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6.14. A random signal has the autocorrelation function
Riz)=9+ 3AGE/5)

where A(x) is the unit-area triangular function defined in
Chapter 2. Determine the following:

a. The AC power.

b. The DC power.

¢. The total power.

d. The power spectral density. Sketch it and label
carefully.

6.15. A random process is defined as Y(f) =
X+ X -T), where X(f) is a wide-sensc stationary
random process with autocorrelation function Ry (1) and
power spectral density Sx(f)-

a. Show that Ry(7)= 2Rx(t) + Rx(t+T)+
Rx (‘t = T).

b. Show that Sy(f) = 48x(f) cos’ (mfT)-

c. If X(¢) has autocorrelation function Rx(z) =
5A(t), where A(7) is the unit-area triangular function,
and T = 0.5, find and sketch the power spectral density of
Y(¢) as defined in the problem statement.

6.16. The power spectral density of a wide-sense sta-
tionary random process is given by

Sx(f) = 108(f) +25 sinc?(5f) + 58(f — 10)
+58(f+10)

a. Sketch and fully dimension this power spectral
density function.

b. Find the power in the DC component of the
random process.

¢. Find the total power.

d. Given that the area under the main lobe of the

sinc-squared function is approximately 0.9 of the total
area, which is unity if it has unity amplitude, find the

fraction of the total power contained in this process for
frequencies between 0 and 0.2 Hz.

6.17. Given the following functions of T,
Ry, (1) = 4 exp(— a|z]) cos 2t
Rx,(z) = 2exp(— alz]) +4 cos 2wht
Ry ()= 5ep(~4F)
a. Sketch each function and fully dimension.

b. Find the Fourier transforms of each and sketch.

With the information of part () and the Fourier trans-
forms justify that each is suitable for an autocorrelation

function.

¢. Determine the value of the DC power, if any, for
each one.
d. Determine the total power for each.

e. Determine the frequency of the periodic compo-
nent, if any, for each.

Section 6.4
6.18. A stationary random process n(t) has a power
spectral density of 10~ 6 W/Hz, —ee < f <o It is passed
through an ideal lowpass filter with frequency-Tesponsc
function H(f) = I(f/500 kHz), where TI(x) is the unit-
area pulse function defined in Chapter 2.

a. Find and sketch the power spectral density of the

output? ’

pb. Obtain sketch the autocorrelation function of the
output.
¢. What is the power of the output process? Find it
two different ways.
6.19. An ideal finite-time integrator is characterized by 2
the input-output relationship

g

Y1) = ﬁj X(a)da :

T)-r

a. Justify that its impulse response is h(f)=

Lu(t) —ulr— 7).

b. Obtain its frequency response function. Sketchit.

¢. The input is white noise with two-sided power
spectral density No /2. Find the power spectral density of
the output of the filter.

d. Show that the autocorrelation function of the
output is

Ro(x) = A/

where A(x) is the unit-area triangular function definedin
Chapter 2. =
e. What is the eguivalent noise bandwidth of the
integrator?
£. Show that the result for the output noise power ‘.
obtained using the equivalent noise bandwidth found 105
part (e) coincides with the result found from the auto-
correlation function of the output found in part (d)-

6.20. White noise with two-sided power spectral density
Np/2 drives a second-order Butterworth filter with fre= =

quency-response function magnitude
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where f3 is its 3-dB cutoff frequency.

[Hanu ()] =

a. What is the power spectral density of the filter’s
output?

b. Show that the autocorrelation function of the
output is

Ro(r) = 2 exp(— v2afs 2| ) cos(V2mfi|t] — /4)

Plot as a function of f37. Hint: Use the integral given below:

~ cos(ax) ,7\/571-
Jo b4+14d1—mexp(—ab/\/§)><

[cos(ab/\/i) +sin (ab/\/i)] ., a,b>0

¢. Does the output power obtained by taking
lim; _, gRo(7) check with that calculated using the equiva-
lent noise bandwidth for a Butterworth filter as given by
(6.115)?

6.21. A power spectral density given by

f2

Se(f) TFE100

is desired. A white-noise source of two-sided power spec-
tral density 1 W/Hz is available. What is the frequency
response function of the filter to be placed at the noise-
source output to produce the desired power spectral
density?

6.22. Obtain the autocorrelation functions and power
spectral densities of the outputs of the following systems
with the input autocorrelation functions or power spectral
densities given.

a.
Transfer function
H(f) =T1(f/2B)
Autocorrelation function of input

Rx(7) :%5(1)

Ny and B are positive constants.
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b.
Impulse response

h(t) = Aexp(—at)u(r)
Power spectral density of input :

T . .
e T @B

A,a, B, and 3 are positive constants.
6.23. The input to a lowpass filter with impulse response
h(t) = exp(— 10¢)u(1)

is white, Gaussian noise with single-sided power spectral
density of 2 W/Hz. Obtain the following:

a. The mean of the output

b. The power spectral density of the output

. The autocorrelation function of the output

d. The probability density function of the output at
an arbitrary time #;

e. The joint probability density function of the out-
put at times 7; and £; +0.03 s

6.24. Find the noise-equivalent bandwidths for the fol-
lowing first-and second-order lowpass filters in terms of
their 3-dB bandwidths. Refer to Chapter 2 to determine the
magnitudes of their transfer functions.

a. Chebyshev
b. Butterworth

6.25. A second-order Butterworth filter, has 3-dB band-
width of 500 Hz. Determine the unit impulse response of
the filter, and use it to compute the noise-equivalent
bandwidth of the filter. Check your result against the
appropriate special case of Example 6.9.

6.26. Determine the noise-equivalent bandwidths for the
filters having transfer functions given below:

a. Ho(f) =TI(f/4) + 1(£/2).
b. Hy(f) = 2A(f/50).
¢ H.(f) =10/(10 + j27f).
d. Hy(f) = II(f/10) + A(f/5).
6.27. A filter has frequency-response function

H(f) = Ho(f —500) + Ho(f + 500)

where

Ho(f) = 2A(f/100)

Find the noise-equivalent bandwidth of the filter.
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6.28. Determine the noise-equivalent bandwidths of the
systems having the following transfer functions.
Hint: Use the time-domain approach.

a. Ha(f) = 10/[(j2nf +2)(j2af +25)].
b. Hy(f) = 100/(j2mf + 10)°. '

Section 6.5
6.29. Noise n(t) has the power spectral density shown in
Figure 6.16. We write

n(1) = ne(1) cos(2mfyt + 0) — ns(2) sin(2mfor + )

Make plots of the power spectral densities of n.(¢) and
n,(t) for the following cases:

a. f[) :fl-

b. fo = /2.

e fo=4(a+ fi)

d. For which of these cases are n.(f) and (1)
uncorrelated?

SulF) Figure 6.16

6.30.
a. IfS,(f) = a®/(a? +4 7 f*), show that R, (1) =
Ke~ "l Find K.
b. Find R, (1) if

1.2 %az

S.(f) = 2
0 a2 +4m2(f - fo)* . o +4m(f +o)’

c. if n(t) = nc(t) cos(2mfot +6)

— ny(1)sin(2mfot +6), find S, (f), and Sy.n,(f), Where
S,(f) is as given in part (b). Sketch each spectral density.

6.31. The double-sided power spectral density of noise

n(t) is shown in Figure 6.17. If n(t) =

ne(t) cos(2mfot + 0) — ng(£)sin(2mfot +6), find and plot

Sn.(f)s Sn,(f), and Sp,n, (f) for the following cases:
a fo=1i+f)

b. fo =fi.

c fo=rh.
d. Find R, () for each case where S, (f) is not
zero. Plot.

Sp, () Figure 6.17

6.32. A noise waveform n;(r) has the bandlimited
power spectral density shown in Figure 6.18.. Find
and plot the power spectral density of m(t) =
ny () cos(wot + 0) — ny () sin{wot + ), where 6 is a uni-
formly distributed random variable in [0, 27).

S () Figure 6.18

Section 6.5
Problems Extending Text Material

6.33. Consider a signal-plus-noise process of the form
2(1) = Acos2a(fo +fa)t] +n(1)
with
n(t) = n.(t) cos(2mfot) — ns(¢) sin(2afot)
an ideal bandlimited Gaussian white-noise process with

double-sided power spectral density equal to No/2 for
fo—B/2 < |f| < fo+B/2 and zero otherwise. Write z(1)

as
2(1)=A cos2m(fo+fa)t) +n,(2) cos[27(fo+7a)1]
— (1) sin27(fo+fu)1]

a. Express (1) and n(7) interms of n.(7) and n,(1).
Using the techniques developed in Section 6.5, find the
power spectral densities of #,(f) and (1), Sx, (1) and
Sy, (f), respectively.
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7.21.  AnFM demodulator operates above threshold, and
therefore the output SNR is defined by (7.118). Using
Carson’s rule, write this expression in terms of By /W, as
was done in (7.119). Plot (SNR)+in decibels as a function
of By /W with Pr/NgW fixed at 30 dB. Determine the
value of By /W that yields a value of (SNR )y that is within
0.5 dB of the asymptotic value defined by (7.119).

7.22. The process of stereophonic broadcasting was illu-
strated in Chapter 3. By comparing the noise power in the
1(1) — (1) channel to the noise power in the /(z) + (1)
channel, explain why stereophonic broadcasting is more
sensitive to noise than nonstereophonic broadcasting.

7.23. An FDM communication system uses DSB mod-
ulation to form the baseband and FM modulation for
transmission of the baseband. Assume that there are eight
channels and that all eight message signals have equal
power Py and equal bandwidth W. One channel does not
use subcarrier modulation. The other channels use sub-
carriers of the form

Apcos(2mkfit), 1<k <7

The width of the guardbands is 3W. Sketch the power
spectrum of the received baseband signal showing both the
signal and noise components. Calculate the relationship
between the values of Ay if the channels are to have equal
SNRs.

7.24.  Using(7.123),derive anexpression forthe ratio of the
noise power in yp () with de-emphasis to the noise power in
yp(#) without de-emphasis. Plot this ratio as a function of
W /f3. Evaluate the ratio for the standard values of f; = 2.1
kHz and W = 15 kHz, and use the result to determine the
improvement, in decibels, that results through the use of de-
emphasis. Compare the result withthatfoundin Example 7.3.
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-W

Figure 7.22

density shown in Figure 7.22. The sum (signal plus
noise) is filtered with an ideal lowpass filter with unity
passband gain and bandwidth B > W. Determine the
SNR at the filter output. By what factor will the SNR
increase if B is reduced to W?

7.26. Consider the system shown in Figure 7.23. The
signal x(7) is defined by

x(t) = A cos(27f.1)

The lowpass filter has unity gain in the passband and
bandwidth W, where f. << W. The noise n(¢) is white with
two-sided power spectral density %N(]. The signal compo-
nent of y(¢) is defined to be the component at frequency f,.
Determine the SNR of y(1).

7.27. Repeat the preceding problem for the system
shown in Figure 7.24.

7.28. Consider the system shown in Figure 7.25. The
noise is white with two-sided power spectral density %NU.
The power spectral density of the signal is

A

7.25. White noise with two-sided power spectral den- S(f) = Ty —RREJ ST
Sy W : ; L+ (f/f)
sity 5Np is added to a signal having the power spectral

a o d o | Lowpass .
) dt S oar il flter [ 0@

n(r)

Figure 7.23

_| d .| 4 .| Lowpass ”
x(1) == f(®)dt o f(®)dt dr o = Shey [

n(t)

Figure 7.24




