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Performance of Adaptive Linear Interference
Suppression in the Presence of Dynamic Fading

Michael L. Honig, Fellow, IEEE, Scott L. Miller, Senior Member, IEEE, Mark J. Shensa, and
Lawrence B. Milstein, Fellow, IEEE

Abstract—Adaptive linear interference suppression for direct-
sequence (DS) code-division multiple access (CDMA) is studied in
the presence of time- and frequency-selective fading. Interference
suppression is achieved with an adaptive digital filter which spans
a single symbol interval. Both decision-directed and blind adaptive
algorithms, which do not require a training sequence, are consid-
ered. Modifications to least squares adaptive algorithms are pre-
sented which are compatible with differential coding and detec-
tion. For frequency-selective fading, adaptive algorithms are pre-
sented based upon different assumptions concerning knowledge of
the desired user’s channel. Specifically, the cases considered are as
follows: 1) perfect knowledge of the desired channel; 2) knowledge
of only the relative path delays; and 3) knowledge of only one delay
corresponding to the strongest path. Computer simulation results
are presented which compare the performance of these algorithms
with the analogous RAKE receivers. These results show that for
case 3), even slow fading can cause a significant degradation in
performance. Effective use of channel parameters in the adaptive
algorithm reduces the sensitivity to fade rate, although moderate
to fast fading can significantly compromise the associated perfor-
mance gain relative to the RAKE receiver.

Index Terms—CDMA, differential detection, fading, interfer-
ence suppression, multipath.

I. INTRODUCTION

L INEAR minimum mean-square-error (MMSE) detection
has been proposed as an alternative to the matched filter

receiver for direct-sequence (DS) code-division multiple-ac-
cess (CDMA) systems (see [1, Ch. 6] and [2] and references
therein.) A linear MMSE detector can be implemented as an
adaptive tapped-delay line, analogous to linear equalizers for
single-user channels. Explicit estimates of interference param-
eters such as relative amplitudes, phases, and spreading codes
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are not required for adaptation, given either a training sequence,
or knowledge of the desired user’s spreading sequence, and
associated channel and timing.

If the set of users and channels is time-invariant, then the
MMSE solution for the tapped-delay line coefficients corre-
sponding to a particular user can be accurately estimated via
conventional adaptive filtering techniques [i.e., stochastic gra-
dient or least squares (LS)]. Unfortunately, this assumption is
generally not true for mobile wireless multiple-access systems.
Namely, mobility combined with multipath causes dynamic
fading, which the adaptive algorithm must track.

Here we examine the performance of adaptive linear interfer-
ence suppression algorithms for DS-CDMA assuming each user
transmits over a Rayleigh fading channel. It has been observed
in [3] that conventional adaptive algorithms experience the fol-
lowing problems with frequency-nonselective (flat) Rayleigh
fading channels: 1) phase slips which cause the adaptive algo-
rithm to track rotated symbols and 2) false locking onto an in-
terferer, or instability, which can occur during a fade. In [3],
phase prediction of the desired symbol is used to solve the first
problem. Here we consider two alternative adaptive approaches
that do not require phase tracking. The first approach is to use a
recursive LS adaptation algorithm with differential decisions as
part of the coefficient update. This technique (also considered
in [4]) does not preclude the possibility that the algorithm will
lock onto an interferer, or become unstable during a fade. The
second approach, which does prevent false locking, is to use an
orthogonally-anchored algorithm, as described in [5], but mod-
ified for differential detection.

Computer simulation results are presented which compare the
uncoded performance of adaptive algorithms for the reverse link
of a single isolated cell. For the channel model considered, as-
suming moderate fade rates and uncoded error rates in the range
5%–10%, the numerical results show that the adaptive receivers
can accommodate more than twice the number of users as the
matched filter in the presence of flat fading.

For frequency-selective fading channels, adaptive algorithms
are presented which exploit knowledge of the desired user’s
channel. The following cases considered are: 1) perfect knowl-
edge of the desired user’s channel; 2) knowledge of path delays
only (without channel coefficients); and 3) knowledge of only
the main (strongest) path delay. Computer simulation results
show that MMSE detection (assuming all channels are known)
again offers a large increase in the number of users that can be
supported. However, multipath fading causes significant perfor-
mance degradation of the adaptive algorithms, which attempt
to estimate the time-varying MMSE solution. At moderate fade
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rates, our results show that the adaptive receivers still provide a
gain of 1.5–2 in number of users supported relative to the anal-
ogous RAKE receivers. In addition, the adaptive receivers are
insensitive to near–far power variations over the user popula-
tion. Our results also show that knowledge of the desired user’s
channel parameters, such as path delays and path coefficients,
can be used to reduce the sensitivity to fade rate.

Before concluding this section, we briefly mention some re-
lated work on multiuser detection for fading channels. The com-
bination of noncoherent (differential) and multiuser detection is
considered in [6]. The decorrelator [1, ch. 5] is generalized to
fading channels in [7] and [8]. Those references do not con-
sider the problem of estimating the detector parameters when
the fading is dynamic. In [9] an adaptive blind linear interference
suppression filter for multipath channels is derived which does
not require knowledge of path coefficients. Here we present a
least squares (LS) adaptive algorithm based on this structure,
and illustrate the performance of this algorithm in the pres-
ence of dynamic fading. Pilot-aided coherent MMSE detection
for fading channels, in contrast to the differential detection ap-
proach taken here, is studied in [10]. Finally, an analysis of some
of the algorithms considered here under different assumptions
concerning the fade rate is presented in [11].

The DS-CDMA system model is presented in the next sec-
tion. Adaptive algorithms and performance results for flat fading
are presented in Section III. Algorithms for frequency-selective
fading are presented in Section IV, and associated performance
results are given in Section V.

II. SYSTEM MODEL

We consider the reverse link of an isolated cell. Theth active
user transmits a baseband signal

(1)

where is the th differentially encoded symbol transmitted
by user , is the real-valued spreading waveform associ-
ated with user , and and are, respectively, the delay and
amplitude associated with user. For DS-CDMA

(2)

where , , is the real-
valued spreading sequence, is the chip waveform, is
the chip duration, and is the processing gain. Square
brackets enclosing the function argument denote chip-rate sam-
ples, whereas regular parenthesis are used for symbol-rate sam-
ples and continuous time. It is assumed that the same spreading
waveform is used for each symbol. (Short spreading codes are
a requirement for the adaptive algorithms considered here.)

Let be the -vector containing samples at the output of a
chip-matched filter during theth transmitted symbol, assuming
that the receiver is synchronized to the desired user. Letting

correspond to the user to be detected, for flat fading channels
we can write

(3)

where is the spreading sequence associated with user 1,
and are -vectors associated with theth interferer,
is the vector of noise samples at time, assumed to be white
with covariance , is the th channel coefficient corre-
sponding to user, and there are users. Because the users are
asynchronous, each interferer contributes two interfering vec-
tors. The vectors and contain the chip matched-filter
output samples within the time window spanned by in re-
sponse to the inputs and , respec-
tively [2]. The numerical results in Section IV assume rectan-
gular chip shapes. The receiver is assumed to be synchronized
to user 1, so that is the spreading code for user 1, and
contains only zeros. The sequence of channel coefficients for
user , , is a complex Gaussian random process obtained
by passing complex white Gaussian noise through a filter with
(approximate) transfer function where is
a normalization constant, is the maximum Doppler
shift, is the wavelength of the carrier frequency, andis the
speed of the mobile. It is assumed that all channels are constant
during each symbol interval.

To model frequency-selective fading, we assume specular
multipath components that fade independently. The received
signal corresponding to useris therefore

(4)

where is given by (1), and and are, respec-
tively, the channel coefficient and path delay associated with
path for user , and is the number of paths for user. The
receiver is assumed to be synchronized with the main path for
user 1, i.e., .

All receivers considered in this paper decide on each trans-
mitted symbol by observing the received signal during a single
symbol interval. The vector is again formed by collecting

samples at the output of the chip-matched filter within the
window spanned by . To write an expression for the
received vector , we define the matrices and as

(5)

where and , , , are the vectors
of chip-matched filter outputs during symbolcorresponding to
the inputs and ,
respectively, which are associated with path. Let

(6)

where

diag
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is the diagonal matrix of amplitudes associated with the paths
for user (determined by the path delay profile and shadowing
for user ), and

(7)

is the vector of complex path coefficients for user, where “′”
denotes transpose. The vector can be viewed as the time-
varying “effective” spreading code for user 1 when the multipath
for user 1 is coherently combined. Independent fading on each
path implies that and , , are independent
for all .

We will assume that all path delays , where is
the symbol interval. It is then reasonable to ignore intersymbol
interference, so that the received vector for theth symbol can
be written as

(8)

which is analogous to the expression for flat fading (3). For the
numerical results in Section V we assume that the path delays

, . (For a general interpretation of this
assumption, see [12].) Theth column of , , is then
obtained by shifting the th column down by one sample.

The focus of this work is on the effect of channel fading, so
that numerical results presented here assume a fixed user pop-
ulation. Namely, the set of active users does not change during
the desired user’s transmission. This assumption is, in general,
not true for asynchronous packet CDMA. Related performance
results to those presented here which account for interference
transients and other-cell interference are presented in [13] and
[14].

III. A DAPTIVE RECEIVERS: FLAT FADING

We begin by examining the performance of some specific
adaptive receivers with frequency-nonselective (flat) Rayleigh
fading. This case is simpler than the more interesting case of
frequency-selective fading, and gives insight into sources of per-
formance degradation. The approach developed here relies on
differential coding and detection with LS adaptive algorithms.
Two adaptive algorithms are considered. The first we refer to
as differential LS (DLS), since it incorporates the differentially
decoded symbol into an LS update. The second is based on the
orthogonally-anchored algorithm in [5].

The sequence of received samples is the input to a tapped-
delay line with tap spacing . Denoting the vector of coeffi-
cients associated with the tapped-delay line at timeas ,
the output of the filter at time (corresponding to theth trans-
mitted symbol) is

(9)

where is given by (3), and “” denotes Hermitian trans-
pose. The filter spans one symbol interval and hascom-
ponents. Throughout the rest of the paper, we will assume that

is selected to detect user 1.
Let be the th symbol transmitted by user 1. For MPSK,

the differentially encoded signal is . The

numerical results to be presented assume binary signaling for
which the estimate of the source symbol is then

sgn (10)

where “ ” denotes complex conjugate.

A. MMSE Solution

The adaptive algorithms which follow are based on the
MMSE criterion. For coherent detection, the objective is
to select to minimize the mean squared error (MSE)

, where

(11)

The solution is

(12)

where

(13)

and

(14)

assuming and . With differential detec-
tion, we replace the error in (11) by the error

(15)

That is, is an estimate of , and the channel
does not affect the symbol estimate provided that

. Minimizing again gives (12), where
. Since the scale factor is irrelevant for PSK,

we define the MMSE vector with differential detection for flat
fading as

(16)

We remark that the error associated with the DLS algorithm
which follows is neither the coherent error (11) nor the differ-
ential error (15).

B. DLS

Before describing the DLS algorithm, we first observe that a
conventional recursive LS (RLS) algorithm (i.e., with coherent
detection) selects to minimize the LS cost function

(17)

where is a constant close to one, chosen to discount past data,
and the error is given by (11). (The upper limit of the sum
is instead of , since cannot be computed before
is computed.) The which minimizes the LS cost function is

(18)
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where

(19)

and

(20)

Note that and are scaled estimates of
and in (13) and (14), respectively. The expression for

depends on either a training sequence or estimates of the
sequence .

The preceding coherent LS algorithm attempts to track the
time-varying channel associated with the desired user. Consider
the case where there is only one user and no noise, so that

. If we add a small constant to the diagonal
components of to ensure invertibility, then it can be shown
that the LS estimate reduces to

(21)

where is the estimate of and is a real-valued
constant which does not affect the error rate. If ,
or for all , then the phase of is a weighted
average of the channel fade process. For binary signaling, the
occurrence of a cycle slip causes to switch from to

or vice versa. In that case, the average in (21) changes
sign, so that the phase of experiences a transient shift of,
which introduces additional phase variations in the differential
detector.

The preceding discussion indicates that an improvement in
performance can be obtained by eliminating the effect of the
desired user’s channel in the LS update. The DLS algorithm,
which follows, replaces in (20) by , an estimate of the
filter output which incorporates the differentially detected
symbol . This substitution helps to reduce the time-varia-
tions in the estimated steering vector due to .

The DLS algorithm computes recursively as follows:

(22)

estimate of (23)

estimate of (24)

(25)

The estimate in (24) is not equivalent to the expression
(19); however, the update (24) was found to cause fewer numer-
ical problems than the analogous update corresponding to (19).
The matrix inverse in (25) can be propagated via the
matrix inversion lemma [15, Sec. 13.2], although care must be
taken to ensure that the algorithm is numerically stable.

Fig. 1. Block diagram illustrating DLS algorithm.

The DLS algorithm is illustrated in Fig. 1. Consider again
the preceding example, where . The DLS
estimate in this case is

(26)

where here we assume the same exponential weighting
as in (13) and (14) for the coherent RLS algorithm. If

and , then (26) becomes
, in

which case the phase ofdoes not depend on the phase of the
channel. Specifically, is a solution for any
fixed phase offset , where is a real-valued scalar. Con-
sequently, with flat fading the DLS algorithm introduces less
“phase noise” in the estimate than the conventional coherent
RLS algorithm.

C. Orthogonally-Anchored LS (OALS)

The DLS algorithm solves the phase ambiguity problem as-
sociated with fading channels. However, a remaining problem
is that since the DLS algorithm is decision-directed (after ini-
tial training with a training sequence), a deep fade can cause the
algorithm to lose track of the desired user. In principle, the algo-
rithm can lock onto another user who is not experiencing a fade
(transient near–far problem). To prevent this from happening,
the blind adaptive approach presented in [5] can be used. The
vector is written as the sum

(27)

where is constrained to be orthogonal to. Selecting
to minimize the variance of the output is then
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Fig. 2. Uncoded error rate versus users for a single-path Rayleigh fading channel. Results are shown for the following receivers: matched filter (�����); DLS
(���), OALS (�o�); and differential MMSE (�). Two curves are shown for the matched filter corresponding to different standard deviations for log-normal
shadowing.N = 32, E =N = 12 dB, f T = 0:008 cycles/symbol for all users.

equivalent to minimizing the interference plus noise at the filter
output.

The preceding approach can be used with either coherent or
differential detection. With coherent detection (as assumed in
[5]), in (27) would be replaced by . However, this
does not change the orthogonality constraint on the filter,
since and define the same subspace. In other words,
the space spanned by the desired signal is channel-invariant in
the presence of flat fading. The minimum variance solution for

(which gives the scaled MMSE solution for [5]) is
therefore the same for both coherent and differential detection.
A phase-invariant modification of the orthogonally-anchored al-
gorithm in [5] has also been presented for quadrature modula-
tion with complex spreading codes [16].

An LS algorithm based on the preceding approach selects
to minimize the cost function

(28)

where is given by (27), and . [Note that the
upper limit of the sum is instead of , as in (17).] It is
easily shown that the solution is

(29)

where is given by (19) and .
The algorithm used to generate the results in the next section
replaces by the recursive update (24). The filter output

is an estimate of , so that differential de-
tection can be used to recover the transmitted symbol sequence.

D. Performance Comparison

Fig. 2 shows plots of uncoded error rate versus number of
users, assuming that all users experience flat Rayleigh fading.
Curves are shown for the matched filter, the adaptive LS algo-
rithms, and the (differential) MMSE detector. (The conventional
coherent RLS algorithm (12)–(14) performs poorly at the fade
rate simulated, so that the associated results are omitted.) Each
point was obtained by averaging over 150 different configura-
tions of users and delays. Spreading codes and delays assigned
to each user are randomly selected from uniform distributions.
The processing gain , and the bit energy-to-noise-den-
sity ratio dB, where .

The average received power for each user is selected from a
log-normal distribution. Two curves are shown for the matched
filter, corresponding to standard deviations of 1.5 and 6 dB, rep-
resenting different degrees of closed-loop power control. The
remaining curves for the adaptive and MMSE receivers assume
a standard deviation of 6 dB.

For the results in Fig. 2, all received signals experience flat
Rayleigh fading with a normalized Doppler frequency of

cycles/symbol. In practice, mobile users experience dif-
ferent fade rates, which depend on velocities. These results can
therefore be interpreted as worst-case in the sense that all inter-
ferers experience the maximum fade rate, which makes it diffi-
cult for the adaptive filter to track the optimal solution.

Two parameters for the adaptive algorithms (in addition to
the filter length, which is equal to the processing gain) are the
training period and the exponential weighting factor. We set

(corresponding to an averaging window length of
approximately symbols), which appeared to
be about optimal. The initial training time was 400 symbols. The
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initial values of and were taken to be and the vector
of zeros, respectively. Performance was relatively insensitive to
this choice.

We observed that the fading process occasionally caused the
DLS algorithm to become unstable. To prevent this from hap-
pening, the error rate was monitored over a sliding window of
400 symbols. Whenever the error rate exceeded 15%, the DLS
algorithm was replaced by the orthogonally-anchored blind al-
gorithm. This switch occurred relatively infrequently, but sig-
nificantly affected performance when the number of users/cell
was moderate to large (i.e., ). It has been observed in [4] that
normalizing the filter (e.g., to unit length) helps to improve the
robustness of the DLS algorithm, and may eliminate the need to
switch to the blind algorithm.

Fig. 2 shows that the adaptive receivers with loose power
control offer a significant increase in capacity at moderate error
rates (between a factor of 2 and 3) when compared with the
matched filter with tight power control. Further simulations
show that the performance of the adaptive algorithms is rela-
tively insensitive to the standard deviation of received powers.

Fig. 2 also shows that the error rate for the DLS algorithm
is close to the MMSE lower bound. This may seem surprising
given that the fade rate is relatively fast, making it difficult
for the adaptive algorithms to track the user channels. To see
why the algorithms perform close to the MMSE solution,
consider the zero-forcing, or decorrelating, solution for the
filter vector . This solution is the orthogonal projection
of the desired user’s spreading code onto the space spanned
by the interferers. Since this solution depends only on the
subspaces spanned by the desired user and the interferers, it
does not depend on the channel coefficients, and is therefore
time-invariant. Consequently, when the number of users per cell
is relatively small, the filter has a sufficient number of degrees
of freedom to suppress all users, and does not need to track
the channels. As the number of users increases, however, the
filter can only suppress a subset of strongest interferers, which
is time-varying. This leads to the degradation in performance
relative to the MMSE solution, which is shown in Fig. 2.

The preceding explanation does not apply to multipath chan-
nels, since in that case the subspace spanned by each user does
depend on the channel coefficients associated with each path.
In other words, the zero-forcing solution is time-varying, which
creates a significant tracking problem.

IV. A DAPTIVE RECEIVERS: FREQUENCY-SELECTIVE FADING

In this section, we present adaptive algorithms for multipath
channels. Three different cases are considered, corresponding
to differenta priori knowledge of the desired user’s channel.
The cases are as follows: 1) known path delays and channel co-
efficients; 2) known path delays with unknown channel coeffi-
cients; and 3) timing for only the strongest path with unknown
channel coefficients. The first case is relevant when the receiver
is able to estimate the channel of the desired user from a pilot
signal. The second case is relevant when the receiver is able to
track path delays but not the channel coefficients. Finally, in
the third case the channel estimation is performed implicitly by
the adaptive algorithm. In each case, we also specify the corre-

sponding RAKE receiver [17, Sec. 14-5-2] with which the adap-
tive receiver is compared.

A. Known Channel

If the channel for the desired user is known, then the (single-
path) matched filter can be replaced by a maximal-ratio RAKE
combiner [17, Sec. 14-5-2]. Since the filter observation window
spans one symbol, the max-ratio RAKE combiner is specified
by the filter

(30)

where and are defined by (5) and (7), respectively.
For the numerical results in Section V, the path delays are fixed
for the duration of the desired user’s transmission.

For this case, the time-varying MMSE solution for the filter
coefficients is

(31)

where

(32)

and

diag (33)

The corresponding coherent LS adaptive filter is then

(34)

where the estimate is given by (24). This has the interpretation
of minimizing filter output variance subject to the orthogonal
decomposition (27), where is replaced by . In other
words, this is equivalent to the LS orthogonally anchored blind
algorithm described in Section III, where the anchor is now the
time-varying max-ratio RAKE combiner.

Here we do not consider the effect of inaccurate channel
measurements on the performance of the preceding algorithm.
This has the same effect as that of a mismatched anchor, which
was studied in [5]. A blind technique for estimating the desired
user’s channel which can significantly reduce the degradation
due to mismatch has been presented in [18].

We remark that other adaptive receivers have been proposed
for the case considered. Namely, in [19] and [20], separate
symbol-length adaptive filters are used for each multipath com-
ponent. This is more complex than the single filter represented
by (34). Furthermore, a problem with this approach is that
multipath from the desired user acts as additional correlated in-
terference, which can degrade the performance of the adaptive
algorithm at moderate fade rates (see the discussion in the next
section.)

B. Known Path Delays, Unknown Coefficients

We now assume that the path delays are known, but that
the channel coefficients are unknown for .
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Fig. 3. EG RAKE (noncoherent combiner).

In this case, the (single-path) matched filter can be replaced
by a noncoherent equal-gain (EG) RAKE combiner [17, Sec.
15-4-2]. Fig. 3 shows this structure for two paths, where for the
conventional RAKE combiner, , .

In addition to the noncoherent RAKE combiner, we will also
consider anadaptiveLS RAKE combiner, which estimates the
channel coefficients for coherent combining. Specifically,
the LS RAKE combiner is defined by the filter

(35)

where is selected to minimize the LS cost function (17).
The solution is

(36)

where

(37)

The MMSE solution for is not the same as the max-ratio
combiner when interference is present. That is, the adap-
tive RAKE is capable of limited interference suppression. For
the numerical results in the next section, we assume correct de-
cisions, i.e., in (37), such as if a pilot were present.
This enables performance close to the max-ratio combiner for
the fade rates considered.

To suppress multiple-access interference, each matched filter
in Fig. 3 can be replaced by an adaptive filter using the DLS al-
gorithm. However, multipath from the desired user acts as cor-
related interference which adversely affects convergence and
tracking. Specifically, for the case considered with low delay
spread, this technique performs no better than the DLS algo-
rithm, since each adaptive filter approximates the same DLS
filter.

To avoid the preceding problem, each adaptive filter must iso-
late a single multipath component. That is, the adaptive algo-
rithm must not “see” the other paths from the desired user. Such
a noncoherent EG combiner has been presented in [9]. Namely,
referring to Fig. 3, we write , where is se-
lected to minimize output variance. To isolate theth path, the
adaptive filter must be constrained to be orthogonal to thespace
spanned by the desired signal. That is

(38)

Let

(39)

( matrix). Then (38) is equivalent to the constraint

(40)

To derive an adaptive algorithm we selectto minimize the
cost function

(41)

subject to the constraint (40). The solution is

(42)

Each filter minimizes interference plus noise fromother
users at the filter output. We will refer to this receiver as the
equal-gain LS (EGLS) receiver. Unlike the orthogonally-an-
chored algorithm for flat fading, the corresponding minimum
variance solution (where replaces ) does not minimize
MSE.

In practice, timing offset, or imprecise knowledge of path de-
lays and delay spread, can compromise the performance of the
preceding algorithms. Namely, these inaccuracies create mis-
match between the transmitted pulse and the matched filter an-
chors . We do not study the effect of this mis-
match here, although we remark that the effect of this mismatch
can be minimized by estimating the path delays to maximize the
cost function (41). (Once the first path delay is selected, the re-
maining path delays can be constrained to be integer multiples
of [12].) The effect of timing offset on the performance of
LS adaptive algorithms in the absence of fading is considered in
[14].

C. Known Delay for Main Path

In this case, the matched filter is a single correlator for the
main path. In practice, some form of RAKE combining is gen-
erally used with multipath, so we omit numerical performance
results for the single-path correlator. The corresponding adap-
tive receiver is the DLS algorithm presented in Section III. For
very slow fading, the DLS algorithm can track the desired user’s
channel, and in principle, achieves the same performance as the
MMSE filter (31) with differential detection.

V. PERFORMANCECOMPARISON: FREQUENCY-SELECTIVE

FADING

Figs. 4–6 show performance results (uncoded error rate) for
the receivers discussed in Section IV and described in Table I.
(Not all receivers are represented in Figs. 4 and Fig. 6.) In the
table, the receivers are grouped according to the following cat-
egories: RAKE, adaptive, and optimal (known channel parame-
ters for all users). In the figures, solid lines correspond to non-
coherent receivers and dashed lines correspond to coherent re-
ceivers.
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Fig. 4. Uncoded error rate versus number of users for a three-path Rayleigh fading channel. Results are shown for the following receivers: Equal Gain (EG)
RAKE (� � �), DLS (� � �), EGLS (�o�), Equal Gain Minimum Variance (EGMV) (�), Maximal-Ratio RAKE (�:), coherent LS with known channel
(�����), and MMSE (��).N = 16, E =N = 12 dB, f T = 0:004 cycles/symbol.

Fig. 5. Uncoded error rate versus mobile speed (mi/h) for a three-path Rayleigh fading channel. Results are shown for the following receivers: Equal Gain RAKE
(�), LS Adaptive RAKE (��+��), DLS (���), EGLS (�o�), EGMV (�), Maximal-Ratio (�:), coherent LS with known channel (�����), and
MMSE (��). N = 16, K = 8 users,E =N = 12 dB.

In each figure, the processing gain , and the channel
for each user consists of three independent Rayleigh fading
paths of equal power separated by. For all receivers, the
standard deviation of received powers is 1.5 dB for each
path. Specifically, the average power of the primary path
for each user is selected from a log-normal distribution, and

the remaining paths have the same averaged power. Further
simulations with an exponentially decaying power delay profile
indicate that with many interferers, the relative performance of
the algorithms is insensitive to the attenuation on successive
paths. Each simulated point in the plots that follow represent
an average over randomly assigned spreading codes and
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Fig. 6. Uncoded error rate versusE =N for a three-path Rayleigh fading channel. Results are shown for the following receivers: Equal Gain RAKE (� � �),
EGLS (�o�), EGMV (�), Maximal-Ratio (�:), coherent LS with known channel (�����), and MMSE (��).N = 16,K = 8 users,1=(f T ) = 1500
symbols/fade cycle.

TABLE I
ALGORITHMS USED TOGENERATE THESIMULATION RESULTS INSECTION V. THE ENTRIES “PATH DELAYS” AND “COEFFICIENTS” REFER TO THECHANNEL FOR

THE DESIRED USER, WHEREAS “A LL CHANNELS” M EANS THAT CHANNELS FOR ALL USERSMUST BE KNOWN TO COMPUTE THE

CORRESPONDINGRECEIVER FILTER

delays. For the DLS algorithm, the receiver is assumed to be
synchronized to the first path.

Fig. 4 shows uncoded error rate versus number of users. In
this figure, the normalized Doppler shift is (half of
that corresponding to Fig. 2). Even at this moderate fade rate, the
DLS algorithm performs much worse than the MMSE receiver
with differential detection, which indicates that it is unable to
track the user channels. The noncoherent EGLS algorithm gives
an increase in number of users between 1.5–2 relative to the EG
RAKE at moderate error rates. This gain in capacity increases as
the fade rate decreases, and as the standard deviation of received

powers increases. The EG minimum variance (EGMV) curve
corresponds to perfect knowledge of the interferer channels. The
gap between the EGLS and EGMV curves is therefore due to
tracking error. We also observe from Fig. 4 that the coherent
LS algorithm gives a modest (but significant) gain in number
of users that can be supported relative to the max-ratio RAKE
combiner. The performance of the LS RAKE receiver is similar
to that of the maximal-ratio combiner and is not shown in this
figure.

As the fade rate tends to zero, the error rates for the coherent
LS and EGLS algorithms approach those for the MMSE and
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EGMV receivers, respectively. The error rate for the DLS algo-
rithm approaches that of the MMSE receiver with differential
detection. This is illustrated in Fig. 5, which shows uncoded
error rate versus mobile speed, assuming a carrier frequency

MHz and data rate of 19.2 kb/s. (The results in Fig. 4
correspond to a mobile speed of 30 mi/h.) This figure indicates
that in order for the DLS algorithm to track the MMSE solution
with significant accuracy, the fade rate must be very slow. (Even
5 mi/h causes substantial degadation.) In contrast, the adaptive
RAKE is able to track the channel for the fade rates considered
since only three coefficients are being estimated (instead of 16
for the DLS algorithm), and a smaller exponential weight can
be used ( for the results shown). With slow fading,
Fig. 5 shows that the LS RAKE performs somewhat better than
the max-ratio combiner. The noncoherent EGLS algorithm is
less sensitive to the fade rate than is the DLS algorithm, al-
though there is still significant degradation relative to the min-
imum variance solution at moderate to fast fade rates.

Fig. 6 shows plots of error rate versus SNR for the receivers
considered. The corresponding curve for the DLS algorithm is
nearly the same as the EGLS curve, and is therefore omitted.
The fade rate for this set of curves is sym-
bols/fade cycle, which corresponds to a mobile speed of 5 mi/h
in Fig. 5. These results show that there is an error floor for the
RAKE receivers due to interference, in contrast to the adaptive
and optimal receivers, which are not interference-limited. We
also note that for the three-path channel simulated, there is a
large gap between the noncoherent EGMV and coherent MMSE
curves (8 dB at an error rate of ).

VI. CONCLUSIONS

Adaptive interference suppression algorithms for dynamic
fading channels based on LS cost functions have been pre-
sented. Both noncoherent differential detection and coherent
detection with known channel parameters have been consid-
ered. For flat fading channels, numerical results show that these
algorithms can support two to three times more users than
the conventional matched filter. Furthermore, performance is
an insensitive function of fade rate. When multipath fading is
present, the performance of the adaptive receivers depends on
the fade rate of the interferers as well as the fade rate of the
desired user. Numerical results indicate that significant perfor-
mance degradation occurs relative to the optimal time-varying
solution unless the fading is very slow (more than 2000 sym-
bols per average fade cycle). Knowledge of the desired user’s
channel reduces this sensitivity, and when combined with
the adaptive interference suppression algorithms presented
here, can provide significant gains relative to the analogous
RAKE receivers. Moreover, adaptive receivers are insensitive
to received near–far power variations over the user population.
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