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Abstract—We develop new metrics for texture similarity that

that of existing metrics. For that we focus on a particular

account for human visual perception and the stochastic nature CBR application, which facilitates testing on a large testu

of textures. The metrics rely entirely on local image statistics
and allow substantial point-by-point deviations between textures
that according to human judgment are essentially identical.
The proposed metrics extend the ideas of structural similarity

(SSIM) and are guided by research in texture analysis-synthesis.

database, and allows the use of different metric performanc

statistics, which emphasize different aspects of perfooea

that are relevant for many other image analysis application
Traditional similarity metrics evaluate the similarity -be

They are implemented using a steerable filter decomposition tween two images on a point-by-point basis. Such metrics

and incorporate a concise set of subband statistics, computed
globally or in sliding windows. We conduct systematic tests to

investigate metric performance in the context of “known-item
search,” the retrieval of textures that are “identical” to the query
texture. This eliminates the need for cumbersome subjective tes

include mean squared error (MSE) and peak signal-to-noise
ratio (PSNR), as well as metrics that make use of explicit
low-level models of human perception [1], [2]. The latter

are typically implemented in the subband/wavelet domain

thus enabling comparisons with human performance on a large and are aimed at the threshold of perception, whereby two

database. Our experimental results indicate that the proposed

metrics outperform PSNR, SSIM and its variations, as well
as state-of-the-art texture classification metrics, using staratd
statistical measures.

Index Terms—natural textures, perceptual quality, statistical
models

I. INTRODUCTION

images, typically an original and a distorted image, are vi-
sually indistinguishable. In contrast, our goal is to asgbe
similarity of two textures, which may have visible point-by
point differences, even though neither one of them appears t
be distorted and both could be considered as original images
The interest in metrics that deviate from point-by-point
similarity was stimulated by the introduction of ts&ructural
similarity metrics (SSIM]3], a class of metrics that attempt

HE development of objective metrics for texture simto incorporate “structural” information in image comparis.
ilarity differs from that of traditional image similarity Such metrics have been developed in both the space domain

metrics, which are often referred to as quality metricsgose
substantial visible point-by-point deviations are polsifor

(S-SSIM) [3] and the complex wavelet domain (CW-SSIM)
[4], and make it possible to assign high similarity scores

textures that according to human judgment are essentiaidypairs of images with significant pixel-wise deviationstth
identical. Employing metrics that are insensitive to sucllo not affect the structure of the image. However, as we

deviations is particularly important for natural texturékse

discuss below, SSIM metrics still rely on point-by-poinbss-

stochastic nature of which requires statistical modeld theorrelations between two images or their subbands, and thus
incorporate an understanding of human perception. In thistain enough point-by-point sensitivity that they willngeally
paper, we present nestructural texture similarity (STSIM) not give high similarity values to textures that are streaily
metrics for image analysis and content-based retrievaR)CBsimilar. In order to overcome such constraints, Zteoal.
applications. We then conduct systematic experiments [B] proposed astructural texture similarity metricwhich
evaluate the performance of these metrics and comparewl® will refer to as STSIM-1,that relies entirely on local
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image statistics, and thus completely eliminates poinpbint
comparisons; while Zujovicet al. [6] included additional
statistics to obtails TSIM-2The goal of this paper is to expand
on and systematically explore this idea. We present a genera
framework for STSIMs whose key elements are a multiscale
frequency decomposition, a set of subband statistics, U@

for comparing statistics, and pooling to obtain an overatl-s
ilarity score. An additional goal is to test metric perfomae

on a large database of natural textures.

We develop a number of STSIMs that utilize both intra- and
inter-subband correlations, and different ways of conmzgri
statistics. The development of texture similarity metriess
been motivated and guided by recent research in the area
of texture analysis and synthesis. Our interest is in textur
analysis/synthesis techniques that rely on multiscalpuieacy
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rank correlation coefficient and Kendall’s tau rank cortiela
coefficient can be used when a monotonic relationship betwee
subjective similarity scores and metric values is desi@d [
while Pearson’s correlation coefficient can be used when a
linear relationship is important [18]. In [5], the perforne
criterion was whether a metric can distinguish betweenlami
and dissimilar pairs, irrespective of the ordering withacle
group. This idea was further explored in [19], where we adgue
that the combination of testing procedure and statistieat p
formance measure is critical for obtaining meaningful hssu
The advantage of evaluating metric performance in the
context of retrieving identical textures is that the groundh
is known, and therefore no subjective tests are required. Of
Fig. 1. Constructing a database of identical textures:imaigand cutouts course, the ground truth is known to the extent that the textu
from which the identical patches are obtained is percelgtual
uniform. Another advantage of evaluating a metric in this

q . h . , q | context is the availability of a number of well-establistetd-
ecompositions [7]-{11]. The most impressive and comp &f&tical performance measures, which inclystecision at one

results were presented by Portilla and Simoncelli [11], Whneasures in how many cases the first retrieved document is
developed a technique based on an elaborate statlstlcadlmq levant),mean reciprocal rankmeasures how far away from

for texture images that is consistent with human perceptton the first retrieved document is the first relevant ormagan

is based on the steerable filter decomposition [12] andge"ﬁverage precisionand receiver operating characteristics.
on a model with several hundred parameters to capture avery, evaluating the similarity of two textures, one has to

wide class of textures. While in principle a direct companisot
of the model parameters can form the basis for a texture si

llarity metric, our goal is to show that a successful sinijar similarity metric that separates the computation of sirtifa

metric can be based on significantly fewer parameters. in terms of grayscale texture and color composition, and the
A number of applications can make use of STSIMs, angmbpines them into a single metric. However, our subjective
each application imposes different requirements on metigsts indicate that the two attributes are quite separate an
performance and testing procedures. For example, in imaggt there are considerable inconsistencies in the wetphts
compression it is important that the metric exhibit a mon@o pnyman subjects give to the two components [6], [19]. Thus,
relationship between measured and perceived distortibite w o the present study, we focus only on grayscale textures.
in image retrieval applications it may be sufficient for th§ye present a general framework for STSIMs that includes the
metric to distinguish between similar and dissimilar im®9enetrics proposed in [5] and [6], as well as a new metric that
without a need for precise ordering. The focus of this papgflies on the Mahalanobis distance between vectors of subba
is on CBR, and in particular, on the recovery of texturesatistics STSIM-N).
that areidentical to a query texture, in the sense that they |pitial experiments with STSIM-2 were performed on a
could be patches from a large perceptually uniform texturgaiapase of 748 natural textures [20]. In this paper, weeptes
as shown in Figure 1. However, these metrics have also begiyerimental results with two databases with a total 23
used in image compression [13]. Note that the patches at Higtinct texture images, extracted frong6 larger texture
bottom of Fig. 1 have visible point-by-point differencesitb jnages. Our results indicate that the proposed metricsanbs
to a human observer there is no doubt that they are the sy outperform existing metrics in the retrieval of ideal
texture. The zebra example was chosen to emphasize the pQiiyres, according to all of the standard statistical miess
typical textures are not as coarse as this. Retrieval ofticlin ,entioned above, each of which emphasizes different aspect
textures is important in CBR when one may be seeking imagssmetric performance.
that contain_a particular texture (materialZ fabric, pmttt_etc.), The paper is organized as follows. Section Il reviews
as well as in some near-threshold coding applications. Thgyyscale texture similarity metrics, including SSIM niter
problem of searching for a known target image in a databagge proposed STSIM metrics are discussed in Section |Il.

has been extensively studied by the text retrieval communigeciion |V presents the experimental results. Our cormhssi
and is referred to aknown-item searcfil4]. It has also been 4.6 summarized in Section V.

addressed by the image processing community for texture
retrieval applications [15]—[17].

The evaluation of image similarity metrics, in general,
requires extensive subjective tests, with several hum#&a su In this section, we review grayscale image similarity nestri
jects and a large number of image pairs. It also requiragsd discuss their applicability to texture images. Suctricget
appropriate statistical measures of performance. Depgndcan easily be extended to color by applying the grayscale
on the performance requirements, a number of traditiomaletric to each of three color components in a trichromatic
statistical measures can be used. For example, Spearmapace, as is sometimes done in compression applications.

ake into account both the color composition and the spatial
Bxture patterns. In [6] we proposed a new structural textur

II. REVIEW OF GRAYSCALE SIMILARITY METRICS
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methods are based on calculating statistics of the graysleve
in the neighborhood of each pixel (co-occurrence matrices,
first and second order statistics, random field models, aixl)
then comparing the statistics of one image to those of anothe
B : while the spectral methods utilize the Fourier spectrum or a
PSNR: 11.3d8  Subband decomposition to characterize and compare texture
We review statistical methods first. One of the best-known
F_ig._ 2.. II_Iustration of inadgquacy Qf PSNR fQI’ texture simitia _Subjective methods is based on co-occurrence matrices [24]_[26],|‘vvh|c
similarity increases left to right, while PSNR indicates tigposite. rely on relationships between the gray values of adjacent
pixels, typically within a2 x 2 neighborhood. However, given

the small size of the neighborhood, such methods are not well

However, as we have argued in [6], [21], it is more effectivgiteq for computing similarity of textures other than the s
to decouple the grayscale and color composition similafty ~511ed microtextures [27].

an image. So, we restrict our discussion —and this paper — t\nther approach is to rely on first and second order statis-
the grayscale case. tics. Chenet al. [28] used the local correlation coefficients

Imagg simila'rity metrics. can pe proadly .grouped into ey texture segmentation applications. However, as Juidsz
categories: (1) image quality or fidelity metrics that afpéto al. [29], [30] have shown, humans can easily discriminate

quantify the (ideally perceptual) difference between aginal g5 me textures that have the same second-order statistias, T

and a distorted image, and (2) image similarity metrics thafy e second order statistics of image pixels are not atequ
compare two images without any judgment about quality. Th&, the evaluation of perceptual texture similarity.

former are aimed at image compression and the latter at CBRynqther class of statistical methods rely on Markov random
applications. The texture similarity metrics we proposéliis — fie|4s (MRF) to model the distribution of pixel values in a
paper fall somewhere _between these two categories, and ®%&ure [31], [32]. In combination with filtering theory, éh
intended for both applications, even though the focus of ONfRE models can also be used for texture synthesis [33]. The

experimental results will be on their retrieval abilitid$ote -1 drawback of MRE-based approaches is that MRFs can
that most of the metrics we discuss do not meet the form@}l”y model a subset of textures.

definition of a metric, but we will refer to them as metrics Ojala et al.

[16] utilize local binary patterns (LBP) to

anyway. o ... characterize textures, mainly for retrieval applicatiombeir
Another broad categorization of grayscale texture siylar eihoq constructs binary patterns that describe the velati

metrics is into statistical and spectral metrics [22], [23] 43¢ of a pixel to image values in circles of different radii

Spectral analysis (subband decomposition) is essential ifiy e constructs histograms of such patterns for eachegirc
metric is going to emulate human perception, while sta8ti ,, 1o pasis of which it computes a log-likelihood statistic

analysis is necessary for embodying the stochastic nafureyQy 14 images come from the same class. This method is
textur_es. It should_ thus not be surprising that the bestimﬁetrvery simple yet effective for the task of texture classifivat
combine both attributes. However, as we show in Section IV, it does not provide metric
values that are comparable across different texture conten
The main advantage of these statistical approaches is their
Traditional metrics evaluate image similarity on a poigt-b simplicity and computational efficiency for obtaining thet
point basis, and range from simple mean squared error (MSfje features and carrying out comparisons. However, their
and peak signal-to-noise ratio (PSNR) to more sophisticatgimplicity is also their main drawback, as is their failuee t
metrics that incorporate low-level models of human pericept incorporate models of human perception. Most of these meth-
[1], [2]; we will refer to the latter aperceptual quality metrics. ods have been applied to limited data sets and applications,
Note that even though the former are implemented in the imaggd are likely to fail in more general problem settings.
domain and the latter in the subband domain, in both caseghe Spectra| methods provide a better link between pixe|
the computation is done on a point-by-point basis. FigurejBage representations and human perception. Initialgctsal
illustrates the failure of point-by-point metrics when \#ting methods were based on the Fourier transform, but given
texture similarity. Note that PSNR decreases with incrensithat the basis functions for Fourier analysis do not provide
texture similarity. efficient localization of texture features [34], they wergakly
Note also that perceptual quality metrics that are aimed @placed by wavelet/subband analysis methods, which geovi
near-threshold applications, whereby the original andmec 5 petter tradeoff between spatial and frequency resolution
structed images are perceptually indistinguishable, @& v Most of the recent spectral techniques extract the energies
sensitive to any image deviations that can be detected &y different subbands, and use them as features for texture
the eye, as for example when comparing the identical textggmentation, classification, and CBR [27], [35]-[38]. (ifie
patches of Fig. 1 and the two textures on the left of Fig. 2.the most effective classification techniques has been pezbo
by Do and Vetterli [38]; they use wavelet coefficients as
B. Texture Similarity Metrics features and show that their distribution can be modeled as
As we mentioned above, image similarity metrics can ke generalized Gaussian density, which requires the esimat
grouped into statistical and spectral methods. The dtatist of two parameters. They then base the classification on the

A. Point-by-point Similarity Metrics
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Kullback-Leibler distance between two feature vectors. to allow non-structural contrast and intensity changesyels
Some spectral techniques rely on subband decompositi@sssmall translations, rotations, and scaling changes atiea
(filter banks) that explicitly model early processing sta@é detectable but do not affect the perceived quality of an Enag
the human visual system (HVS). In addition to different spa-he main approach for accomplishing this goal is to compare
tial frequency channels, such decompositions are orientat local image statistics in corresponding sliding windowsr (f
sensitive, mimicking the orientation selectivity of simple- example,7 x 7) in the two images and to pool the results
ceptive fields in the visual cortex of the higher vertebrated such comparisons. SSIMs can be applied in either the
[39]. One example of such decompositions are Gabor filtespatial or transform domain. When implemented in the image
[40], [41]. Several authors have used features extractau fr domain, the SSIM metric is invariant to luminance and ccsttra
such decompositions for a variety of applications (e.g[8ln changes, but is sensitive to image translation, scaling, an
[35], [36], [42]-[45]). Manjunath and Ma [36] have utilizedrotation, as shown in [4]. When implemented in the complex
the mean and the standard deviation of the magnitude of thavelet domain, it is tolerant of small spatial shifts up to a
transform coefficients as features for representing theeitex few pixels, and consequently also small rotations or zoom [4
for classification and retrieval applications. Then, a meas The remainder of this subsection provides a brief review
of dissimilarity between two texture images is the nornaiz of SSIM in the spatial domain (S-SSIM) [3] and the complex
¢! distance between their respective two feature vectors. wavelet domain (CW-SSIM) [4]. The main difference between
Some methods for evaluating texture similarity combine tHbe two implementations is that the former is applied diyect
statistical and the spectral approaches. For example, ¥ango two images,x = [z(4,7)] andy = [y(i,7)], whose
al. [46] combine Gabor features and co-occurrence matriceighilarity we wish to assess, while in the latter the images
for CBR applications. One of the MPEG-7 texture descrigre first decomposed into subband$} = [2™(i,j)] and
tors [47], thehomogeneous texture descriptalso combines y™ = [y™ (3, j)], using the complex steerable filter bank [12],
spectral and statistical techniques. It consists of thenseand includes an extra subband pooling step. Otherwise, the
and variances of the absolute values of the Gabor coefficieritvo implementations are the same.
Since these statistics are computed over the entire imagelhe SSIM metric can thus be applied to the imageand
this descriptor is useful in characterizing images thatt@ion y or the subband images™ and y™. The two cases are
homogeneous texture patterns. For non-homogeneousasxtutlifferentiated by the presence af. SSIM fixes a window
the edge histogram descriptgpartitions the image into 16 size and shape (usually square), as well as a set of window
blocks, applies edge detection algorithms and computes lopositions within the images (typically increments of some
edge histograms for different edge directions. Testure sliding stepsize such as the window width). Then for each
browsing descriptgrattempts to capture higher-level percepwindow position, it performs the following three steps.
tual attributes such as regularity, directionality, andrseness,  First, it computes the mean and variance for each image
and is useful for crude classification of textures. Theseehrwithin that window. For example, fox™, these are
types of MPEG-7 texture descriptors of MPEG-7 are described ur = {2 (i, )} (1)
in detail in [48]. Ojalaet al.[16] have shown that the MPEG-7 s m’ﬂ ; . ' o -
descriptors are rather limited and provide only crude textu (@) =E{[z™ () — p] (2™ (0,5) — ]} - (@)
retrieval results. A number of variations of the MPEG-{yhere, although the notation does not showxit: refers to
techniques have also been developed, e.g., in [49]. the portion of the image within the current window, and where
Some of the techniques we have reviewed in this sectign ;™ (; ;)1 denotes the empirical averagexdf over spatial
have been shown to be quite effective in evaluating textuscations (i, j) within the window. SSIM also computes the

Slmllarlty in the context of ClUStering and Segmentati%'kta covariance ofx™ and ym within Corresponding windows:
However, there has been very little work towards evaluat-

ing their effectiveness in providing texture similarityoses Oy = E{[xm(i,j) — ] [y (i, 4) — u?]*} 3)
that are consistent across texture content, agree with muma
judgments of texture similarity, and can be used in differe
applications. In Section Ill, we proposed metrics thatrafie

Second, it compares the corresponding means and variances
Yor the given window position by computing tHeminance

to achieve these goals, while in Section IV, we presetrﬁrm: . 2ui 11y + Co
systematic methods for evaluating metric performance. <y = )2+ (w2 + Co’ (4)
X y
and thecontrastterm:
C. Structural Similarity Metrics 20Ma™ 4 (Y
mo Xy
For supra-threshold applications, such as CBR and percep- E (o) + (o) + C1’ ®)

tually lossy compression, there is a need for metrics that ca . .
accommodate, i.e., give high similarity scores to, sigaiftc whereC, andC; are small positive constants that are included

(visible) point-by-point differences as long as the over o and that when the statistics are small the term will beeclos

quality and structure does not change from one image to toel' In addition, the covariance and variances for the window

other. This was the primary motivation in the development gfosmon are used to determine thuctureterm:
the SSIMs [3], a class of metrics that attempt to — implicitly m oxy +Co ©6)

— incorporate high-level properties of the HVS. The goal is Sy = ooyt + Oy’
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analysis is necessitated by the stochastic nature of tetur
The steerable filter SSIM implementations [4] seem to previd
the right ingredients for a perceptual approach to texture
similarity. First, steerable filters, like Gabor filterseanspired
by biological visual processing. Second, the most impaortan
idea behind the SSIM approach [3] for image quality is thé fac
that it replaces point-by-point comparisons with compars
of region statistics. However, the “structure” term of {&jich
gives SSIM its name, is actually a point-by-point compariso
This follows from the fact that the cross-correlation betwe
the patches of two images in (3) is computed on a point-by-
point basis. Moreover, Reibman and Poole [51] have shown
that the image domain SSIM has a direct connection to MSE.
This does not hold for CW-SSIM, which is tolerant of small
correlation coefficient of the two patches shifts since such pertur_bgtions produce consistent phafis s
Finally, it combines these three termé into the similaritOf the transform coefficients, and thys do nqt change the
' Yelative phase patterns that characterize local imageirest
value [4]. However, the amount of shifts the CW-SSIM can tolerate
is small and independent of metric parameters. On the other
for some choice of positive numbers 3, and~, typically hand, pairs of texture images can have large point-by-point
all set tol. Note that CW-SSIM assumes thaf’ = 0 for all d|ﬁ§repc¢s and pixel shifts, while still preserving a hitggree
subbands except the lowpass; it also uses the magnitueg, of of similarity.
to make sure that all the terms in (7) are real. Note also that a Thus, in order to fully embrace the SSIM idea of relying on
of these terms take values in the inter{@l1], except for the local image statistics, and to develop a metric that canesdr
“structure” term of S-SSIM, which takes values[inl, 1]. The the peculiarities of the texture similarity problem, we dée
similarity values computed for all window positions arerthecompletely eliminate point-by-point comparisons by driogp
pooled by averaging to obtain the SSIM valG&x,,(x,y) the “structure” term, and to replace it with additional stits,
over all spatial locations. and comparisons thereof, that reflect the most discrinmgati
In the complex wavelet version of SSIM (CW-SSIM) [4] texture characteristics. This paper proposes a generalefra
the imagex andy are first decomposed int, = N,-N,+2 work for STSIM metrics that take the following form:

subbands using the complex steerable filter bank [12]. Here;1) A multiscale frequency decomposition: Such decom-

(a) (b)

Fig. 3. (a) Steerable filter decomposition. (b) Crossbandetations

which, apart from the small constanfy, is the cross-

lm m m

qngIM(XaY) = ( x,y)a(cx,y)ﬁ(sx,y)’y7 (7)

N, denotes the number of scale§, the number of orien-
tations, and the 42" accounts for the (innermostpwpass
and outermoshighpassbands, which are not subdivided into
different orientations and which have real-valued coedfits, o
in contrast to the complex coefficients of thé - N, other
bands. Figure 3(a) illustrates the passbands of the steerab
filter decomposition withNy, = 3 scales andN, = 4
orientations. The similarity values are computed for eachg
subband as in (7) and then pooled across subbands, typically
by averaging. 4
Note that SSIM metrics incorporate implicit contrast mask-
ing — as opposed to explicit contrast masking in perceptual
quality metrics — as the luminance (4) and contrast (5)
terms are scaled by the values of the mean and variance,
respectively, and are thus weighted by how visible they are.

On the other hand, subband noise sensitivities — for a givens)

display resolution and viewing distance — are not implicit
but can be easily incorporated into the CW-SSIM metric to
obtain a perceptually weighted metric (WCW-SSIM) [50].
Such perceptual weighting is useful for measuring distogti
that are dependent on viewing distance, such as white noise
and DCT compression [50].

IIl. STRUCTURAL TEXTURE SIMILARITY METRICS

positions can be real or complex. In the following, we
will use the three-scale, four-orientation steerablerfilte
decomposition of Figure 3(a) — as in CW-SSIM.

A number ofsubband statistics: Each statistic corre-
sponds to one image and is computed within one window
in that image. Statistics are computed within a subband
or across subbands.

The window over which the statistics are computed can
be local (sliding window) orglobal (the entire image).

A means for comparing (corresponding) subband
statistics, one from each image whose similarity we wish
to assess: The particular formula depends on the range
of values that the statistic takes, and yields a nonnegative
number that represents the similarity or dissimilarity of
the two statistics.

Three types of pooling to obtain an overall
(dis)similarity score: One that combines (dis)similarity
scores for all statistics that correspond to a given
subband, one that pools across subbands, and one that
pools across window positions. As we will see, pooling
can be done additively or multiplicatively. The order of
the pooling can be selected to provide similarity scores
for a particular subband or window location.

Note that the “structure” term of SSIM does not fit the above

As mentioned in Section II, spectral (subband) analysis description, because the statistic it computes involves tw
needed to model early processing in the HVS, while stasistidmages, and because it is not a comparison of two statistics.
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Moreover, in S-SSIM, it can take negative values. and window location:

We now discuss different choices for each of these elements oL m L m 1, m 1
that result in different metric embodiments. Note that dll o 98Tsim-1(%:¥) = (I ) (e )T (ccy (0, 1)) (e5y (1, 0))1
the metric embodiments we discuss are not scale or rotation (12)
invariant. However, if required by an application, they dmn Note that the exponents were selected to sum fo order

modified to account for such invariances, in combinatiohwit® Normalize the metric values so that metrics with différen
a scale or orientation detector. numbers of terms are comparable [5]. The overall metricevalu

is obtained by pooling over all subbands and spatial lonatio
For spatial pooling, Zhacet al. [5] considered two ap-
A. STSIM-1 proaches. In the “additive” approach, the metric values are

The first structural texture similarity metric was propose@veraged across all subbands. In the “multiplicative” apph,
by Zhao et al. [5], who replaced the “structure” term ofthe metric values are multiplied across the subbands. In bot

(6) in the CW-SSIM with terms that compare first-ordefases, th_e_final _metric is ca]culated as the spatial avenagre o

autocorrelations of neighboring subband coefficients geor @ll the sliding window locations.

to provide additional structural and directionality infeation. !N [5], the STSIM-1 was shown to outperform SSIM and

We refer to this metric as STSIM-1. CW-SSIM, in the sense that it provides texture similarithest
The first-order autocorrelation coefficients can be congput@"® closer to human judgments.

as empirical averages, in the horizontal direction as

. E {[x™ (i, 5) — @) ™ (i, 5 + 1) — )"} B. Selection of Subband Statistics
P (0,1) = (om)? (®) In the remainder of this section, we develop metrics that
) ) . ! extend the ideas of [5] by including a broader set of image
and in the vertical direction as statistics. The motivation comes from the work of Portiltala
" E{[x™(i,7) — p2] [x™( + 1,5) — p]" } Simoncelli on texture analysis/synthesis [11], who havensh
Pi'(1,0) = (om)? (9)  that a broad class of textures can be synthesized using a set

_ o  of statistics that characterize the coefficients of a muales
Diagonal and anti-diagonal terms could be computed infgquency decomposition (steerable filters). Based omsite
similar fashion. However, STSIM-1 did not use them becau%?(perimentation, they claim that the set of statistics they
they.did not contribute to any significant improvements iBroposed are necessary and sufficient. Now, if a set of titatis
metric performance. is good for texture synthesis, then these statistics shaigldl

Note that there is no need to consider adding highge suitable as features for texture comparisons. However,
order autocorrelations, because this would be equivalent\fhjle texture synthesis requires several hundred parasete
computing first-order autocorrelations of decimated insag&ye believe that many fewer will suffice for texture similgrit
However, this is effectively done when we compute the first- Among the various statistics that Portilla and Simoncelli
order autocorrelations of the lower frequency subbandgiwh proposed, the proposed metrics adopt the mean and variance
are lowpass filtered and decimated, which (lowpass filt¢ringf the original SSIM metrics, the correlations coefficients
also eliminates aliasing. Thus, by computing first-ordeibau tne STSIM-1 metric, and adcfossbandtorrelations (between
correlations on a multi-scale frequency decompositionavee syhbands). The argument for adding crossband correlations
effectively computing higher-order autocorrelations. lies in the fact that the image representation by steerable

Note also that in contrast to the variances, which affter decomposition is overcomplete, and thus, the subband
unbounded and nonnegative, the correlation coefficierds agefficients are correlated. More importantly, we compute
bounded and their values lie in the unit circle of the complexe crossband-correlation statistics on thagnitudesof the
plane. Thus, the statistic comparison terms cannot take #¥xfficients. The raw complex coefficients may in fact be
form of (4) and (5). Hence, new terms were suggested in [J]xcorrelated, since phase information can lead to cancella

m _ m m > tions. As shown by Simoncelli [52], the magnitudes of the
Gy (0:1) = 1= 0505 (0, 1) = p§ (0, 1) (10) wavelet coefficients arpot statistically independent and large
Gy (1,0) = 1=0.5]p(1,0) — py'(1, 0)[7. (11) magnitudes in subbands of natural images tend to occur at

We will refer to these asorrelation terms Typically, p = 1. the same spatial locations in subbands at adjacent scales

Note that the means, variances, and autocorrelations sped orientations. The intuitive explanation may be that the

calculated on theaw, complex subband coefficients. Since thﬁv'fuﬁg :Eatudres of[i nlaturre:l ;nj[iagiles do \?V'Vﬁ nsel t? largealoc
subband decomposition (apart from the lowpass subband) gg&!9nhbornood spatial correfations, as Well as large s a

not include the origin of the frequency plane, the subban8§$2taﬂon cgrre(ljaﬂonsl[lt_l]. ficient bet bband
will ordinarily havezero-mearover theentireimage; however, € crossband-correiation coeticient between subbands

within small windows, e.g., of siz& x 7, this does not have andn (excluding the lowpass and highpass bands) is computed

to be true; thus, the meang have to be computed in each® E e m e N

sliding window, and used in the variance calculations. ™0, 0) = {['X (@, 5)] = “\xl} “X (@ 5)| = “\xl”
For each window, the similarity scores corresponding to the’ IxI U\Tz\glr;cl

four statistics are combined into one score for each subband (13)
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Among all subband combinations, we have decided to incluBe Complex Versus Real Steerable Filter Decomposition
the correlations between subbands at adjacent scales for a ' .

. : : . . . he complex steerable filters decompose the real image
given orientation and between all orientations for a giveales, .

an example is shown in Figure 3(b). This is in agreement wilp}to complex subbands™. The real and the imaginary parts

the findings of Hubel and Wiesel [53] that spatially close—sinfh:lijrzggsiﬁg?yagisrt aigetﬁgtQﬂggﬁeggﬁg:ocr):neg??hgﬂ;g;l 'Bafzd’
ple cells in the primary visual cortex exhibit amplificatioh that is, they are in quadrature. Quadrature filters are used f’
the responses of cells whose preferred orientations aﬂmsimenvelolpe detection and for Ioc.al feature extraction in iesag
Note that for computing crossband correlations, it is ingor

that the subbands have the same sampling rates (numberB%fapplymg filters in quadrature, we are able to capture the

coefficients); this can be achieved if in the steerable filt?(?cal phase. information, Wh'Ch IS cqnsmtgnt W'th receptiv
- ) , . . ield properties of neurons in mammalian primary visual@ort
decomposition we just filter without subsampling. Howewedr,

other statistics can be computed using subsampled coefﬁcie[sﬂ' Aachet al. 1551 h h that th tral
provided they are normalized for pooling. owever, Aachet al. [55] have shown that the spectra

. . . energy signatures from the subbands obtained with quadratu
The total number of crossband correlations is equal to: ) : .
filters are linearly related to the energies obtained by the
. “texture energy transform,” which performs local variance
Ne = N - ( 9 ) + No - (Ns — 1), estimation on the image filtered with the in-phase filter.sThi
is true when we perform the calculations over the windows
where the first term comes from the correlations across gt are the same size as the filter support. Thus, the same
possible orientation combinations for a given scale and therformance is expected when using either complex or real
second term comes from the correlations of adjacent scaigserable pyramids when a global window is applied. For a
for a given orientation. (Note that each subband in the firgical window, which may be different than the filter support,
and last scales has only one adjacent subband.) Thus, if (e conclusions from [55] no longer hold and the complex
use a steerable filter decomposition with = 3 scales and transform is favorable, given its invariance to small riotas,
N, = 4 orientations, as shown in Figure 3(b), there @6e translations and scaling changes, as shown by Veéarad [4].
new subband statistics. Overall, the proposed STSIM ngetric
incorporate the following statistics, which are computeéro
the complex subband coefficients or their magnitudes. Far ed=. Comparing Subband Statistics and Pooling — STSIM-2

of the V,, subbands we compute: We are now ready to define STSIM-2, a metric that incorpo-

« mean valugy’'| (to make it real) onuy,, rates the statistics we defined in Section I1I-B. The metiiit w

« variance(oy)? or (a7}))?, use the mean valug?|, variance(c*)?, and autocorrelations

« horizontal autocorrelatiopZ* (0, 1) or pgl(o, 1), p2(0,1) andp*(1,0), computed on the complex subband co-

» Vvertical autocorrelatiomy’(1,0) or pfy, (1,0), efficients, and the crossband correlatjgfi" (0, 0), defined on
and for each of theV, pairs of subbands we compute the magnitudes. If we adopt the SSIM approach for comparing

. image statistics, all we need to do is add a term for comparing
» crosshand correlanop‘x" 0,0). the crossband-correlation coefficients to the STSIM-1 imetr

for a total of N, = 4 - N, + N, = 82 statistics. Like the STSIM-1 comparison terms in (10) and (11), this

term should take into account the range of the statisticegalu

. and should also produce a number in the intef0al]:
C. Local Versus Global Processing
In SSIM, CW-SSIM, and STSIM-1 the processing is done Gy (0:0) =1 =0.5]p;3"(0,0) — p 7" (0,0)|? (14)

on a sliding window basis. This is essential when compari . .
two images for compression and image quality applicatior?ggam’ typlcal.ly,p =1L _ _
where we want to ignore point-by-point differences, but tvan Note that since the grossband correlation comparison terms
to make sure that local variations on the scale of the WinddWOIVe two subbands, it does pot make sense to multiply them
size are penalized by the metric. Note that the window size q¥/th the other STSIM-1 terms in (12). We thus need a separate
termines the texture scale that is relevant to our probldmsT term. For a given window, the overall STSIM-2 metric can
if the window is large enough to include several repetitiohs then be obtained as a sum of two terms: one that comb!nes
the basic pattern of the texture, e.g., several peas, tisepetas the STSIM-1 values over 4_’:l|| subbands, and one that combines
are treated as a texture; otherwise, the metric will focus G the crossband correlations.
the surface texture of the individual peas. On the other hand Ny N,
when the goal is overall similarity of two texture patchémrt > aSrsma(Xy) + 22 ¢y (0,0)
the assumption is that they constitute uniform (homogesou dsrsim-2(X, y) = 2= N ]\;:1 . (15)
textures and the global window produces more robust dtatjst b e
unaffected by local variations. Thus, in the following, wélw When the metric is applied on a sliding window basis,
consider both global and local metric implementations éibr spatial pooling is needed to obtain an overall metric value
metrics except the SSIM, for which the global implementatioQstsiv-2(x,y). As we saw above, spatial pooling can be done
does not provide much information [3], [50]). before or after the summation in (15).
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F. Comparing Subband Statistics and Pooling — STSIM-M A. Database Construction

Another approach for comparing image statistics, that is For our experiments, we collected a large number of color
better suited for comparing entire images or relativelgéar texture images. The images were carefully selected to (&) me
image patches, is by forming a feature vector that contélns some basic assumptions about texture signals, and (bidéeil
the statistics we identified in Section IlI-B over all subdan the construction of groups of identical textures.
and computing the distance between the feature vectors. Weo address the first point, we need a definition of texture.
found that it is most effective when the statistics are ca®@u The precise definition of texture is not widely agreed on
on themagnitudes of the subband coefficients. in the literature. However, several authors (e.g., Partihd

One of the advantages of this approach is that we c&imoncelli [11]) define texture aan image that is spatially
add different weights for different statistics, dependiog homogeneous and that typically contains repeated strastur
the application and database characteristics. For examgle often with some random variation (e.g., random positioizs,s
could put a lower weight on statistics with large variancerientations or colors)The textures we collected had to meet
across the database, thus de-emphasizing differencearthatthe requirement of spatial homogeneity and repetitivertess
expected to be large and paying more attention to diffeendatter we defined as at least five repetitions, horizontatly o
that are not commonly occurring. This can be accomplishedrtically, of a basic structuring element. We also made sur
by computing theMahalanobis distancg56] between the that there is a wide variety of textures and a wide range of
feature vectors, which if we assume that the different f@stu similarities between pairs of different textures.
are mutually uncorrelated, is a weighted Euclidean distanc To address the second point, we collected images of what we
with weights inversely proportional to the variance of eackonsidered to be perceptually uniform textures, from wiieh
feature. We refer to the resulting metric as STSIM-M, whergut smaller patches of identical textures — each of which met
“M” stands for Mahalanobis. Note that as a distance this istRe basic texture assumptions. The group of patches otigina

dissimilarity metric that takes values betwe@mnd cc. from the same larger texture are considered to be identical
The feature vector for image or image patcthas a total textures, and thus consideredlevant to each other in a
of N, =4- N, + N, terms and can be written as: statistical sense.
Our subjective experiments were conducted on two different
Fe=[fxn fxos o xon, ] texture databases, obtained from tberbis [57] and CUReT

databases [58], [59], respectively.
To construct the first database, we downloaded ardond
color images from th€orbis website [57]. All of the textures

The STSIM-M metric forx and y, is then given by the
Mahalanobis distance between their feature vecfgrsand

Iy: were photographic, mostly of natural or man-made objeats an
Np (Fi — fyi)? scenes. No synthetic textures were included. The resalutio

QstsMm(X,y) = Z e et (16) varied from170 x 128 to 640 x 640 pixels. Roughly300 of
i=1 9t those were discarded, as they did not represent perceptuall

. . uniform textures. Of the remaining00 images, we selected
whereo, the standard deviation of th¢" feature across all o5 for the known-item-search experiments. To obtain groups
feature vectors in the database. Thus, unlike the other SSMidentical textures, each of th25 images were cut into a
and STSIM metrics, computation of the distance between MO mber of128 x 128 patches. Depending on the size of the
texture images using STSIM-M requires statistics basedhen toriginal image, the extracted images had different degoées

entire database. spatial overlap, but we made sure that there were subdtantia
point-by-point differences, such as those shown in Figure 1
IV. EXPERIMENTS The idea was to minimize overlap while mailnt'ainir?g texture
homogeneity. In some cases — when the original image was
As we discussed in the introduction, one of our goals wéarge enough — we downsampled the image, typically by a
to conduct systematic experiments over a large image dsgabiactor of two, in order to meet the repetitiveness requingme
that will enable testing different aspects of metric parfance. A minimum of two and a maximum of twelve patches were
We have chosen to test metrics in the context of retrieviraptained from each original texture. Overall, we obtaih&sD
identical textures (known-item search), which as we argudéxture patches originating froA25 original texture images.
essentially eliminates the need for subjective experimyéhtis ~ The second database was constructed in similar fashion
enabling comparisons with human performance on a largsing61 images from theCUReTdatabase [58], [59], which
database. While this seems to restrict testing to a very fipectontains images of real-world textures taken at differeavv
problem, we will argue that the conclusions transcend tlveg and illumination directions. We selected images from
particular application and have important consequences fighting and viewing condition 122 [59]. From each of the
other image analysis applications, including compression 61 images, we cut out thre#28 x 128 patches at random
As we pointed out in Section Ill, the metrics we proposepositions, making sure that the entire patch overlapped the
in this paper are not scale or rotation invariant. Accorling texture portion of the image. The total number of test images
in the experimental results, textures with different ssalead was thus183. The advantage of th€UReTdatabase is that
orientations will be considered as dissimilar. the textures were carefully chosen and photographed under
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Corbis Database CUReTDatabase
Metric P@1 | MRR | MAP P@1 | MRR | MAP
PSNR 0.04 0.07 0.06 0.11 0.17 0.17
S-SSIM 0.09 | 0.11 | 0.06 | 0.06 | 0.11 | 0.10
CW-SSIM 039 | 046 | 040 [ 0.69 | 0.77 | 0.72
CW-SSIM global | 0.27 | 0.36 | 0.28 [ 0.31 [ 0.45 | 0.35
STSIM-1 074 ] 080 [ 0.72 [ 0.81 | 0.85 | 0.80
STSIM-1 global | 0.86 | 0.90 | 0.81 [ 0.93 | 0.94 | 0.90
STSIM-2 074 ] 080 [ 0.74 [ 0.81 ] 0.86 | 0.81
STSIM-2 global | 0.93 | 095 | 0.89 [ 0.97 [ 0.97 | 0.95
STSIM-M 096 | 097 [ 092 [ 0.96 | 0.97 | 0.95
Gabor features 0.92 | 0.94 0.88 | 0.96 | 0.96 0.95
Wavelet features | 0.84 | 0.89 0.80 | 0.92 | 0.95 0.93
LBP 090 | 092 [ 0.86 | 0.93 | 0.94 | 0.89
TABLE |

INFORMATION RETRIEVAL STATISTICS

[61]. The MAP is calculated as follows: for each query and
positive integem less than or equal to the size of the database,
we compute the fraction of the highest ranked images that
are relevant (precision), and then average these fractioeis
all values ofn for which thenth highest ranked image was
actually relevant, to obtain the MAP for that query. Finally
we average these values across all images.

In our experiments, we compared the following metrics:

« PSNR
Fig. 5. Samples from th€UReTdatabase + S-SSIM Wlth_7 x T local quow
o CW-SSIM with 7 x 7 local window
o« CW-SSIM over the entire image (global)
e STSIM-1 with 7 x 7 local window
o STSIM-1 over the entire image (global)
e STSIM-2 with 7 x 7 local window
o STSIM-2 over the entire image (global)
o STSIM-M over the entire image (global)

controlled conditions. More importantly for our experingn
all textures are more or less perceptually uniform. On theiot
hand, the variety of materials is limited. Since our primary
interest is on the variety of textures rather than the dadail
effgcts of viewing condi_tions, th€orbis database is better « Normalized/! distance on Gabor features [36]
suited to the goals of this paper. , « Kullback-Leibler distance on wavelet features [38]
Figures 4 and 5 show examples of images from the two | ocal Binary Patterns (LBP) [62]
databases. In both cases, we used the grayscale component of . | ati f the text imilari laorith ¢
the images. From now on, we will refer to the selected texsturgjqe implementation of the texture similarity algorithms o

from the two databases as t@®rbis and CUReTdatabases. anjunath and Ma [36] and .Of Do and,Vetter!| [38] were
downloaded from the respective authors’ websites. For sim-

) ) ~ plicity, we will refer to them in tables and plots &abor
B. Performance Based on Information Retrieval Statistics features[36] and Wavelet feature§38]. The implementation
We treat the known-item search experiment as a retriewafl the LBP method [62] was downloaded from the authors’
task: an image is queried and the similarity scores betweembsite and uses thé BP{"* + LBP3;"? combination of
the query and the rest of the database are ordered accordaaures. Additionally, to avoidog 0 terms causing the LBP
to decreasing similarity. The first retrieved document is thmetric to produce undefined values, any such term was re-
image with highest similarity to the query; the second es&d placed bylog 10~8.
document is the one with the second-highest similarity, etc The results are summarized in Table | for the two databases.
One informative measure of performance is the number ©he highest value for each statistic is highlighted. Everuth
times the first retrieved image rslevant,i.e., it comes from the databases are quite different, the results are quxitat
the same original image and has the same label as the qutrg. same. Based on these results, and according to all three
This is commonly referred to agrecision at one Another statistics, the global STSIM-M and STSIM-2 metrics outper-
way of assessing metric performance is to computentean form all other metrics. Note that including the extra stats
reciprocal rank (MMR) i.e., the average value of the inverseesults in a substantial gain over STSIM-1. Note how poor
rank of the first relevant retrieved image [60]. This measuig the performance of the point-by-point metrics (PSNR and
tells us, on average, how far down the list the first releva®SSIM). Another observation is that, with the exception of
image is. CW-SSIM, the global methods have a significantly higher
When there is more than one relevant image for a givgerformance than the local, sliding window-based oness Thi
query, as is the case for many of the entries of our databasan be explained by the fact that we are comparing more
the usual value to report imean average precision (MAP)or less homogeneous texture images and it is in our interest
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Metric p-values TK-HSD of Friedman’s Test on MRR
STSIM-1 local & STSIM-2 local 0.692 9r
STSIM-1 global & Wavelet features  0.098 I I I 3 I
STSIM-2 global & Gabor features | 0.269 8r I I i
LBP & Gabor features 0.061 w 7h
5.l
TABLE I x
COCHRANE' S Q TEST PVALUES > 0.01 (Corbis) Est I
38 I
§°
to capture their global, overall image statistics, ratheant = 3t
comparing the images on a window-by-window basis. The .. I
small sliding windows may in fact not include enough of | N - S A ‘ -
N . .. . L. 3 W 9 W LY S
the texture image to capture its statistical regularitigss is o s s ot e et T e o e 0
particularly true for higher scale (coarser) textures,vibich
the image in a small window may not qualify as a textureig. 6. Friedman’s test on mean reciprocal rank val@srifis)
Thus, an implicit assumptl_on is that the smallest_\{vmdow TK=HSD of Friedman’s Test on MAP
over which the texture statistics are computed qualifies as
texture, as we defined it earlier in this section. When this is °[ I i I I
true, the STSIM metrics are very tolerant of non-structural &f I I I I

deformations, but when it is violated, then the performanceg T
of the metric deteriorates. To avoid such cases, the scale ' st

the textures can either be knowrpriori or the application of § 5 I
STSIMs can be coupled with with a texture scale detector, s ¢ ,| I
that the metric can be chosen adaptively. 3 Al
2, I
C. Statistical Significance Tests (For Corbis Database) I ‘

. . 6\*?\ ’5‘5\"1\ ,56\\\k WO \l\’& YY) Vl\’l 29 ‘[\"‘l\ @ \&F
To test whether the differences in performance based ontt ¥~ ¢ o P S oW Gt oW S oo et

information retrieval statistics are due to chance, weqretéd _ -

standard statistical tests with significance levek 0.01. Fig. 7. Friedman’s test on mean average precision valesbis
1) Precision at One:Since there are only two possible

outcomes for each query — the first retrieved image is retevan

or not — we performed the Cochrane’s Q test [63] to determi , , .
the significance of the results. The test was applied to e%{gﬁduces for a pair of images. The system should then decide

; : i o ether the two images correspond to identical textures by
plalr'o.f metrics, and found th"?‘t al Qn‘ferences are Stm comparing the probability of the given similarity value end
significant except the ones listed in Table II, for which thgach of the hypotheses. The probability density functias f
p-values are greater than:_().o_l_. Thus, the global STSIM- the two hypotheses are modeled by the histograms of metric
2 aqd STSIM-M metrlg§ significantly outperform all OthervaIues one for the pairs of identical textures and one for
meztncl\j, bassd on prelcgonkat Odn?\)l A Precisi the pairs of non-identical textures. Figure 8 (top) shows an

) Mean Reciprocal Rank and Mean Average recISIon'example of well-separated distributions, that corresptmd

Since the MRR statistic is ordinal and MAP is non-Gaussia| . -
we performed the Friedman test [64], [65] followed by thﬁ‘le STSIM-2 metric over th€orbis database. Note that the

S . Bistribution for identical textures is peaky, which tells u
'gurey-l_(ran:ﬁr Hpng:tly Slgnllflctz;\]nt lefelienc_l?htest [GI?] t(fhat the metric provides similar values for similar textire
ctermine the signiicance of the resuls. € results aﬂ?espective of content. This is a much stronger indicator o
represented by the plots of Figs. 6 anq 7, which ShO\.N tlflr‘?etric performance than the retrieval statistics of SacfitB
mean performance ranks for each ”.‘e”"’ af‘d the Conf'derbceecause it establishes that there is an absolute threshold
intervals, fora = 0.01. When the confidence intervals of twof

ticul i | the diff in their peri or metric values above which textures can be considered
particu gr metrics qver ap, e_ F erenc_e |_n_ erp ance identical. On the other hand, the distribution for non-itiead
scores is not considered statistically significant. Thea#ss

8 . ; ) textures is much broader, which is expected given the yariet
tical tests confirm that, based on these retrieval stagistie P 9 va

. ) of textures in the database. Figure 8 (bottom) shows an
superior performance of STSIM-2 and STSIM-M is not b)éxample of distributions with a lot of overlap; these copasd
chance due to the limited size of the database.

to PSNR over th&€orbisdatabase. Note that in addition to the
overlap, the distribution for identical textures is faitbyoad.

D. Performance Based on Receiver Operating Characteristic Gjyen the probability density functions, we can compare
Another approach for comparing metric performance is toetric performances by plotting the receiver operatingatia
treat the known-item search problem as a binary classificatiteristic (ROC) curve for each metric. The ROC curve plots the

problem, where the task is to determine whether two imagese positives rate (TPR) as a function of the false postiate
are identical textures (null hypothesis) or not (alternlaye (FPR). The ROC curves obtained when the different metrics
pothesis). The test variable is the similarity value thatedrio  were tested on th€orbis database are plotted in Figure 9.
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Metric Area | Metric Area
PSNR val istributi
000 ‘ NR values distribution ‘ PSNR 0.753 | STSIM-2 0.963
008k - il S-SSIM 0.446 | STSIM-2 global | 0.986
3 00| ] CW-SSIM 0.921 | STSIM-M 0.985
g 006 identical textures 1 CW-SSIM global | 0.910 | Gabor features | 0.979
0% i STSIM-1 0.967 | Wavelet features| 0.836
20 ] STSIM-1 global | 0.985 | LBP 0.625
% 0.02-

001} TABLE IlI

% 0 20 20 50 AREA UNDER THEROC CURVE FORCorhis DATABASE

30
PSNR values

STSIM-2 global values distribution
O oxtures failure is when the metric (STSIM-M) retrieves a texturettha
os} is quite similar to the query, like the one shown in Example A
of Figure 10. Another type of failure is shown in Example B,
where the retrieved image has similar statistics to theyquer
005¢ 1 with the only difference being that one is quasi periodic and
ol— - - — the other is more random. This is a common type of failure and

STSIM-2 global values difficult for the proposed metrics to handle. In Example @, th
images have more or less the same underlying texture except
for weak edges that are too sparse to be captured by high-
frequency subbands and have too little contrast to be cagbtur
by the low-frequency subbands. This type of failure is also
difficult for the proposed metrics to handle. In Examples D
and E, the differences are more substantial, but it does not
help that the orientations of the textures of the identicatg

relative frequency

Fig. 8. Probability density functions for identical textéudetection Corbis)

g o are not well matched. Finally, some failures come from tlet fa
g — PSR that images in our database have different scales. Thisean b
g% —cw-ssm seen in Example F, where the retrieved image is a texture at a
g 04 —srsma larger scale than the query image. Note that our metric wgigh
— — STSIM-1 . . C .
Fos v similarity equally across scales. In general, the metrigtsn
—STSIM-2g . . .
02 —— STSIM-M current form has difficulties handling textures of largealss.
o T i There are a number of possibilities for improvement, e.g., b
T Rendomauess explicitly detecting the scale of each image.
00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False positives rate
V. CONCLUSIONS
Fig. 9. ROC curves

We developed structural texture similarity metrics, which
account for human visual perception and the stochastiaeatu
of textures. The metrics allow substantial point-by-paiet

The area under the curves can be used as a measurgigfions between textures that according to human judgment
performance. Ideally, the area is equalitoThe areas under are essentially identical. They are based on a steeratse filt
the curves are given in Table Ill. Again, note that the glob@lecomposition and rely on a concise set of subband statistic
STSIM metrics outperform all other metrics, and that theomputed globally or in sliding windows. We investigated th
global metrics outperform the local ones. These results gierformance of a progression of metrics (STSIM-1, STSIM-
consistent with the results based on the information rettie 2, STSIM-M) in the context of known-item search, the re-
statistics, with one notable exception. The LBP algorithes htrieval of textures that are identical to the query textdrieis
very poor performance. This is because while it has relgtiveeliminates the need for cumbersome subjective tests, thus
good classification performance, it does not result in ctest enabling comparisons with human performance on a large
similarity values, that is, it cannot be used to determine @atabase. We compared the performance of the STSIMs to
absolute threshold for metric performance. PSNR, SSIM,CW-SSIM, as well as state-of-the-art texture
classification metrics in the literature, using standaadistical
measures. We have shown that global metrics perform best for
texture patch retrieval, and that the STSIM-2 and STSIM-M
trics outperform all other metrics.

E. Points of Failure and Future Research

The results presented so far are quite good. However, a cl
study of the cases where the STSIM metrics fail to retrieve
the correct image are quite revealing, as they can point to
both weaknesses of the proposed metrics and strengths of the
proposed approaches to texture similarity. Figure 10 showsThis work was supported in part by the U.S. Department
different failure examples. It shows the query image, that beof Energy National Nuclear Security Administration (NNSA)
match and the first correct match. The most benign type whder Grant No. DE-NA0O000431. Any opinions, findings, and
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