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ABSTRACT
The monopolist’s theory of optimal single-item auctions for
agents with independent private values can be summarized
by two statements. The first is from Myerson [8]: the opti-
mal auction is Vickrey with a reserve price. The second is
from Bulow and Klemperer [1]: it is better to recruit one
more bidder and run the Vickrey auction than to run the
optimal auction. These results hold for single-item auctions
under the assumption that the agents’ valuations are inde-
pendently and identically drawn from a distribution that
satisfies a natural (and prevalent) regularity condition.

These fundamental guarantees for the Vickrey auction fail
to hold in general single-parameter agent mechanism de-
sign problems. We give precise (and weak) conditions under
which approximate analogs of these two results hold, thereby
demonstrating that simple mechanisms remain almost opti-
mal in quite general single-parameter agent settings.

Categories and Subject Descriptors
F.0 [Theory of Computation]: General

General Terms
Economics, Theory, Algorithms

Keywords
Auctions; revenue-maximization; Vickrey auction; VCG mech-
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1. INTRODUCTION
A striking theme in the theory of single-item auctions is

that simple auctions are optimal. Foremost, Myerson [8]
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showed that practically prevalent reserve-price-based auc-
tions are indeed expected revenue-maximizing in natural,
though stylized, models. This is fortunate as these auctions
are simple and easy to optimize (just set the reserve price).
That practitioners employ widely reserve-price-based auc-
tions — in settings much more complex that those where
they are provably optimal — motivates our first question:
When are reserve-price-based mechanisms approximately op-
timal?

Bulow and Klemperer [1] up the ante further by showing
that the reserve price is unnecessary, in the sense that a
seller of a single item earns more revenue from the Vickrey
auction with one extra bidder than from the optimal auction
with the original bidders. This guarantee for an auction even
simpler than Vickrey with an optimal reserve motivates our
second question: How generally does a Bulow-Klemperer-
style result approximately hold?

Thus the theme of this paper is tight approximation guar-
antees for the expected revenue of simple auctions, relative
to that of an optimal auction, in reasonably general envi-
ronments — much more general than single- or multi-unit
auctions with i.i.d. bidders. To explain our results more pre-
cisely, we review some standard auction theory terminology.

The Setting
We consider mechanisms that are ex post incentive compat-
ible and individually rational, meaning that it is a dominant
strategy for agents to participate in the mechanism and bid
their true private values. A basic example for the single-
item setting is the Vickrey auction with a reserve price: the
highest bidder above the reserve price (if any) wins, and it
pays the maximum of the second highest bid and the reserve
price.

We are interested in settings much more general than
single-item auctions, and consider general single-parameter
environments where each agent has a valuation for receiv-
ing service and there is a set system specifying feasible sets,
i.e., sets of agents that can be served simultaneously. For
example, the feasible sets of a k-unit auction are precisely
those with cardinality at most k. We focus on the typical
case of downward-closed environments where every subset of
a feasible set is again feasible. Another example of such an
environment is a combinatorial auction with single-minded
bidders, where feasible sets correspond to subsets of bid-
ders seeking disjoint bundles of goods. The generalization
of the Vickrey auction to arbitrary single-parameter envi-
ronments is the well-known Vickrey-Clarke-Groves (VCG)
mechanism. The VCG mechanism selects a feasible set of



winners with maximum total value and charges each winner
the externality it imposes on the other agents.

As is standard in the Bayesian optimal auction literature,
we assume that each agent’s valuation is drawn indepen-
dently from a known distribution. A standard and common
assumption on such a distribution is that it is regular, a con-
dition equivalent to concavity of the revenue as a function
of the probability of sale (for a single agent). An impor-
tant subclass of regular distributions are those meeting the
monotone hazard rate (MHR) condition: intuitively, these
have tails no heavier than that of an exponential distribu-
tion (which has constant hazard rate). Uniform, normal,
and exponential distributions meet the MHR condition.

Myerson [8] characterized the optimal auction in all single-
parameter environments, and this result is the starting point
of our investigations. In the special case of a multi-unit
auction with bidders’ valuations drawn i.i.d. from a regu-
lar distribution, Vickrey with an anonymous (i.e., the same
for each bidder) reserve price maximizes the seller’s expected
revenue over all incentive-compatible and individually ratio-
nal auctions. The reserve price that provides this guarantee
is simply the monopoly price, i.e., the revenue-optimal price
for a single agent. Thus, the only thing a designer must
know about such a distribution to implement the optimal
auction is this monopoly price.

Vickrey with an anonymous reserve price is not optimal
in more general settings — not with irregular distributions,
not with non-identical distributions, and not in more gen-
eral single-parameter environments. Furthermore, the opti-
mal auction in such settings is typically heavily dependent
on the exact form of the bidders’ valuation distribution(s).
The main message of this paper is that in quite general set-
tings simple auctions — like the VCG mechanism with an
anonymous reserve, or with bidder-specific reserves, or with
no reserves but in an expanded market — provably approx-
imate the optimal expected revenue, to within a small con-
stant factor.

Results: Approximation via anonymous reserve.
In an eBay auction, the seller is forced to choose an anony-
mous reserve price. If the seller has information to distin-
guish the probable valuations of different bidders — based
on past history, say — then a revenue-maximizing auction
would employ bidder-specific reserves. Can near-optimal
revenue still be achieved with an anonymous reserve price?

In Section 5 we derive the following from one of our Bulow-
Klemperer-style bounds.

single-item, regular: For single-item settings and inde-
pendent (non-identical) regular valuation distributions,
Vickrey with a suitable anonymous reserve is a 4-approx-
imation (or better) to the optimal auction.

We also give examples that show a lower bound of 2 (which
we believe is tight); that no analogous constant-factor ap-
proximation is possible using the Vickrey auction and an
anonymous reserve price with irregular distributions; and
that no constant-factor approximation is possible using the
VCG mechanism and an anonymous reserve price in envi-
ronments where a super-constant number of non-identically
distributed bidders can simultaneously win.

Results: Approximation via monopoly reserves.
Revenue guarantees in more general environments require
bidder-specific reserve prices. A natural candidate for such
reserve prices are the monopoly prices, which are generally
distinct for non-identically distributed bidders. We char-
acterize conditions under which the VCG mechanism with
(bidder-specific) monopoly reserves is approximately opti-
mal. (The single-item setting was previously studied in [2,
9, 10].) Our main results for this question, which we prove
in Section 3, are as follows.

downward-closed, MHR: For every downward-closed set
system and independent (not necessarily identical) val-
uation distributions that satisfy the MHR condition,
VCG with monopoly reserve prices is a 2-approximation
(or better) to the optimal mechanism.

We also prove that the above bound is tight, and that no
constant-factor approximation guarantee holds for regular
(not necessarily MHR) valuation distributions.

Our second result on the topic exchanges additional struc-
ture on the feasible sets for more general valuation distribu-
tions.

matroid, regular: For every matroid set system — see
Section 3.2 for a definition — and independent (not
necessarily identical) valuation distributions that sat-
isfy the regularity condition, VCG with monopoly re-
serve prices is a 2-approximation (or better) to the
optimal mechanism.

We also prove a matching lower bound, even for single-item
auctions with only two bidders; and that no constant-factor
guarantee holds with irregular distributions.

Results: Approximation via duplicating agents.
As already mentioned, Bulow and Klemperer [1] proved that,
for a single-item auction with bidder valuations drawn i.i.d.
from a regular distribution, the Vickrey auction with an ad-
ditional bidder outperforms the optimal auction without an
additional bidder. Under the same distributional assump-
tions, this result extends to matroid set systems when the
additional agents form a basis (i.e., a maximal independent
set) in the matroid [4].

What is a reasonable analog of the Bulow-Klemperer the-
orem when bidders are asymmetric? To obtain a general
result that makes minimal assumptions about the bidders’
valuations and the structure of the feasible sets, we consider
duplicating every bidder and running the VCG mechanism.
Each bidder and its duplicate have i.i.d. valuations, are in-
terchangeable within the set system, and cannot be served
simultaneously. When does the revenue of VCG with dupli-
cate bidders approximate the revenue of the optimal auction
without duplicates?

Our main results for this question, which we prove in Sec-
tion 4, are as follows.

downward-closed, MHR: For every downward-closed set
system and independent (not necessarily identical) val-
uation distributions that satisfy the MHR condition,
the VCG mechanism with duplicate bidders achieves
a 3-approximation (or better) of the expected revenue
of the optimal mechanism in the original environment.

We obtain this result even though the VCG mechanism is
not generally revenue monotone in downward-closed set sys-
tems, meaning that adding new agents can actually reduce



the revenue of the VCG mechanism (see e.g. [3, 4]). We also
prove that the above bound is tight, and that no constant-
factor approximation guarantee holds for regular (not nec-
essarily MHR) valuation distributions.

matroid, regular: For every matroid set system and in-
dependent (not necessarily identical) valuation distri-
butions that satisfy the regularity condition, the VCG
mechanism with duplicate bidders achieves a 2-approx-
imation (or better) of the expected revenue of the op-
timal mechanism in the original environment.

We do not know if the above bound is tight, as our best
lower bound is 4/3.

2. PRELIMINARIES
By a general single-parameter environment, we mean a set

of n bidders and a collection of feasible sets of bidders, which
represent the subsets of bidders that can be served simulta-
neously. An environment is downward-closed if every subset
of a feasible set is again feasible. Each bidder i has a private
valuation vi for service. The profile of agent valuations is
denoted by v = (v1, . . . , vn).

A mechanism comprises an allocation rule and a payment
rule. An allocation rule x is a function from bid profiles to
{0, 1}n, indicating the winners (1) and losers (0). A payment
rule p is a function from bid profiles to n-vectors of non-
negative payments. A mechanism is truthful if for every
bidder i and every fixed set v−i of bids by the other bidders,
the bidder maximizes its utility vi ·xi(v)− pi(v) by bidding
its true valuation (as opposed to some false bid bi 6= vi).
This paper studies only truthful mechanisms, and thus we do
not distinguish between bidders’ true valuations and the bids
they submit to the mechanism. A mechanism is individually
rational if pi(v) ≤ vi · xi(v) for every bidder i and input v,
implying that truthful bidders are guaranteed non-negative
utility by the mechanism.

The Vickrey-Clarke-Groves (VCG) mechanism works as
follows. Given the valuations of the agents, the mecha-
nism selects winners to maximize the social surplus, i.e.,Pn

i=1 vi ·xi(v), subject to feasibility. The payment of a win-
ning bidder i is the lowest bid at which it would continue
to win, which is the difference between the surplus of other
agents in the optimal allocation and the surplus of an opti-
mal allocation that excludes bidder i. One easily checks that
the VCG mechanism is truthful and individually rational.

The VCG mechanism can also be supplemented with re-
serve prices r, with one reserve price per bidder. The cor-
responding allocation rule first deletes every bidder i with
valuation below its reserve ri, and then invokes the VCG al-
location rule on the remaining bidders. The corresponding
payment rule invokes the VCG payment rule on the remain-
ing bidders, and charges a winning bidder i the maximum
of its VCG payment and its reserve price ri. This is again a
truthful and individually rational mechanism, for any set r
of reserve prices. We denote this mechanism by VCGr.

The valuations of the agents are drawn from a product
distribution F = F1 × · · · × Fn. As such, the bidders’ val-
uations are independently, but not necessarily identically,
distributed. For simplicity, we assume that every distribu-
tion Fi has a continuous density function fi that is strictly
positive on the support of the distribution, which we assume

is an interval of the non-negative real line.1 The hazard rate
of the distribution Fi at a point z in its support is defined
as hi(z) = fi(z)/(1 − Fi(z)). A distribution F satisfies the
monotone hazard rate (MHR) condition if its hazard rate
h(z) is nondecreasing over its support. Many of the most
common distributions (exponential, uniform, etc.) satisfy
this condition. A weaker condition is regularity, which re-
quires only that z−1/h(z) is nondecreasing over the support
of the distribution and thereby allows for heavier tails. A
canonical distribution that is regular but not MHR is the
equal-revenue distribution, defined by F (z) = 1 − 1/z on
[1,∞).

Our objective is to maximize the revenue of the mech-
anism. The revenue of a mechanism M = (x,p) on an
input v, denoted by M(v), is the sum of the payments
collected:

Pn
i=1 pi(v). Generally, two different mechanisms

earn incomparable revenue: one will collect more on some
inputs, the other on other inputs. However, for a fixed dis-
tribution over valuations, the expected revenues of different
mechanisms are absolutely comparable. As is traditional in
optimal mechanism design, we assume that the mechanism
designer knows this distribution but not the actual valua-
tions of the agents.

Myerson [8] characterized the optimal (i.e., expected rev-
enue-maximizing) mechanism for every single-parameter en-
vironment. To state his results, define the virtual value ϕ(v)
corresponding to a distribution F and valuation v by ϕ(v) =
v − 1/h(v). The following lemma states that the expected
payment of an agent is equal to its expected contribution
to the allocation’s virtual value. This result is central to
Myerson’s analysis, and also to the present paper.

Proposition 2.1 (Myerson’s Lemma) For every mech-
anism (x,p), the expected payment of agent i satisfies

Ev[pi(v)] = Ev[ϕi(vi)xi(v)] .

Given Proposition 2.1, the optimal mechanism is intuitively
obvious: for every input v, choose the feasible set that maxi-
mizes the virtual surplus,

Pn
i=1 ϕi(vi) ·xi(v). This approach

gives the optimal (truthful) mechanism if and only if the
distributions are regular. (When distributions are not reg-
ular, this approach yields a non-truthful mechanism, and a
more sophisticated construction of the optimal mechanism
is required [8].) We refer to the optimal mechanism in a
single-parameter environment as the Myerson mechanism.

Two special cases of Myerson’s result are especially illu-
minating. First, consider an auction to a single bidder with
valuation drawn from a regular distribution F . The virtual
surplus-maximizing allocation sells to this bidder whenever
the bidder’s virtual valuation is non-negative. Notice that
this is tantamount to making a take-it-or-leave-it offer of
ϕ−1(0). This offer price is known as the monopoly price.
Second, consider an auction of a single item to one of sev-
eral bidders with valuations drawn i.i.d. from a regular dis-
tribution F . The virtual surplus-maximizing allocation sells
to the bidder with the maximum positive virtual valuation.
Since the bidders are identically distributed, the winner is
the bidder with the highest valuation that is at least ϕ−1(0),
the monopoly price. Notice that this is tantamount to run-
ning the Vickrey auction with the monopoly reserve price.

1For convenience, some examples use discrete distributions.



3. VCG WITH MONOPOLY RESERVES

3.1 General Environments and MHR Valua-
tion Distributions

This section proves that using (bidder-specific) monopoly
reserve prices and no additional information about bidders
suffices for a 2-approximation of the optimal expected rev-
enue in general downward-closed single-parameter environ-
ments, assuming that the valuation distributions are inde-
pendent (not necessarily identical) and satisfy the MHR con-
dition. We also show that no better bound is possible, and
that no constant bound is possible if the MHR condition is
relaxed to regularity. We begin with a simple lemma.

Lemma 3.1 Let F be an MHR distribution with monopoly
price r and virtual valuation function ϕ. For every v ≥ r,

r + ϕ(v) ≥ v.

Proof. We can derive

r + ϕ(v) = r + v − 1
h(v)

≥ r + v − 1
h(r)

= v,

where the first equality follows from the definition of a vir-
tual valuation, the inequality from the MHR assumption and
the fact that v ≥ r, and the final equality from the definition
of the monopoly price (Section 2).

We now give a tight bound on the expected revenue of
the VCG mechanism with (bidder-specific) monopoly re-
serve prices (denoted VCGr).

Theorem 3.2 For every downward-closed environment with
valuations drawn independently from distributions that sat-
isfy the MHR condition, the expected revenue of VCG with
the monopoly reserves is a 2-approximation to the expected
revenue of the optimal mechanism.

Proof. Let x be the allocation rule of VCGr — of VCG
with the monopoly reserve prices r = (r1, . . . , rn). Let x∗

denote the allocation rule of Myerson. We first note thatXn

i=1
vi · xi(v) ≥

Xn

i=1
vi · x∗i (v) (1)

for every profile v, as VCGr chooses a surplus-maximizing
allocation among those that exclude all bidders that fail to
meet their reserve prices, and by downward-closure, Myerson
outputs one such allocation.

By Myerson’s Lemma (Proposition 2.1),

E[VCGr(v)] = E
hXn

i=1
ϕi(vi)xi(v)

i
.

Since all winners pay at least the reserve price,

E[VCGr(v)] ≥ E
hXn

i=1
rixi(v)

i
.

By the linearity of expectation,

2E[VCGr(v)] ≥ E
hXn

i=1
(ri + ϕi(vi))xi(v)

i
. (2)

By the definition of VCGr, xi(v) = 0 whenever vi < ri. We
can therefore complete the proof by writing

2Ev[VCGr(v)] ≥ E
hXn

i=1
vi · xi(v)

i
≥ E

hXn

i=1
vi · x∗i (v)

i
≥ E[Myerson(v)] ,

where the first inequality follows from (2) and Lemma 3.1,
the second from (1), and the third from the individual ra-
tionality of Myerson.

The bound of 2 in Theorem 3.2 cannot be improved, even
in the special case of i.i.d. bidders.

Example 3.3 (Sketch.) We first give a non-i.i.d. example.
For n sufficiently large, the bidders 1, 2, . . . , n are “small”,
with valuations drawn i.i.d. from an exponential distribu-
tion with rate 1. Bidder 0 is “big” and its valuation is de-
terministically equal to (2 − ε)n/e, where e = 2.718 . . . and
ε > 0 is an arbitrarily small constant. The feasible subsets
are precisely those that do not contain both the big bidder
and a small bidder.

An obvious mechanism is to always allocate to the big
bidder and earn revenue (2− ε)n/e; the optimal mechanism
earns at least this. To estimate Ev[VCGr(v)] in this envi-
ronment, observe that the monopoly reserves are (2− ε)n/e
for the big bidder and 1 for the small bidders. As n grows
large, the number of small bidders that meet the reserve is
tightly concentrated around n/e, and the average valuation
of these bidders is tightly concentrated around 2. The mech-
anism VCGr will, almost surely as n → ∞, allocate to the
small bidders that meet their reserve, collect a payment of 1
from each, and earn only half of the revenue obtained by an
optimal mechanism.

This example can be extended to an i.i.d. environment.
First, the example remains valid even if the exponential
distribution used for small bidders is truncated at a suf-
ficiently high value, say H. (We can safely take n much
larger than H.) Let F denote this distribution. The main
idea for simulating the big bidder with small ones with val-
uations drawn from F is this: if a sufficiently large group of
small bidders participate in a single-item (Vickrey) auction,
then both the highest- and second-highest valuations will be
nearly the maximum-possible value (with high probability),
so both the value and revenue obtained from this group are
tightly concentrated around H. The big bidder with valua-
tion (2 − ε)n/e can thus be simulated with ≈ (2 − ε)n/eH
independent such groups. The feasible allocations are now
those that do not allocate to both an original small bidder
and also one of the small bidders used to simulate the big
bidder. The logic behind the previous example continues to
hold.

Also, the MHR condition is necessary for Theorem 3.2.
Even for i.i.d. and regular valuation distributions, no con-
stant approximation factor is possible.

Example 3.4 (Sketch.) Consider one big bidder, n small
bidders for large n, and feasible allocations as in Exam-
ple 3.3. Fix an arbitrarily large constant H. The small
bidders’ valuations are i.i.d. draws from the equal-revenue
distribution on [1, H] (see Section 2). The monopoly price
for such bidders is 1. (The distribution can also be per-
turbed so that 1 is the unique monopoly price.) The big

bidder’s valuation is deterministically n
√

ln H; the expected
revenue of the optimal mechanism is clearly at least this.
For n sufficiently large, the sum of the small bidders’ valu-
ations is tightly concentrated around n ln H. VCGr almost
surely allocates to all small bidders and obtains revenue n.

Modifying this example as in Example 3.3 shows that,
even with i.i.d. regular distributions, the expected revenue



of VCGr is not always a constant fraction of that of an
optimal mechanism.

3.2 Matroid Environments and Regular Valu-
ation Distributions

Theorem 3.2 can be extended to the more general class
of regular valuation distributions if we further restrict the
structure of the environment. Recall that a matroid com-
prises a ground set of elements E and a non-empty collection
I ⊆ 2E of independent sets that satisfy two properties: (1)
subsets of independent sets are again independent; (2) given
two independent sets I1 and I2 with |I1| < |I2|, an element
of I2\I1 can be added to I1 without destroying its indepen-
dence. A base of a matroid is a maximal independent set;
all maximal independent sets have the same cardinality.

Talwar [12] showed that the special structure of matroids
leads to unusually well-behaved VCG payments; his work
was later refined by Karlin et al. [7]. One important property
of matroids is the following (e.g. [11, Corollary 39.12a]).

Proposition 3.5 Let B1, B2 be independent sets of size k
in a matroid M . Then there is a bijective function f :
B2\B1 → B1\B2 such that, for every i ∈ B2\B1, the set
B1\{f(i)} ∪ {i} is independent in M .

Also, the following proposition follows immediately from
the definition of VCG payments.

Proposition 3.6 Fix an arbitrary single-parameter envi-
ronment and bidder valuations v. Suppose that the winners
in the VCG mechanism are W , with i ∈ W and j /∈ W ; and
that W\{i} ∪ {j} is a feasible set. Then the VCG payment
of i is at least vj.

In a matroid environment, the feasible sets of winners form
a matroid on the bidders. Examples include multi-item auc-
tions (corresponding to a symmetric or uniform matroid),
spanning tree auctions (graphic matroids), matchable nodes
in a bipartite graph (transversal matroids), and so on. We
now show that, in such environments, the revenue guarantee
in Theorem 3.2 extends to regular valuation distributions.
The following theorem is a direct consequence of Lemmas 3.9
and 3.10 that are stated and proved below.

Theorem 3.7 For every matroid environment with valua-
tions drawn independently from distributions that satisfy the
regularity condition, the expected revenue of VCG with the
monopoly reserves is a 2-approximation to the expected rev-
enue of the optimal mechanism.

We cast the proof of this theorem in a more general con-
text to assist later arguments in the paper.

Definition 3.8 Let M and M′ be two mechanisms for a
given environment. Let W (v) and W ′(v) denote the winners
inM andM′, respectively, with the valuation profile v. The
mechanism M is commensurate with M′ if

(C1) Ev

hP
i∈W (v)\W ′(v) ϕi(vi)

i
≥ 0

and

(C2) Ev

hP
i∈W (v)\W ′(v) pi(v)

i
≥ Ev

hP
i∈W ′(v)\W (v) ϕi(vi)

i
,

where p denotes the payment rule of M.

The first condition (C1) asserts that the expected virtual
value of bidders winning in M but not M′ is non-negative.
This assertion is generally non-trivial even though the un-
conditional expectation of a bidder’s virtual valuation is
zero, because of the implicit conditioning on the bidders
losing in M′. The second condition (C2) requires that the
expected total payment from bidders of W (v)\W ′(v) in M
is at least the expected virtual surplus of W ′(v)\W (v) in
M′. In our applications of Definition 3.8, M will be a vari-
ant on the VCG mechanism and M′ will be the optimal
mechanism.

Satisfying Definition 3.8 is a sufficient condition for the
expected revenue of mechanism M to be a 2-approximation
to that of the mechanism M′.

Lemma 3.9 If a mechanism M is commensurate with a
mechanism M′, then

Ev[M(v)] ≥ 1

2
·Ev

ˆ
M′(v)

˜
.

Proof. We argue separately that

Ev[M(v)] ≥ Ev

»X
i∈W (v)∩W ′(v)

ϕi(vi)

–
(3)

and

Ev[M(v)] ≥ Ev

»X
i∈W ′(v)\W (v)

ϕi(vi)

–
. (4)

Adding these and applying linearity of expectation and My-
erson’s Lemma (Proposition 2.1) yields the theorem: the
left-hand side equals 2Ev[M(v)] and the right-hand side
equals Ev[M′(v)].

To derive inequality (3), write

Ev[M(v)] = Ev

24 X
i∈W (v)

ϕi(vi)

35 ≥ Ev

24 X
i∈W (v)∩W ′(v)

ϕi(vi)

35 ,

where the equality follows from Myerson’s Lemma and the
inequality follows from condition (C1).

To derive inequality (4), let p denote the payment rule of
M and write

Ev[M(v)] = Ev

24 X
i∈W (v)

pi(v)

35 ≥ Ev

24 X
i∈W (v)\W ′(v)

pi(v)

35
≥ Ev

24 X
i∈W ′(v)\W (v)

ϕi(vi)

35 ,

where the equality is the definition of revenue, the first in-
equality follows from the non-negativity of payments, and
the final inequality follows from condition (C2).

The next lemma completes the proof of Theorem 3.7.

Lemma 3.10 For matroid environments and regular valu-
ation distributions, the VCG mechanism with monopoly re-
serve prices, VCGr, is commensurate with the optimal mech-
anism Myerson.

Proof. For the first condition (C1) of Definition 3.8, re-
call that regularity of the distribution Fi implies that ϕi(vi) ≥
0 if and only if vi ≥ ri. Thus, in the mechanism VCGr, all
winners have non-negative virtual valuations with probabil-
ity 1. The inequality (C1) follows.



We prove the second condition (C2) pointwise (for each v).
Let M denote the given matroid and M≥r its restriction to
the bidders that meet their reserves — equivalently, to the
bidders with a non-negative virtual valuation. This restric-
tion is again a matroid. Both VCGr and Myerson are defined
as maximizers of a non-negative weight function over M≥r

— valuations and virtual valuations, respectively. Thus, the
winners of each form bases (and have the same cardinality)
of the matroid M≥r. Let f : W ′(v)\W (v) → W (v)\W ′(v)
denote a bijection of the form guaranteed by Proposition 3.5.
Applying Proposition 3.6 proves that pf(i)(v) ≥ vi for every
i ∈ W ′(v)\W (v). Of course, vi ≥ ϕi(vi) by the definition
of a virtual valuation. Summing over all i ∈ W ′(v)\W (v)
completes the proof.

Example 3.11 We sketch a matching lower bound for The-
orem 3.7. Let H be a sufficiently large constant and consider
a single-item auction with two bidders. The first bidder has
valuation deterministically equal to 1, while the second bid-
der’s valuation is drawn from the equal-revenue distribution
on [1, H]. The monopoly price for the second bidder is 1
— again, the distribution can be perturbed so that this is
uniquely optimal — and the mechanism VCGr will earn unit
revenue on every input.

Now consider the mechanism that: (1) sells the good to
the second bidder at price H, if possible; and (2) otherwise
sells the good to the first bidder at price 1. The expected
revenue of this mechanism is H · 1

H
+ 1 · (1 − 1

H
), which

approaches 2 as H tends to infinity.

Remark 3.12 Unlike Examples 3.3 and 3.4, there is no
hope of producing an i.i.d. version of Example 3.11. The
reason is that the two mechanisms VCGr and Myerson co-
incide in matroid environments with i.i.d. bidder valuations,
provided the distribution is regular (see [4]).

4. BULOW-KLEMPERER-TYPE RESULTS
This section uses approximation to extend the Bulow-

Klemperer theorem [1] to general (asymmetric) single-param-
eter environments. The analog of “adding one or more bid-
ders” is not clearly defined in general environments; to ob-
tain a result with minimal assumptions on the environment
and bidders’ valuations, we consider the expected revenue
of the VCG mechanism after duplicating every bidder. Our
revenue guarantees with duplicate bidders also have interest-
ing consequences for anonymous reserve prices in single-item
auctions without duplicate bidders (Theorem 5.1).

Formally, the duplication of a single-parameter environ-
ment is defined as follows. Each bidder i with valuation
distribution Fi is replaced by a pair i, i′ of bidders, whose
valuations are i.i.d. draws from Fi. The feasible sets of the
duplicated environment are defined as those satisfying: (1)
at most one bidder from each pair is selected; (2) the set of
winners, when naturally interpreted as a set of bidders from
the original environment, is a feasible set in that environ-
ment.

Notation. Let v,v′ denote the valuation profile of the 2n
bidders where v is that of the originals and v′ is that of the
duplicates. For ease of notation we will let i′ = n + i denote
the index of the duplicate of bidder i. Furthermore, we will
refer to the value of i’s duplicate as both v′i and vi′ . The
valuation profile without both i and i’s duplicate is v−i,v

′
−i.

4.1 General Environments and MHR Valua-
tion Distributions

Our main result in this section relies on the following tech-
nical lemma, which we prove in Appendix A.

Lemma 4.1 Let v1, v2 denote two i.i.d. samples from a mono-
tone hazard rate distribution F with virtual valuation func-
tion ϕ, and t a non-negative real number. Then

E[max{ϕ(v1), ϕ(v2)} | max{v1, v2} ≥ t]

≥ 1
3
·E[max{v1, v2} | max{v1, v2} ≥ t] .

We now show that the VCG mechanism’s expected rev-
enue in a duplicated environment is a constant-factor ap-
proximation of the maximum expected revenue achievable
in the original environment, provided the valuation distri-
butions satisfy the MHR condition.

Theorem 4.2 For every downward-closed environment with
valuations drawn independently from distributions that sat-
isfy the MHR condition, the expected revenue of VCG with
duplicates is a 3-approximation to the expected revenue of
the optimal mechanism without duplicates.

Proof. Fix a bidder i and its duplicate i′ and bids v−i,v
′
−i

for the other bidders of the duplicated environment. By the
definition of the VCG mechanism, there is a threshold t ≥ 0
such that: if vi, vi′ < t, then neither i nor i′ is allocated
to; and if at least one of vi, vi′ exceeds t, then the bidder
among i, i′ with a higher valuation (and hence a higher vir-
tual valuation) is allocated to. Lemma 4.1 then implies that

E
h
ϕi(vi) · xi(v,v′) + ϕi(vi′) · xi′(v,v′)

˛̨̨
v−i,v

′
−i

i
≥ 1

3
·E

h
vi · xi(v,v′) + vi′ · xi′(v,v′)

˛̨̨
v−i,v

′
−i

i
.

Taking expectations over v−i,v
′
−i, summing over all pairs

of duplicates, and applying linearity of expectation and My-
erson’s Lemma (Proposition 2.1) yields

Ev,v′
ˆ
VCG(v,v′)

˜
≥ 1

3
·Ev,v′

hX2n

i=1
vi · xi(v,v′)

i
. (5)

VCG always picks a surplus-maximizing solution, and the
expected maximum-possible surplus in the duplicated envi-
ronment — the expectation on the right-hand side of (5))
— is clearly at least that in the original environment. This
in turn upper bounds the expected revenue of every indi-
vidually rational mechanism (like Myerson) in the original
environment. The theorem follows.

The factor of 3 in Theorem 4.2 cannot be improved, even
in the special case of i.i.d. bidders.

Example 4.3 Consider the following variant of Example 3.3.
In the original environment, there are n small bidders with
valuations drawn i.i.d. from an exponential distribution with
rate 1. The big bidder’s valuation is deterministically ( 3

2
−

ε)n for a small constant ε > 0. The optimal mechanism in
this environment obtains expected revenue at least ( 3

2
− ε)n.

In the corresponding duplicated environment, the expected
maximum and minimum valuation of a pair of small bid-
ders are 3

2
and 1

2
, respectively. Almost surely as n → ∞,

VCG with duplicates will allocate only to small bidders (to
achieve welfare ≈ 3

2
n) and obtain revenue tightly concen-

trated around n/2.



As in Examples 3.3 and 3.4, this lower bound can be mod-
ified to apply to the special case of i.i.d. bidders.

4.2 Matroid Environments and Regular Valu-
ation Distributions

We now show that for matroid environments and regular
distributions, the VCG mechanism’s expected revenue in a
duplicated environment is at least half that of the optimal
mechanism in the original environment.

Theorem 4.4 For every matroid environment with valua-
tions drawn independently from distributions that satisfy the
regularity condition, the expected revenue of VCG with du-
plicates is a 2-approximation to the expected revenue of the
optimal mechanism without duplicates.

Theorem 4.4 follows by combining Lemma 3.9 with the
next lemma, which shows that the VCG mechanism in a
duplicated environment is commensurate with the optimal
mechanism in the original environment, in the sense of Def-
inition 3.8.2

Lemma 4.5 For matroid environments and regular valua-
tion distributions, the VCG mechanism with duplicates is
commensurate with the optimal mechanism Myerson with-
out duplicates.

Proof. We begin with the first requirement (C1) of Def-
inition 3.8. Let W (v,v′) and W ′(v,v′) denote the winners
in the VCG mechanism (with duplicates) and the optimal
mechanism (without duplicates), respectively. By definition,
W ′(v,v′) is independent of v′ and cannot contain any du-
plicate bidders.

Condition on v but not v′; this fixes the value of W ′(v,v′).
We argue that

Ev′

»X
i∈W (v,v′)\W ′(v,v′)

ϕi(vi)

–
≥ 0; (6)

the unconditional inequality in (C1) follows. We prove (6)
by showing that the expected combined contribution of each
original bidder i and its duplicate i′ to the left-hand side is
non-negative. Recall that if one of i, i′ belongs to W (v,v′),
it is the bidder with higher valuation and hence, by regular-
ity, with higher virtual valuation.

First consider an original bidder i that belongs to the
winner set W ′(v,v′). Since the valuation distributions are
regular, the optimal mechanism selects only bidders with a
non-negative virtual valuation, so ϕi(vi) ≥ 0. It follows that
the contribution from i, i′ to the left-hand side of (6) in this
case is non-negative with probability 1: if i, i′ /∈ W (v,v′)
the contribution is zero; otherwise it is

max{ϕi(vi), ϕi(vi′)} ≥ ϕi(vi) ≥ 0.

Now suppose that the original bidder i is not in W ′(v,v′).
Condition further on the valuations v′−i of all duplicates
other than i′, and let E denote the event that one of i, i′ is
included in W (v,v′). If ¬E occurs, then the contribution
from i, i′ to the left-hand side of (6) is zero. Since v,v′−i are

2Strictly speaking, we defined this notion only for two mech-
anisms for a common environment. Definition 3.8 and
Lemma 3.9 can be extended easily to the case where one
environment contains the other.

fixed, event E occurs if and only if vi′ is at least some non-
negative threshold t. In this case, the expected contribution
of i, i′ is

Evi′ [max{ϕi(vi), ϕi(vi′)}] ,

conditioned on v, v′−i, and E . This is lower bounded by
the analogous conditional expectation of ϕi(vi′), which is
equivalent to

Evi′ [ϕi(vi′) |ϕi(vi′) ≥ t] . (7)

Since the unconditional expectation of a virtual valuation is
zero and ϕi is nondecreasing (by regularity), the quantity
in (7) in non-negative. Taking expectations over whether or
not E occurs, and then over v′−i, completes the argument.

For condition (C2) of Definition 3.8, we proceed as in the
proof of Lemma 3.10. We prove the condition pointwise,
for each profile v,v′. Let M ′ denote the duplication of the
given matroid environment, which is itself a matroid en-
vironment. The winners W (v,v′) of the VCG mechanism
are a basis of M ′. The winners W ′(v,v′) of the Myerson
mechanism can be naturally viewed as an independent set
of M ′. Choose a subset S ⊆ W (v,v′) of winners of size
|W ′(v,v′)|. Applying Propositions 3.5 and 3.6 as in the
proof of Lemma 3.10 shows thatX

i∈S\W ′(v,v′)

pi(v,v′) ≥
X

i∈W ′(v,v′)\S

ϕi(vi),

where p denotes the payment rule of the VCG mechanism
in the duplicated environment. Condition (C2) follows from
the non-negativity of payments by bidders of W (v,v′)\S.

We suspect that the upper bound in Theorem 4.4 can be
improved. Our best lower bound is 4/3.

Example 4.6 The example is similar to Example 3.11. Con-
sider a single-item setting with two bidders. Bidder one’s
valuation is deterministically 1 while bidder two’s valua-
tion comes from a nearly equal-revenue distribution with
F2(z) = 1 − 1

z+1
. (Notice that the virtual valuation of bid-

der two is ϕ2(v2) = −1 which is monotone.)
One possible way to auction the item to these two bidders

is to offer bidder two the item at price H (which is accepted
with probability 1

H+1
) and if declined, offer the item to bid-

der one at price 1. The expected revenue of this auction is
H

H+1
+ 1− 1

H+1
≈ 2. The revenue of the optimal auction is

at least this.
The Vickrey auction with duplicate bidders has revenue

z if the minimum value of bidder two and its duplicate is
z ≥ 1, and otherwise it has revenue 1. Thus, the cumulative
distribution function for the revenue is given by(

1− 1
(1+z)2

if z ≥ 1

0 otherwise.

The expected revenue is the integral of one minus the cu-
mulative distribution function on [0,∞):

1 +

Z ∞

1

1
(1+z)2

dz = 3
2
.

We conclude that 4/3 is a lower bound on the worst-case
revenue ratio of Vickrey with duplicates and the optimal
auction, even in single-item settings.



5. VICKREY WITH ANONYMOUS RESERVE
We now return to single-item auctions and derive from

Theorem 4.4 a constant-factor guarantee for the Vickrey
auction with an anonymous reserve price when bidders’ val-
uations are drawn from non-identical regular distributions.
(Recall that Myerson [8] implies that Vickrey with an anony-
mous reserve is revenue-maximizing only when valuations
are i.i.d. draws from a regular distribution.)

Theorem 5.1 For every single-item setting with valuations
drawn independently from distributions that satisfy the reg-
ularity condition, there is an anonymous reserve price such
that the expected revenue of VCG with this reserve is a 4-
approximation to the expected revenue of the optimal auc-
tion.

Proof. By Theorem 4.4, the expected revenue of the
Vickrey auction (with no reserve) in the duplication of a
single-item environment is at least half that of the optimal
auction in the original environment. In this duplicated envi-
ronment, symmetry dictates that the winner of the Vickrey
auction is equally likely to be an original bidder or a du-
plicate. The expected revenue from the original bidders is
thus at least a quarter of that of the optimal auction in the
original environment.

We can simulate the allocation for and revenue obtained
from original bidders in the duplicated environment by run-
ning the Vickrey auction, with the original set of bidders,
with a random reserve price that is distributed according the
maximum valuation. This random reserve takes the place of
the maximum valuation of a duplicate bidder in the dupli-
cated environment. The expected revenue of the best anony-
mous reserve price is at least that obtained by this random
(anonymous) reserve price.

The following example, which is similar to Examples 3.11
and 4.6, shows a lower bound of two that we suspect is tight.

Example 5.2 Consider a single-item auction with two bid-
ders. Bidder one’s valuation is deterministically 1. Bidder
two’s valuation is drawn from the equal-revenue distribu-
tion (i.e., F2(z) = 1− 1/z). Every anonymous reserve price
yields expected revenue at most 1. As in Example 3.11, Of
course, setting a reserve of H for bidder two and selling to
bidder one if bidder two refuses yields expected revenue 1
from bidder two and 1− 1/H from bidder one. As H tends
to infinite, this expected revenue approaches 2. Myerson’s
revenue is at least the revenue of this auction.

The two restrictions in Theorem 5.1 are to single-item
settings and to regular distributions, and both are necessary.
The necessity of regularity was established by Chawla et
al. [2].

Proposition 5.3 ([2]) There are non-identical irregular dis-
tributions such that the expected revenue of Vickrey with the
best anonymous reserve is no better than a logarithmic ap-
proximation to that of the optimal auction.

The proof idea is to choose the valuation of bidder i ac-
cording to the distribution

vi =

(
1/i with probability 1/n

0 otherwise.

Chawla et al. [2] also showed that for irregular identical
distributions and a single-item setting, the expected revenue
of Vickrey with a suitable anonymous reserve price is a 4-
approximation to the optimal auction.

We conclude the section with an example showing that
the restriction to single-item settings is also necessary in
Theorem 5.1: in general, the VCG mechanism with the best
anonymous reserve price is no better than a logarithmic ap-
proximation in the cardinality of the largest set of winners.

Example 5.4 Let S = {1, . . . , k} be the largest set of bid-
ders that can be served simultaneously in some downward-
closed environment and consider the following (determin-
istic) valuations. All bidders not in S have zero valuation.
Bidder i ∈ S has value 1/i. Bidder-specific reserve prices ex-

tract revenue
Pk

i=1 1/i ≈ log k, whereas every anonymous
reserve yields revenue at most 1.

6. CONCLUSIONS
We have used approximation to extend two recommenda-

tions from the theory of single-item auctions with i.i.d. bid-
der valuations to the much more general setting of downward-
closed single-parameter agent environments with non-identical
distributions. Our first result shows that the VCG mecha-
nism, in conjunction with monopoly reserve prices, gives a 2-
approximation of the optimal expected revenue. Our second
result is that recruiting a copy of each agent in the environ-
ment suffices to lift the expected revenue of the VCG mech-
anism (with no reserves) to one third of that of the optimal
mechanism in the original environment. A version of this
second result also implies a constant-factor approximation
guarantee for Vickrey with anonymous (and even random)
reserve prices for single-item auctions and regular valuation
distributions. We conclude that, in many contexts, the VCG
mechanism with simple reserve prices is near-optimal in a
very practical sense. It would not be difficult for a designer
with modest prior knowledge of the valuation distributions
to implement one of our proposed approximations.

Looking toward future work, there remain small gaps be-
tween our upper and lower bounds in some cases. For Bulow-
Klemperer-type results in matroid environments with regu-
lar valuation distributions, is the tight approximation guar-
antee closer to our upper bound of 2 (Theorem 4.4) or our
lower bound of 4/3 (Example 4.6)? Relatedly, for the Vick-
rey auction with an anonymous reserve price in a single-item
setting with (non-identical) regular valuation distributions,
is the correct answer closer to 4 (Theorem 5.1) or 2 (Ex-
ample 5.2)? We strongly suspect that both of these upper
bounds can be improved. We also suspect that our revenue
guarantees for matroid environments (Theorems 3.7 and 4.4)
can be improved if the valuation distributions are further re-
stricted to satisfy the monotone hazard rate condition.

More broadly and importantly, our results illuminate a
road map for the rigorous study of prior-free revenue-maximi-
zation in asymmetric single-parameter environments. (Most
prior-free revenue-maximizing mechanism design results to
date hold only in unlimited supply problems.) Specifically,
Theorems 3.2 and 3.7 motivate the following prior-free bench-
mark G, defined for every bid vector v in a given environ-
ment: the maximum revenue earned by the VCG mecha-
nism when supplemented with a common reserve price for



all agents. More precisely, we define

G(v) = max
r≤v(2)

VCGr(v), (8)

where the maximum is over all anonymous reserve prices no
larger than the second-highest valuation v(2). The upper
bound on the reserve price is needed for standard technical
reasons, explained in [5].

Our results in Section 3 demonstrate that the economic
motivation for comparing to the benchmark in (8) is strong:
a prior-free approximation of G is guaranteed to simultane-
ously approximate the performance of a Bayesian monopo-
list for every i.i.d. valuation distribution that satisfies the
regularity condition (in matroid environments) or the MHR
condition (in general downward-closed environments). See
Hartline and Roughgarden [6] for detailed discussion of this
point.

Designing prior-free approximations of this benchmark G
appears technically challenging. The reason is that G might
be large due to VCG payments (rather than the reserve
price), and these arise from competition between bidders.
Random sampling approaches (as in [5]) tend to destroy
competition, leading to the inaccurate estimation of the op-
timal reserve price.

For matroid environments, we can prove that random-
izing between the VCG mechanism (with no reserve) and
a random sampling-type auction achieves a constant-factor
approximation of the prior-free benchmark G.

Theorem 6.1 In every matroid domain, there is a mecha-
nism that 8-approximates the benchmark G(v) for every in-
put v.

The mechanism used in Theorem 6.1, as well as simple vari-
ants of it, provably fail to achieve a constant-factor approx-
imation of G in more general environments. We conclude
with an open question that should serve as the next major
challenge in prior-free revenue-maximizing mechanism de-
sign.

Open Question. Design prior-free mechanisms that approx-
imate the benchmark G for all downward-closed single-param-
eter environments.
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APPENDIX
A. PROOF OF LEMMA 4.1

Proof of Lemma 4.1. First suppose that t = 0. Write
vmax and vmin for max{v1, v2} and min{v1, v2}, respectively,
and µ for the expected value of the given MHR distribu-
tion F . As a thought experiment, consider running a stan-
dard Vickrey (second-price) auction with bids v1 and v2.
The expected revenue of this auction is obviously E[vmin].
By Myerson’s Lemma (Proposition 2.1), its expected rev-
enue is also the expected virtual value of the allocation,
namely E[max{ϕ(v1), ϕ(v2)}]. Thus

Ev1,v2 [max{ϕ(v1), ϕ(v2)}] = Ev1,v2 [vmin] . (9)

Now recall the characterization of µ in terms of the hazard
rate h(x) of F :

µ =

Z ∞

0

(1− F (x))dx =

Z ∞

0

e−H(x)dx,

where H(x) denotes
R x

0
h(t)dt. Since h is non-negative and

nondecreasing, H is nondecreasing and convex. Similarly,

Ev1,v2 [vmin] =

Z ∞

0

e−2H(x)dx

≥
Z ∞

0

e−H(2x)dx =
1

2

Z ∞

0

e−H(x)dx =
µ

2
,

(10)

where the inequality follows from the fact that H is nonde-
creasing and convex. Also,

Ev1,v2 [vmax | vmin] = vmin +

„Z ∞

vmin

e−H(x)dx

«
· eH(vmin)

≤ vmin +

Z ∞

vmin

e−H(x−vmin)dx

= vmin + µ, (11)

where the inequality again holds because H is nondecreasing
and convex. Taking expectations in (11) and then using (10)
yields

E[vmax] ≤ E[vmin] + µ ≤ 3 ·E[vmin] ;



combining this with (9) gives the lemma, in the special case
where t = 0.

Finally, suppose that t > 0. By the definition of a virtual
valuation, we can rephrase our progress so far as

Ev1,v2 [vmax]−Ev1,v2

»
1

h(vmax)

–
= Ev1,v2

»
vmax −

1

h(vmax)

–
≥ 1

3
·Ev1,v2 [vmax] . (12)

The distribution of vmax, conditioned on the event that
vmax ≥ t, stochastically dominates the unconditional distri-
bution of vmax; in other words, Pr[vmax ≥ s] ≤ Pr[vmax ≥
s | vmax ≥ t] for every s ≥ 0. Similarly, using the MHR
assumption, the corresponding conditional distribution of
−1/h(v) stochastically dominates its unconditional distri-
bution. It follows that the inequality (12), and hence the
lemma, continues to hold after conditioning on the event
vmax ≥ t.


