d. from F the lower bounds on OPT are
T [1:m][n:n] and T [1:m][Σn]/m for the expected worst best and
average best runtime, respectively, and T drawn from F .

We will use the following forms of Chernoff-Hoeffding bounds
in this paper. Let X =

P

i Xi, where Xi ∈ [0, B] are independent
random variables. Then, for all ǫ ≥ 1,

Pr[X > (1 + ǫ)E[X]] < exp
“

−ǫE[X]
3B

”

< exp
“

−(1+ǫ) E[X]
6B

”

Our analysis often involves relating different order statistics of
a random variable (e.g. how does the size of a job on its best ma-
chine compare to that on its second best machine). We relate these
different order statistics via the stochastic dominance relation. This
is useful in our analysis because stochastic dominance is preserved
by the max and sum operators. We say that a random variable X is
stochastically dominated by another random variable Y if for all t,
Pr[X ≤ t] ≥ Pr[Y ≤ t]. Stochastic dominance is equivalent to
being able to couple the two random variables X and Y so that X
is always smaller than Y .

Below, the first lemma relates the ith order statistic over some
number of draws to the first order statistic over half the draws. The
second relates the minimum over several draws of a random vari-
able to a single draw of that variable. The third relates the maxi-
mum over multiple draws of a random variable to an appropriate
sum over those draws. These lemmas are proved in Section 5.

LEMMA 2.8. Let X be any nonnegative random variable and

m and i ≤ m be arbitrary integers. Let α be defined such that

Pr[X ≤ α] = 1/m (or for discontinuous distributions, α =
sup{z : Pr[X ≤ z] < 1/m}). Then X[i:m] is stochastically

dominated by max(α, X[1:m/2][4i:4i]).

LEMMA 2.9. For a random variable X whose distribution sat-

isfies the monotone hazard rate condition, X is stochastically dom-

inated by rX[1:r].

LEMMA 2.10. Let K1, · · · , Kn be independent and identically

distributed integer random variables such that for some constant

c > 1, we have Kj ≥ c, and let W1, · · · , Wn be arbitrary inde-

pendent nonnegative variables. Then,

E [maxj Wj [Kj :Kj ]] ≤ c
c−1

E [K1]E [maxj Wj ] .

We will analyze the expected makespan of a mechanism as the
maximum over a number of correlated real-valued random vari-
ables. The correlation among these variables makes it difficult to

understand and bound the makespan. Our approach will be to re-
place these random variables with an ensemble of independent ran-
dom variables that have the same marginal distributions. Fortu-
nately, this operation does not change the expected maximum by
too much. Our next lemma relates the expected maximum over an
arbitrary set of random variables to the expected maximum over a
set of independent variables with the same marginal distributions.
It is a simple extension of the correlation gap results of Aggarwal
et al. [1], Yan[28], and Chawla et al. [5].

LEMMA 2.11. Let X1, · · · , Xn be arbitrary correlated real-

valued random variables. Let Y1, · · · , Yn be independent random

variables defined so that the distribution of Yi is identical to that of

Xi for all i. Then, E[maxj Xj ] ≤ e
e−1

E[maxj Yj ].

3. THE BOUNDED OVERLOAD MECHA-

NISM
Recall that the bounded overload mechanism minimizes the to-

tal work subject to the additional feasibility constraint that every
machine is assigned at most cη jobs. In this section we prove that
the expected makespan of the bounded overload mechanism, with
the overload set to c = 7, is a 200η factor approximation to the
expected best worst runtime and thus to the optimal makespan.

Intuitively the bounded overload mechanism tries to achieve two
objectives simultaneously: (1) keep the size of every job on the ma-
chine its schedule to be close to its size on its best machine, but also
(2) evenly distribute the jobs across all the machines. Recall, that
the minimum work mechanism achieves the first objective exactly,
but fails on the second objective. Due to the independence between
jobs, the number of jobs on each machine may be quite unevenly
distributed. In contrast, the bounded overload mechanism explic-
itly disallows uneven assignments of jobs and therefore the main
issue to address in its analysis is whether it satisfies the first objec-
tive, i.e., that the sizes of the jobs are close to what they are in the
minimum work mechanism.

To setup for the proof of Theorem 2.2 consider the following def-
initions that describe the outcome of the bounded overload mecha-
nism and the worst best runtime on m/2 machines (which bounds
the optimal makespan on m/2 machines). Let Tj denote a ran-
dom variable drawn according to job j’s distribution of runtimes
Fj . Let Bj denote the job’s best runtime out of m/2 machines,
i.e., Bj = Tj [1:m/2], the first order statistic of m/2 draws. The
expected worst best runtime on m/2 machines is E[maxj Bj ]. The
bounded overload mechanism considers placing each job on one of
m machines. These runtimes of job j drawn i.i.d. from Fj impose
a (uniformly random) ordering over the machines starting from the
machine that is “best” for j to the one that is “worst”; this is j’s
preference list. Let Tj [r:m] denote the size of job j on the rth ma-
chine in this ordering (also called the job’s rth favorite machine).
Let Rj be a random variable to denote the rank of the machine
that job j is placed on by the bounded overload mechanism. As
each machine is constrained to receive at most cη jobs, the expected
makespan of bounded overload is cη E[maxj Tj [Rj :m]]. We will
bound this quantity in terms of E[maxj Bj ].

There are three main parts to our argument. First, we note that
the Rjs are correlated across different j’s, and so are the Tj [Rj :m]s.
This makes it challenging to directly analyze E[maxj Tj [Rj :m]].
We use Lemma 2.11 to replace the Rjs in this expression by in-
dependent random variables with the same marginal distributions.
We then show that the marginal distributions can be bounded by
simple geometric random variables R̃j . To do so, we introduce an-
other procedure for assigning jobs to machines that we call the last
entry procedure. The assignment of each job under the last entry



procedure is no better than its assignment under bounded overload.
On the other hand, the ranks of the machines to which jobs are
allocated in the last entry procedure are geometric random vari-
ables with a bounded failure rate. Finally, we relate the runtimes
Tj [R̃j :m] to the optimal runtimes Bj using Lemma 2.8.

We begin by describing the last entry procedure.

last entry In order to schedule job j, we first apply the bounded
overload mechanism BOc to all jobs other than j. We then
place j on the first machine in its preference list that has
fewer than cη jobs. Let Lj denote the rank of the machine to
which j gets allocated.

We now make a few observations about the ranks Lj realized by
the last entry procedure.

LEMMA 3.1. The runtime of any job j in bounded overload is

no worse than its runtime in the last entry procedure. That is, Rj ≤
Lj .

PROOF. Fix any instantiation of jobs’ runtimes over machines.
Consider the assignment of job j in the last entry procedure, and let
LE(j) denote the schedule where all of the jobs but j are scheduled
according to bounded overload and j is scheduled according to the
last entry procedure. Since the bounded overload mechanism min-
imizes total work, the total runtime of all of the jobs in BOc is no
more than the total runtime of all of the jobs in LE(j). On the other
hand, the total runtime of all jobs except j in LE(j) is no more than
the total runtime of all jobs except j in BOc. This immediately
implies that j’s runtime in bounded overload is no more than its
runtime in last entry. Since this holds for any fixed instantiation of
runtimes, we have Rj ≤ Lj .

Next, we show that the rank Lj of a job j in last entry is stochas-
tically dominated by a geometric random variable R̃j that is capped
at ⌈m

c
⌉. Note that Lj is at most ⌈m

c
⌉ since ⌈m

c
⌉ machines can ac-

commodate ⌈m
c
⌉cη ≥ n jobs and therefore last entry will never

have to send a job to anything worse than its ⌈m
c
⌉th favorite ma-

chine. The random variable R̃j also lives in {1, . . . , ⌈m
c
⌉}, and is

drawn independently for all j as follows: for i ∈ {1, . . . , ⌈m
c
⌉−1},

we have Pr[R̃j = i] = 1−1/c

ci−1 ; and the remaining probability mass
is on ⌈m

c
⌉.

LEMMA 3.2. The rank Lj of a job j in last entry is stochasti-

cally dominated by R̃j , and so the runtime of job j in last entry is

stochastically dominated by Tj [R̃j :m].

PROOF. We use the principle of deferred decisions. In order to
schedule j, the last entry procedure first runs bounded overload on
all of the jobs other than j. This produces a schedule in which at
most a 1

c
fraction of the machines have all of their slots occupied.

Conditioned on this schedule, job j’s preference list over machines
is a uniformly random permutation. So the probability (over the
draw of j’s runtimes) that job j’s favorite machine is fully occu-
pied is at most 1/c. Likewise, the probability that the job’s two
most favorite machines are both occupied is at most 1/c2, and so
on. Therefore, the rank of the machine on which j is eventually
scheduled is dominated by a geometric random variable with fail-
ure rate 1/c.

Lemmas 3.1 and 3.2 yield the following corollary.

COROLLARY 3.3. For all j, the runtime Tj [Rj :m] of job j in

bounded overload is stochastically dominated by Tj [R̃j :m].

The benefit of relating Tj [Rj :m]s with Tj [R̃j :m]s is that while
the former are correlated random variables, the latter are indepen-
dent, because the R̃j ’s are picked independently. Corollary 3.3 im-
plies that we can replace the former with the latter, gaining indepen-
dence, while losing only a constant factor in expected makespan.

COROLLARY 3.4. E[maxj Tj [Rj :m]] is no more than e/(e −
1) times E[maxj Tj [R̃j :m]].

The final part of our analysis relates the Tj [R̃j :m]s to the Bjs. A
natural inequality to aim for is to bound E[Tj [R̃j :m]] from above
by a constant times E[Bj ] for each j. Unfortunately, this is not
enough for our purposes: note that our goal is to upper bound
E[maxj Tj [R̃j :m]] in terms of E[maxj Bj ]. Thus we proceed
to show that Tj [R̃j :m] is stochastically dominated by a maximum
among some number of copies of Bj . We apply Lemma 2.8 (stated
in Section 2 and proved in Section 5) to the random variable Tj [i:m]
for this purpose. Define αj = sup{t : Fj(t) < 1/m}. Then the
lemma shows that Tj [i:m] is stochastically dominated by
max(αj , Bj [4

i:4i]).

Let Dj be defined as 4R̃j . Note that E[Dj ] can be bounded by a
constant whenever c > 4 (this upper bound is obtained by treating
R̃j as a geometric random variable without being capped at ⌈m

c
⌉).

Then Lemma 2.8 implies the following corollary.

LEMMA 3.5. Tj [R̃j :m] is stochastically dominated by

max(αj , Bj [Dj :Dj ]).

We are now ready to prove the main theorem of this section.

THEOREM 2.2. For n jobs, m machines, load factor η = n/m,

and runtimes distributed according to a machine-symmetric prod-

uct distribution, the expected makespan of the bounded overload

mechanism with overload c = 7 is a 200η approximation to the ex-

pected worst best runtime, and hence also to the optimal makespan,

on m/2 machines.

PROOF. The proof follows from the following series of inequal-
ities that we explain below. First we have Makespan(BOc) ≤
cη E [maxj Tj [Rj :m]] by the fact that BOc schedules at most cη
jobs per machine

e − 1

e
E [maxj Tj [Rj :m]] ≤ E

h

maxj Tj [R̃j :m]
i

≤ E [maxj(max(αj , Bj [Dj :Dj ]))]

≤ E [maxj (αj + Bj [Dj :Dj ])]

≤ maxj αj + E [maxj Bj [Dj :Dj ]]

≤ 2OPT1/2 + 4
4−2

E[Dj ]E[maxj Bj ]

≤
„

2 + 8
c − 1

c − 4

«

OPT1/2.

The first of the inequalities follows from Lemma 3.4, the second
from Lemma 3.5, the third from noting that the maximum of non-
negative random variables is upper bounded by their sum, and the
last by the definition of OPT1/2, along with the fact that E[Dj ] ≤
4 c−1

c−4
. For the fifth inequality we use Lemma 2.10 to bound the sec-

ond term. For the first term in that inequality consider the job j that
has the largest αj . For this job, the probability that its size on all of
the m/2 machines in OPT1/2 is at least αj is (1−Fj(αj))

m/2 ≥
(1 − 1/m)m/2 ≥ 1/2 by the definition of αj . So OPT1/2 ≥
maxj αj/2.

The final approximation factor therefore is cη e
e−1

“

2 + 8 c−1
c−4

”

for all c > 4. At c = 7, this evaluates to a factor 200η approxima-
tion.



4. THE SIEVE AND BOUNDED OVERLOAD

MECHANISM
We will now analyze the performance of the sieve and bounded

overload mechanisms under the assumption that the jobs are a priori
identical. Let us consider the sieve mechanism first. Recall that
this is essentially the minimum work mechanism where every job
is assigned to its best machine, except that jobs with a size larger
than β on every machine are left unscheduled. The bound of β on
the size of scheduled jobs allows us to employ concentration results
to bound the expected makespan of the mechanism. Changing the
value of β allows us to tradeoff the makespan of the mechanism
with the number of unscheduled jobs.

LEMMA 4.1. For k < log m, the expected makespan of the

sieve mechanism with β = n E[T [1:m]]
km

is no more than O(log m/k)
times the expected average best runtime, and hence also the ex-

pected optimal makespan. The expected number of jobs left un-

scheduled by the mechanism is km.

PROOF. Let us first consider the expected total work of any sin-
gle machine, that is the expected total size of jobs scheduled on that
machine. Let Yij be a random variable that takes on the value 0 if
job j is not scheduled on machine i, and takes on the size of j on
machine i if the job is scheduled on that machine. The probability
that j is scheduled on i is no more than 1/m; its expected size on i
conditioned on being scheduled is at most τ = E[T [1:m]]. There-
fore, E[

P

j Yij ] ≤ nτ
m

, which in turn is at most the average best
runtime.

Note that the Yij’s are independent and bounded random vari-
ables. So we can apply Chernoff-Hoeffding bounds and use β =
nτ
km

to get

Pr

h

X

j
Yij > 7 log m

k
OPT

i

≤ Pr

h

X

j
Yij > 7 log m

k
E

h

X

j
Yij

ii

< exp
“

− 1
3

6 log m
k

nτ
βm

”

= 1
m2 .

Taking the union bound over the m machines, we get that with
probability 1 − 1/m, the makespan of the sieve mechanism is at
most O(log m/k) times OPT.

We will now convert this tail probability into a bound on the ex-
pected makespan. Let γ denote the factor by which the expected
makespan of the mechanism exceeds OPT. Remove all jobs with
best runtimes greater than β from consideration and consider cre-
ating sieve’s schedule by assigning each of the leftover jobs to their
best machine (minimizing total work) one-by-one in decreasing
order of best runtime, until the makespan exceeds 7

k
log m times

OPT. This event happens with a probability at most 1/m. When
this event happens, we are left with a smaller set of jobs; condi-
tioned on being left over at this point, these jobs have a smaller
best runtime than the average over all scheduled jobs. Thus the ex-
pected makespan for scheduling them will be at most γOPT. So
we get γ ≤ 7 log m/k+γ/m, i.e., γ = O(log m/k). This implies
the first part of the lemma.

We now prove the second part of the lemma, i.e., the expected
number of jobs left unscheduled is km. Note that β exceeds a
job’s expected best runtime by a factor of n/km. Thus by applying
Markov’s inequality, we get the probability of a job’s best runtime
being larger than β to be at most km/n. Hence the expected num-
ber of jobs with best runtime larger than β is km.

Next we will combine the sieve mechanism with the bounded
overload mechanism. We consider two different choices of pa-
rameters. Note that if in expectation the sieve mechanism leaves

km jobs unscheduled, using the bounded overload mechanism to
schedule these jobs over a set of Ω(m) machines gives us an ex-
pected makespan that is at most O(k) larger than the expected op-
timal makespan on that number of machines. In order to balance
this with the makespan achieved by sieve, we pick k =

√
log m.

This gives us Theorem 2.4.

THEOREM 2.4. For n jobs, m machines, and runtimes from an

i.i.d. distribution, the expected makespan of the sieve and bounded

overload mechanism with overload c = 7, partition parameter

δ = 2/3, and reserve β = n
m log m

E[T [1: δ
2
m]], is an O(

√
log m)

approximation to the larger of the worst best runtime and the av-

erage best runtime, and hence also to the optimal makespan, on

m/3 machines. Here T denotes a draw from the distribution on

job sizes.

PROOF. For the choice of parameters in the theorem statement,
we use m/3 of the m machines for the sieve mechanism, and the
remainder for the bounded overload mechanism. The expected
makespan of the overall mechanism is no more than the sum of the
expected makespans of the two constituent mechanisms. Lemma 4.1
implies that the expected makespan of the sieve mechanism is
O(

√
log m) times OPT1/3, and the load factor for the bounded

overload mechanism is also O(
√

log m). Theorem 2.2 then implies
that the expected makespan of the bounded overload mechanism is
also O(

√
log m) times OPT1/3.

If we partition the machines across the sieve and the bounded
overload mechanisms roughly equally, then Theorem 2.4 gives us
the optimal choice for the parameter β. A different possibility is to
perform a more aggressive screening of jobs by using a smaller β,
while comparing our performance against a more heavily penalized
optimal mechanism – one that is allowed to use only a δ fraction of
the machines.

THEOREM 2.6. For n ≥ m log m jobs, m machines, and run-

times from an i.i.d. distribution, the expected makespan of the sieve

and bounded overload mechanism with overload c = 7, partition

parameter δ = 1/ log log m, and reserve β = 2n
m log m

E[T [1: δ
2
m]],

is a constant approximation to the larger of the worst best run-

time and the average best runtime, and hence also to the optimal

makespan, on δm/2 machines. Here T denotes a draw from the

distribution on job sizes.

PROOF. We will show that the expected makespan of the sieve
mechanism is at most a constant times the average best runtime
on δm/2 machines, and the expected number of unscheduled jobs
is O(δm). The current theorem then follows by applying Theo-
rem 2.2.

Let us analyze the expected makespan of the sieve mechanism
first. Let τ = E[T [1: δ

2
m]]. Then we can bound OPTδ/2 as

OPTδ/2 ≥ 2nτ
δm

. As in the proof of Lemma 4.1, let Yij be a ran-
dom variable that takes on the value 0 if job j is not scheduled on
machine i, and takes on the size of j on machine i if the job is
scheduled on that machine. Then,

E

h

X

j
Yij

i

≤ n
(1−δ)m

E[T [1:(1 − δ)m]]

≤ nτ
(1−δ)m

≤ δ
2(1−δ)

OPTδ/2.

Applying Chernoff-Hoeffding bounds we get

Pr

h

X

j
Yij > 2OPTδ/2

i

≤ Pr

h

X

j
Yij > 4(1/δ − 1)E

h

X

j
Yij

ii

< exp
“

− 1
δ

nτ
(1−δ)m

1
β

”

≤ m−1/2δ.



Here we used β = 2nτ/m log m. Taking the union bound over the
m machines, we get that with probability o(1), the makespan of the
sieve mechanism is at most twice OPTδ/2. Once again, as in the
proof of Lemma 4.1 we can convert this tail bound into a constant
factor bound on the expected makespan.

Now let us consider the jobs left unscheduled. For any given
job, we will compute the probability that its runtime on all of the
(1 − δ)m machines is larger than β. Because β is defined in terms
of T [1: δ

2
m], we will consider the machines in batches of size δm/2

at a time. Using Markov’s inequality, the probability that the job’s
runtime exceeds β on all machines in a single batch is at most
m log m/2n. There are 2(1/δ−1) batches in all, so the probability
that a job remains unscheduled is at most (m log m/n)(22(1−1/δ)),
which by our choice of δ is O(δm/n).

5. DEFERRED PROOFS
In this section we prove the bounds for random variables and

order statistics from Section 2.2.

LEMMA 2.8. Let X be any nonnegative random variable, and

m, i ≤ m be arbitrary integers. Let α be defined such that Pr[X ≤
α] = 1/m (or for discontinuous distributions, α = sup{z :
Pr[X ≤ z] < 1/m}). Then X[i:m] is stochastically dominated

by max(α, X[1:m/2][4i:4i]).

PROOF. Let F be the cumulative distribution function of X. We
prove this by showing that X[i:m] is “almost” stochastically domi-
nated by X[1:m/2][4i:4i]; specifically, we show that for all t ≥ α,

Pr [X[i:m] > t] ≤ Pr

h

X[1:m/2][4i:4i] > t
i

.

To prove this inequality, we will define a process for instantiating
the variables X[i:m] and X[1:m/2][4i:4i] in a correlated fashion
such that the former is always larger than the other.

X[1:m/2][4i:4i] is a statistic based on 4im/2 independent draws
of the random variable X. Consider partitioning these draws into
4i/2 groups of size m each. We then randomly split each group
into two smaller groups, which we will refer to as blocks, of size
m/2 each. Define a good event G to be the event that at least one
of these 4i/2 groups get split such that the i smallest runtimes in
it all fall into the same block. If event G occurs, arbitrarily choose
one group which caused event G, and for all k define X[k:m] to be
the kth min from this group. Otherwise, select an arbitrary group
to define the X[k:m]. Note that since we split the groups into
blocks randomly, and this is independent of the drawn runtimes
in the groups, X[k:m] has the correct distribution, both when G
occurs and does not occur. Define the minimum from each of the
4i blocks to be a draw of X[1:m/2]. Thus, whenever G occurs, the
probability that the X[1:m/2][4i:4i] > t is at least the probability
that X[i + 1:m] > t. We have that

Pr

h

X[1:m/2][4i:4i] > t
i

≥ Pr [G] · Pr [X[i + 1:m] > t]

=

„

Pr [G] · Pr [X[i + 1:m] > t]

Pr [X[i:m] > t]

«

· Pr [X[i:m] > t] .

We now show that
“

Pr [G] · Pr[X[i+1:m]>t]
Pr[X[i:m]>t]

”

≥ 1 whenever F (t) ≥
1/m, which completes our proof of the lemma. Note that

Pr [X[i + 1:m] > t]

Pr [X[i:m] > t]
=

Pi
k=0

`

m
k

´

F (t)k(1 − F (t))m−k

Pi−1
k=0

`

m
k

´

F (t)k(1 − F (t))m−k

= 1 +

`

m
i

´

F (t)i(1 − F (t))m−i

Pi−1
k=0

`

m
k

´

F (t)k(1 − F (t))m−k
,

which we can see is an increasing function of F (t). Thus in the
range F (t) ≥ 1/m, it attains its minimum precisely at F (t) =
1/m. Substituting F (t) = 1/m into the above, and using standard

approximations for
`

m
k

´

(namely
`

m
k

´k ≤
`

m
k

´

≤
`

me
k

´k
, we have

Pr [X[i + 1:m] > t]

Pr [X[i:m] > t]

≥ 1 +

`

m
i

´i `

1
m

´i `

1 − 1
m

´m−i

`

1 − 1
m

´m
+

i−1
X

k=1

`

me
k

´k `

1
m

´k `

1 − 1
m

´m−k

≥ 1 +
i−i

1 + (i − 1) · maxk( e
k
)k

≥ 1 +
i−i

1 + (i − 1)e
.

It suffices to show that this last quantity, when multiplied with
Pr[G], is at least 1. We consider the complement of event G, call it
even B. The event B occurs only when none of the 4i/2 groups split
favorably. The probability that a group splits favorably (for i ≥ 1)

is 2 ·
`

m−i
m/2−i

´

.

`

m
m/2

´

≥ 2−(i−1). So we can see that Pr[B] ≤
(1 − 2−(i−1))4

i/2 ≤ e−(4/2)i

, and thus Pr[G] ≥ 1 − e−(4/2)i

. It

can be verified that (1 − e−(4/2)i

) ·
“

1 + i−i

1+(i−1)e

”

≥ 1.

LEMMA 2.9. For a random variable X whose distribution sat-

isfies the monotone hazard rate condition, X is stochastically dom-

inated by rX[1:r].

PROOF. The hazard rate function is related to the cumulative
distribution function as Pr[X ≥ t] = e−

R t
0

h(z) dz . Likewise, we
can write:

Pr[rX[1:r] ≥ t] = Pr[X[1:r] ≥ t/r]

= (e−
R t/r
0

h(z) dz)r = e−r
R t/r
0

h(z) dz.

In order to prove the lemma, we need only show that
R t

0
h(z) dz ≥

r ·
R t/r

0
h(z) dz. Since the hazard rate function h(z) is monotone,

the function
R t

0
h(z) dz is a convex function of t. The required

inequality follows from the definition of convexity.

LEMMA 2.10. Let K1, · · · , Kn be independent and identically

distributed integer random variables such that for some constant

c > 1, we have Kj ≥ c for all j, and let W1, · · · , Wn be arbitrary

independent nonnegative variables. Then,

E [maxj Wj [Kj :Kj ]] ≤ c
c−1

E [K1]E [maxj Wj ] .

PROOF. We consider the following process for generating cor-
related samples for maxj Wj and maxj Wj [Kj :Kj ]. We first in-
dependently instantiate Kj for every j; recall that these are iden-
tically distributed variables. Let k =

P

j Kj ≥ cn. Then we
consider all possible n! permutations of these instantiated values.
For each permutation σ, we make the corresponding number of in-
dependent draws of the random variable Wj for all j; call this set
of draws Xσ . In all, we get kn! draws from the distributions, that
is, | ∪σ Xσ| = kn!. Exactly k(n − 1)! of these draws belong to
any particular j; denote these by Yj .

Now, the maximum element out of each of the Xσ sets is an
independent draw from the same distribution maxj Wj [Kj :Kj ] is
drawn from. We get n! independent samples from that distribution.
Call this set of samples X.

Next note that each set Yj contains k(n−1)! independent draws
from the distribution corresponding to Wj . We construct a uni-
formly random n-dimensional matching over the sets Yj , and from



each n-tuple in this matching we pick the maximum. Each such
maximum is an independent draw from the distribution correspond-
ing to maxj Wj , and we get k(n − 1)! such samples; call this set
of samples Y .

Finally, we claim that E[
P

y∈Y y] ≥ (1 − 1/c) E[
P

x∈X x],
with the expectation taken over the randomness in generating the
n-dimensional matching across the Yjs. The lemma follows, since
we have E[

P

x∈X x] = n!E[maxj Wj [Kj :Kj ]] as well as

E[
X

y∈Y

y] = E
{Kj}

[k(n − 1)!E[maxj Wj ]] = n!E[Kj ]E[maxj Wj ].

To prove the claim, we call an x ∈ X “good” if the n-tuple in the
matching over {Yj} that it belongs to does not contain any other
element of X. Then, E[

P

y∈Y y] ≥ E[
P

x∈X xPr[x is “good"]].
Let us compute the probability that some x is “good”. Without

loss of generality, suppose that x ∈ Y1. In order for x to be good,
it’s n-tuple must not contain any of the other elements of X from
the other Yj’s. If we define xj = |X ∩ Yj |, then Pr[x is “good"]
is at least

Q

j 6=1(1 − xj

k(n−1)!
) where

P

xj ≤ n!. This product is
minimized when we set one of the xjs to n! and the rest to 0, and
takes on a minimum value of 1 − n/k ≥ 1 − 1/c.

LEMMA 2.11. Let X1, · · · , Xn be arbitrary correlated real-

valued random variables. Let Y1, · · · , Yn be independent random

variables defined so that the distribution of Yi is identical to that of

Xi for all i. Then, E[maxj Xj ] ≤ e
e−1

E[maxj Yj ].

PROOF. We use the following result from [1] (also implicit in
[5]). Let U be a universe of n elements, f a monotone increasing
submodular function over subsets of this universe, and D a dis-
tribution over subsets of U . Let D̃ be a product distribution (that
is, every element is picked independently to draw a set from this
distribution) such that PrS∼D[i ∈ S] = PrS∼D̃[i ∈ S]. Then
ES∼D[f(S)] ≤ e

e−1
ES∼D̃[f(S)].

To apply this theorem, let us first assume that the variables Xi

are discrete random variables over a finite domain. The universe
U will then have one element for each possible instantiation of
each variable Xi with a value equal to that instantiation. Then any
joint instantiation of the variables X1, · · · , Xn corresponds to a
subset of U ; let D denote the corresponding distribution over sub-
sets. Let f be the max function over the instantiated subset. Then
E[maxj Xj ] is exactly equal to ES∼D[f(S)]. As before, let D̃
denote the distribution over subsets of U where each element is
picked independently. Likewise, the random variables Y1, · · · , Yn

define a distribution, say D′, over subsets of U . Note that under
D′ the memberships of elements of U in the instantiated subset are
negatively correlated – for two elements that correspond to instan-
tiations of the same variable, including one in the subset implies
that the other is not included. This raises the expected maximum.
In other words, ES∼D′ [f(S)] ≥ ES∼D̃[f(S)]. Therefore, we
get E[maxj Xj ] = ES∼D[f(S)] ≤ (e/e − 1)ES∼D′ [f(S)] =
(e/e − 1)E[maxj Yj ].

When the variables Xj are defined over a continuous but bounded
domain, we can apply the above argument to an arbitrarily fine dis-
cretization of the variables. Our claim then follows from taking the
limit as the granularity of the discretization goes to zero.

Finally, let us address the boundedness assumption. For some
ǫ < 1/n2, let B be defined so that for all i, Pr[Xi > B] ≤ ǫ. Then
the contribution to the expected maximum from values above B is
similar for the Xs and the Y s: the probability that some variable Xi

attains the maximum value b > B is at most Pr[Xi = b] whereas
the probability that the variable Yi attains the maximum value b >
B is at least (1 − ǫ)n−1

Pr[Yi = b]. Therefore, E[maxj Xj ] ≤

(1+ o(ǫ))(e/e−1)E[maxj Yj ]. Taking the limit as ǫ goes to zero
implies the theorem.

Comparing OPT and OPTδ.
We now prove Lemma 2.1. The key intuition behind the lemma

is that it can be viewed as the result of scaling both sides of the
stochastic dominance relation of Lemma 2.9 up by a constant, and
as we shall see, the monotone hazard rate condition is retained by
the minimum among multiple draws from a probability distribu-
tion.

LEMMA 2.1. When the distributions of job sizes have monotone

hazard rates the expected worst best and average best runtimes on

δm machines are no more than 1/δ2 times the expected worst best

and average best runtimes respectively on m machines.

PROOF. We will show that the random variable Tj [1:δm] is stochas-
tically dominated by 1

δ
Tj [1:m]. Then, the expected worst best run-

time with δm machines is no more than 1/δ times the expected
worst best runtime with m machines. Likewise, the expected aver-
age best runtime with δm machines is no more than 1/δ2 times the
expected average best runtime with m machines. (The extra 1/δ
factor comes about because we average over δm machines for the
former, versus over m machines for for the latter.)

Our desired stochastic dominance relation is precisely of the
form given by Lemma 2.9. In particular, observe that taking a
minimum among m draws is exactly the same as first splitting
the m draws into 1/δ groups, selecting the minimum from each
group of δm draws, and then taking the minimum from this col-
lection of 1/δ values. Thus, we can see that (1/δ)Tj [1:m] =
(1/δ)Tj [1:δm][1:1/δ], and so the claim follows immediately from
Lemma 2.9 as long as the distribution of Tj [1:δm] has a monotone
hazard rate. As we show in Claim 1 below, it is easy to verify that
the first order statistic of i.i.d. monotone hazard rate distributions
also has a monotone hazard rate.

The following claim shows that if Tj has a monotone hazard rate,
then so does Tj [1:δm], and the lemma follows.

CLAIM 1. A distribution F has a monotone hazard rate if and

only if the distribution of the minimum among k draws from F has

a monotone hazard rate.

Let Fk denote the cdf for minimum among n draws from F . Then
we have Fk(x) = 1−(1−F (x))k, and the corresponding fk(x) =
k(1 − F (x))k−1f(x). Thus the hazard rate function is:

hk(x) =
fk(x)

1 − Fk(x)
=

k(1 − F (x))k−1f(x)

(1 − F (x))k
= k

f(x)

1 − F (x)
.

This is precisely k times the hazard rate function h(x), and there-
fore, hk(x) is monotone increasing if and only if h(x) is.

6. CONCLUSIONS
Non-linear objectives coupled with multi-dimensional preferences

present a significant challenge in mechanism design. Our work
shows that this challenge can be overcome for the makespan objec-
tive when agents (machines) are a priori identical. This suggests
a number of interesting directions for follow-up. Is the gap be-
tween the first-best and second-best solutions (i.e. the cost of incen-
tive compatibility) still small when agents are not identical? Does
knowledge of the prior help? Note that this question is meaning-
ful even if we ignore computational efficiency. On the other hand,



even if the gap is small, the optimal incentive compatible mecha-
nism may be too complex to find or implement. In that case, can we
approximate the optimal incentive compatible mechanism in poly-
nomial time?

Similar questions can be asked for other non-linear objectives.
One particularly interesting objective is max-min fairness, or in the
context of scheduling, maximizing the running time of the least
loaded machine. Unlike for makespan, in this case we cannot sim-
ply “discard” a machine (that is, schedule no jobs on it) without
hurting the objective. This necessitates techniques different from
the ones developed in this paper.
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