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Large-System Performance of Iterative Multiuser
Decision-Feedback Detection

Michael L. Honig, Fellow, IEEE,and Rapeepat Ratasuk, Member, IEEE

Abstract—The large-system performance of iterative multiuser
decision-feedback detectors (DFDs) is studied for synchronous
coded direct-sequence code-division multiple access. Both succes-
sive and parallel demodulation of users are considered. The filters
are optimized according to the minimum mean-squared error
criteria, assuming perfect feedback. We first consider Viterbi
decoding with hard decision feedback, and compute union bounds
on the large-system error rate. We then consider maximuma pos-
teriori (MAP) decoding with soft decision feedback, and evaluate
the error rate semianalytically by assuming the log-likelihood
ratios computed by the MAP decoder are Gaussian random
variables. Performance is studied numerically as a function of
noise level, spectral efficiency, and code rate. Results show that
soft decision feedback gives substantial gains relative to hard
decision feedback. At moderate spectral efficiencies (users divided
by bandwidth expansion less than 0.9), the iterative DFDs with
soft decision feedback based ona posteriori probabilities can
achieve near-single-user performance at an 0 close to the
large-system capacity bound.

Index Terms—Code-division multiple access (CDMA), decision
feedback, large-system analysis, multiuser detection.

I. INTRODUCTION

SOFT iterative interference cancellation with single-user
maximuma posteriori (MAP) decoding can offer a dra-

matic performance improvement relative to linear multiuser
receivers [1]–[3]. Related schemes in which the interference
canceller is replaced by a multiuser decision-feedback detector
(DFD) optimized according to the minimum mean-squared
error (MMSE) criterion have been proposed in [4] and [5].
When used in the reverse link of a cellular system, these re-
ceivers can, in principle, suppress other-cell interference while
cancelling intracell users. In addition, relatively low-complexity
adaptive implementations are possible, which do not require
side information about channels and user spreading codes [6].

In this paper, we examine the large-system performance of
iterative DFDs with randomly assigned signatures and convolu-
tional codes. Specifically, we examine the error rate of the iter-
ative DFDs as the number of users, and processing gain
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both tend to infinity with fixed ratio . Large-system anal-
ysis has been applied to linear and optimal multiuser receivers
in [7]–[11], and has been shown to predict accurately the perfor-
mance of finite-size systems of interest. Large-system analyses
of noniterative DFDs have been presented in [12] and [13].

We first consider maximum-likelihood (ML), or Viterbi
decoding with hard decision feedback, and derive a union
bound on the large-system error rate for iterative DFDs with
both parallel and successive demodulation. We then consider
symbol-by-symbol MAP decoding with soft decision feedback,
as proposed in [1]–[3]. The large-system analysis depends on
the distribution of the soft feedback computed from the MAP
decoder outputs. It has been observed that the distribution
of the log-likelihood ratios (LLRs) at the output of a MAP
decoder for an additive white Gaussian noise (AWGN) channel
can be accurately approximated as Gaussian [5], [14]. A
semianalytical approach is therefore used, in which the mean
and variance of the LLRs for asingle-usersystem with a
particular convolutional code are determined by simulation.
These estimates can then be used to compute the large-system
performance with different system parameters (i.e., background
noise level and load). In all cases, a key assumption is that
the feedback is independent across users. Strictly speaking,
this is true only in the limit of an infinitely long block length,
and when the feedback is based on extrinsic information. A
comparison with simulation results shows, however, that the
analysis gives accurate performance predictions for finite block
lengths, and when the (soft) feedback is computed froma
posterioriprobabilities (APPs).

Related work is presented in [15], where density evolution
is combined with large-system analysis to determine the fixed
points of iterative interference-cancellation techniques. The
Gaussian approximation used here is also used in that paper
to evaluate the asymptotic multiuser efficiency of soft parallel
interference-cancellation schemes. A prior analysis of iterative
soft parallel interference cancellation has been presented in [1],
where the variance of the soft decisions at the output of the
MAP decoder, and the variance of the interference at the input
to the MAP decoder are computed iteratively. The large-system
analysis presented here uses more information, namely, the
distribution of the soft decisions which are being fed back for
cancellation, and applies to the more general class of MMSE
multiuser DFDs.

Numerical results are presented, which illustrate how
the large-system performance depends on background
signal-to-noise ratio (SNR), spectral efficiency , and code
rate. In general, successive demodulation reduces the number of
iterations required for convergence relative to parallel demodu-
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lation. At moderate spectral efficiencies (i.e., ), the
iterative receivers can achieve near-single-user performance
at an close to the lower bound corresponding to the
large-system capacity [9]. The receivers are still interference
limited in the sense that in the absence of noise, the error rate
tends to 1/2 for large loads (users divided by chips per symbol).
The maximum achievable spectral efficiency is obtained by
letting the code rate approach one, and is slightly greater than
two with soft decision feedback, and is approximately 1.53
with hard decision feedback. In contrast, the optimal multiuser
detector is not interference limited [9].

The system model is described in the next section. Section III
presents the analysis with hard decision feedback, and associ-
ated numerical results are presented in Section IV. Soft decision
feedback with MAP decoding is then analyzed in Section V, and
numerical results, which illustrate the effect of code rate on per-
formance, are presented in Section VI. Extensions to more real-
istic code-division multiple-access (CDMA) models are briefly
discussed in Section VII.

II. SYSTEM MODEL AND RECEIVERS

For simplicity, we consider an ideal synchronous CDMA
system with perfect power control. Each user’s sequence of
information symbols ( for user ) is the input to a
convolutional coder, assumed to be the same for each user, and
the coder outputs are randomly interleaved before transmission
through the ideal synchronous direct-sequence (DS)-CDMA
channel. The number of chips per coded bit is where

is the code rate and is the processing gain (bandwidth
expansion factor). The received vector of samples during
symbol interval is given by

(1)

where is the matrix of signatures,
is the number of users, is the th vector of interleaved

coded symbols across users, and is the vector of Gaussian
noise samples with covariance matrix , where is the

identity matrix. The signatures are random with in-
dependent and identically distributed (i.i.d.) elements, and the
received power is normalized to one for all users. We assume
binary information and coded symbols so that theth element
of , . We refer to as the
spectral efficiencyin bits per chip, since it is the normalized in-
formation rate summed over all users.

The received vector is the input to the DFD, consisting
of the feedforward matrix , and the feedback
matrix . The output of the DFD corresponding to userat
time and iteration is

(2)

where denotes complex conjugate transpose, is the th
column of the matrix , and are the feedforward and
feedback filters, respectively, and is the input to the
feedback filter, all corresponding to theth iteration for user .
The symbol estimates are computed from the decoder out-
puts. The feedback matrix contains the columns padded
with zeros, as will be explained.

Fig. 1. Iterative receiver with ML decoding and hard parallel decision
feedback.

The DFD filters are optimized according to the MMSE crite-
rion with perfect feedback. This is in contrast to the MMSE and
adaptive receivers proposed in [4]–[6] where the filters depend
on the soft decoder outputs. A large-system analysis of those
receivers appears to be quite difficult. Furthermore, numerical
comparisons (for ) indicate that although an adap-
tive DFD performs significantly better than the fixed-coefficient
DFD for small systems [6], the performance gap diminishes as
the system size increases.

Our objective is to select and to minimize

(3)

In what follows, we will sometimes omit the dependence on
iteration and symbol for convenience. We refer to the set
of uncancelled users as , and the set of cancelled users as

. For the successive (S)-DFD, and
, and for the parallel (P)-DFD, and

. The vector in (2)
has dimension . Furthermore, , where is the
vector of elements in with indexes in , and contains
only zeros.

With perfect feedback, i.e., , the optimal and
are given by [16], [17]

(4)

where the columns of the matrix are the signatures of the
users in , and

(5)

is the covariance matrix for the uncancelled users. That is,
the feedforward filter is simply the linear MMSE receiver
for the uncancelled users, and the backward filter is selected
to cancel the interference from the remaining users. For the
single-cell case considered, it is straightforward to show
that the MMSE P-DFD reduces to the conventional (scaled)
interference canceller, i.e., and

. That is, the feedforward filter is
a bank of matched filters.

III. H ARD DECISION FEEDBACK

A block diagram of the iterative parallel (IP)-DFD receiver
with hard decision feedback is shown in Fig. 1. Here, we
represent the feedforward filter as , where

is the linear MMSE filter, and can be inter-
preted as an error-estimation filter [16], [17]. Specifically,

where , which gives
the sequence of outputs and the error
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sequence . The feedback filter
is selected to minimize , where

if . This representation is equivalent to
the preceding expression (4), and appears in Fig. 1 since the
linear MMSE filter is used for the first iteration. That is, the
sequence is deinterleaved and decoded via the Viterbi
algorithm, which gives a sequence of hard decisions .
These are reencoded and interleaved to produce the sequence
of estimated coded symbols , which are used for feed-
back cancellation. The sequence of inputs and symbol
estimates are then filtered according to (2) with
to produce the sequence , which is deinterleaved and
input to the ML decoder. This process is then iterated.

For the IP-DFD, the vector does not depend on, i.e.,
decisions from the preceding iteration are used for parallel can-
cellation. For the iterative successive (IS)-DFD, the most recent
decisions are used for cancellation. That is, for the first itera-
tion, the S-DFD is used, in which users are successively demod-
ulated and cancelled. The filters for userare given by (4). In
succeeding iterations, the users are reordered, and the feedback
filter cancelsall demodulated users. That is, the filters are
P-DFD filters, but the users are successively demodulated. For
the IS-DFD, the decision vector, which is fed back for cancella-
tion, is denoted as , where the first elements (with the
new ordering) are from the current iteration, and the remaining
decisions are from the preceding iteration.

In what follows, we will assume that the error events are in-
dependent across users. This is true provided the following two
conditions are satisfied: 1) the block length tends to infinity, and
each user has a random interleaver, which is independent of the
interleavers for the other users; 2) the symbol estimate, which is
fed back for cancellation, does not depend on the current input

. In the case of the ML decoder, the second condition re-
quires that the contribution from the current input be subtracted
from the decision metrics. Even without this modification, nu-
merical examples, which follow, indicate that the error indepen-
dence assumption leads to analytical results, which accurately
predict performance in the region of interest.

A. IP-DFD

For the IP-DFD, we have

(6)

where the elements of are i.i.d. random variables,
, is a constant, and

(7)

is the feedback error term. Let denote the normal-
ized load. Assuming that the error events are independent across
users, as with fixed , the feedback error term be-
comes Gaussian with mean zero and variance given by

(8)

where is the probability of error for the
codedbits at iteration .

The SINR at the input to the ML decoder at iterationis,
therefore

(9)

The following analysis is consistent with the error independence
assumption when is the error probability associated
with an ML decoder, which uses only extrinsic information. Be-
cause the performance with a standard ML decoder is of pri-
mary interest, we will instead use the standard union bound to
evaluate the coded error rate. Strictly speaking, the error inde-
pendence assumption is no longer valid; however, comparisons
with simulation results indicate that it still gives accurate per-
formance predictions. Since the large-system interference plus
noise is Gaussian, the union bound is given by

(10)

where is the number of information bits corresponding to
error paths of weight, is the minimum free distance of
the code, and is the pairwise error probability for a path
of weight at SNR .

For the first iteration, the large-system error rate is computed
for the linear MMSE receiver by computing the corresponding
large-system output SINR [8]

(11)

which is independent of user, where is the
interference-plus-noise covariance matrix for user. The output
interference plus noise becomes Gaussian as [18],
so that the error rate for the coded bits can again be bounded
according to (10), where is replaced by .

The procedure for computing the large-system error rate for
the IP-DFD follows.

1) For , compute the large-system output SINR for
the linear MMSE receiver from (11).

2) Compute the union bound on coded bit-error probability
from (10). Alternatively, this can be obtained by simu-
lating a single-user system.

3) Compute the SINR at the output of the P-DFD from (9).
4) Iterate steps 2 and 3. Compute the bit-error probability at

the final iteration from the corresponding union bound, or
by simulation.

B. IS-DFD

The analysis for the IS-DFD is more complicated than that for
the IP-DFD, since the performance of a particular user depends
on the ordering. To equalize the performance over the user pop-
ulation, we reverse the order of the users from iteration to itera-
tion. For the first iteration, the S-DFD is used, which has output

(12)
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where

(13)

is the interference from undetected users, and

(14)

is the feedback error term for iteration , all for user .
We define the normalized user index . As ,
the set of values, which can assume is dense in the interval
(0,1). With perfect cancellation, the “effective” load for user
is , which has large-system limit . In
what follows, we will always show the large-system user index

as a function argument.
Referring to (12), with random signatures, as ,

converges in probability to a constant [8], and becomes
a zero-mean Gaussian random variable [18]. Assumingand

are independent of and for , which is rea-
sonable for sufficiently large interleaving depths, also be-
comes zero-mean Gaussian. We can then evaluate the large-
system error rate by evaluating the large-system limit of the
output SINR

(15)
where , and the expectations are over the data
symbols only.

As , we show in the Appendix that

(16)

(17)

(18)

where convergence is in probability. We emphasize that the
function argument denotes user index, and the corresponding
load is .

To evaluate the variance of the feedback error term (14), we
again assume that and are each independent of and

for , so that

(19)

(20)

(21)

where the expectation is with respect to both the random signa-
tures and the data symbols, , and we have
used the fact that is independent of and . As ,
we have

(22)

where is given by (17), and for is
the limit of the sequence as , where

.
The large-system error rate for the S-DFD can be evaluated

numerically by integrating (15) and (22) across users. Specifi-
cally, let denote the large-system error probability for the
coded bits at the output of the ML decoder as a function of input
SNR , assuming a single-user AWGN channel. Then

(23)

where

(24)

is the large-system output SINR of the S-DFD for user,
and can be computed from (16)–(18) and (22), andis the
integration step size. The new value is then used to
compute from (22), which is used in (24) to compute

, and so forth. The boundary condition is
, where is the SINR for the

linear MMSE receiver with load , which corresponds to
.

In the large-system limit, the error rate for the S-DFD de-
creases monotonically with user index, provided that the initial
SINR for user index is sufficiently high. In subsequent
iterations , the S-DFD is replaced by the IS-DFD, where
the order of the users is reversed at each iteration. The corre-
sponding feedback error term for a finite system is

(25)

and depends on. As

(26)

The two integrals on the right represent the contribution of users
and to the feedback error variance, respectively,

assuming the new ordering. The output SINR for useris

(27)

and the procedure for computing the error rates across users is
the same as for the S-DFD where the SINR is given by (27), and
the feedback error variance is given by (26). Of course, numer-
ical computation of the error rate requires that the integrals in
(22) and (26) be approximated as sums.
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Fig. 2. Large-system error rate for the IP-DFD with hard decision feedback.
Discrete points are from simulation withK = 120: “ ”, “�”, and “o”
correspond to the linear, P-DFD, and IP-DFD with two iterations, respectively,
with R = 1=2.

TABLE I
CONVOLUTIONAL CODES FROM [19] USED TOGENERATE NUMERICAL

RESULTS. ACG IS ASYMPTOTIC CODING GAIN. THE RATE 7/8 CODE IS A

PUNCTURED RATE 1/8 CODE WITH 256 STATES

IV. NUMERICAL RESULTS: HARD DECISION FEEDBACK

In this section, we show large-system performance results for
the IP-DFD with hard decision feedback. Additional numerical
results show that the error rates for both the IP- and IS-DFDs
converge to the same value with sufficient iterations. We defer
a comparison of IP- and IS-DFD performance to Section VI-A,
which presents results with soft decision feedback.

Fig. 2 shows plots of large-system bit-error rate (BER) versus
for the IP-DFD with hard decision feedback with spec-

tral efficiency and code rate .
Properties of the convolutional codes used to generate all nu-
merical results are shown in Table I. Also shown are plots corre-
sponding to , and simulation results for the coded P-DFD
with . The former plots assume that from below
with perfect interleaving. With coding we note that only three it-
erations are needed for the error rate to converge. (The first two
iterations correspond to the linear and noniterative P-DFD, re-
spectively.) The rate 1/2 code improves performance only when

is relatively high. This is because for the rate 1/2 code,
there are chips per bit, and hence, fewer degrees of freedom
are available for interference suppression than for . The
input SINR for the code must exceed a sufficient threshold be-
fore the benefit of the coding gain is realized.

Fig. 3 shows large-system error rate versus spectral effi-
ciency when the background noise is negligible. (We
chose dB.) Curves for different convolutional
code rates are shown, including . The codes have

Fig. 3. Large-system error rate versus spectral efficiencyK=N with hard
decision feedback for very largeE =N .

Fig. 4. Iterative receiver with MAP decoding and soft decision feedback.

been selected from [19] on the basis of similar constraint
lengths and performance. (See Table I.) The vertical curve
associated with each code is specified by a load threshold,
below which the union bound does not converge. Above the
threshold, the interference is perfectly cancelled, and since
the noise is negligible, the error rate is essentially zero. The
maximum spectral efficiency is achieved by letting ,
and is approximately 1.52. We remark that with coding, the
noniterative P-DFD achieves nearly the same performance
as the IP-DFD, and the corresponding error-rate curves are
nearly vertical. Approximately ten iterations are needed for the
IP-DFD to converge with .

V. SOFT DECISION FEEDBACK

We now refer to Fig. 4, in which a MAP decoder computes
for each and . The soft

estimate of at iteration , which is fed back for cancellation,
is . For the IP-DFD, theth input to the
MAP decoder for user is

(28)

In analogy with the error independence assumption for hard de-
cision feedback, we will assume that the terms in the sum (feed-
back error terms) are independent across users. This assumption
is valid provided that the users have independent random inter-
leavers, and that each soft feedback estimate is obtained
from extrinsic information. Let denote the full APP
computed by the MAP decoder for theth symbol, and let
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denote the corresponding probability based on extrinsic
information. Then the LLR

, where
is the APP computed from

the current input. Strictly speaking, the error independence
assumption is not true when APPs are used to compute the soft
feedback. However, a comparison with simulation results shows
that the following analysis accurately predicts performance
(with APPs) over a wide region of interest.

Letting , the second term in the bracket
(feedback error term) becomes Gaussian with mean zero and
variance given by

(29)

where is the distribution of given that the

coded symbol . Given and , the large-system de-
coded error rate is the same as that for asingleuser transmitting
over an AWGN channel, where the SNR is . This
error rate can be obtained by simulating the single-user system,
or can be estimated via a union bound.

To obtain , we use the approximation that the

LLR , where is the random variable com-
puted by the MAP decoder conditioned on , is a
Gaussian random variable with mean and variance
[14], [20]. The corresponding density is given by

(30)

where denotes inverse hyperbolic tangent. Examples
corresponding to different iterations at dB are
shown in Fig. 5. The quantities and , as a function
of SNR, are obtained by simulating the equivalent single-user
AWGN system.

The large-system error rate for the IP-DFD with soft feedback
can be computed according to the following procedure.

1) For the first iteration, compute the large-system output
SINR for the linear MMSE receiver from (11) along with
the corresponding error rate.

2) Look up and as a function of the SINR com-
puted at the preceding step 1 or 3.

3) Compute the variance of the feedback error term
from (29) and (30), which determines the SINR at the
input to the MAP decoder.

4) Compute or look up the single-user decoded error rate.
5) Iterate steps 2, 3, and 4.
The analysis for the soft IS-DFD is analogous to that for the

hard IS-DFD. Namely, for the first iteration the output SINR for
the S-DFD is again given by (15) where, , and
have the large-system limits in (16), (17), and (18), respectively.
In this case

(31)

Fig. 5. Probability density functions (30) for different iterations atE =N =

4 dB.

is the feedback error term, and again assuming thatand
are each independent of and for , we have, in
analogy with (21)

(32)

where is given by (29) and (30),
and the expectation is with respect to both the random signatures
and the data symbols. As , we have

(33)

where is given by (17), and for is the
large-system limit of the sequence , where

.
The large-system error rate for the soft S-DFD is evaluated

by numerically integrating (33) across users according to the
following procedure, where is the integration step-size.

1) For , the output SINR, error rate, and corresponding
values of , , and , are evaluated for the
linear MMSE receiver.

2) The large-system SINR at the input to the MAP decoder
for user is computed from (24), (16)–(18) and (33).

3) is computed from (29) and (30) using values
for and corresponding to the SINR from the
preceding step.

4) The user index is replaced by , and steps 2 and 3
are repeated.

In this way, the large-system output SINR and corresponding
error rate can be evaluated for , .

In succeeding iterations, the S-DFD is replaced by the
IS-DFD, where the order of the users is reversed at each
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iteration. The output SINR for user at iteration is then
given by (27) where the feedback error term

(34)

depends on, and contains estimates from both the current
and preceding iterations. As

(35)
where is the variance of the feedback error term for
user at iteration . The procedure for computing the error
rates across users is then the same as for the S-DFD, where the
SINR is given by (27), and the feedback error variance is given
by (35).

VI. NUMERICAL RESULTS: SOFT DECISIONFEEDBACK

A. Comparison of IP- and IS-DFDs

Fig. 6 shows plots of large-system BER versus for the
IP-DFD with spectral efficiency and code
rate . Simulated points corresponding to are
also shown. The results in Fig. 6(a) and (b) assume soft feed-
back based on extrinsic information and APPs, respectively. The
single-user coded error rate as a function of SNR was deter-
mined by simulation for error rates greater than , and by
computing the union bound for error rates less than . For
this example, the corresponding to the large-system ca-
pacity at a spectral efficiency of 0.75 bit/chip is approximately
3.2 dB. Comparisons with simulation results for smaller systems
shows that the large system requires relatively few iterations to
converge even at an close to the steep part of the curve.

Fig. 6 shows that the large-system results accurately predict
the simulated results for the number of iterations shown. This
is true for both extrinsic feedback and feedback based on APPs.
For the case of APP feedback, increasing the number of itera-
tions beyond five shifts the large-system “drop-off” point by ap-
proximately one dB to the left, whereas the simulated drop-off
point does not change. This inaccuracy may be caused in part by
the dependence among soft feedback decisions, as pointed out
earlier. However, further investigation indicates that the main
reason for this inaccuracy is that after a few iterations, the de-
coder decisions begin to harden, and introduce errors into the
feedback filter, which are not accounted for in the large-system
analysis. In other words, after a few iterations, the distribution
for the LLRs at the output of the MAP decoder become skewed,
thereby violating the Gaussian assumption. (This appears to be
less of a problem with extrinsic feedback since only five iter-
ations are needed for convergence.) We find, however, that at
higher loads, the large-system analysis with APP feedback re-
mains accurate for a larger number of iterations.

Comparing Fig. 6(a) and (b), we see that large-system per-
formance with soft decision feedback based on APPs provides
a substantial performance gain relative to extrinsic feedback.
The degradation in performance due to biased interference es-
timates, associated with APPs [15], is therefore outweighed by

(a)

(b)

Fig. 6. Large-system error rate versusE =N for the IP-DFD with soft
feedback. Discrete points are from simulation withK = 120. The code rate
R = 1=2 and the spectral efficiencyK=N = 3=4. (a) The soft feedback
symbols are computed from extrinsic information. (b) The soft feedback
symbols are computed from APPs.

the additional information provided by the current symbol. We
emphasize that this performance gain depends on the assump-
tions of a large system and optimized P-DFD filters assuming
perfect feedback. Further simulations indicate that the gap be-
tween the “waterfall” regions shown in Figs. 6(a) and 6(b) di-
minishes when the system size is reduced, and when the fil-
ters are estimated from the received data [21]. (Furthermore,
extrinsic feedback can slightly outperform APP feedback.) Fi-
nally, comparing Fig. 6(b) with Fig. 2, for the particular code
and parameters chosen, iterative soft decision feedback with
APPs offers a gain of nearly 5 dB relative to hard decision feed-
back.

Because of the improved large-system performance of APP
feedback relative to extrinsic feedback, and the accuracy of the
large-system analysis, as shown in Fig. 6(b), in what follows
we restrict our attention to APP feedback. Fig. 7 shows large-
system error rate versus normalized user indexfor the IS-DFD
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Fig. 7. Large-system error rate versus normalized user index for the IS-DFD.
Simulated results withK = 150 are also shown.

Fig. 8. Large-system error rate versusE =N for IP- and IS-DFDs.

with APP feedback. The indexes and refer to the
user decoded first and last, respectively, in the first iteration. The
spectral efficiency and dB. Also
shown are the corresponding simulated results for . A
fixed number of runs was used to generate the simulated results,
so that the variance increases as the error rate decreases. The
error rates for all users converge to the single-user bound with
fewer iterations than those required by the IP-DFD.

Fig. 8 compares large-system error rates versus for
the IP- and IS-DFDs. The parameters are the same as those used
to generate Fig. 6. The IS-DFD curves for iterations 1–4 corre-
spond to 0, 1, 0, 1, respectively. The first iteration, there-
fore, corresponds to linear MMSE performance, and coincides
with the P-DFD. These results show that the number of itera-
tions required by the IS-DFD for convergence (for any user) is
less than that required by the IP-DFD. Still, both the IS- and
IP-DFDs converge to the same error rates given sufficient itera-
tions.

Fig. 9. Large-system error rate versusE =N for different code rates with
K=N = 1:25.

Fig. 10. Large-system error rate versus spectral efficiency with largeE =N .

B. Effect of Code Rate

Fig. 9 shows large-system error rate versus for the
IP-DFD with spectral efficiency and code rates

1/2, 3/4, and 7/8. Curves are shown for five and ten itera-
tions. For the relatively high spectral efficiency considered, the
higher code rates give substantial performance improvements
relative to the rate 1/2 code. Fig. 10 shows large-system error
rate versus spectral efficiency with very large (100
dB) for different code rates. Curves corresponding to one and
ten iterations are shown with coding. The curve for again
assumes that from below with perfect interleaving. In
that case, 20 iterations are needed for convergence. These plots
demonstrate that the iterative receivers considered are interfer-
ence limited. That is, for a given code, the maximum load
that can be supported is finite even in the absence of noise. This
maximum load is shown to increase with code rate, and tends to
the load as the code rate . In contrast, it has
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Fig. 11. MinimumE =N required to achieve either the single-user bound,
or an error rate of10 with different code rates. The minimumE =N
corresponding to large-system capacity is also shown.

been shown in [22] that the optimal (ML) receiver is not inter-
ference limited.

Fig. 11 shows the minimum required by the IP-DFD
to achieve either the single-user bound or an error rate of
(whichever is larger) as a function of spectral efficiency .
Curves are shown for code rates 1/4 and 1/2 with five iterations,
code rates 3/4 and 7/8 with ten iterations, and with 20
iterations. The choice of iterations is based on the observation
that more iterations are needed for convergence at higher loads.
Also shown is the lower bound on minimum based on the
large-system sum capacity with random spreading [9]. Letting

denote this large-system capacity as a function of
and in bits per chip, the latter curve is the
which satisfies , where is the target

spectral efficiency. This corresponds to binary signaling. These
results show that the iterative receivers perform quite close to
the capacity bound for spectral efficiencies , but
diverge from the capacity bound as the increases. As ex-
pected, low-rate codes perform better than high-rate codes at
low spectral efficiencies, and the reverse is true at high spectral
efficiencies.

VII. CONCLUSIONS ANDEXTENSIONS

Large-system performance of iterative DFDs with parallel
and successive demodulation has been studied. Soft decision
feedback gives a substantial improvement in performance rel-
ative to hard decision feedback (e.g., nearly 5 dB with

). In addition, our results show that APP feedback gives a
substantial performance improvement relative to extrinsic feed-
back. With APP feedback at moderate spectral efficiencies, the
soft iterative DFDs can achieve near-single-user performance at

’s close to the capacity limit. However, the iterative re-
ceivers are interference limited, in the sense that there is a max-
imum load that can be supported even in the absence of noise.
For a large system, this maximum load increases with code rate
to a value slightly greater than two as .

Our results also show that with limited iterations, the IS-DFD
can perform significantly better than the IP-DFD, although with
sufficient iterations, both perform the same for the cases consid-
ered. Examples with coded hard decision feedback show that the
IP-DFD requires only one or two additional iterations for con-
vergence.

The analysis presented here can be extended to account for
unequal received powers, asynchronous users, and multipath.
Unequal received powers can be taken into account by using the
formula for large-system SINR for the linear MMSE receiver
with an arbitrary received power distribution presented in [8].
The analysis then proceeds as before, where the variance of the
feedback error term must include an average over the power
distribution of the cancelled users. For the S- and IS-DFD, this
term depends on the user and the order in which the users are
cancelled.

The extension to asynchronous CDMA is more difficult, but
can be accomplished using techniques developed for the linear
receiver in [23] and [18]. The feedback error terms must, of
course, be averaged over the random delays. The effect of mul-
tipath can be taken into account for a particular user by con-
ditioning on the user’s channel, as in [24]. With small delay
spreads (i.e., ignoring the intersymbol interference), the vari-
ance of the large-system multiple-access interference can be es-
timated as in [24] and [25].

Finally, we remark that the CDMA model analyzed here is
equivalent to a single-user flat fading channel with multiple
transmit and receiver antennas (e.g., see [26]). If the channel co-
efficients are i.i.d., then the large-system analysis presented here
can be applied directly to a multiple-antenna system where the
CDMA parameters and become the number of transmit
and receiver antennas, respectively.

APPENDIX

DERIVATION OF (16)–(18)

It is sufficient to derive these relationships for .
The first relation (16) follows directly from (11) and the matrix
inversion lemma. To derive (17), we again apply the matrix in-
version lemma

(36)

where is the interference-plus-noise covari-
ance matrix. Now and

(37)

(38)
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in probability as . Computing the derivative and com-
bining with (36) gives (17).

The multiple-access interference term (18) can be obtained
by observing that the large-system SINR for the linear MMSE
receiver is

(39)

Solving for and combining with (16) and (17) gives (18).
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