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Abstract

Activity rules have emerged in recent years as an important aspect of practical auction de-

sign. The role of an activity rule in an iterative auction is to suppress strategic behavior by

bidders and promote simple, continual, meaningful bidding and thus, price discovery. These

rules find application in the design of iterative combinatorial auctions for real world scenar-

ios, for example in spectrum auctions, in airline landing slot auctions, and in procurement

auctions. We introduce the notion of strong activity rules, which allow simple, consistent

bidding strategies while precluding all behaviors that cannot be rationalized in this way.

We design such a rule for auctions with budget-constrained bidders, i.e., bidders with valu-

ations for resources that are greater than their ability to pay. Such bidders are of practical

importance in many market environments, and hindered from bidding in a simple and con-

sistent way by the commonly used revealed-preference activity rule, which is too strong in

such an environment. We consider issues of complexity, and provide two useful forms of

information feedback to guide bidders in meeting strong activity rules. As a special case,

we derive a strong activity rule for non budget-constrained bidders. The ultimate choice of

activity rule must depend, in part, on beliefs about the types of bidders likely to participate

in an auction event because one cannot have a rule that is simultaneously strong for both

budget-constrained bidders and quasi-linear bidders.
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1. Introduction

Combinatorial auctions provide a means of auctioning several related items, allowing

bidders to place bids on packages of items rather than individual items. They are used in

scenarios such as truckload transportation, bus routes, industrial procurement, and allocation

of radio spectrum, and have been proposed for the allocation of airport landing slots [1].

Among combinatorial auctions, iterative and especially ascending-price auctions are more

widely used than their sealed-bid counterparts, due to the feedback and price discovery that

they allow [2].

In high-stakes scenarios, such as auctions for the allocation of wireless spectrum [3] or

airport landing slots [4], strategic behavior on the part of bidders can lead to large inefficiency.

For example, bidders could underbid in the initial phase of the auction with a view to sniping

at the end of the auction, which leads to poor price discovery and inefficient outcomes [5, 6].

This necessitates the use of activity rules to constraint the strategy space as much as possible

while still allowing for feedback and price discovery.

The importance of activity rules in suppressing insincere bidding and eliminating them

in iterative auctions has been emphasized in practical auction design [6, 7, 5]. Activity rules

help in increasing the pace of an auction and increasing the information available to the

bidders during an auction. When coupled with careful design of pricing rules, activity rules

also help in achieving the efficient outcome with good revenue properties [8, 9, 10, 11, 12].

The importance of activity rules has emerged, in part, by the recognition that well-

designed iterative auctions should promote simple “demand-revealing processes,” whereby

bidders simply demand the items that maximize their utility at the current prices. The idea

is to promote simple and consistent bidding, or straightforward bidding, in which there exists

a posteriori some (possibly untruthful) utility function that explains the response of bidders

in every round.

We introduce the notion of strong activity rules, which admit straightforward bidding

strategies while precluding all strategies that are not consistent with some straightforward

strategy. Strong activity rules do not, in any way, preclude the price discovery and demand

discovery benefits associated with iterative auctions. Adopting a strong activity rule does
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not imply that bidders must either know their utility for different items at the start of the

auction, or even bid with the same utility in mind in every round. Rather, a strong rule

requires that the bids that they do submit are ultimately consistent with at least one utility

function; the set of such utility functions that “rationalize” bidding emerge over time.2

One popular activity rule requires that the total quantity demanded by a bidder be mono-

tonically non-increasing as prices increase. However, this is inappropriate for combinatorial

auctions because it can preclude straightforward bidding, while on the other hand allow for

strategic behavior in which a bidder can bid for a large quantity of low value items and

then switch to the items really demanded towards the close of the auction. The revealed

preference activity rule (RPAR) has been proposed as an alternative [5] and advocated for

many practical scenarios, including for use in the upcoming UK spectrum auction [13] and

for landing slot auctions at New York airports [14].

But many current day markets such as the cellular and airline industries involve budget-

constrained bidders [3, 15].3 Budget-constrained bidders have valuations for resources that

are greater than their ability to pay, for instance due to liquidity or credit problems.4 Che and

Gale [19] also note that budget constraints can result from a problem of moral hazard; many

organizations delegate acquisition decisions to purchasing units, while imposing budgets to

constrain their spending.5 For budget-constrained bidders, RPAR can actually have the

opposite effect to that desired, because bidders that bid straightforwardly may fail to satisfy

2For the particular case of iterative Vickrey auctions, a strong activity rule ensures that truthful, straight-

forward bidding is an ex post Nash equilibrium [10, 11, 12].
3Airlines typically carry large amounts of debt and are especially vulnerable to fuel spikes, recession

or economic shocks [15]. In recent years, all the US airlines together lost over US $35 Billion during the

period 2001-2005. Four of the six major U.S airlines declared Chapter 11 bankruptcy and have only recently

emerged [16]. In wireless spectrum auctions, it is realistic to assume that all firms participating in these

auctions face budget constraints [17, 3]. Bidders must raise funds before the auction starts, a time-consuming

and costly process that arguably leads to budget constraints.
4Pitchik [18] explains that capital market imperfections limit buyers’ abilities to borrow against future

income when investments are large.
5This is observed even for low-valued goods, such as in the domain of sponsored search, in which adver-

tisers can place a limit on the amount they are willing to spend on Internet advertisements over a day.
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the rule and must instead behave strategically because of the rule. In fact, we show that

RPAR is also problematic because it fails to guarantee straightforward bidding for bidders

without budget constraints.

Both these drawbacks of RPAR illuminate why the design of activity rules needs to be

revisited. From the definition of strong activity rules, we are able to develop activity rules

for a broadly applicable family of ascending price auctions, allowing for a variety of different

prices including non-linear (i.e., the price of a bundle need not be the sum total price of

the constituent items) and non-anonymous (or personalized) prices. In the auctions that we

consider, the auctioneer reports prices to bidders in each round and bidders respond with

a demand set that defines a package of items. Our activity rules also extend to auctions in

which the bidder reports multiple packages of items, across which she is indifferent, in each

round, and in which the prices are not necessarily ascending. Given this, our results can

find application to many auctions. Possible applications include to the combinatorial clock

auction [20], the clinching auction [10, 21], RAD [22], iBundle and ascending-proxy [9, 8],

the clock-proxy auction [5], iBEA [11], AkBA [23], and dVSV [12].

We explain how to provide feedback to guide a bidder in meeting our strong activity rules,

both in terms of the commitments that a bidder is (implicitly) making about her budget

constraint through her bids, and also to guide a bidder in modifying bids in order to pass the

rule. An auction designer might in fact prefer to provide somewhat relaxed rules; e.g., for

reasons of the complexity of the rules themselves, to allow for some mistakes for bidders, and

to allow for some value interdependency and learning by bidders. For this, we advocate as a

design principle that one should start with a strong rule and then relax this rule as necessary.

Relaxing away from our strong activity rule will certainly allow for straightforward bidding

behavior but will, in addition, permit some other behaviors.

In practice, we observe that one cannot have a rule that is both strong for budget-

constrained and non budget-constrained bidders, and the choice of rule must depend on the

bid-taker’s beliefs about the utility functions of participants in the auction.

In experimental simulations, we compare RPAR against our strong activity rule for

budget-constrained bidders in the clock-proxy auction [5]. This auction is advocated for

practical settings such as the FCC wireless spectrum auctions, and consists of an ascending-
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price combinatorial clock auction phase that terminates with a “last-and-final” round in

which bidders submit additional bids before the auction transitions to a sealed-bid (proxy)

auction phase. Given our focus on issues related to the activity rule, we assume for the

purpose of our simulations that bidders try to bid straightforwardly, and adopt optimization

techniques to modify these bids as necessary when this behavior is blocked by the RPAR

rule. This is what we refer to as maximally straightforward bidding.

Details of our results are provided in Section 5. In summary, the strong activity rule

outperforms RPAR with respect to efficiency and revenue by 3.8% and 9.4% respectively (on

average across the different distributions) at low budgets, with benefits falling off as budgets

are increased. For certain distributions, we observe efficiency and revenue improvements as

high as 13.2% and 20.3% respectively, while for other distributions the improvements were

not statistically significant, even at low budgets.

Organization of the paper. The rest of the paper is organized as follows. In Section 2, we

describe the notation and give some preliminaries, and define the notion of a strong activity

rule. In Section 3, we discuss existing activity rules and RPAR in particular, describe some

of their features and illustrate some key properties that they fail to achieve. We develop

the strong activity rules in Section 4 and compare them with other rules, providing also a

discussion about extensions and modifications. In Section 5, we discuss our experimental

simulations and finally conclude in Section 6.

1.1. Related Work

Auctions with budget constraints have been discussed in many works [24, 19, 25, 26, 27,

18]. However, none of this literature discusses activity rules, and every paper is restricted to

domains with at most two items for sale. The focus is instead on equilibrium behavior. In

the context of combinatorial auctions, impossibility results exist for truthful, Pareto optimal

combinatorial auctions in the presence of budget-constrained bidders [28, 29]. On the other

hand, Pareto optimal and revenue optimal, sealed-bid auctions have been designed for special

cases [29, 30]. Aggarwal et al. [31] develop a stable, incentive-compatible auction that admits

budget-constrained bidders for a generalization of the assignment problem. Ausubel and

Milgrom [32] also discuss a generalization of ascending-proxy auctions to allow for budget-
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constrained bidders. Both of these latter papers are in the context of sealed bid auctions

and do not consider the role of activity rules.

Theoretical models for firms with budget constraints allow for both hard and soft (i.e.,

flexible) budget constraints [33]. Hard budgets are those that cannot be exceeded while soft

budget constraints are those that can be exceeded under certain circumstances. Following

Kornai et al. [33], a firm can be modeled as hard budget-constrained if it does not receive

outside support to cover its deficit and is obliged to reduce or cease its activity if a deficit

persists. This is in contrast with soft budgets, where there are supporting agencies that can

cover all or part of the deficit; for example, this can be the case for some state enterprises.

As the notion of soft budgets can vary a lot, for simplicity, we restrict ourselves to bidders

with hard budgets.

The notion of a strong activity rule adopts the idea of rationalizability from microe-

conomics for our purpose. Rationalizability seeks a utility function that explains the ob-

served demand behavior of a consumer in response to varying prices. Notably, Afriat [34]

developed simple conditions for rationalizability for a concave utility function where the

utility of a package of goods does not depend on the price as long as the package is afford-

able. Afriat’s Theorem characterizes conditions for the specific utility function of the form

maxx{v(x)|p · x ≤ B} where v(x) represents the values of package x with linear price vector

p and budget B. Whereas agents in Afriat’s model are indifferent to the price as long as

the total expenditure remains within their budget constraint, in our models bidders always

prefer to spend less than more. See also Vohra [35], for a discussion of rationalization in the

context of quasi-linear utility functions.

Activity rules have been discussed in a number of places in the auction literature. The

activity rule used in the FCC auction, due to Milgrom and Wilson [6], is a variation on a

simple quantity-monotonicity rule, in which quantities that are bid in the auction are re-

quired to weakly monotonically decrease across rounds. Similar rules have become standard

in combinatorial auctions, perhaps because of their simplicity. For instance, in the combi-

natorial clock auction [20], a variation on the aggregate monotonicity rule is adopted. In

the context of iterative, two-sided markets, Wilson [7] describes activity rules for an auction

for electrical power generation, including a bid withdrawal and a revision rule. Mishra and
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Parkes [11] study a special class of ascending price auctions with quasi-linear bidders and

provide (in our terms) strong activity rules with a simple form. Day [36] has previously

considered the role of activity rules in the presence of budget constraints, and provides a

rule that extends RPAR but is not strong in our sense, because it still allows for some non

straightforward bidding (both with and without budget-constrained bidders.)

2. Strong Activity Rules

Let G denote the set of items in an auction and let I denote the set of bidders. We

assume a private values model, with vi(S) ≥ 0 denoting the value of bidder i in I for bundle

S ⊆ G. We use package and bundle interchangeably in the paper. We normalize vi(∅) = 0

and assume that the auctioneer is indifferent across all allocations. We assume free-disposal,

i.e., vi(T ) ≤ vi(S) for all T ⊆ S, unless it is specifically mentioned.

Let pi(S) ≥ 0 be the price the auctioneer sets for a bundle S for a bidder i. Prices may

depend on the bidder if the prices are non-anonymous in nature. Prices are said to be linear

if pi(S) =
∑

g∈S pi({g}) and nonlinear otherwise (i.e., if pi(S) 6= pi(S1) + pi(S2) for some

S = S1 ∪ S2 and S1 ∩ S2 = ∅). We will often drop the subscript i in our notation, because

the context of the bidder is generally clear.

Bidders are modeled as utility-maximizing, and with a utility function that belongs to

a utility domain Θ. An instance θ ∈ Θ captures the set of all parameters that define the

utility function u(S, p) for a bidder on bundle S at prices p. We consider two models of

utility functions:

Quasi-Linear The utility of a bidder for bundle S at price p is given by u(S, p) = v(S) −
p(S), for some valuation function v : 2G → R≥0. A quasi-linear bidder with valuation

function v has type θ = v.

Budget-Constrained We consider a model where a bidder has a hard budget constraint

and a quasi-linear utility up to the budget. The utility function then has the form:

u(S, p) =

 v(S)− p(S) if p(S) ≤ B

−∞ otherwise,
(2.1)
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where B is the bidder’s budget. A budget-constrained bidder with valuation v and

budget B has type θ = (v,B). We call this the budget-constrained utility function.

Remark 2.1. In defining budget-constrained bidders, we choose to consider only a class

of bidders in which the budget constraint is uniform across all bundles, and invariant over

the course of an auction. In order to extend our methods to handle a budget constraint

that varies with prices, one would need to make some additional modeling assumptions about

the dependence of such an effect on prices. While a budget constraint that depends on the

particular bundle could also be handled, the effect would be to allow for significantly more

bid flexibility (and thus too much flexibility for bidders with a more restricted utility type),

while also making it more challenging to generate the implicit budget feedback that we can

construct for the current model.

An ascending price auction is an auction with a single price path that is non-decreasing

such that it ends with an allocation and payment for bidders [37, 2, 11]. We focus in

particular on auctions in which the auctioneer specifies prices in each round and each bidder

responds with a report about a package of items that maximizes her utility given the current

prices.6 We generalize this later to allow for auction designs in which bidders must report

multiple (indifference) sets of packages. Prices are incremented from round to round by the

auctioneer. The auction continues until a termination condition is met.

We will not place any restrictions on the types of prices, (linear or non-linear, anonymous

or non-anonymous), or on the particular method by which prices are increased across rounds

(ascending or non-ascending).

At the end of every round, we associate with each bidder a set of price-bid pairs, (p, S),

where p : 2G → R and S ⊆ G, also known as the history of the bidder. History h of a bidder

is the set h = {(p1, S1), . . . , (pt, St)}, where Si is the bid placed by the bidder when the

prices are pi and t is the cumulative number of bids placed by the bidder in all the rounds

6Our work also extends to the case of an open outcry auction with jump bids, wherein bids include a

bid price that may be greater than the current ask price. In this case, the activity rule takes the price of a

bundle as the maximum of the ask price and the bid price (from the jump bid).
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of the auction including the current round. Note that t may be more than the number of

rounds, for instance in the case in which multiple bundles receive bids in a single round. Let

H denote the set of histories.

An activity rule prescribes a set of histories of bids for each bidder that are acceptable

in an iterative auction. An activity rule, A, is specified by a function fA : H → {0, 1} where

history h ∈ H satisfies the rule if fA(h) = 1 and violates the activity rule if fA(h) = 0. This

defines an activity rule, specifying which bids are valid and which invalid given a history.

Naturally, when the rule is applied and used to constrain bidder behavior in an auction

then all observed histories will satisfy the rule. For example the bids submitted by a bidder

may be constrained in each round to meet the rule, with the bidder precluded from bidding

further or a default bid submitted if the bidder is unwilling to meet the rule.

At a given price, we say a bidder bids straightforwardly if the bundle(s) she bids on are

utility maximizing with respect to some utility function. Such a bidder need not be truthful

and may bid straightforwardly with respect to some non-truthful utility function. A truthful

bidder is a bidder that is straightforward with respect to her true utility function.

Let SB(p, θ) be a correspondence that outputs the set of all utility maximizing bundles

at price p for a bidder that adopts the utility function θ. With a little abuse of notation,

we say a bidder with a history h = (hbundles, hprices) bids straightforwardly with respect

to utility function θ if hbundles ∈ SB(hprices, θ), where hprices and hbundles refer to the price

and bundle components of the history h. A bidder is consistent given history h if there

exists a utility function θ ∈ Θ such that the observed history h = (hbundles, hprices) satisfies

hbundles ∈ SB(hprices, θ). Consistency requires that there exists a single utility function that

explains the bids of the bidder, under straightforward behavior.

Definition 2.2. Strong Activity Rule: An activity rule A is said to be strong with respect

to utility domain Θ if the following conditions are satisfied:

Condition 1: ∀ θ ∈ Θ and ∀h = (hbundles, hprices) ∈ H such that hbundles ∈ SB(hprices, θ),

then fA(h) = 1; and

Condition 2: ∀h = (hbundles, hprices) ∈ H such that fA(h) = 1, there exists a θ ∈ Θ

such that hbundles ∈ SB(hprices, θ).
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The first condition is a description of those histories that will certainly be accepted by a

strong activity rule: any consistent bidder with utility in domain Θ will satisfy the rule. In

this sense, the rule can be considered to be “not too strong.” Noting that an activity rule is

also prescriptive, the second condition states a property of all bidding histories that satisfy a

strong activity rule: a bidder that satisfies the rule must be bidding consistently with respect

to some utility function in domain Θ. In this sense, the rule can be considered to be “not

too weak.” A trivial rule that always admits any bidding behavior satisfies condition 1, while

a rule that never admits any bidding behavior satisfies condition 2.

A strong activity rule is the best that a designer can do in the following sense: if a

rule satisfies the second condition then no behavior that it allows can be precluded without

precluded a straightforward bidder for some utility in domain Θ. If the rule then also satisfies

the first condition, then it does not need to be relaxed to admit more behaviors because all

desired behaviors are allowed.

3. Monotonicity and Revealed-Preference Activity Rules

In this section we demonstrate that the common activity rules of aggregate monotonicity

and revealed-preference fail to be strong rules.

3.1. Aggregate Monotonicity Rule

One common activity rule requires that bids are quantity-monotonic, i.e. as the price

increases the total quantity of items bid by each bidder has to decrease. We refer to this rule

as the Monotonicity Rule (MR). Defined in a setting with multiple identical items, it is easy

to see that a truthful bidder with quasi-linear utility will satisfy MR. Indeed, in Section 4

we will see that MR is a strong activity rule for multiple-identical items in auctions with

linear prices. On the other hand, when coupled with non-linear prices, a straightforward,

non budget-constrained bidder need not satisfy MR and thus the rule is too strong. This is

illustrated with the following simple example:

Example 3.1. Consider a bidder, with values 12 and 15 for one unit and two units of the

good. Suppose the prices for the two different bundles in round 1 are 5 and 9, and in round
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2 are 8 and 10 respectively. Note that the prices are chosen to allow for volume discounts

for the substitutable items. At these prices the bidder, when bidding straightforwardly with

respect to her true values, demands one unit in round 1 and two units in round 2. Thus

a truthful bidder would violate the Monotonic Rule and so be unable to express her true

demand.

This problem with MR is well understood and continues even in a setting with distinct

items. The appropriate form of the rule in this setting is the Aggregate Monotonicity Rule

(AMR), in which the aggregate quantity demanded across all items must increase as prices

increase. For distinct items, the AMR rule is too strong for non budget-constrained bidders

even in an auction with linear prices:

Example 3.2. Consider a bidder, who values a bundle with two units of item A at 10 and

a bundle with one unit of item B at 15. Suppose the prices are linear and the price of one

unit of A and one unit of B in round 1 are 2 and 8 respectively and in round 2 are 3 and 12

respectively. At these prices, the bidder, when bidding straightforwardly with respect to her

true values, demands the bundle with one unit of item B in round 1 and two units of item

A in round 2. Thus, a truthful bidder would violate the Aggregate Monotonicity Rule and be

unable to express her truthful demand.

Moreover, AMR is also in a sense too weak. For example, Ausubel et al. [5] observe that

a “parking” strategy is popular in FCC auctions that use AMR. In this strategy, bidders bid

on many units of cheap licenses before revealing their true demand at the end of the auction.

In the FCC auction this is mitigated somewhat by defining the quantity in AMR in terms

of MHzPOPs (i.e. bandwidth times population in the wireless region). This is a proxy for

value, not just raw quantity, and prevents some extreme forms of strategic behavior.

3.2. Revealed-Preference Activity Rule

The Revealed-Preference Activity Rule (RPAR) is designed to address these difficulties

with AMR [5]. To understand the rule, let package S ⊆ G be represented by a vector s ∈ Z|G|≥0,

to specify the quantity of each item in the package. Let p ∈ R|G|≥0 denote a price vector, and
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define a price pj on each item j ∈ G. Then the price of package s, given price vector p, is

p · s, where a · b represents the inner product between two vectors.

At every round t of an auction, RPAR checks that the bid st of a bidder at price vector

pt satisfies:

(pt − pr) · (st − sr) ≤ 0, (3.1)

for any bid sr placed in an earlier round r by the same bidder at price pr in the auction.

In an auction with non-linear prices, RPAR can be easily extended to require:

pt(st)− pr(st)− pt(sr) + pr(sr) ≤ 0, (3.2)

which we refer to as the generalized form of RPAR.

Claim 3.3. [5] The RPAR rule is satisfied for straightforward bidders with quasi-linear

utility functions in an iterative combinatorial auction, i.e. it is not too strong for such

bidders.

The observation in this claim holds irrespective of whether the auction is defined for

linear or non-linear prices, and resolves the problems demonstrated with MR and AMR in

the earlier examples. Moreover, RPAR is in another way stronger than AMR, in that it

precludes the “parking-style” manipulations [5].

However, we observe two problems with RPAR. In one sense, it is still too weak:

Claim 3.4. RPAR allows non straightforward bidding in iterative combinatorial auctions

with quasi-linear utility functions and linear prices.

Proof. To prove this claim, we present a counterexample in which a bidder satisfies RPAR

but there exists no valuation function v consistent with her bids. Consider the case when

multiple units of two distinct items are being auctioned. Consider a bidder who bids the

following bundles, st, with respect to prices pt: bundles (2,0),(1,2) and (0,2) at prices (0,0),

(1,0) and (1,1) in rounds 1,2 and 3 respectively. Let us first check that the activity rules are

satisfied:

(p2 − p1) · (s2 − s1) = (1, 0) · (−1, 2) = −1 ≤ 0

(p3 − p1) · (s3 − s1) = (1, 1) · (−2, 2) = 0 ≤ 0

(p3 − p2) · (s3 − s2) = (0, 1) · (−1, 0) = 0 ≤ 0.

12



For the other direction, assume by way of contradiction that there exists a valuation function

v that is consistent with the bids. Then the following is true:

v(st)− pt · st ≥ v(sr)− pt · sr where r 6= t, r, t = 1, 2, 3

Substituting the values of p’s and s’s in the above constraints we get

−1 ≤ v(s3)− v(s2) ≤ −1

−1 ≤ v(s2)− v(s1) ≤ 0

0 ≤ v(s1)− v(s3) ≤ 0.

If we add the first and the third constraint we get v(s2) − v(s1) = 1 which violates the

second constraint. Hence, there exists no consistent valuation function v for this bidder.

This establishes our claim.

Thus, RPAR allows for some preventable bidding strategies; it is not as strong as it could

be. The problem is that RPAR only ensures pairwise consistency between the bids and not

a global consistency across all the bids. Thus, even if the bids satisfy RPAR, there might be

no underlying utility function that “explains” (or rationalizes) the bids.

The second problem is that RPAR is actually too strong for budget-constrained bidders,

and precludes straightforward bidding strategies:

Claim 3.5. A truthful, budget-constrained bidder need not satisfy RPAR, even in an auction

with linear prices.

Proof. Consider an auction with 2 types of items and a budget-constrained bidder with

budget $5,200 and values 7500 and 3000 for the bundles (1, 0) and (0, 3) respectively.

Suppose the price vector in two successive rounds of the auction were ($5, 000, $500) and

($5, 500, $900). Clearly, if the bidder bid straightforwardly, she would bid bundle (1, 0) in

the first round and (0, 3) in the second round. However, these bids violate RPAR since

(5500− 5000)(0− 1) + (900− 500)(3− 0) = 700 ≮ 0.

To gain some intuition for this problem associated with RPAR when there are budget-

constraints, consider that a truthful bidder with budget B places a bid sr in round r at price
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R = Feas(pr)T = Feas(pt)

srst
pt ≥ pr

Figure 1: A scenario where RPAR might fail in the presence of budget constraints.

pr, if

v(sr)− pr · sr ≥ v(s)− pr · s, ∀s ∈ R = {s|pr · s ≤ B}. (3.3)

Now, in a subsequent round t, the player bids st at price pt, if

v(st)− pt · st ≥ v(s)− pt · s, ∀s ∈ T = {s|pt · s ≤ B}. (3.4)

These sets, R and T , represent the budget-feasible packages at prices pr and pt respec-

tively. Note that because pt ≥ pr, we have R ⊇ T . RPAR is obtained by adding the above

two inequalities, with s = st in the first inequality and s = sr in the second inequality. This

step requires the fact that st ∈ R and sr ∈ T . The former is true since R ⊇ T . However, we

can have sr /∈ T because of budget constraints. A situation such as in Fig. 1 can happen, in

which S is a strict superset of T leading to the failure of RPAR.

4. Designing Strong Activity Rules and Bidder Feedback

Having defined the concept of a strong activity rule and identified the problems with

RPAR in combinatorial auctions, we will proceed to design strong activity rules and also

discuss methods to provide bidder feedback. This issue of feedback is important if activity

rules are to achieve the goal of promoting straightforward bidding, because the rule must be

transparent enough to guide price and demand discovery.

To proceed, we will first focus on the general case of budget-constrained bidders. A

strong activity rule for non budget-constrained bidders can be derived as a special case.

Consider a bidder with history h = {(p1, S1), . . . , (pk, Sk), . . . , (pt, St)}. We design a

Strong Revealed Preference Activity Rule (SRPAR) by requiring that there exists a utility
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function θ = (v,B), that satisfies the following constraints:

SRPAR: v(Sk)− pk(Sk) ≥ v(Sl)− pk(Sl) if pk(Sl) ≤ B ∀k, l ∈ {1, . . . , t} (4.1a)

pk(Sk) ≤ B, ∀k ∈ {1, . . . , t}. (4.1b)

This places a global consistency requirement across all bids, rather than a pairwise con-

sistency requirement as in RPAR. Constraint (4.1a) ensures that the payoff of the selected

bundle Sk for a bidder is greater than or equal to the payoff that she can achieve on other

bundles Sl at the prices, pk, in stage k. The ‘if’ condition in (4.1a) is necessary to check if

the bundle Sl is within budget so that a valid comparison is made. Constraint (4.1b) ensures

that the bundle Sk is within budget.

We retain for now the assumption that the rules of the auction specify that only one

of the maximizing bids need to be reported in each round. This is reflected in the “≥”

inequality in constraint (4.1a) (as opposed to a strict “>”), when comparing the utility of

the two bundles Sk and Sl.

Theorem 4.1. SRPAR is a strong activity rule for budget-constrained bidders in iterative

combinatorial auctions, both with linear and non-linear prices.

Proof. Consider a consistent, budget-constrained bidder and suppose she bids according to

a utility function parameterized as θ = (vcon, Bcon). Thus, she behaves exactly as a truthful

bidder whose θ = (vcon, Bcon). That the rules will be necessarily satisfied by such a bidder is

immediate, by the definition of SRPAR in constraints (4.1a–4.1b). To show condition 2 holds,

consider now a bidder who satisfies the activity rule SRPAR. Suppose
({
ṽ(Sk)

}t
k=1

, B̃
)

is a

feasible solution for SRPAR. We observe that if
({
ṽ(Sk)

}t
k=1

, B̃
)

is a feasible solution then

so is
({
ṽ(Sk) + c

}t
k=1

, B̃
)

for fixed number c. Hence without loss of generality, we assume

that ṽ(Sk) > 0 for every k. Now consider a truthful bidder with budget B̃ and a valuation

function given as follows:

v(S) =

ṽ(Sk) if S = Sk for some k ∈ {1, . . . , t}

0 otherwise.

(4.2)

This truthful bidder has the same history as the original bidder, thus proving condition

2. Note that in this case, bidders might not satisfy free-disposal. However, we can modify
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the valuation function as follows so that the bidders satisfy free disposal.

v(S) = max
{k| S⊇Sk; k=1,...,t}

{
ṽ(Sk), 0

}
. (4.3)

Clearly this valuation function satisfies free-disposal. Now if we show that v(Sk) = ṽ(Sk)

for all k, then the same proof as above proves condition 2. Suppose this were not the

case. Then it must be the case that for some l, k such that Sk ⊃ Sl, we have ṽ(Sl) >

ṽ(Sk). Due to free-disposal, the prices satisfy pr(Sk) ≥ pr(Sl) for every round r. This

means ṽ(Sl) − pr(Sl) > ṽ(Sk) − pr(Sk) for every round r and in particular when r = k,

we have ṽ(Sl) − pk(Sl) > ṽ(Sk) − pk(Sk). On the other hand, we have pk(Sl) ≤ pk(Sk) ≤
B. This contradicts that

({
ṽ(Sk)

}t
k=1

, B̃
)

is a feasible solution of SRPAR as it violates

constraint (4.1a). This completes the proof.

This SRPAR rule is, of course, not too strong for non budget-constrained bidders be-

cause they are budget-constrained with an unbounded budget. On the other hand, the rule

is in fact too weak for non budget-constrained bidders and will allow for deviations from

straightforward bidding for such bidders.

Example 4.2. Consider a quasi-linear bidder with values 3 and 5 for two items A and B.

At prices (0,1) and (2,3), say the bidder specifies her demand as items B and A, respec-

tively. Then the bidder passes the rule with budget 2 and values 3 and 4 for items A and B,

respectively. But no straightforward bidder with quasi-linear utility could have this behavior

because the prices have increased by the same amount on both the items.

Of course, this fact that budget-constrained bidders need to behave differently from quasi-

linear bidders is why RPAR was too strong for budget-constrained bidders in the first place.

We return to this dilemma, wherein the appropriate rule must depend on knowledge about

the domain of bidder utilities, in Section 4.2.

Implementing SRPAR. SRPAR can be rewritten as a Mixed-Integer Program (MIP) with

O(t2) binary variables to simplify the ‘if’ condition in constraint (4.1a). But a rather simple

observation about SRPAR simplifies its implementation.

Consider an alternate definition in which a particular budget, B̃ is imposed on the feasible

space of utility functions. Given this additional constraint, SRPAR is a linear feasibility
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problem with at most O(t2) constraints and O(t) variables. Let us call this LP corresponding

to a specific B̃ as LP-B̃. In this case, the strong activity rule would verify the existence of

a feasible v(Sk) ∀k ∈ {1, . . . , t} by solving LP-B̃. Define BL = maxk∈{1,...,t}{pk(Sk), 0}.

Observation 4.3. Consider some budget B̃ ≥ BL and a corresponding feasible valuation

function v for LP-B̃. Then, for any B′ ∈ [BL, B̃], the constraints of the LP-B′ are a subset

of the constraints in LP-B̃. So, any valuation v that is feasible for LP-B̃ is also feasible for

LP-B′.

Therefore checking SRPAR at BL (i.e., LP-BL), which is a polynomial time check, im-

plements the strong activity rule.

In what follows we consider three interesting variations of this strong activity rule.

Variation I: Requiring Every Best-Response Package. In the first variation, consider

the design of a strong rule for an auction in which a bidder must report all utility-maximizing

bundles in each round; i.e., the set of bundles across which she is indifferent.

These additional bundles are recorded in the bidder’s history with higher indices but at

the same price. Then the “≥” inequality that compares the utilities in constraint (4.1a) is

replaced by a strict inequality when pk 6= pl, and with an equality when pk = pl:

v(Sk)− pk(Sk) > v(Sl)− pk(Sl) if pk 6= pl and pk(Sl) ≤ B ∀k, l ∈ {1, . . . , t}; and (4.4a)

v(Sk)− pk(Sk) = v(Sl)− pk(Sl) if pk = pl and pk(Sl) ≤ B ∀k, l ∈ {1, . . . , t}. (4.4b)

For computational purposes, we can relax the strict inequality with an addition of a small

number ε > 0 to the right hand side:

v(Sk)− pk(Sk) ≥ v(Sl)− pk(Sl) + ε if pk 6= pl and pk(Sl) ≤ B ∀k, l ∈ {1, . . . , t}. (4.5)

This activity rule can be further strengthened to ensure that the bidder also respects free-

disposal. Because all utility maximizing bundles must be reported, then this also implies

constraints on the utility of bundles that are not elicited. The modified activity rule is
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obtained by adding the following inequalities:

v(Sk)− pk(Sk) ≥ v(T )− pk(T ) + ε, if pk(T ) ≤ B

∀T ⊃ Sk, T 6= Sl, pk(T ) > 0 ∀k, l ∈ {1, . . . , t} (4.6a)

v(T ) ≥ v(Sk), ∀T ⊃ Sk, T 6= Sl, pk(T ) > 0 ∀k, l ∈ {1, . . . , t}. (4.6b)

We introduce only as many constraints as bundles with strictly positive price, that is

those bundles for which there is no subset with the same price. Thus, we avoid an exponen-

tial number of constraints except when the prices, themselves, have an exponentially-sized

representation.7 This can be solved as a linear feasibility problem again using the observa-

tion 4.3. A feasible solution to this problem gives a budget, and possible values, for all the

elicited bundles and their supersets. To show the rule satisfies condition 2 of strong rules,

one can then set the value of all other bundles (i.e., the subsets) to zero.

Variation II: Quasi-Linear Bidders. In this second variation, we consider the special

case of bidders without budget constraints. We obtain a new rule, SRPARql, by instantiation

of B to infinity in SRPAR, and then through simplification. In SRPARql, the auctioneer

checks for feasibility of the following LP, where the variables are v(Sk), k = 1, . . . , t:

SRPARql : v(Sk)− pk(Sk) ≥ v(Sl)− pk(Sl), ∀l, k ∈ {1, . . . , t}, l 6= k. (4.7)

This constraint means the bundle Sk placed by the bidder should be one of the utility

maximizing bundles at price pk when compared to all other bundles, Sl, placed in the auction.

This is again solvable as a linear feasibility problem, and the number of variables in the LP

are t and the number of constraints are O(t2).

We observe that SRPARql is a slightly enhanced (and stronger) form of RPAR, which is

itself obtained by only adding constraints for every pair l, k of rounds. The interested reader

can check that the example in Claim 3.4, which satisfied RPAR despite corresponding to an

inconsistent bidder, violates SRPARql.

We have the following corollary to Theorem 4.1 for this setting:

7In technical terms we are working, here, in the so-called exclusive-or (XOR) bidding language in which

the price on a bundle is the maximal price over the price quoted on all (weak) subsets of the bundle.
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Corollary 4.4. SRPARql is a strong activity rule for quasi-linear bidders in iterative com-

binatorial auctions, both with linear and non-linear prices.

Here again we assume that the rules of the auction specify that at least one (not all) of

the utility maximizing bundles be placed in the auction. If the auction specifies otherwise,

then we can make modifications to SRPARql that are directly analogous to those presented

for SRPAR.

Remark 4.5. In the special case of multiple identical items, and for an auction with linear

prices, then SRPARql is equivalent to the monotonic activity rule, MR. This proves that

RPAR, which is also equivalent to MR in this case, and MR are strong activity rules in this

restricted environment. To see this, note that RPAR is obtained from SRPARql by adding

constraints for pair l, k, thus proving SRPARql ⇒ RPAR. Now consider a bidder that satisfies

RPAR i.e., Sk ⊆ Sk+1 ∀k = 1, . . . , t. Consider a set of values v(Sk), k = 1, . . . , t as follows:

v(Sk) =
t−1∑
j=k

pj
[
|Sj| − |Sj+1|

]
+ pt|St|,

where |S| refers to the number of items in bundle S. It is easy to check that these values

satisfy SRPARql.

Remark 4.6. Strong activity rules can have simple forms in ascending-price combinato-

rial auctions with quasi-linear bidders and particular price-update rules. For example, the

simple monotonicity-based activity rule in Mishra and Parkes [11], that requires that the

best-response set of every bidder monotonically-increases in each round in response to price

changes, is a strong activity rule for that auction.

Variation III: Relaxed Activity Rules. As a third variation, we consider the possibil-

ities for taking a strong rule as a starting point and then relaxing it somewhat.

There are a number of practical reasons for such an approach. One is that bidders may

make mistakes, and a relaxed rule may be designed to provide some flexibility in order to

tolerate such mistakes. Another is for reasons of complexity; this complexity concern may

be both one of the computational complexity in checking the constraints, and also one of
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cognitive load on bidders. Relaxed activity rules may also be of interest because they allow

bidders to adjust their values based on price feedback, for example as they make inferences

about the values of other bidders.8

As a design principle, we advocate relaxing from strong rules whose properties are well

understood. This will ensure that the rule that is achieved is not too strong, for example

as could be the case when relaxing RPAR to handle budget-constrained bidders. In fact, by

relaxing SRPAR we obtain a rule that is an appropriate relaxation of RPAR, and arguably

preferable to RPAR in many practical settings because of the presence of budgets in several

markets.

One interesting relaxation of SRPAR is obtained by fixing B in SRPAR to BL and adding

constraints (4.1a) for a pair of bundles l, k if they both exist (i.e., they both satisfy the ’if’

condition at BL) or dropping them otherwise (i.e., imposing constraint (3.2) when both

pr(St) and pt(Sr) are both less than BL). The form of these constraints are similar to the

constraints that define RPAR, except that they are imposed on a selected pair of bundles

guided by BL, unlike RPAR that imposes it on all pair of bundles.

Another relaxation can be obtained by allowing for approximately straightforward bid-

ding by a bidder, wherein the bidder is within some threshold Uerror > 0 of its utility-

maximizing bundle in every round. In this case, we can modify SRPAR by adding an

additional term Uerror on the right hand side of the constraint (4.1a). Another commonly

used approach would be to provide a bidder with an opportunity to skip the rule in one or

more rounds.

4.1. Providing Bidder Feedback

We propose some methods to generate information that can be used within a decision

support tool to help to focus bidder attention on bundles that will satisfy the activity rule

8Note though, that a strong activity rule does actually already allow for some value learning. A bidder

does not need to commit to a single valuation function upfront. Rather, a bidder may begin bidding with

some valuation in mind and change this valuation over time. What is required is that any change in valuation

should be inconsequential to how the bidder has already bid: there must exist a posteriori some particular

valuation to rationalize her bids across the entire auction.
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given earlier bids. In the case of a problem with a proposed bid, we also explain how to

identify violated constraints and allow for new bids to be suggested that will satisfy the

activity rule.

Feedback about Budget Bounds. One form of feedback that is useful is to provide

information to a bidder about the bounds on her own budget constraint that are implied by

her history of bids. We expect this to be primarily useful not because a bidder is not informed

of her own budget constraint, but because a bidder may not realize the commitments that

are made about her utility type through her bidding history in earlier rounds of an auction.

With an empty history, the lower bound, BL, is initialized to 0 and the upper bound,

BU , is initialized to infinity. As the stages proceed, the tightest possible lower bound for

the budget is the revealed budget i.e., BL = maxk∈{1,...,t}{pk(Sk), 0}. To understand how

to compute a tight upper-bound, B∗ ∈ [BL, BU ] , we appeal to observation 4.3 and the

general form of the SRPAR rules. By definition, this value B∗ is the supremum over all

B̃ ∈ [BL, BU ] such that LP-B̃ is feasible. Hence, clearly for all BL ≤ B̃ < B∗, LP-B̃ is

feasible and conversely for all B̃ > B∗, LP-B̃ is infeasible. It turns out that B∗ is in fact the

smallest budget B̃ ∈ [BL, BU ] such that LP-B̃ is infeasible.9

In each round of the auction, as new bids are placed, more constraints are added to

SRPAR. This can allow the upper-bound, BU , to be tightened to the current B∗ and the

lower-bound, BL, to be tightened to the maximum revealed budget (See Fig. 2).

The budget bound B∗ that is implied by bids submitted in an ascending price auction

9To understand the behavior at B∗, suppose LP-B∗ is feasible. Then, consider LP-(B∗ + δ) for a very

small positive number δ. LP-B∗ is the same as LP-(B∗ + δ) because δ is a very small number (more formally

for small enough δ the set of constraints of LP-B∗ and LP-(B∗ + δ) are identical). Hence LP-(B∗ + δ) is also

feasible. But we know that for any B̃ > B∗, in particular when B̃ = B∗ + δ, LP-B̃ does not have a feasible

solution. Hence, by contradiction, LP-B∗ is infeasible.
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Figure 2: The upper bound B∗ and lower-bound BL of a bidder’s budget that is implied by its bidding

behavior, versus the number of rounds of the auction.

(i.e., with pk ≥ pl for k ≥ l), can be approximated by the solution to the following MIP:

B̃ε = max
B,v(Sk),tkl

B [Pε]

subject to v(Sk)− pk(Sk) ≥ v(Sl)− pk(Sl), ∀k < l, k, l ∈ {1, . . . , t} (4.8a)

v(Sk)− pk(Sk) ≥ v(Sl)− pk(Sl)−Mtkl, ∀k > l, k, l ∈ {1, . . . , t} (4.8b)

pk(Sl) ≤ B +Mtkl, ∀k > l, k, l ∈ {1, . . . , t} (4.8c)

pk(Sl) +M(1− tkl) ≥ B + ε, ∀k > l, k, l ∈ {1, . . . , t} (4.8d)

tkl ∈ {0, 1} ∀k > l, k, l ∈ {1, . . . , t} (4.8e)

BL ≤ B ≤ BU , (4.8f)

where M is a number larger than maxk,l∈{1,...,t} p
k(Sl), and ε > 0 is any small positive number.

To better understand this MIP, note that it is maximizing the budget, B, subject to

SRPAR because the ‘if’ condition in constraint (4.1a) is rewritten using an indicator variable

tkl ∈ {0, 1}, which is 0 if bundle Sl at price pk is below budget and 1 otherwise. Considering

the cases k < l, k > l and k = l, and recalling that the auctions are ascending price

constraints (4.8a–4.8e) are obtained. In a general demand revealing process, where the

prices need not be ascending, we add constraints (4.8b–4.8e) instead of (4.8a) also in the

case when k < l. Because of the BU update from the previous round, the MIP is infeasible
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for B ≥ BU . We retain the constraint B ≤ BU for clarity.

Theorem 4.7. For iterative combinatorial auctions, a tight upper-bound B∗ on the budget

constraint of a bidder that satisfies the SRPAR rule is in the range (B̃ε, B̃ε + ε).

Proof. Note that B∗ ≤ BU because LP-BU is infeasible.

• B∗ > B̃ε: Suppose otherwise. Then, since LP-B̃ε is feasible, LP-B∗ must also be

feasible, contradicting the definition of B∗. Hence, B∗ > B̃ε.

• B∗ < B̃ε+ ε: Suppose otherwise, and that B∗ ≥ B̃ε+ ε. Consider any B ∈ (B̃ε, B̃ε+ ε).

Observe that the MIP, Pε, is feasible at B as B < B∗. This contradicts that B̃ε is the

optimal solution of Pε. Hence, B∗ < B̃ε + ε.

To provide some intuition, it is important to understand the role of ε in SRPAR. In

constraint (4.1a), ε is the small addition made to the budget, B, to make constraint pk(Sl) ≤
B feasible, which in turn introduces constraint v(Sk) − pk(Sk) ≥ v(Sl) − pk(Sl) in the LP-

(B + ε). Hence B∗ is that budget at which the introduction of a new constraint makes

LP-(B + ε) infeasible.

This theorem defines an estimate of B∗ to within accuracy of some ε > 0, which is

sufficient if ε is set to be smaller than the price increment between rounds. Thus, by solving

this optimization problem in each round, the auctioneer not only ensures the bidder satisfies

the activity rule (because the constraints of the MIP form the SRPAR) but can also compute

implied bounds on the budget of the bidder.

Example 4.8. It can be easily checked that the bidder in the example provided in the proof

of Claim 3.5 satisfies this new activity rule with B̃ε = 5500 − ε after the second round of

the auction. Hence, B∗ ∈ (5500 − ε, 5500). Thus, her budget is constrained to be between

[5000, 5500) for all future rounds of the auction.

In fact, the value of B̃ε exactly lies on the price points in the auction, which suggests a

simple polynomial time algorithm that the auctioneer can implement instead of solving the

MIP:
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Algorithm: Sort the prices pk(Sl) ∀k, l ∈ {1, ..., t}, BL and BU in ascending order (without

repetitions) and retain only elements above (and including) BL and below (and including)

BU . Perform a binary search to find the largest element in this sorted array, B̃ε, such that

LP-B̃ε is feasible. If there is no such element then the MIP, Pε, is infeasible and the bidder

does not satisfy the activity rules.

The worst case running time of the algorithm is equivalent to solving O(log t) linear

feasibility problems.

Direct bundle feedback: In the case when the bundle submitted by the bidder does

not satisfy the SRPAR activity rule, the auctioneer can suggest another bundle ‘close to’

the submitted bundle that satisfies the activity rule using a decision support tool. For

instance, a simple decision support tool could be a linear program of finding the largest

bundle that is smaller than the submitted bundle subject to the activity rule. There are

many variations of this method using different distance metrics, generating multiple bundles

by iterating, generating bundles subject to constraints provided by the bidder to denote

‘interesting bundles’ and so forth. A null bundle is always a bundle that satisfies the activity

rule, along with earlier bids that also satisfied the activity rule, and hence the decision

support tool can always make at least one suggestion.

4.2. Comparing the Activity Rules

In Table 1 we compare the different activity rules. We indicate which rules allow straight-

forward and truthful bidding (the condition 1), marked by T, and which rules are strong

and also ensure consistent bidding (the conditions 1 and 2 ), marked by C. Of course we

have that (C =⇒ T). We mark an entry with ‘–’ when there exists a counterexample to

show the failure of T (and thus also C). Subscript L or H refer to the case that the activity

rule satisfies the property (T or C) only in the linear price setting or the homogeneous items

setting respectively.

We compare across the rules in the case of a general price structure and price path and

denote by � if a rule dominates another rule, in the sense of a preference ordering in which

C is preferred by an auction designer to T and T is preferred in turn to having neither C

nor T.
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Utility Class
Activity Rule

MR AMR RPAR SRPARql SRPAR

Quasi-Linear
CL,H CL,H CL,H

C T
– – T

Budget-Constrained – – – – C

6

?��

�

�

--

Table 1: Comparison of the strength of activity rules in different settings. Arrows indicate that one rule

implies another rule. Entries in bold are associated with a proof or example.

We observe that, irrespective of whether the bidders are quasi-linear or budget-constrained,

RPAR dominates AMR and MR, and both SRPARql and SRPAR in turn dominate RPAR,

through the following reasoning:

SRPAR RPAR

Quasi-Linear T
�

T

Budget-constrained C –

and

SRPARql RPAR

Quasi-Linear C
�

T

Budget-constrained – –

Thus, there is an unambiguous recommendation in favor of SRPAR over RPAR. On the

other hand, it is difficult to compare rules SRPARql and SRPAR, because SRPARql domi-

nates SRPAR for quasi-linear bidders but is dominated by SRPAR for budget-constrained

bidders.

It seems reasonable that allowing truthful bidding, T, should receive higher priority than

ensuring consistent bidding, because an activity rule should avoid “hurting” straightforward

bidders by making them deviate because of the activity rule. On those lines, SRPAR is

weaker than SRPARql, and has the T property independent of the utility class of the bidders,
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and is likely preferred over SRPARql unless there is good reason to believe that there are no

budget constraints.

The choice of activity rule could also be personalized to individual bidders. Of course, one

would prefer an activity rule that is always strong, independent of the particular utility class

of the bidders. But this is not possible. For example, a rule that allows all straightforward

strategies (and is not too strong) for budget-constrained bidders must be too weak for non

budget-constrained bidders. See example 4.2. On the other hand, if an activity rule is

strong for non budget-constrained bidders then it must be too strong for bidders with budget

constraints and preclude straightforward bidding. To see this, consider that two bundles A

and B are available for sale. Suppose that in two different rounds of the auction, the price

of A and B increase by the same amount and consider a bidder with values for the bundles

well above the prices. In the case that she is not budget-constrained then the bidder’s

preference for one bundle over the other should not change. But in the case that she is

budget-constrained, a behavior in which the bidder changes from bundle A to B (where A

is the more expensive of the two) can be rationalized by a straightforward bidder. Thus, as

an auction designer, it is useful to have some prior information about the types of utility

functions to expect of bidders in choosing an appropriate activity rule.

5. Experimental Simulations

In this section, we present the results of experimental simulations that are designed

to validate the importance of strong activity rules in the context of budget-constrained

bidders. We study activity rules in the context of the clock-proxy auction [5]. This auction

has been proposed for the landing slot auction at LaGuardia, for wireless spectrum auctions

and for auctions for power generation in the context of power generation capacity [38]. We

describe two variations of the clock-proxy auctions, one that incorporates RPAR and one

that incorporates SRPAR.

We study the immediate problems caused when rules prevent straightforward bidding.

We implement a maximally straightforward bidding strategy, such that when a deviation from

straightforward bidding is necessary in order to meet the rule, we seek a simple modification
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to the straightforward strategy by dropping packages during the clock phase and modifying

bid values associated with bids in the transition to the proxy phase. We adopt problem

distributions from the CATS test suite for combinatorial auctions [39], including some of the

problems originally described by Sandholm [40]. They have been widely used in the literature

on combinatorial auctions [41, 42]. A budget factor is used to assign a budget constraint to

each bidder as a function of the largest value that bidder has across all packages.

5.1. Instantiating the Clock-Proxy Auction

The clock-proxy auction starts with a clock phase and ends with a proxy phase. The

purpose of the clock phase is to provide price discovery. In each round of the clock phase the

auctioneer reports linear prices and bidders respond with a package of items. Bids are XOR

in nature across rounds. Prices for items with excess demand are increased and the clock

phase terminates when supply is weakly greater than demand on all items. In transitioning

to the proxy phase, bidders can submit a final claim about their value on every clock bundle

that they have mentioned together with values on a small number (E ≥ 0) of additional

bundles. In our context of budget constraints, we also allow bidders to make a claim about

their budget constraint at this transition point.

The proxy phase is a sealed-bid auction, but simulates an ascending-price auction with

non-linear and non-anonymous prices. We refer to each simulated round in this proxy phase

as a proxy round. Each bidder is represented here by a proxy that follows a straightfor-

ward bidding strategy with respect to the reported valuation and budget information. This

strategy is not to be confused with the maximally straightforward bidding strategy that we

simulate for bidders in each actual round of the auction. This proxy bidding strategy simply

defines the outcome of the final proxy phase. In our instantiation, the proxy agents bid on

the set of packages in each round that maximize reported utility. A provisional allocation is

computed in each proxy round to maximize revenue given bids and prices are increased to

each losing bidder. The proxy phase, and thus also the entire clock-proxy auction, terminates

as soon as supply is weakly greater than demand and no new bids are submitted.

We modify the behavior of the proxy phase from the standard clock-proxy auction to

allow for the existence of budget-constrained bidders. Let pask(S) be the ask price the
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auctioneer specifies for bundle S. For bundle S where pask(S) ≤ B and pask(S) ≤ v(S), the

proxy bid price, pbid(S), is simply pask(S). For bundles with pask(S) > B or pask(S) > v(S),

the bid price is pbid(S) = pask(S) − ε, where, ε > 0 is the bid increment in the proxy stage.

By adopting this “ε-discount” the effective ask prices on these bundles does not increase

further.

A proxy agent reports packages in each round that (a) maximizes the quasi-linear utility

(value minus price) to within ε among all those bundles that are priced below value and

below budget or priced just above the value (b) has quasi-linear utility at least as large as

that in (a) but priced just above budget. This bidding strategy ensures that the proxy’s

demand set is monotonically increasing across rounds. Because of the price dynamics, this

has the effect of reporting packages, S ⊆ G, in each round that satisfy:

v(S)− pbid(S) + ε ≥ max
T∈GB

{v(T )− pbid(T )} , (5.1)

where the maximum is taken over a restricted set of bundles,

GB = {T ⊆ G | [v(T ) ≥ pask(T ) and pask(T ) ≤ B] or [v(T ) < pask(T )]} . (5.2)

We now provide details of the application of SRPAR and RPAR to the clock proxy

auction, including a description of the impact of the activity rule on our construction for a

maximally-straightforward bidding strategy.

The Clock-Proxy Variation with SRPAR. In the clock stage we implement SRPAR

exactly as described in Section 4. At the transition to proxy we impose SRPAR directly for

the clock bundles along with some additional constraints for the extra transition bundles.

A bidder can report up to E ≥ 0 additional bundles that were not mentioned in the clock

stage, and for these bundles and the clock bundles, associate a valuation function v̂ that

together with a claim about a budget constraint B̂ (perhaps infinite), provides a feasible

solution to the SRPAR constraints in (4.1) along with the following constraints:

v(Sk)− pk(Sk) ≥ v(U)− pk(U) if pk(U) ≤ B ∀Sk ∈ Bidsclock, U ∈ Bundlesnew (5.3)

v(U) ≥ v(S) ∀U ⊃ S, S ∈ Bundlesclock, U ∈ Bundlesnew, (5.4)

where Bidsclock and Bundlesclock are the bids (bundles associated with a price) and bundles

elicited in the clock stage respectively and Bundlesnew are the additional transition bundles.
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Constraint (5.3) is the same as constraint (4.1a) in SRPAR. Constraint (5.4) just ensures

free-disposal.

The straightforward bidding strategy for budget-constrained bidders in clock-

proxy with SRPAR is defined as:

(a) Clock stage: In each round, bid on the package that maximizes utility given a valuation

function and budget constraint, and given current prices.

(b) Transition stage: Select the additional E ≥ 0 bundles that maximize quasi-linear

utility, given the final clock prices and ignoring the budget constraints. Report the true

value for all clock bundles and all additional bundles together with the true budget

constraint information.

The Clock-Proxy Variation with RPAR. In the clock stage we implement RPAR

exactly as described in Sections 3. We also need an activity rule at the transition from from

clock to proxy. For RPAR, we adopt a relaxed rule that is inspired in part by some of the

operational details in Hoffman [43], while differing in substance in order to better allow for

budget-constrained bidders during the clock stage.10 Ausubel et al. [5] also suggest the use

of a relaxed activity rule, but for a different reason. Their concern is to address demand

reduction in the clock phase, which can occur because of linear pricing. A relaxed activity

rule allows bidders to reverse some of this demand reduction.

The relaxed RPAR at the transition is parameterized by relaxation parameter, α > 1,

10Hoffman [43] specifies an upper bound on the values of clock as well as the new bundles based on their

prices in the final rounds for a drop-out bidder. But we cannot upper bound the true value for budget-

constrained bidders and hence do not impose these constraints. Furthermore, these authors also suggest

to include a lower bound on the values of new bundles based on prices. We do not include this constraint

because the prices at the end of clock phase need not be representative of the prices at the end of the proxy

stage with budget-constrained bidders.
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and defined as:

α[v(Sk)− pk(Sk)] ≥ v(Sl)− pk(Sl) ∀Sk, Sl ∈ Bidsclock (5.5)

α[v(Sk)− pk(Sk)] ≥ v(U)− pk(U) ∀Sk ∈ Bidsclock, U ∈ Bundlesnew (5.6)

pmax(S) ≤ v(S) ∀S ∈ Bundlesclock, (5.7)

where pmax(S) is the maximum price that the bidder has bid on bundle S during the

clock stage. This activity rule ensures two things. Firstly it ensures that the clock bundles

maximize the quasi-linear utility with an α relaxation with respect to any other clock bundle

and that they are valued higher than the maximum bid price on that bundle. Secondly it

ensures that any transition bundle has lower quasi-linear utility than a clock bundle with a

α relaxation.

In defining a bidding strategy for budget-constrained bidders in clock-proxy with RPAR

rather than SRPAR we adopt as close an approximation to a straightforward, truthful bid-

ding strategy as is possible given the activity rule.

The following example shows that a bidder might be unable to meet RPAR at the tran-

sition to proxy, even without trying to submit additional bundles and for some α > 1.

Claim 5.1. A truthful budget-constrained bidder may be unable to meet the relaxed RPAR

rule in the transition from clock to proxy by simply associating truthful values with each of

the clock bundles, even when the relaxation parameter, α, exceeds 1.

Proof. Proof It suffices to provide an example of a scenario where this happens. We provide

an example in the case when α = 1.05. Consider an auction of two items A and B. Consider

a bidder with a budget of 100 whose value for item A is 125 and whose value for item B is

110. Say the prices in the last two rounds of the auction are as shown in the following table.

Also, shown are the packages, xt, that form the best-response of the bidder:

Round pt xt

t-1 (80,75) (1,0)

t (110,100) (0,1)

These two bundles satisfy RPAR because (110−80)(0−1) + (100−75)(1−0) = −5 < 0.

However, RPAR constraint (5.5) for α = 1.05, written in terms of the valuations reported at
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this transition from clock to proxy, requires 1.05(v(A) − 80) ≥ v(B) − 75 and 1.05(v(B) −
100) ≥ v(A) − 110. Valuations, v(A) = 125 and v(B) = 110, cause the second inequality

to be violated. It is also interesting to observe that for α = 1, the constraints are always

infeasible for any valuations.

So, bidders can be forced to report false values on clock bundles at the transition, and

sometimes there can be no reports that will satisfy RPAR! To overcome this difficulty we

further relax α-RPAR at the transition, by always allowing every bundle in the clock phase

to be submitted with a value no less than the maximum price bid on the bundle in the clock

phase. This allows all bundles that receive a bid in the clock stage to be passed on to the

proxy stage.

The maximally straightforward bidding strategy for budget-constrained bid-

ders in clock-proxy with RPAR is defined as:

(a) Clock stage: In each round, greedily pick a utility maximizing bundle (by definition,

within budget) at the current prices satisfying RPAR.

(b) Transition stage:

(b1) Select a subset of the clock bundles that will satisfy α-RPAR at values discounted

from the true values and to minimize the maximum difference of the submitted

values from the true values. We formulate this as a mathematical program de-

scribed in the Appendix A. All other bundles are submitted at the maximal bid

price from the clock phase.

(b2) Sort the remaining (non-clock) bundles in order of decreasing quasi-linear utility

at the final clock prices, and greedily pick the first E ≥ 0 packages (if any) that

satisfy α-RPAR when associated with the bidder’s true value and with the values

already assigned in step (b1) to clock bundles. The budget information is not

considered in picking these extra bundles.

5.2. Defining an Efficiency Metric for Budget-Constrained Bidders

For quasi-linear utilities, an efficient allocation is defined as the one that maximizes the

total value of the allocation across the bidders. Although one can also adopt the same
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definition of efficiency for budget-constrained bidders, this benchmark is more problematic

in this context because it is often unattainable when coupled with strategic bidders; e.g. the

VCG mechanmism fails (see Borgs et al. [28], Dobzinski et al. [29]).

Consider a single item auction with two bidders, A and B. Say A and B have values of

10 and 8 for the item with budgets of 4 and 6 respectively. The maximum value allocation

cannot be supported as a price equilibrium as B has sufficient budget to outbid A. Consider

also limiting case of budget constraints B = 0 for every bidder with multiple items. Now,

because payments cannot be collected from bidders, this reduces to the setting of voting

theory. The Gibbard-Satterthwaite theorem [44, 45] states that any strategy-proof voting

rule is dictatorial if there are at least three outcomes in the range of the rule. Thus, Pareto

efficiency, but not allocative efficiency in the sense of maximizing total value, can be achieved.

An alternative metric, that is simple and somewhat intuitive, is to define the efficiency of

an allocation S∗ in terms of the sum, over all bidders, of the minimum of the value and the

budget (min{v(S∗i ), B}) for each bidder [28]. The best allocation is that which maximizes the

sum of this “min(v,B) value” over all bidders. The intuition behind the metric is that it will

be hard to effect tradeoffs between the value of one bidder and another when these values are

greater than the budgets of the bidders because prices cannot be used to effect the tradeoff.

Indeed, this is achievable in the context of mechanism design for a single-item setting. It

is unknown whether or not the target of the allocation that maximizes this min(v,B) value

is achievable in the combinatorial setting. Maskin [26] elaborates issues with regard to the

definition of efficiency for a single item and suggests a new definition called “constrained

efficiency” in an all-pay single item auction setting. Its extension to multiple items, however

appears to be an open problem.

We choose to adopt both the total value and this total min(v,B)-value in presenting our

results. This latter metric is also used to provide a normalization when reporting the revenue

achieved in the clock-proxy auction in the presence of budget constraints.11

11One can also consider a metric defined in terms of an approximate budget-constrained price equilibrium,

where S∗ and prices p∗ are in an equilibrium when: (a) the allocation (approximately) maximizes each bid-

der’s utility at the prices and the bidder’s (given) budget constraint; and (b) the allocation (approximately)
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5.3. Experimental Results

The distributions on bidder valuations that we adopt in our experiments are the arbitrary,

matching, paths and scheduling distributions and the two legacy distributions (L2 - uniform

with linearly random and L4 - decay with linear random)12 [40]. For each distribution we

generate 20 instances and present our results averaged over these instances. We choose

distribution-specific parameters (such as maxbid) so that on average each bidder has a value

for at least 10 bundles and adopt the exclusive-or (XOR) valuation logic, so that the bidder’s

value for some bundle S is the maximal value over all bundles that are a subset of S. Having

valuation functions with at least 10 bundles makes them sufficiently complex so that the

distinction between RPAR and SRPAR matters. For the legacy distributions, we follow

Parkes and Ungar [9] and generate valuations on bundles for each bidder independently, and

join them together to form the input to our auction simulator.

We were unable to adjust the parameter in paths to achieve suitably large valuation

functions (bidders valued on average only up to 3 bundles even with tuned parameters).

Because of this the results for the paths distribution are the same for RPAR and SRPAR (as

RPAR and SRPAR are equivalent in the limiting case of one bundle) and are not presented

here.

To analyze the efficiency and revenue results for various budgets, we introduce a notion

called the budget factor: the budget factor BF ∈ (0, 1], defines the budget B of a bidder as a

fraction BF of the maximum value that the bidder has over all bundles. In our experiments,

we make the simplifying assumption that all bidders have the same budget factor. We

compute the following efficiency and revenue metrics:

VB/maxVB - Ratio of the total min{v(S), B} of the allocation resulting from the

auction to the maximum total min{v(S), B} over all allocations.

maximizes the seller’s revenue at the prices. Given this allocation, the efficient allocation would be defined to

maximize the total value v(S) over all bidders, across all allocations S for which there exists an approximate,

budget-constrained price equilibrium. While this can be formulated as a MIP, it is a large formulation and

we have been unable to find an operational methodology to compute this benchmark.
12The instances are available at http://www.eecs.harvard.edu/econcs/data/cor09.tar.gz.
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CP/maxV - Ratio of the total value of the allocation resulting from the auction to the

maximum total value over all allocations (the traditional definition of efficiency)

R/maxVB - The ratio of the revenue in the auction to the maximum of the total

min{v(S), B} over all allocations. We normalize the revenue by the maximum of the

total min{v(S), B} because this represents the maximum transferable monetary value

from the bidders to the auctioneer at the specified budgets.

We vary budget factor BF , the number of extra bundles E ≥ 0 that can be submitted upon

transition to the proxy phase, and the α ≥ 1 relaxation to RPAR. We adopt the following

notation in the figures:

BF - Budget factor

E - Number of extra bundles at transition

A - The relaxation parameter α for clock-proxy with RPAR

New - The performance of clock-proxy with SRPAR, our proposed new activity rules

Old - The performance of clock-proxy with RPAR, the standard revealed-preference activity

rule and as relaxed by parameter α ≥ 1.

Figures 3- 7 illustrate the results for the L4 (decay) legacy, L2 (uniform) legacy, matching

arbitrary and scheduling distributions. In each of these figures we vary the budget factor

BF . Subplot (a) reports the min{v,B} efficiency metric (VB/maxVB), (b) reports the

traditional efficiency metric (CP/maxV), and (c) reports the revenue metric (R/maxVB).

These subplots fix E = 4 and consider both α = 1.05 and α = 1.0 for RPAR. We have done

experiments for several values of the parameters and observed a qualitatively similar trend

across the parameters.

One general observation based on the results in the figures is that SRPAR tends to

dominate the performance of RPAR with respect to the min{v,B} efficiency (subplots (a))

and revenue metrics (subplots (c)). In general, we observe a maximum improvement at low

budget factors (3.8% and 7.8% on average) and qualitatively less at high budget factors.

The amount of improvement varies with distribution and is as high as 13% and 20% for the
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L4 legacy distribution (averaged over BFs 0.1 and 0.2) to an insignificant difference for the

arbitrary distribution.

Even though we present the traditional efficiency metric, CP/maxV, in subplots (b), this

metric is less meaningful when budgets are constrained because of the issues discussed in

Section 5.2. As can be seen in the plots, although there is a marginal improvement for L4, L2

and arbitrary distributions, it marginally under performs for the matching and scheduling

distributions.

While the performance of clock-proxy with respect to the efficiency metrics does not

strictly improve with the budget factor, the performance generally improves with increasing

BF for both RPAR and SRPAR. The revenue metric has a decreasing trend with budget

factor in the matching distribution and an increasing trend in other distributions. The

decreasing trend should not be a surprise because the goal of the clock-proxy auction is to

maximize efficiency rather than revenue and it could very well be the case that they occur

at different auction outcomes.

We have also considered the effect of varying the number of extra bundles, E, that can

be submitted at the transition to proxy. We find that the min{v,B} efficiency and revenue

metrics improve with E, in return for allowing more bids to be submitted to the proxy. This

is not the case for the maxV efficiency metric, possibly again because of the discrepancy in

the choice of this metric for budget constrained bidders.
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Figure 3: L4 Legacy – Decay and Linearly Random – 20 items and 20 bidders with 12.5 bundles per bidder.

Turning to the relaxation parameter α, and clock-proxy with RPAR, we see from the

subplots that the performance with α = 1.05, a more relaxed rule, tends to dominate that
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Figure 4: L2 Legacy – Uniform and Linearly Random – 20 items and 20 bidders with 15 bundles per bidder.
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Figure 5: CATS – Matching – 32 items and total number of bundles randomly chosen between 400–500

(resulting in average of 13.3 bundles per bidder and 34 bidders).
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Figure 6: CATS – Arbitrary – 25 items and total number bundles randomly chosen between 400–500 (re-

sulting in an average of 8.4 bundles per bidder and 26 bidders).

for α = 1.0, in general, but we do observe the reverse as well. The reason why such a

behavior is possible is because we are working with a hybrid auction where (a) there is loss
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Figure 7: CATS – Scheduling – 25 items and total number of bundles randomly chosen between 200–400

(resulting in average of 18.6 bundles per bidder and 18 bidders.)

in information during the transition from clock to proxy and (b) the transitioning rules in

the case of RPAR does not lead to submitting (i) true values for the clock bundles (but close

to true values) and (ii) more bundles for the relaxed rule as compared to the tighter rule as

one might expect. See the clock-proxy variation with RPAR in Section 5.1.

Additional evidence that we observed in our experiments, and also suggestive of better

performance with SRPAR than RPAR, is that the number of rounds in the clock auction

with SRPAR tends to be greater than with RPAR. This is because not all straightforward

bundles can pass RPAR. We also observe that the set of bundles submitted to the proxy in

clock-proxy with SRPAR tends to be a superset of the bundles submitted by RPAR.

6. Concluding Remarks

Activity rules are important in practical auction design because they promote price dis-

covery through simple, consistent bidding by auction participants. We have advocated the

use of strong activity rules, and developed such a rule for budget-constrained bidders. As a

special case for non budget-constrained bidders, we recover a rule that strengthens the well

known revealed-preference activity rule and prevents some undesirable behaviors. While the

strong activity rule for budget-constrained bidders allows some inconsistent bidding in the

presence of non budget-constrained bidders, it nevertheless allows simple, consistent bidding

for such bidders and is likely to be useful in practice.
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The proposed strong activity rules provide an improvement in the efficiency and rev-

enue properties of the clock-proxy auction in experiments, when populated with maximally

straightforward bidders. The relative performance from SRPAR over RPAR improves for

tighter budget constraints.

Acknowledgements

We thank Peter Cramton for providing ideas on direct feedback methods and Peter

Belobaba for useful discussions on the state of the airline industry. We are grateful to the

anonymous reviews for their constructive comments about an earlier version of this paper.

The first author would like to thank Prahladh Harsha for several useful comments on the
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A. Computing the Bidding Strategy in Clock-Proxy with RPAR

We formulate the problem of assigning values to clock bundles, i.e. bundles already

mentioned in the clock stage, while meeting RPAR at the transition from clock to proxy.

The problem is to pick a subset of the clock bundles that will satisfy RPAR at values that

are minimally discounted from true values. We break ties based on the total submitted value

of the bundles. We formulate this problem as a MIP:

min Mδ − ε
∑
k∈D

v̂(Sk) (A.1a)

v(Sk)− v̂(Sk) ≤ δ ∀k ∈ T (A.1b)

v̂(Sk) = v̂(Sl) if Sk = Sl ∀l, k(6= l) ∈ T (A.1c)

pmax(Sk)zk ≤ v̂(Sk) ≤ v(Sk)zk ∀k ∈ T (A.1d)

zk + zl = 2− ykl ∀l, k( 6= l) ∈ T (A.1e)

Mykl + α
[
v̂(Sk)− pk(Sk)

]
≥ v̂(Sl)− pk(Sl) ∀l, k( 6= l) ∈ T (A.1f)

zk ∈ {0, 1} ∀k ∈ T (A.1g)
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ykl ∈ {0, 1, 2} ∀l, k(6= l) ∈ T (A.1h)

δ ≥ 0 (A.1i)

where T = {1, ..., t} and D = {k|Sk 6= Sl,∀k, l ∈ T}, so that all bundles are accounted only

once in the objective. This is necessary because a bundle could be elicited several times in

the clock auction. Value v̂(Sk) is the submitted value of bundle Sk whose true value is v(Sk).

Constant, M > 0 is a large number and is set equal to 10 ∗maxk∈T v(Sk). Constant, ε > 0

is a small positive number. Variable, δ is the maximum difference between the true value

and the submitted value. Since δ is constrained to be non-negative, the submitted value is

always lower than the true value. This constraint is particularly critical when the value of a

bundle is lower than the budget. The objective is hybrid, in the sense that it first minimizes

δ and then breaks ties based on the total submitted value. Constraint (A.1c) ensures that

the values of two bundles elicited in different rounds of the auction are the same as long

as the bundles are the same. zk ∈ {0, 1} is a variable that is set to 1 if the bundle Sk is

chosen by the MIP, and 0 otherwise. Variable ykl ∈ {0, 1} is set to 0 only if both variables

zk and zl are 1 and is used to enforce the activity rule between the pair of bundles Sk and

Sl. Constraint (A.1f) checks that the activity rule is satisfied when both bundles Sk and Sl

are chosen by the MIP.
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