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Abstract
Actions are spatio-temporal patterns which can be char-

acterized by collections of spatio-temporal invariant fea-
tures. Detection of actions is to find the re-occurrences
(e.g. through pattern matching) of such spatio-temporal
patterns. This paper addresses two critical issues in pat-
tern matching-based action detection: (1) efficiency of pat-
tern search in 3D videos and (2) tolerance of intra-pattern
variations of actions. Our contributions are two-fold. First,
we propose a discriminative pattern matching called naive-
Bayes based mutual information maximization (NBMIM)
for multi-class action categorization. It improves the state-
of-the-art results on standard KTH dataset. Second, a novel
search algorithm is proposed to locate the optimal subvol-
ume in the 3D video space for efficient action detection.
Our method is purely data-driven and does not rely on ob-
ject detection, tracking or background subtraction. It can
well handle the intra-pattern variations of actions such as
scale and speed variations, and is insensitive to dynamic
and clutter backgrounds and even partial occlusions. The
experiments on versatile datasets including KTH and CMU
action datasets demonstrate the effectiveness and efficiency
of our method.

1. Introduction
Actions can be treated as spatio-temporal objects which

are characterized as 3-dimensional volumetric data. Like
the use of sliding windows in object detection, action detec-
tion in a video can be formulated as locating 3D subvolumes
that contain the target action. Despite previous successes
of sliding window-based object detection [10], locating de-
sired actions in the video space is still a challenging prob-
lem, mainly due to the following two difficulties.
First, searching for actions in the video space is much

more complicated than searching for objects in the image
space. Without knowing the location, temporal duration,
and the spatial scale of the action, the search space for video
actions is prohibitive for exhaustive search. For example, a
one-minute video sequence of size 160 × 120 × 1800 con-
tains more than 1014 spatial-temporal subvolumes of vari-
ous sizes and locations. This number is more than 106 times

Figure 1. Action detection is formulated as searching for a subvol-
ume in video that has the maximummutual information toward the
action class. Each circle represents a spatio-temporal feature point
which contributes a vote based on its own mutual information.

larger than the number of bounding boxes that an image
of size 160 × 120 can generate. Therefore, although some
state-of-the-art approaches can efficiently search the 2D im-
age space for object detection [10], they are not scalable to
search 3D videos, due to the enormous search space. To
reduce such a huge search space, some other methods try
to avoid exhaustive search by sampling the search space,
e.g. only considering a fixed number of spatial and tempo-
ral scales [9]. However, this treatment is under the risk of
missing detections. Moreover, after subsampling, the solu-
tion space is still very large.
Second, human actions involve tremendous intra-pattern

variations. The same type of actions can be completely dif-
ferent in their visual appearances, due to the variations in
performing speed, clothing, scale, view points, not to men-
tion partial occlusion. When using a single and rigid action
template for pattern matching [9] [4], the actions that vary
from the template can not be detected. One potential rem-
edy is to use multiple templates to cover more variations,
but the required number of templates increases rapidly re-
sulting in formidable computational costs.
We propose an efficient action detection approach that

addresses the two challenges mentioned above. As illus-
trated in Fig. 1, a video sequence is represented by a col-
lection of spatio-temporal invariant points (STIPs), where
each STIP casts a positive or negative-valued vote for the
action class, based on its mutual information w.r.t. the action
class. Action detection can then be formulated as the prob-
lem of searching for the 3D subvolume that has maximum
total votes. Such a 3D subvolume has a maximum mutual
information w.r.t. the action class. This is a new formula-
tion for action detection. To handle the large search space
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in 3D video, our proposed method decouples the temporal
and spatial spaces and applies different search strategies on
them to speed up the search. In addition, to make an analogy
to the template-based pattern matching, our discriminative
matching can be regarded as the use of two template classes,
one from the entire positive training data and the other from
the negative samples, based on which, discriminative learn-
ing is exploited for more accurate pattern matching.
The benefits of our method are three-fold. First, the

proposed discriminative pattern matching can well handle
action variations by using all of the training data instead
of a single template. By incorporating the negative train-
ing information, our pattern matching has better discrimi-
native power across different action classes. Second, unlike
conventional action detection methods which require object
tracking and detection, our method is a pure data-driven ap-
proach that does not rely on object tracking or detection.
In the meanwhile, as our method does not depend on back-
ground subtraction, it can tolerate clutter and moving back-
grounds. Last but not least, the proposed search method for
3D videos is computationally efficient and is suitable for a
real time system implementation. The experiments on vari-
ous action data sets including cross-action data validate the
effectiveness and efficiency of our method.

2. Related Work
Action categorization and detection has been an active

research topic and many methods have been proposed. One
type of approaches uses motion trajectories to represent ac-
tions and it requires target tracking [16] [1].Another type
of approaches uses sequences of silhouettes or body con-
tours to model actions [8] [14] and it requires background
subtraction. Contemporary methods for action categoriza-
tion use local spatio-temporal features to characterize the
video and perform classification over the set of local fea-
tures [13] [12] [17] [19] To improve the classification per-
formance, both shape and motion information are applied
for action categorization [15] [21] [22]. In terms of repre-
senting actions, some methods characterize an action as a
spatio-temporal template, such as motion history [4] and
space-time shapes [3], so that action classification and de-
tection can be done through finding the matches of the
spatio-temporal template [20] [9] [18] [7].
Some recent work in object detection were related to our

proposed method as well. In [10], object detection was for-
mulated as finding the optimal bounding box that gives the
highest detection score in the image. An efficient branch-
and-bound method was proposed to search for the optimal
bounding box in the image. In [5], a naive-Bayesian nearest
neighbor classifier was proposed. Based on the “query-to-
class” distance, it achieves very good results in object cate-
gorization and largely improves the performance of nearest
neighbor classifier based on the “query-to-image” distance.

3. Action Model and Matching
3.1. “Bag of Features” Representation for Actions
We represent an action as a space-time object and char-

acterize it by a collection of spatio-temporal interest points
(STIPs) [11]. Compared with the SIFT feature in the 2D
image domain, STIP is an extension of invariant features
to 3D video data. After detecting STIPs, two types of fea-
tures can be used to describe them [12]: histogram of gra-
dient (HOG) and histogram of flow (HOF), where HOG is
the appearance feature and HOF is the motion feature. As
STIPs are locally invariant for the 3D video, such features
are relatively robust to action variations due to the changes
in performing speed, scale, lighting condition and cloth. We
denote a video sequence by V = {It}, where each frame It
consists of a collection of STIPs, It = {di}. We do not
select key-frames but collect all STIPs to represent a video
clip by Q = {di}.
3.2. Discriminative Matching
We denote by d ∈ R

N a feature vector describing a
STIP; C = {1, 2, ..., C} is the class label set. Based on the
naive Bayes assumption and by assuming the independence
among the STIPs, we can evaluate the mutual information
between a video clip Q and a specific class c ∈ C as:

MI(C = c,Q)

= log
P (Q|C = c)

P (Q)
= log

∏
dq∈Q P (dq|C = c)
∏

dq∈Q P (dq)

=
∑

dq∈Q
log

P (dq|C = c)
P (dq)

=
∑

dq∈Q
sc(dq),

where sc(dq) = MI(C = c, dq) is the mutual information
score for dq w.r.t. class c. The final decision ofQ is based on
the summation of the mutual information from all primitive
features dq ∈ Q w.r.t. class c. To evaluate the contribution
sc(dq) of each dq ∈ Q, we calculate the mutual information
through discriminative learning:

sc(dq) = MI(C = c, dq) = log
P (dq|C = c)

P (dq)

= log
P (dq|C = c)

P (dq|C = c)P (C = c) + P (dq|C �= c)P (C �= c)

= log
1

P (C = c) + P (dq|C �=c)
P (dq|C=c)P (C �= c)

. (1)

Assuming an equal prior, i.e. P (C = c) = 1
C , we have:

sc(dq) = log
C

1 + P (dq|C �=c)
P (dq|C=c) (C − 1)

. (2)

From Eq. 2, we can see that the likelihood ratio test
P (dq|C �=c)
P (dq|C=c) determines whether dq votes positively or neg-
atively for class c. When MI(C = c, dq) > 0, i.e. likeli-
hood ratio P (dq|C �=c)

P (dq|C=c) > 1, dq votes a positive score sc(dq)



for the class c. Otherwise if MI(C = c, dq) ≤ 0, i.e.
P (dq|C �=c)
P (dq|C=c) ≤ 1, dq votes a negative score for the class c.
After receiving the votes from every dq ∈ Q, we can make
the final classification decision for Q based on its mutual
information toward C classes.
For the C-class action categorization, we built C one-

against-all classifiers. The test action Q is classified as the
class that gives the largest detection score.
c∗ = arg max

c∈{1,2,..,C}
MI(c,Q) = arg max

c∈{1,2,..,C}

∑

d∈Q
sc(d).

We call this naive-Bayes based mutual information maxi-
mization (NBMIM).

3.3. Computing the Likelihood Ratio
Denote by T

c+ = {Vi} the positive training dataset of
class c, where Vi ∈ T

c+ is a video of class c. As each V
is characterized by a collection of STIPs, we represent the
positive training data by the collection of all positive STIPs:
T

c+ = {dj}. Symmetrically, the negative data is denoted
by T

c−, which is the collection of all negative STIPs.
To evaluate the likelihood ratio for each d ∈ Q, we ap-

ply the kernel density estimation based on the training data
T

c+ and T
c−. With a Gaussian kernel K(·) and by using

the nearest neighbor approximation as in [5], we have the
likelihood ratio:

P (d|C �= c)
P (d|C = c)

=
1

|Tc−|
∑

dj∈Tc− K(d − dj)
1

|Tc+|
∑

dj∈Tc+ K(d − dj)

≈ λc exp− 1
2σ2 (‖d−dc−

NN‖2−‖d−dc+
NN‖2).(3)

Here dc−
NN and dc+

NN are the nearest neighbors of d in class
c− and c+, respectively, and λc = |Tc+|

|Tc−| .

Adaptive Kernel Bandwidth:
For a Gaussian kernel, it is important to use appropriate
kernel bandwidth σ in density estimation. A large kernel
bandwidth may over smooth the density function while a
too small kernel bandwidth only uses the nearest neighbor
for the final result. Instead of using a fixed kernel as in [5],
we propose an adaptive kernel strategy, which adjusts the
kernel bandwidth based on the purity in the neighborhood
of a STIP. For a d ∈ Q, we denote its ε-nearest neighbors in
class c by NN c+

ε (d) = {dj ∈ T
c+ : ‖dj − d‖ ≤ ε}. Cor-

respondingly we denote by NNε(d) = {dj ∈ T
c+ ∪ T

c− :
‖dj − d‖ ≤ ε} the whole ε-nearest neighbors of d.
We now define the ε-purity of d by wε(d) = |NNc+

ε (d)|
|NNε(d)| .

AsNN c+
ε (d) ⊆ NNε(d), we havewε(d) ∈ [0, 1]. To adap-

tively adjust the kernel size, we choose 2σ2 = 1
wε(d) . De-

note by γ(d) = ‖d − dc−
NN‖2 − ‖d − dc+

NN‖2. Based on
Eq. 2, the adjusted voting score for each STIP for class c is:

sc(d) = log
C

1 + λc exp−γ(d)wε(d)(C − 1)
. (4)

Essentially, wε(d) describes the purity of the class c in the
ε-NN of point d. The larger the wε(d), the more reliable the
prediction it gives, and thus the stronger the voting score
sc(d). In the special case when d is an isolated point such
that |NN c+

ε (d)| = |NNε(d)| = 0, we treat it as a noise
point and set wε(d) = 0. Thus it does not contribute any
vote to the final decision as sc(d) = 0 according to Eq. 4.

Efficient Nearest Neighbor Search
For every STIP d ∈ Q, we need to search for its near-
est neighbors in order to obtain the voting score sc(d).
Therefore a number of nearest neighbor queries need to be
performed depending on the size of |Q|. To improve the
efficiency of searching for nearest neighbors in the high-
dimensional feature space, we apply locality sensitive hash-
ing for the approximate ε-NN search [6].

4. Action Detection in Video
4.1. Subvolume Mutual Information Maximization
The task of action detection is to identify where (spatial

location in the image) and when (temporal location) the ac-
tion occurs in the video. Based on our NBMIM criterion,
we give a new formulation of action detection as a subvol-
ume mutual information maximization problem. Given a
video sequence V , the goal is to find a spatial-temporal sub-
volume (3D subvolume) V ∗ ⊂ V , such that it has the maxi-
mum mutual information on class c:

V ∗ = arg max
V ⊆V

MI(V,C = c) (5)

= arg max
V ⊆V

∑

d∈V

sc(d) = arg max
V ∈Λ

f(V ),

where f(V ) =
∑

d∈V sc(d) is the objective function and
Λ denotes the candidate set of all valid 3D subvolumes in
V . Suppose the target video V is of size m × n × t. The
optimal solution V ∗ = t∗ × b∗ × l∗ × r∗ × s∗ × e∗ has 6
parameters to be determined, where t∗, b∗ ∈ [0,m] denote
the top and bottom positions, l∗, r∗ ∈ [0, n] denote the left
and right positions, and s∗, e∗ ∈ [0, t] denote the start and
end positions. As a counterpart of the bounding-box based
object detection, the solution V ∗ is the 3D bounding volume
that has the highest score for the target action.
The total number of the 3D subvolumes is in the order of

O(n2m2t2). Therefore, it is computationally prohibitive to
perform an exhaustive search to find the optimal subvolume
V ∗ from such an enormous candidate pool. In the follow-
ing, we first present the naive 3D branch-and-bound solu-
tion extended from 2D bounding-box search in [10], and
then present our new method to search V ∗ more efficiently.

4.2. Efficient Search for the Optimal 3D Subvolume
4.2.1 Naive 3D branch-and-bound
A branch-and-bound solution is proposed in [10] for search-
ing the optimal bounding box in an image for object de-



tection. This idea can be extended to find the optimal 3D
subvolume in videos. Denote by V a collection of 3D sub-
volumes. Assume there exist two subvolumes Vmin and
Vmax such that for any V ∈ V, Vmin ⊆ V ⊆ Vmax.
Then we have f(V ) ≤ f+(Vmax) + f−(Vmin), where
f+(V ) =

∑
d∈V max(sc(d), 0) contains only positive

votes, while f−(V ) =
∑

d∈V min(sc(d), 0) contains only
negative ones. We denote the upper bound of f(V ) for all
V ∈ V by:

f̂(V) = f+(Vmax) + f−(Vmin) ≥ f(V ). (6)

With this upper bound, we get a straightforward extension
of [10], with replacement of the 2D bounding box by a
3D subvolume. In order to distinguish this method from
our new method, we call it as the naive 3D branch-and-
bound method. Compared to the 2D bounding box search-
ing, the search of 3D subvolume is much more difficult. In
3D videos, the search space has two additional parameters
(start and end on the time dimension) and increases from
4-dimensions to 6-dimensions. As the complexity of the
branch-and-bound grows exponentially in the number of di-
mensions, the naive branch-and-bound solution is too slow
for 3D videos.

4.2.2 Our new efficient search
Instead of directly applying branch-and-bound in the 6D pa-
rameter space, our new method decomposes it into two sub-
spaces: (1) 4D spatial parameter space and (2) 2D temporal
parameter space. We denote by W ∈ R

2 × R
2 a spatial

window and T ∈ R × R a temporal segment. A 3D sub-
volume V is uniquely determined by W and T . The de-
tection score of a subvolume f(VW×T ) is: f(VW×T ) =
f(W,T ) =

∑
d∈W×T s(d). LetW = [0,m] × [0, n] be the

parameter space of the spatial windows, and T = [0, t] be
the parameter space of temporal segments. Our objective
here is to find the spatio-temporal subvolume which has the
maximum detection score:

[W ∗, T ∗] = arg max
W⊆W,T⊆T

f(W,T ). (7)

We take different search strategies in the two subspaces W

and T and search alternately betweenW and T.
First, if the spatial windowW is determined, we can eas-

ily search for the optimal temporal segment in space T:
F (W ) = max

T⊆T

f(W,T ), (8)

This relates to a 1D max subvector problem and we will
discuss its efficient solution later.
To search the spatial parameter space W, we employ

a branch-and-bound strategy. Since the efficiency of a
branch-and-bound based algorithm critically depends on the
tightness of the upper bound, we first derive a tighter upper
bound.

Figure 2. Illustration of the upper bound in Lemma 1. The upper
bound is F̂1(W) = 19 + 9 + 7 = 35.

Given an arbitrary parameter space W = [m1,m2] ×
[n1, n2], we denote byW ∗ = arg maxW∈W F (W ) the op-
timal solution, and denote by F (W) = F (W ∗). Assume
there exist two sub-rectangles Wmin and Wmax such that
Wmin ⊆ W ⊆ Wmax for any W ∈ W. For each pixel
i ∈ Wmax, denote by F (i) = maxT⊆Tf(i, T ) the maxi-
mum sum of the 1D subvector along the temporal direction
at pixel i’s location. Let F+(i) = max(F (i), 0), we have
the first upper bound for F (W), illustrated in Fig. 2.

Lemma 1 (upper bound F̂1(W))

F (W) ≤ F̂1(W) = F (Wmin) +
∑

i∈Wmax,i/∈Wmin

F+(i).

When Wmax = Wmin, we have the tight bound F̂1(W) =
F (Wmin) = F (W ∗).

Symmetrically, for each pixel i ∈ Wmax, denote by
G(i) = minT⊆Tf(i, T ) the minimum sum of the 1D sub-
vector at pixel i’s location. Let G−(i) = min(G(i), 0), we
have the other upper bound for F (W).

Lemma 2 (upper bound F̂2(W))

F (W) ≤ F̂2(W) = F (Wmax) −
∑

i∈Wmax,i/∈Wmin

G−(i).

When Wmax = Wmin, we have the tight bound F̂2(W) =
F (Wmax) = F (W ∗).

The proof of Lemma 2 is in the Appendix. As Lemma 1
and Lemma 2 are symmetric, we omit its proof due to the
page limit. Based on Lemma 1 and Lemma 2, we can obtain
a final tighter upper bound, which is the minimum of the
two available upper bounds:

Theorem 1 (Tighter upper bound F̂ (W))

F (W) ≤ F̂ (W) = min{F̂1(W), F̂2(W)} (9)



Based on the upper bound derived in Theorem 1, we
propose our new branch-and-bound solution in the spatial
parameter space W in Alg.1. Different from the naive
3D branch-and-bound solution, the new algorithm keeps
track of the current best solution which is denoted by
W ∗ in Alg.1. Only when a parameter space W contains
potentially better solution (i.e. F̂ (W) > F ∗), we push it
into the queue. It thus avoids a waste of memory and CPU
resources in maintaining the priority queue.

Alg.1: our new method
Require: video V ∈ R

m×n×t

Require: quality bounding function F̂ (see text)
Ensure: V ∗ = arg maxV ⊆V f(V )
setW = [T, B, L, R] = [0, n] × [0, n] × [0, m] × [0, m]
get F̂ (W) = min{F̂1(W), F̂2(W)}
push (W, F̂ (W)) into empty priority queue P
set current best solution {W ∗, F ∗} = {Wmax, F (Wmax)};
repeat
retrieve top stateW from P based on F̂ (W)
if (F̂ (W) > F ∗)
splitW → W

1 ∪ W
2

CheckToUpdate(W1,W ∗, F ∗, P );
CheckToUpdate(W2,W ∗, F ∗, P );

else
T ∗ = arg maxT⊂[0,t] f(W ∗, T );
return V ∗ = [W ∗, T ∗].

function CheckToUpdate(W,W ∗, F ∗, P )
GetWmin andWmax ofW

if (F (Wmin) > F ∗)
update {W ∗, F ∗} = {Wmin, F (Wmin)};

if (F (Wmax) > F ∗)
update {W ∗, F ∗} = {Wmax, F (Wmax)};

if (Wmax �= Wmin)
get F̂ (W) = min{F̂1(W), F̂2(W)}
if F̂ (W) > F ∗

push (W, F̂ (W)) into P

Efficient estimation of the upper bound F̂ (W)
To estimate the upper bound in Theorem 1, as well as to
search for the optimal temporal segment T ∗ given a spa-
tial window W , we design an efficient way to evaluate
F (Wmax), F (Wmin), and in general F (W ). According to
Eq. 8, given a spatial windowW of a fixed size, we need to
search for a temporal segment with maximum summation.
This problem can be formulated as the 1D max subvector
problem, where given a real vector of length T , the output is
the contiguous subvector of the input that has the maximum
sum. The 1D max-subvector problem is a classic problem
in one-dimension pattern recognition. There exists an ele-
gant solution called Kadane’s algorithm which is of a linear
complexity using dynamic programming [2]. By applying
the trick of integral-image, the evaluation of F (W ) using
Kadane’s algorithm can be done in a linear time. Thus the

naive 3D B&B our method
Dim. for B&B 6 (spatial-temporal) 4 (spatial)
Upper bound est. O(1) O(t)

Worst case O(m2n2t2) O(m2n2t)
Table 1. Complexity comparison of our method and naive 3D
branch-and-bound.

estimation of the upper bound F̂ (W) is of a linear complex-
ity O(t).
The worst case complexity comparison of our method

and the 3D branch-and-bound is presented in Table 1.
Although the upper bound estimation in our method is
O(t) compared with the constant complexity in naive 3D
branch-and-bound, the overall complexity of our algorithm
is O(m2n2t) which is better than that of the naive 3D
branch-and-bound which is O(m2n2t2).

5. Experiments
5.1. Action Categorization
The KTH dataset contains six types of human actions:

walking, jogging, running, boxing, hand waving and hand
clapping, each of which is performed several times by 25
subjects. Each video sequence exhibits one individual ac-
tion. There are 4 different environments where the video se-
quences are captured: outdoors, outdoors with scale varia-
tion, outdoors with different clothes and indoors. We follow
the standard experimental setting of KTH dataset as in [12].
Among the 25 persons, 16 of them are used for training and
the rest 9 are used for testing. The training dataset contains
1528 individual actions and the testing dataset contains 863
individual actions. The video resolution is 160 × 120. We
apply both HOG and HOF features (162-dimensional fea-
ture vector).
The categorization results are presented in Table 3. We

apply the adaptive kernel size for density estimation, with
ε = 2.6 for ε-NN search. We set λc = 1 in Eq. 3 by as-
suming |Tc+| = |Tc−|. Among the 863 testing actions, we
obtained 58 errors, and the total accuracy was 93.3%. Most
of the errors are due to the mis-classification of running to
jogging. In Table 2, we further compare our results to the
state-of-the-art results in [12]. We apply exactly the same
training and testing dataset, as well as the same STIP fea-
tures. Besides using a different classifier, we do not quan-
tize STIPs into “words”. Our NBMIM-based method im-
proves the state-of-the-art result. On one hand, this result
shows the discriminative power of the STIP. On the other

clap wave walk box run jog
clapping 142 0 0 1 0 1
waving 5 139 0 0 0 0
walking 0 0 144 0 0 0
boxing 0 0 0 143 0 0
running 4 1 0 0 103 36
jogging 3 0 3 0 4 134
Table 3. Confusion matrix for the KTH action datasets.



training testing features classifier accuracy
[12] 8 persons training + 8 persons cross-validation 9 persons STIP + “bag of words” non-linear SVM 91.8 %
ours 16 persons 9 persons STIP NBMIM 93.3 %

Table 2. Comparison with the state-of-the-art result on KTH dataset.

kernel size NBMIM NBNN
fixed (ε = 2.0) 92.2% 91.8%
adaptive (ε = 2.0) 93.0% N.A.
fixed (ε = 2.6) 92.6% 92.7%
adaptive (ε = 2.6) 93.3% N.A.

Table 4. Comparison of NBMIM and NBNN, with different selec-
tions of ε.

hand, it shows that it is unnecessary to quantize primitive
features into “words” for classification. This is consistent
with the discussion in [5] which pointed out that “bag-of-
features” representation has the potential to provide better
classification performance than “bag-of-words” model be-
cause the quantization step in the “bag-of-words” model re-
sults in the loss of discriminative information.
In Table 4, we compare the proposed NBMIM method

with NBNN in [5], together with the comparison of differ-
ent parameters of ε-NN search for density estimation. On
the selection of the parameter ε for density estimation, it
shows that the selection of ε = 2.6 gives a slightly better
performance than ε = 2.0. Overall, our method is insen-
sitive to the choice of ε as long as it is within a reasonable
range. Moreover, the results of our NBMIM that uses adap-
tive kernel sizes outperforms that of the NBNN method for
different selections of ε. It shows the improvement because
the discriminative learning performs better than only using
the likelihood ratio.

5.2. Action Detection
5.2.1 Efficiency comparison

To validate the efficiency gain of our method in search-
ing the 3D videos, we compare our method (Alg.1) with
the naive 3D branch-and-bound. We use the MVI-142a se-
quence in the CMU action dataset [9] for testing. The max
subvolume is of size 43 × 32 × 112. The input video V is
of size 120 × 160 × 141, a temporal segment from MVI-
142a. We intentionally choose such a target video of a short
length, such that the lengths of its 3 dimensions are bal-
anced. This gives a fair comparison to the naive 3D branch-
and-bound, because the longer the video length t, the less
efficient the naive 3D branch-and-bound will be.
Fig. 3 shows that our proposed method converges much

faster than the naive 3D branch-and-bound. In terms of the
number of branches, our method converges after 10, 302
branches, an order of magnitude faster than the naive 3D
branch-and-bound which needs 103, 202 branches before
convergence. This validates that the upper bound proposed
in Theorem 1 is much tighter than that of the naive 3D
branch-and-bound.

Figure 3. Comparison of the convergence.

Figure 4. Comparison of the size of the priority queue.

As mentioned earlier, another advantage of our method
is through keeping track of the current best solution. Only
when the upper bound is better than the current best solu-
tion, we push it into the queue. In comparison, the method
proposed in [10] needs to push every middle state into the
priority queue, as there is no record of the current best so-
lution. In Fig. 4, we compare the required size of the pri-
ority queue between our method and the naive 3D branch-
and-bound. The size of the priority queue in our method is
well controlled and is much smaller. In our method, dur-
ing the branch-and-bound process, the size of the priority
queue decreases after a peak value. However, for the naive
3D branch-and-bound, the size of priority queue always in-
creases, almost linearly to the number of branches. Since
each insertion or extraction operation of priority queue is
O(logn) for a queue of size n, the size of the priority queue
affects both the computational and memory costs. It is es-
pecially important to limit a queue to a moderate size for
the 3D video space search because it can generate a much
larger number of candidates than the 2D image case.

5.2.2 Detecting two-hand waving action
We select the two-hand waving action as a concrete example
for action detection. To validate the generalization ability of
our method, we apply completely different dataset for train-
ing (KTH dataset) and testing (CMU action dataset [9]). As
summarized in Table 5, for the positive training data, we ap-
ply the standard KTH hand waving dataset which contains
16 persons. The negative training data is constituted by two



pos. train hand-waving 16 persons (KTH)
neg. train walking 16 persons (KTH) + 1 indoor seq.
test two-hand waving + jumping jags (CMU)

Table 5. Experimental setup of two-hand waving detection. The
training and testing are from different datasets.

parts (1) the standard KTH walking dataset which contains
16 persons and (2) one office indoor sequences which con-
tains typical actions such as sitting down and standing up.
The testing dataset contains 48 sequences, which includes
two classes in the CMU dataset: (1) two-hand waving and
(2) jumping jags, as both of these two classes contain two-
hand waving actions. The duration of each test sequence is
from 10 to 40 seconds, with a resolution 160×120. Among
the 48 sequences, 19 of them contain a total number of 52
positive instances. The other 29 sequences do not contain
positive examples.
Considering that only a very small portion of pixels

d ∈ V correspond to STIP and have non-zero voting scores,
we put a constant negative prior s(d) = −5 × 10−5 to the
rest of zero pixels. With such a negative prior, we put a
penalty on detections of large spatio-temporal scales. To
evaluate the results, we apply similar measurement pro-
posed in [9] but with a loose criterion. For the precision
score, detection is regarded as correct if at least 1/8 of the
volume size overlaps with the ground truth label. For the
recall score, ground truth is regarded as retrieved if at least
1/8 of its volume size is covered by at least one detection.
For multiple instance detection in the same target video

sequence, we detect the first instance (subvolume with max-
imum mutual information) and check if its detection score
is larger than the detection threshold. If it is a valid de-
tection, we clear it by setting all of its pixels to zero val-
ues and continue to find another subvolume of the maxi-
mum summation. This process continues until the current
max subvolume is not a valid detection. Fig. 6 shows the
precision-recall curve of our method, by changing the detec-
tion thresholds. When selecting an appropriate threshold,
both precision and recall scores can achieve around 70%.
We present some of our detection results in Fig. 5.
To further speed up the search process, we slightly mod-

ify Alg.1, to obtain a trade-off between efficiency and accu-
racy. During the iterations of Alg.1, if F ∗ is larger than a
detection threshold (specified by the user), it is surely that
there is a valid detection in the corresponding parameter
space W. Therefore, we speed up the search by limiting
the rest of the search within W only. This leads to a much
faster convergence. To evaluate the trade-off between effi-
ciency and accuracy quantitatively, we tested 5 sequences
from CMU action dataset (details in supplementary materi-
als). We find that although there is no guarantee to obtain
the optimal solution, the search speed is usually hundreds
of times faster, and the solution is still quite close to the
optimal one.

Figure 6. Performance of two-hand wave detection in CMU
dataset. See texts for the definition of precision and recall.

The overall cost of our method is from three aspects: (1)
extraction of STIPs; (2) calculation of voting scores and
(3) search of the 3D subvolume. First, the detection of the
STIPs is 4-8 frames per second, depending on the video
contents. Second, by using LSH for efficient nearest neigh-
bor search, the query time of each STIP is only 10 to 20 mil-
liseconds. As each frame contains 5-10 STIPs on average,
the processing time is 5-20 frames per second. Finally, for
the efficiency purpose, we apply the approximated strategy
mentioned above in searching for the 3D bounding box in
our experiment. This leads to an efficient MATLAB imple-
mentation at around 5-30 frames per second. Overall, our
method has the potential to be implemented in real-time.

5.2.3 Multi-class action detection
We select 3 types of actions: boxing, hand waving and hand
clapping from the KTH dataset as the training set (16 per-
sons each class). For the negative training data, we use
the walking class (16 persons) from the KTH dataset, plus
five indoor sequences that contain actions sitting down and
standing up. For each action class, its negative training data
includes both the negative class and the other two action
classes. We collect 10 video sequences of length from 34
to 60 seconds. The test sequences are captured in both in-
door and outdoor scenes, with clutter backgrounds. Each
sequence contains multiple types of actions. The test se-
quences contain in total 13 hand waving, 10 hand clapping
and 14 boxing actions. Among the 37 action instances, 21
of them are correctly detected and there are only 3 false de-
tections.

6. Conclusion
We characterize a video action as a spatio-temporal point

collection and apply discriminative pattern matching for ac-
tion detection. Instead of using a single template, we pro-
posed the NBMIM method that treats all the STIPs from
positive training samples as an integrated template and ap-
ply both positive and negative templates for discrimina-
tive learning. Although such a model ignores the spatio-
temporal dependency among features, it brings a much bet-
ter tolerance of intra-pattern variations, including clothes



Figure 5. Detection results of two-hand waving. The yellow bounding box is the ground truth label of the whole human body action and
the red bounding box is our detection of two-hand waving. The 1nd row: detection under multiple spatial scales; the 2rd row: detection
with partial occlusions; the 3th row: a false detection caused by two individual hand-wavings from two different persons. More results can
be seen in the supplementary materials.

changes, performing style and speed variations of actions.
Our results on standard KTH dataset show the improvement
over the state-of-the-art results on action categorization.
For efficient pattern search and action detection, a novel

solution is proposed to search the 3D video space. Based on
a tighter upper bound, our algorithm is significantly more
efficient in 3D subvolume search and thus action detection.
As a data-driven approach, our method does not rely on hu-
man tracking and detection, and it can automatically handle
scale variations, clutter and moving background, and even
partial occlusions.
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Appendix
We prove the upper bound in Lemma 2 here.
f(W ∗, T ∗) = F (W ∗) =

�

i∈W∗×T∗
s(i)

=
�

i∈Wmax×T∗
s(i) −

�

i∈(Wmax\W∗)×T∗
s(i)

≤ F (Wmax) −
�

i∈(Wmax\W∗)

G(i)

≤ F (Wmax) −
�

i∈(Wmax\W∗)

G−(i)

≤ F (Wmax) −
�

i∈(Wmax\Wmin)

G−(i),

where i ∈ (W1\W2) denotes i ∈ W1, i /∈ W2. WhenWmax = Wmin,
we have

�
i∈(Wmax\Wmin) G−(i) = 0, which gives the tight bound

F (W ∗) = F (Wmax).
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