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Abstract

This paper presents an operational semantics for the core of Scheme. Our specification improves over
the denotational semantics from the Revised5 Report on Scheme specification in four ways. First,
it covers a larger part of the language, specifically eval, quote, dynamic-wind, and the top level.
Second, it models multiple values in a way that does not require changes to unrelated parts of the
language. Third, it provides a faithful model of Scheme’s undefined order of evaluation. Finally, we
have implemented our specification in PLT Redex, a domain-specific language for writing operational
semantics. The implementation allows others to experiment with our specification and allows us to
build a specification test suite, which improves our confidence that our system is a faithful model of
Scheme.

In addition to a specification of Scheme, this paper contributes three novel modeling techniques
for Felleisen Hieb-style rewriting semantics. All three techniques are applicable to a wider range of
problems than modeling Scheme, and they combine seamlessly in our model, suggesting that they
would scale to complete models of other languages.

1 Introduction

The Revised5 Report on Scheme (Kelsey et al., 1998), hereafter referred to as the Report,
provides an informal, English specification of Scheme and a denotational model of a core
Scheme language. The denotational specification is more precise than the informal speci-
fication, but is also incomplete. For instance, the formal specification does not include the
top level, and is missing key procedures such as dynamic-wind and eval whose inclusion
would probably require significant changes to the formalism. While that is not necessarily
a problem — the measure of a model is not its completeness but its ability to clearly and
accurately explain its subject — Gasbichler et al’s (2003) recent explanation of the diffi-
culties involving dynamic contexts and threads, for instance, demonstrates that the formal
model is insufficient for some important questions. Furthermore, denotational semantics
have fallen out of favor among programming language researchers in recent years; it is just
too difficult to specify nondeterministic language features and establishing theorems about
particular semantics, such as type-soundness (Wright & Felleisen, 1994), has proven to be
much easier in an operational setting. Additionally, denotational semantics requires much
more mathematical sophistication than an operational semantics, making it less appropriate
for a standard intended for use by working programmers.

In this paper we give a new treatment of Scheme’s formal semantics that models more of
the language described in the informal semantics section than the formal semantics section
in the Report document does. It is also executable by design and comes with an implemen-
tation as a program in PLT Redex, a domain-specific language for context-sensitive rewrit-
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ing (Matthews et al., 2004). PLT Redex provides facilities for modeling non-determinism
and non-confluence, both of which are necessary for modeling Scheme, and provides a
graphical browser for exploring reduction graphs. Modeling Scheme in this manner also
allowed us to build a large test suite of terms and their expected normal forms that we run
whenever we change any reduction rules; this test suite increases our confidence that our
model is a faithful representation of Scheme (see section 19 for more about the test suite).

This paper consists of two parts; part 1 introduces small models that explain particular
features of Scheme, and part 2 combines them. Before part 1 begins, section 2 discusses
related work and section 3 provides a brief overview of the formalism we use. In section 4,
the first section in part 1, we show how to use a controlled form of nondeterminism to
model Scheme’s unspecified application order; in section 5 we show a novel technique
for modeling multiple return values; in section 6 we give a model for quote and eval that
exploits a technique for reduction semantics with multiple phases. Section 7 gives a model
for Scheme’s top level that illustrates a subtle interaction between top level expressions and
continuations and section 8 gives a model for call/cc in the presence of dynamic-wind. In
part 2 we combine all those models along with several other more straightforward features:
if and begin, cons and cons-cell mutation, variable-arity procedures, and an object-identity-
sensitive notion of eqv? equality.

This work extends the first author’s master’s paper (Matthews, 2005) and a paper that
appeared at the Scheme and Functional Programming workshop (Matthews & Findler,
2005).

2 Related Work

Reduction semantics has been used to model large programming languages many times and
in many different ways. Felleisen’s dissertation (1987), which introduced context-sensitive
reduction semantics, gives a formulation of a substantially smaller language than the one
we present here that he calls “idealized Scheme”, and Felleisen (1988) extends that model
into the λ-v-CS calculus in later work. Since then, reduction semantics have been used to
model the cores of many languages including SML (Harper & Lillibridge, 1993; Wright
& Felleisen, 1994; Harper & Stone, 1996), MultiLisp (Flanagan & Felleisen, 1999), Con-
current ML (Reppy, 1999), Java (Flatt et al., 1999), and Emacs Lisp (Neubauer & Sperber,
2001) among others.

There has also been extensive work on the semantics of Scheme. Clinger (1998) pre-
sented an operational semantics for a core Scheme for his work on tail recursion. Gas-
bichler, Knauel, Sperber, and Kelsey (2003) have presented operational and denotational
semantics for dynamic-wind. Ramsdell (1992) presented a structural operational seman-
tics for Scheme aimed at fixing the unspecified order of argument evaluation problem we
discuss in subsection 4. His model is less complete than ours; it matches more closely
the language of the denotational semantics from the Report. Also, he considers a program
whose results depend on the order of evaluation to be invalid. As we discuss in section 4,
that is not the intent of the Report’s authors. Van Straaten (2002) has developed a defi-
nitional interpreter that is syntactically very similar to the denotational semantics in the
Report, though we know of no formal correspondence between them. Our work does not
have any formal connection either, but our language is much larger and our semantics,
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being small-step and executable, allows us to provide programmers with a stepper that
rewrites object programs to object programs.

There have also been other efforts to work with large semantics. Oliva, Ramsdell, and
Wand (1995) proved a VLISP compiler correct, and Lee, Crary and Harper (2006) have
also implemented Harper and Stone’s semantics using Twelf. The latter is the largest ex-
ample of a programming language semantics given in a variant of reduction semantics we
have found in the literature (with the possible exception of this one).

3 Preliminaries

As a rough guide, we define the operational semantics of a language via a relation on pro-
gram terms, where the relation corresponds to a single step of an abstract machine. The
relation is defined using evaluation contexts, namely terms with a distinguished subterms
in them, called holes, where the next step of evaluation occurs. We say that a term e de-
composes into an evaluation context E and another term e′ if e is the same as E but with
the hole replaced by e′. We write E[e′] to indicate the term obtained by replacing the hole
in E with e′ and we write [ ] to indicate the hole.

For example, assuming that we have defined a grammar containing nonterminals for
evaluation contexts (E), expressions (e), variables (x), and values (v), we would write:

E[((lambda (x · · ·) e) v · · ·)] → E[{x · · · 7→ v · · · }e] (#x = #v)

to define the βv rewriting rule (as a part of the → single step relation). We use the names
of the nonterminals (possibly with subscripts) in a rewriting rule to restrict the application
of the rule, so it only applies when some element produced by that grammar appears in the
corresponding position in the term. If the same nonterminal (with an identical subscript)
appears multiple times, the rule only applies when the corresponding terms are structurally
identical. Thus, the occurrence of E on both the left-hand and right-hand side of the rule
above means that the context of the application expression does not change when using
this rule. The ellipses are a form of Kleene star, meaning that zero or more occurrences of
terms matching the pattern proceeding the ellipsis may appear in place of the the ellipsis
and the pattern preceding it. Note that, for example, (x1 · · ·) is not a short-hand for (x1 x2

x3 x4 . . .). Instead it means that the meta-variable x1 is used to match an entire sequence.
The meta-variables x2, x3, and x4 are all independent of this.

We use the notation {x · · · 7→ v · · · }e for capture-avoiding substitution; in this case
it means that each x is replaced with the corresponding v in e. Finally, we write side-
conditions in parenthesis beside a rule; the side-condition in the above rule indicates that
the number of xs must be the same as the number of vs. Sometimes we use equality in the
side-conditions; when we do it merely means simple term equality, i.e. the two terms must
be syntactically identical.

Making the evaluation context E explicit in the rule allows us to define relations that
manipulate their context. As a simple example, we can add another rule that signals an
error when a procedure is applied to the wrong number of arguments by discarding the
evaluation context on the right-hand side of a rule:

E[((lambda (x · · ·) e) v · · ·)] → error: wrong argument count (#x 6= #v)
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Later we show how to take advantage of the explicit evaluation context in more sophisti-
cated ways.

To learn more about this style of semantics, we refer readers to Felleisen and Flatt’s
monograph (2006).

PART ONE

Small Reduction Systems

This part introduces smaller reduction systems that explain the details of particular features
of the Report and how we model them. In each case, the modeling techniques are the same
as in the full semantics, but we hope that seeing them in isolation makes them easy to
understand later. Since the models are just intended to be illustrative, we only include the
a minimal amount of detail in each. For example, each of the systems contains stuck states
that would correspond to errors in a more fleshed out semantics.

Section 4 illustrates how we model the Report’s underspecification of the order of evalu-
ation for application expressions. Section 5 shows how we model multiple values. Section 6
demonstrates quoted constants and eval and the interplay between the two of them. Sec-
tion 7 contains a model of the top-level and explains a subtle interaction with call/cc, and
finally our model of dynamic-wind in section 8 concludes part 1.

4 Unspecified Evaluation Order for Applications

In evaluating a procedure call, the Report document deliberately leaves unspecified the
order in which arguments are evaluated, but in section 4.1.3 specifies that

the effect of any concurrent evaluation of the operator and operand expressions is
constrained to be consistent with some sequential order of evaluation. The order
of evaluation may be chosen differently for each procedure call.

In the formal semantics (section 7.2), the authors explain how they model this ambiguity:

[w]e mimic [the order of evaluation] by applying arbitrary permutations permute
and unpermute . . . to the arguments in a call before and after they are evaluated.
This is not quite right since it suggests, incorrectly, that the order of evaluation is
constant throughout a program . . .

In this section we present an operational technique that captures the intended semantics
faithfully. We begin by considering a core Scheme with arbitrary arity procedures, set!,
sequencing, conditionals, booleans, and numbers, but with a fixed left-to-right order of
evaluation for applications, as shown in figure 1. It is a variation of Felleisen and Hieb’s
ΛS (1992). A program consists of a store that associates variable names to values and an
expression, where expressions are built up of numbers, arbitrary-arity lambda terms and
applications, set!, if, and begin expressions, and a built-in negation operator (in order to
facilitate a coming example).

The [MApp] rule gives the rule for application of a procedure to fully-evaluated argu-
ments: make one fresh identifier x′2 for each formal parameter x2, introduce a new binding
in the store for each x′2 associating it with the corresponding argument in the application,



An Operational Semantics for Scheme 5

p ::= (store (sf · · ·) e)
sf ::= (x v)
e ::= (e e · · ·) | (set! x e) | (begin e e · · ·) | (if e e e) | x | v
v ::= (lambda (x · · ·) e) | n | #t | #f | − | unspecified
P ::= (store (sf · · ·) E)
E ::= (v · · · E e · · ·) | (set! x E) | (begin E e e · · ·) | (if E e e) | [ ]
x ::= [identifiers and store locations for mutable bindings]
n ::= [numbers]

(store ((x1 v1) · · ·) E[((lambda (x2 · · ·) e) v2 · · ·)]) → [MApp]
(store ((x1 v1) · · · (x′2 v2) · · ·) E[{ x2 · · · 7→ x′2 · · · }e]) (#x2 = #v2, each x′2 fresh)

(store ((x1 v1) · · · (x v) (x2 v2) · · ·) E[(set! x v′)]) → [MSet]
(store ((x1 v1) · · · (x v′) (x2 v2)· · ·) E[unspecified])

(store ((x1 v1) · · · (x v) (x2 v2) · · ·) E[x]) → [MLookup]
(store ((x1 v1) · · · (x v) (x2 v2) · · ·) E[v])

P[(begin v e1 e2 · · ·)] → P[(begin e1 e2 · · ·)] [MSeq]

P[(begin e)] → P[e] [MTrivSeq]

P[(if v1 e1 e2)] → P[e1] [MIfT]
(v1 6= #f)

P[(if #f e1 e2)] → P[e2] [MIfF]

P[(− dne)] → P[d−ne] [MNeg]

Fig. 1. Core Scheme with mutation

and then rewrite the application as the procedure’s body with each occurence of an x2

replaced by the corresponding x′2. The [MSet] rule replaces the value associated with the
given identifier in the store with the given replacement. The Report does not specify the re-
sult of a set! operation, so we follow the lead of many Scheme implementations and rewrite
to a special value called unspecified. The [MLookup] rule corresponds to the evaluation of
an variable, replacing it with its associated value in the store.

The rules for begin expressions exploit the definition of the evaluation contexts (E) for
begin expressions, which allow evaluation only in the first subexpression of a begin and
only when there are at least two subexpressions. [MSeq] drops the first subexpression in a
begin when there are more expressions to evaluate, and [MTrivSeq] drops the begin when
there is only one expression to evaluate. The rules [MIfT] and [MIfF] handle if expressions
and the last rule, [MNeg], simply negates its argument (the notation dne indicates the syn-
tactic representation of the mathematical number n).

The order of evaluation is determined by the grammar for evaluation contexts. The first
production of the grammar specifies that evaluation of a subexpression of an application
only takes place when all of the subexpressions to its left are values. If we replace that first
production with this one:

E ::= (e · · · E v · · ·) | . . .

the semantics would specify a right-to-left order instead.
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(store ((x 1))
  ((set! x (- x))
   (set! x (- x))))

(store ((x 1))
  ((set! x (- x))
   (set! x (- 1))))

(store ((x 1))
  ((set! x (- 1))
   (set! x (- x))))

(store ((x 1))
  ((set! x (- 1))
   (set! x (- 1))))

(store ((x 1))
  ((set! x (- x))
   (set! x -1)))

(store ((x 1))
  ((set! x -1)
   (set! x (- x))))

(store ((x 1))
  ((set! x (- 1))
   (set! x -1)))

(store ((x 1))
  ((set! x -1)
   (set! x (- 1))))

(store ((x -1))
  ((set! x (- x))
   unspecified))

(store ((x -1))
  (unspecified
   (set! x (- x))))

(store ((x -1))
  ((set! x (- 1))
   unspecified))

(store ((x 1))
  ((set! x -1)
   (set! x -1)))

(store ((x -1))
  (unspecified
   (set! x (- 1))))

(store ((x -1))
  ((set! x (- -1))
   unspecified))

(store ((x -1))
  (unspecified
   (set! x (- -1))))

(store ((x -1))
  ((set! x -1)
   unspecified))

(store ((x -1))
  (unspecified
   (set! x -1)))

(store ((x -1))
  ((set! x 1)
   unspecified))

(store ((x -1))
  (unspecified
   (set! x 1)))

(store ((x -1))
  (unspecified
   unspecified))

(store ((x 1))
  (unspecified
   unspecified))

Fig. 2. Interleavings possible with an erroneous unspecified-application-order model

Either of these choices results in a system with unique decomposition. That is, each non-
canonical term can be split into exactly one evaluation context and reducible subexpression.
Accordingly, there is at most one way to reduce any expression.

To model a language with unspecified order of operations, like that in the Report, we
can use a reduction system with non-unique decomposition to model the choice of which
argument to evaluate. We might be tempted to use this definition of evaluation contexts:

E ::= (e · · · E e · · ·) | . . .

Since this definition allows the hole to appear in any subexpression of an application, this
simple program

((lambda (x y) y) (− 1) (− 2))

which negates 1, negates 2, and then applies a trivial procedure to the results, can be split
into an evaluation context with either (− 1) or (− 2) as the reducible expression.
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E ::= (e · · · E� e · · ·) | (set! x E) | (begin E e e · · ·) | (if E e e) | [ ]
e ::= . . . | (e · · · e� e · · ·)

P[(e1 · · · e2 e3 · · ·)]) → P[(e1 · · · e�2 e3 · · ·)]) [Mark]
(e2 6∈ v)

P[(e1 · · · v� e2 · · ·)]) → P[(e1 · · · v e2 · · ·)]) [Unmark]

Fig. 3. Unspecified application order semantics, as an extension of figure 1

Although, this might appear to be a faithful model of the Report, it is flawed. Consider
the application of two set! expressions in a store binding x to 1:

(store ((x 1))
((set! x (− x))
(set! x (− x))))

This program should always reduce to the application of the unspecified value to itself
with x set to 1 in the store because, according to the Report, no matter which of the ap-
plication’s subterms is reduced first, the result should be that x is negated twice. If we just
modify evaluation contexts as above, however, we allow different arguments of the same
application to alternate steps of computation. This, in turn, may produce an outcome that
could not be reached by any sequential ordering.

We discovered this problem while experimenting with that reduction system in PLT
Redex. We encoded the erroneous reduction system in PLT Redex and automatically gen-
erated the reduction sequence for the above term, shown in figure 2. The first term is shown
at the top. The outermost paths correspond to the two sequential orderings and result in the
proper store. In the middle section, the two assignments are interleaved, resulting in −1
being left in the store.

With that in mind, we can design a more sophisticated strategy that captures unspeci-
fied evaluation order but allows only sequential orderings. The basic idea is to use non-
deterministic choice to pick a subexpression to reduce only when we have not already
committed to reducing some other subexpression. To achieve that effect, we introduce the
notion of a marked expression, denoted with the � superscript. (These marks are not an ex-
tension to the general term-rewriting framework — the mark is simply a term constructor,
albeit typeset specially.) Marks identify chosen expressions: only marked expressions may
be reduced, and only one reducible marked expression may appear in any application at
one time.

Figure 3 shows the necessary revisions to core Scheme to support the Report’s style
procedure applications. The E nonterminal replaces the one from figure 3 and we add
application expressions that contain marked subexpressions to e. The two rules [Mark] and
[Unmark] are added to the existing rules in figure 3. The [Mark] reduction rule marks an
arbitrary unmarked expression in an application on the condition that the expression under
the mark is not already a value, and the [Unmark] rule removes the mark when the marked
expression is fully reduced. The new evaluation contexts E ensure that evaluation inside an
application expression can only occur inside a marked expression.
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(store ((x 1))
  ((set! x (- x))
   (set! x (- x))))

(store ((x 1))
  ((set! x (- x))◊

   (set! x (- x))))

(store ((x 1))
  ((set! x (- x))
   (set! x (- x))◊))

(store ((x 1))
  ((set! x (- x◊))◊

   (set! x (- x))))

(store ((x 1))
  ((set! x (- x))
   (set! x (- x◊))◊))

(store ((x 1))
  ((set! x (- 1◊))◊

   (set! x (- x))))

(store ((x 1))
  ((set! x (- x))
   (set! x (- 1◊))◊))

(store ((x 1))
  ((set! x (- 1))◊

   (set! x (- x))))

(store ((x 1))
  ((set! x (- x))
   (set! x (- 1))◊))

(store ((x 1))
  ((set! x -1)◊

   (set! x (- x))))

(store ((x 1))
  ((set! x (- x))
   (set! x -1)◊))

(store ((x -1))
  (unspecified◊

   (set! x (- x))))

(store ((x -1))
  ((set! x (- x))
   unspecified◊))

(store ((x -1))
  (unspecified
   (set! x (- x))))

(store ((x -1))
  ((set! x (- x))
   unspecified))

(store ((x -1))
  (unspecified
   (set! x (- x))◊))

(store ((x -1))
  ((set! x (- x))◊

   unspecified))

(store ((x -1))
  (unspecified
   (set! x (- x◊))◊))

(store ((x -1))
  ((set! x (- x◊))◊

   unspecified))

(store ((x -1))
  (unspecified
   (set! x (- -1◊))◊))

(store ((x -1))
  ((set! x (- -1◊))◊

   unspecified))

(store ((x -1))
  (unspecified
   (set! x (- -1))◊))

(store ((x -1))
  ((set! x (- -1))◊

   unspecified))

(store ((x -1))
  (unspecified
   (set! x 1)◊))

(store ((x -1))
  ((set! x 1)◊

   unspecified))

(store ((x 1))
  (unspecified
   unspecified◊))

(store ((x 1))
  (unspecified◊

   unspecified))

(store ((x 1))
  (unspecified
   unspecified))

Fig. 4. Evaluation in the unspecified-application-order model

Figure 4 shows how our new system evaluates the term from figure 2. The initial term
appears at the top. That term is an application, so the first reduction either marks the first
subexpression or the second. If the first subexpression is marked, evaluation continues
down to the right of the figure, and back up to the middle. If the second is marked, eval-
uation proceeds down to the left and back up the middle. Eventually, all of the terms join
back together and the final result in the store is 1, as shown in the center just under the
initial term.

One should not take that example to mean that this language has any kind of confluence
property, however. Consider this program:

((lambda (choice)
((lambda (x y) choice)
(set! choice 1)
(set! choice 2)))

0)
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It will either will return either 1 or 2, depending on the order of evaluation, and this result
is desirable. The model’s nonconfluence precisely reflects the underspecification of the
Report’s informal language.

This technique of using evaluation contexts to partially control where evaluation occurs
has other uses besides giving semantics for unspecified application evaluation orders. In
general, it is useful for modeling any kind of delimited nondeterminism, where evaluation
may proceed arbitrarily but only at certain points in a program and only in certain ways.
Threads and futures are good examples of this kind of language feature.

5 Multiple Return Values

The Report specifies a facility for expressions to evaluate simultaneously to multiple or no
values rather than just a single value. The procedure values introduces multiple values and
call-with-values eliminates multiple values. Unlike tuples in SML and Haskell, however, a
collection of multiple values is not itself a value. For example, this program

(define (f x) (values (+ x x) (∗ x x)))
(define (g x y) y)
(g (f 3))

produces an error, since procedure application expects each of its arguments to be a single
value (and the result of f is two values). Instead, the programmer must use call-with-values
to eliminate multiple values. It expects a thunk as its first argument, applies the thunk,
catches any number of values that thunk produces, and applies them to its second argument.
So, a programmer could supply f ’s results to g like this:

(call-with-values (lambda () (f 3)) g)

In addition, there is no difference between values applied to a single argument and that
argument by itself, so (g (values 6) (values 9)) is the same as (g 6 9).

To model multiple values, the Report’s formal semantics uses functions from an arbitrary
number of values to a final answer as continuations. In section 6.4, the Report says that
“[e]xcept for continuations created by the call-with-values procedure, all continuations
take exactly one value.” Perhaps surprisingly, though, the formal semantics ensures that by
checking the opposite property: in every context that accepts only a single value, it uses a
helper function, single, to ensure that only a single value appears.

Our semantic model captures the difference between contexts that accept multiple values
and contexts that reject multiple values directly. The basic strategy is to add a rule that
demotes (values v) to v and another rule that promotes v to (values v), but to only allow
demotion in a context expecting a single value and only allow promotion in a context
expecting multiple values. We obtain this behavior with a small extension to the Felleisen-
Hieb framework. We label holes to distinguish them from each other, written as subscripts
(for instance [ ]? or [ ]◦). We also extend the context-matching operation so it may demand
a hole of a particular name, also written with a subscript. For example E[e]? would only
be a legal decomposition if the hole in E is [ ]?; neither [ ] nor [ ]◦ would be allowed.
The extension allows us to give different names to the holes in which multiple values
are expected and those in which single values are expected, and structure the grammar of
contexts accordingly.
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p ::= (store (sf · · ·) e)
sf ::= (x v)
e ::= (e e · · ·) | (set! x e) | (begin e e · · ·) | (if e e e) | x | v
v ::= (lambda (x · · ·) e) | n | #t | #f | − | unspecified | call-with-values | values
P ::= (store (sf · · ·) E?)
E ::= (v · · · E◦ e · · ·) | (set! x E◦) | (begin E? e e · · ·) | (if E◦ e e)

| (call-with-values (lambda () E?) v) | [ ]
E◦ ::= E | [ ]◦
E? ::= E | [ ]?
x ::= [identifiers and store locations for mutable bindings]
n ::= [numbers]

P[v]? → [VPromote]
P[(values v)]

P[(values v)]◦ → [VDemote]
P[v]

P[(values v · · ·)]◦ → [VDemoteErr]
error: context received wrong # of values (#v 6= 1)

P[(call-with-values (lambda () (values v2 · · ·)) v1)] → [VCwv]
P[(v1 v2 · · ·)]

P[(call-with-values v1 v2)] → [VCwvApp]
P[(call-with-values (lambda () (v1)) v2)] (v1 6= (lambda () e))

(store ((x1 v1) · · ·) E?[((lambda (x2 · · ·) e) v2 · · ·)]) → [VApp]
(store ((x1 v1) · · · (x′2 v2) · · ·) E?[{ x2 · · · 7→ x′2 · · · }e]) (#x2 = #v2, each x′2 fresh)

(store ((x1 v1) · · · (x v) (x2 v2) · · ·) E?[(set! x v′)]) → [VSet]
(store ((x1 v1) · · · (x v′) (x2 v2)· · ·) E?[unspecified])

(store ((x1 v1) · · · (x v) (x2 v2) · · ·) E?[x]) → [VLookup]
(store ((x1 v1) · · · (x v) (x2 v2) · · ·) E?[v])

P[(begin (values v · · ·) e1 e2 · · ·)] → P[(begin e1 e2 · · ·)] [VSeq]

P[(begin e)] → P[e] [VTrivSeq]

P[(if v1 e1 e2)] → P[e1] [VIfT]
(v1 6= #f)

P[(if #f e1 e2)] → P[e2] [VIfF]

P[(− dne)] → P[d−ne] [VNeg]

Fig. 5. Core Scheme with multiple values

Figure 5 shows the extension of core Scheme to support multiple values. [ ]◦ indicates
a hole in which any expression should reduce to an element of v, [ ]? indicates a hole in
which any expression should reduce to (values v · · ·), and the subscript-less [ ] indicates
a hole in which either result is acceptable. There are also three context nonterminals. The
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final result of a program in the context E◦ produces an element of v, E? produces (values v
· · ·), and E might produce either.

The definition of E follows the informal specification of the Report, using E? when mul-
tiple values are expected and E◦ when single values are expected. Since the thunks passed
to call-with-values are allowed to produce multiple values, we use E? there. Similarly,
since the final result of a program may be multiple values, we use E? in the definition of P,
and everywhere else we use E◦.

The first five rules are new, beyond the rules for core Scheme. [VPromote] promotes a
single value v to (values v). Because of the subscript ? on the hole, it applies only when
multiple values are expected. [VDemote] demotes a single value inside values to just the
value, and [VDemoteErr] signals an error if values does not return exactly one value. These
two rules apply only when a values expression appears where a single value is expected.
The [VCwv] rule reduces a call to call-with-values when the body of the thunk passed to
call-with-values has been fully evaluated. The [VCwvApp] adds a thunk wrapper around the
first argument to call-with-values when it is not already a thunk. For example, (call-with-
values values values) reduces to (values) by first using [VCwvApp].

All reductions take place in E?, allowing the final result of any program to be multiple
values. If we wanted to allow only a single values as the final result of a program we could
replace E? with E◦ in all of the rules and in P.

To get a sense of how evaluation proceeds, consider this reduction sequence (shown here
without the store):

(− (call-with-values (lambda () 1)
(lambda (x) (values x))))

→ (− (call-with-values (lambda () (values 1))
(lambda (x) (values x))))

[VPromote]

→ (− ((lambda (x) (values x)) 1)) [VCwv]
→2 (− (values 1)) [VApp],[VLookup]
→ (− 1) [VDemote]
→ −1 [VNeg]
→ (values −1) [VPromote]

The first term helps to illustrate how the labels on the evaluation contexts ensure that only
appropriate promotion and demotion occur. Consider this evaluation context from the that
first term:

(− (call-with-values (lambda () [ ]?)
(lambda (x) (values x))))

Since it has [ ]? in it, the [VPromote] rule applies to turn 1 into (values 1), producing the
second term. At this point, the [VDemote] rule does not apply to that same context, because
it requires the hole in the context to be [ ]◦. If it were to apply, the term would have to
decompose into this evaluation context:

(− (call-with-values (lambda () [ ]◦)
(lambda (x) (values x))))

but that evaluation context is not generated by E.
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Instead, [VCwv] applies, passing the results of the first argument of call-with-values to
the second argument to call-with-values. After that, the application occurs, using rules
[VApp] and [VLookup]. Then the term (values 1) is used as an argument to a procedure, so
[VDemote] converts it to the single value 1. Next, [VNeg] negates 1, producing −1. Finally,
[VPromote] applies (since the outermost context for each rule is E?) and the final result is
(values −1).

The erroneous expression from the beginning of this section signals an error due to the
[VDemoteErr] rule.

(g (f 3))
→∗ (g (values 6 9))
→ error: context received wrong # of values

In general, this strategy can be used whenever the notion of a fully-evaluated subterm
is different in different parts of a program. For instance, it can be used to model embed-
ded sublanguages such as regular-expressions, format strings, and SQL commands, which
could help develop theoretical underpinnings for work like Herman and Meunier’s (2004)
static analysis of embedded languages. It also can be used to model interoperability (Matthews
& Findler, 2007).

6 Quote and Eval

Scheme inherits the meta-programming facilities eval and quote from Lisp (Sussman &
Guy Lewis Steele, 1975). The quote operator turns program code into a datum and the
eval procedure turns that datum back into code. When quoted, a program is represented
as a list of lists and symbols, where lists represent parenthesized sequences and symbols
represent identifiers. For example, (quote (lambda (x) x)) is a three element list whose first
and third elements are symbols and whose second element is a list of one element:

(list (quote lambda) (list (quote x)) (quote x))

Due to the presence of both quote and eval, the process of turning quoted program text
into a datum and then back into program text is interleaved with ordinary evaluation. For
example, this program

(define (f x y)
(eval (list (quote /) x y)))

(f (quote (+ 2 3 4))
(quote (eval (quote (+ 5 6)))))

first turns the arguments to f into data, and then calls f , which constructs a quotient expres-
sion and passes it to eval. To continue evaluation, eval turns the datum back into program
text and we are left with this program:

(/ (+ 2 3 4)
(eval (quote (+ 5 6))))

At this point, however, the sum of 5 and 6 must be turned into a datum before proceeding,
since it is quoted. Once that happens, the remaining call to eval turns it back into program
text, and the program evaluates to 9/11.
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v ::= . . . | (quote sy) | ptr | null | prim s ::= (s · · ·) | sqv | sy
sf ::= . . . | (ptr (cons v v)) | (s · · · dot sy) | (s · · · dot n)
prim ::= eval | cons | car | cdr | eqv? sqv ::= n | #t | #f
ptr ::= pointers SP ::= (store (sf · · ·) S)
sy ::= [names of symbols] S ::= [ ] | (e · · · S s · · ·)

(identifiers except dot) | (lambda (x · · ·) S)
x ::= [names of variables] | (if S s s) | (if e S s) | (if e e S)

(members of sy except keywords) | (ccons v S) | (ccons S s)

(store (sf1 · · ·) E[(cons v1 v2)]) → [ECons]
(store (sf1 · · · (ptr (cons v1 v2))) E[ptr]) (ptr fresh)

(store (sf1 · · · (ptr (cons va vd)) sf2 · · ·) E[(car ptr)]) → [ECar]
(store (sf1 · · · (ptr (cons va vd)) sf2 · · ·) E[va])

(store (sf1 · · · (ptr (cons va vd)) sf2 · · ·) E[(cdr ptr)]) → [ECdr]
(store (sf1 · · · (ptr (cons va vd)) sf2 · · ·) E[vd])

P[(eqv? ptr1 ptr1)] → P[#t] [EEqv1]

P[(eqv? ptr1 ptr2)] → P[#f] [EEqv2]
(ptr1 6= ptr2)

SP[(quote (s1 s2 · · ·))] → SP[(ccons (quote s1) (quote (s2 · · ·))] [EQSeq]

SP[(quote ())] → SP[null] [EQNull]

SP[(quote (s1 s2 s3 · · · dot s4))] → SP[(ccons (quote s1) (quote (s2 s3 · · · dot s4))] [EQSeqD]

SP[(quote (s1 dot s2))] → SP[(ccons (quote s1) (quote s2))] [EQDot]

SP[(quote sqv)] → SP[sqv] [EQNum]

(store (sf · · ·) S[(ccons v1 v2)]) → (store (sf · · · (ptr (cons v1 v2))) S[ptr]) [EQPair]
(ptr fresh)

(store (sf · · ·) E[(eval v)] → (store (sf · · ·) E[R J (sf · · ·), v K]) [EEval]

R : (ptr 7→ (cons v v)) × v → s C : s × s → s
R J S, null K = () C J s1, (s2 · · ·) K = (s1 s2 · · ·)
R J S, (quote sy) K = sy C J s1, s2 K = (s1 dot s2)
R J S, ptr K = C J R J va K, R J vd K K (where S binds ptr to (cons va vd))
R J S, v K = v (otherwise)

Fig. 6. Eval and quote semantics, as an extension of figure 1

The Report suggests (but does not require) that quoted data be allocated only once,
before the program runs. In systems with that behavior, including all Scheme implementa-
tions we tested, this program returns #t:

((lambda (f ) (eqv? (f ) (f )))
(lambda () (quote (x))))

since the thunk passed as f returns the same pointer each time it is called.
Our core Scheme calculus for modeling eval and quote is shown in figure 6, extending

figure 1. It adds quoted expressions, pointers, null, and the primitive functions: eval, cons,
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car, cdr, and eqv?. The ptr nonterminal generates pointers, which are used indicies into
the store and are compared for equality.

To ensure that a datum behind a quote is inserted into the store only once, the rewriting
system is structured in two tiers roughly corresponding to “compile-time” and “run-time.”
Initially, programs are just viewed as uncompiled s-expressions, i.e., terms generated by
the s nonterminal1, which in particular include programs with quoted lists. Reduction rules
that apply to these uncompiled expressions do not evaluate them, but instead compile them
into program expressions that do not contain quoted lists (elements of the e nonterminal).
Evaluation reductions only apply to a program after it has been completely compiled.

The first group of evaluation rules (from [ECons] to [EEqv2]) correspond to the lan-
guage’s runtime semantics, and show how the list primitives behave. [ECons] models the
application of cons to arguments by allocating a new pair in the store; car and cdr select the
first and second values in a pair by the rules [ECar] and [ECdr]. The [EEqv1] and [EEqv2]
rules give eqv?’s semantics; it compares pointers for literal syntactic equality (and, for this
language, operates only on pairs). Since each of these reduction takes place in an evalu-
ation (rather than compilation) context, they apply only to programs that are completely
compiled.

The second group of rules (from [EQSeq] to [EQPair]) apply at compile-time and show
how to compile a program by rewriting quoted constants into locations in the store. If those
rules used the E context and quoted s-expressions were legal expressions, quote would
merely be a short-hand notation for building lists at run-time and the above program would
return #f.

Instead, the second group of rewriting rules eliminate quote before any other evaluation
happens, turning s-expressions into Scheme programs. Though we have presented them
second, these rules actually come first in reduction sequences, making reduction sequences
follow a two-phase pattern where the [EQ...] rules apply in the first phase and the evaluation
rules apply in the second phase. Intuitively, programs in this first phase are arbitrary s-
expressions and values are Scheme programs, whereas second-phase programs are Scheme
expressions and values are Scheme values. This parallelism can be seen particularly clearly
in the definition of the evaluation contexts for application expressions. In S, a rewrite step
takes place once all of the s-expressions to the left have become Scheme programs. In E,
a rewrite step takes place once all of the expressions to the left have become values. So,
for the program above, the only rewriting rules that apply are those that rewrite the thunk’s
body. Once it contains only a pointer to a store value, the outer application may proceed.

To model eval, we use a technique similar to Muller’s reify (1992). The R metafunction
accepts a value and turns it back into a program. The C function (used by R) is the syntac-
tic analogue of cons; the first case applies whenever the second argument has parenthesis
(i.e. both proper and improper lists), otherwise the second case applies. Once R completes,
evaluation continues as usual. Of course, reification may produce an s-expression contain-

1 We write dotted pairs with dot rather than a period to avoid meta-circular confusion in our PLT Redex imple-
mentation.
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ing quote. In that case, the quote rules apply and put quoted data into the store before
evaluation continues.2

The eval we present here and in part 2, we should point out, is not as full-featured as
the eval of the Report’s informal description because it does not accept an environment
argument. It does, however, behave most like the eval from the report where the second
argument is the result of (interaction-environment) where that environment contains the
parts of the language that the semantics models.

The technique used in this section applies generally to languages in which computation
of a term proceeds in multiple phases that must be considered together — it is not sufficient
in our case to write a preprocessor that moves quoted data in a program into the store
because that program could call eval at runtime. Scheme’s macro systems are similar in
this respect, so the technique shown here could be used as a basis for modeling them.
Staged and partial evaluation could also be modeled using this technique.

7 Top Level Program Structure & Call/cc

Section 5 of the Report specifies that the top level of a Scheme program is a mixture of
definitions and expressions, and that “[a]t the top level of a program (begin <form1> · · ·)
is equivalent to the sequence of expressions, definitions, and syntax definitions that form
the body of the begin.” Although that section of the report does not discuss call/cc,3 the
equivalence has subtle implications for the semantics of call/cc at the top-level.

Nearly all of the implementations we tried treat continuations as delimited by a top
level expression.4 That is, the continuation of one top level expression does not contain the
evaluation of any subsequent top level expressions. In those implementations, however, the

2 Most Scheme systems share quoted data even across calls to eval. For example, our semantics produces #f for
the following program, but most Schemes produce #t.

((lambda (f )
(eqv? (f )

(eval (cons ’quote (cons (f ) null)))))
(lambda () ’(x)))

We can adapt R to match those implementations via special handling of quoted forms during reification:

R J S, p1 K = v if S maps p1 to (cons (quote quote) p2) and maps p2 to (cons v null).

which would cause our semantics to produce #t for the above example. This technique does not scale to a full
Scheme that includes macros, however.

3 The authors’ intent seems to be to ensure that the scope of a top level definition that occurs inside a begin
expression does not change when the surrounding begin is removed.

4 We tried Bigloo version 2.8b (Serrano, 2006), Chicken version 2, build 41 (Winkelmann, 2006), Gambit ver-
sion 4.0 beta 17 (Feeley, 2006), Guile version 1.6.8 (Project GNU, 2005), MIT Scheme release 7.7.9 (GNU,
2006), MzScheme version 352 (Flatt, 2006), Petit Chez Scheme version 7.0a (Dybvig, 2005), Petit Larceny
version 0.92 (Clinger & Hansen, 1994), Scheme 48 version 1.3 (Kelsey et al., 2005), and SISC version
1.51.1 (Miller & Radestock, 2006). With the exception of MIT Scheme, they all behave as explained in the
text above. MIT Scheme suffers from a related, but not identical problem. In particular, this program

(begin (define k (call-with-current-continuation (lambda (x) x)))
(define y 1))

(set! y 2)
(k (lambda (x) x))

finishes with y bound to 1 in MIT Scheme. Without the begin, the program finishes with y bound to 2.
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;; b-eval : expr[fully-expanded] → any
(define (b-eval expr)

(if (and (pair? expr)
(eq? (car expr)

’begin))
(evals (cdr expr))
(eval expr)))

;; evals : (listof expr[fully-expanded]) → any
(define (evals exprs)

(let ((answers ’dummy))
(let loop ()

(if (pair? exprs)
(let ((expr (car exprs)))

(set! exprs (cdr exprs))
(call-with-values
(lambda () (b-eval expr))
(lambda args (set! answers args)))

(loop))
(apply values answers)))))

Fig. 7. Top-level-begin sensitive evaluator

continuation of one of the expressions in a top level begin contains all of the following
expressions in the begin, violating the Report’s mandate that removing top level begins
does not change the program’s behavior. For example, this program:

(define k #f)
(define x 1)
(begin (call/cc (lambda (k2) (set! k k2) 1))

(set! x (+ x 1)))
(k 1)

finishes with x bound to 3 when the begin is present, but with x bound to 2 when it is not
present.

The source of the inconsistency between continations inside and outside of a begin is
probably caused by the implementation of the loop that iterates over and evaluates the
subexpressions of a begin. It appears that the loop variable holding the current subex-
pression to evaluate is a function parameter, and so its value is held in the continuation and
returning to an earlier continuation returns the loop variable to its old value. In contrast, ex-
pressions at the top level are probably being read imperatively from a port, so continuations
do not return the state of the port to earlier states. To make the continuations consistently
delimited, implementations could use an eval function like the one given in figure 7. It
defines b-eval in terms of eval, the implementation’s original evaluator. The essence of the
fix is in the body of evals. It does not recur with the cdr of exprs to continue evaluating the
body of the begin. Instead, it uses a set!, so that a continuation that jumps back to an earlier
iteration of the loop does not see the earlier value of exprs. The variable answers and the
call to call-with-values are only there to cope with multiple values that may be produced
by the expressions being evaluated. If we were not interested in the result from eval, but
only its effects, we could have used this simpler evals function:
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p ::= (store ((x v) · · ·) d · · ·) P ::= (store ((x v) · · ·) D d · · ·)
d ::= e | (define x e) | (beginD d · · ·) D ::= (define x E) | E
e ::= . . . | (throw d) E ::= (as in figure 1)
v ::= . . . | call/cc

(store ((xs vs) · · ·) (define x1 v1) d1 · · ·) → [TlDef]
(store ((xs vs) · · · (x1 v1)) unspecified d1 · · ·) (x1 6∈ { xs · · · })

(store ((xb vb) · · · (x1 v1) (xa va) · · ·) (define x1 v2) d · · ·) → [TlReDef]
(store ((xb vb) · · · (x1 v2) (xa va) · · ·) unspecified d · · ·)

(store ((xs vs) · · ·) v1 d1 d2 · · ·) → [TlToss]
(store ((xs vs) · · ·) d1 d2 · · ·)

(store ((xs vs) · · ·) (beginD d1 · · ·) d2 · · ·) → [TlBegin]
(store ((xs vs) · · ·) d1 · · · d2 · · ·)

(store ((xs vs) · · ·) D[(call/cc v1)] d · · ·) → [TlCallcc]
(store ((xs vs) · · ·) D[(v1 (lambda (x2) (throw D[x2])))] d · · ·) (x2 fresh)

(store ((xs vs) · · ·) D[(throw d1)] d2 · · ·) → [TlThrow]
(store ((xs vs) · · ·) d1 d2 · · ·)

Fig. 8. Top-level semantics, as an extension of figure 1

(define (evals exprs)
(let loop ()

(if (pair? exprs)
(let ((expr (car exprs)))

(set! exprs (cdr exprs))
(b-eval expr)
(loop)))))

Aside from the constraint on top level begin expressions, the Report allows many dif-
ferent semantics for top level. Over time, the implementors of Scheme systems have es-
sentially converged on a consensus semantics. Ironically, this consensus disagrees with the
Report on the one element for which it had fixed the interpretation. In this paper, we base
our model of the top-level on the implementor’s consensus, but adjust it so that our model
also satisfies the Report.

Figure 8 contains our semantics, as an extension of figure 1. Programs consist of a store
and a series of definitions and expressions, where beginD marks a top level begin, distin-
guishing it from an internal begin in order that they might behave have differently (note
that top-level beginD expressions can be nested). While the semantics needs two different
forms of begin, the surface language that an implementation provides does not need to.
Instead, it can compile begins that appear at the top level into beginD expressions, before
evaluation.

The reduction rules from figure 1 also apply to this system, but where the first three rules
use the evaluation context E, they must use D here. The rules [TlDef] and [TlReDef] handle
definitions, either allocating a new place in the store for undefined variables, or updating
the store for re-definitions. The [TlToss] rule discards a completed expression, unless it is
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p ::= (store (sf · · ·) (dw (dws · · ·) e))
dws ::= (x e e)
e ::= . . . | (push dws) | (pop) | (throw dws · · · e)
v ::= . . . | dynamic-wind | call/cc
P ::= (store (sf · · ·) (dw (dws · · ·) E))

P[(dynamic-wind (lambda () e1) (lambda () e2) (lambda () e3))] → [DWWind]
P[(begin e1 (push (x1 e1 e3)) ((lambda (x2) (begin (pop) e3 x2)) e2))] (x1, x2 fresh)

(store (sf · · ·) (dw (dws1 · · ·) E[(push dws2)])) → [DWPush]
(store (sf · · ·) (dw (dws1 · · · dws2) E[unspecified]))

(store (sf · · ·) (dw (dws1 · · · dwsn) E[(pop)])) → [DWPop]
(store (sf · · ·) (dw (dws1 · · ·) E[unspecified]))

(store (sf · · ·) (dw (dws1 · · ·) E[(call/cc v1)])) → [DWCallcc]
(store (sf · · ·) (dw (dws1 · · ·) E[(v1 (lambda (x) (throw dws1 · · · E[x])))])) (x fresh)

(store (sf · · ·) (dw (dws1 · · ·) E[(throw dws2 · · · e1)])) → [DWThrow]
(store (sf · · ·) (dw (dws1 · · ·) (begin T J (dws1 · · ·), (dws2 · · ·) K e1)))

T : (sequence-of dws) × (sequence-of dws) −→ (listof e)

T J ((x1 e1 e2) dws1 · · ·), ((x2 e3 e4) dws2 · · ·) K =
T J (dws1 · · ·), (dws2 · · ·) K (if x1 = x2)

T J ((x1 e1 e2) · · ·), ((x2 e3 e4) · · ·) K =
(begin (pop) e2) · · ·r (begin e3 (push x2 e3 e4)) · · · (otherwise)

Fig. 9. Call/cc and dynamic-wind semantics, as an extension of figure 1

the last one. The [TlBegin] rule just erases beginD expressions, before any evaluation of the
beginD’s arguments occurs.

Finally, the last two rules, [TlCallcc] and [TlThrow] handle continuations. A call/cc ex-
pression packages up the context into a throw expression in the body of a lambda expres-
sion and passes that into call/cc’s argument. When that function is applied, its argument
is substituted into the hole in the context where call/cc was originally invoked, and then
the [TlThrow] rule replaces the current context with the context saved from the point where
call/cc was invoked.

Because this system splits each beginD expression into its constituent pieces (via the
[TlBegin] rule) before evaluating their bodies, it guarantees that the continuations grabbed
by call/cc do not include beginD expressions and thus evaluating the example program
from the beginning of this section results in a store that binds x to 3.

8 Dynamic-wind

Scheme’s dynamic-wind allows for annotating the dynamic extent of a procedure call with
entry and exit code that runs whenever the program flows into or out of that extent, either
through normal program evaluation or through the invocation of the procedures made by
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call/cc. For example, a programmer may wish to ensure that a log file is always open during
logging and properly closed when the program is not logging, even if the computation
uses a continuation to jump in and out of the logging extent. The with-logging procedure
provides this functionality:

;; with-logging : (((string → unspecified) → any) → any)
;; calls to-log-proc with a function that logs its argument
(define (with-logging to-log-proc)

(let ((port #f))
(dynamic-wind

(lambda () (set! port (open-output-file “logfile” ’append)))
(lambda () (to-log-proc (lambda (x) (write x port) (newline port))))
(lambda () (close-output-port port)))))

If no continuation jumps occur, dynamic-wind just calls its three thunks in order, so with-
logging would first open an output file5, then call to-log-proc with a function that writes
to the port, and finally close the port. If, however, a continuation jump does occur during
the call to dynamic-wind’s second argument, dynamic-wind would call its third argument
as the continuation jumps out. Similarly, if a continuation is captured during the call to
the second thunk, and is later used to jump back into the dynamic extent of to-log-proc’s
application, dynamic-wind invokes the first thunk as control transfers back into the body
of the second thunk. Taken together, this behavior ensures that port is always an open file
during the call to to-log-proc and is closed otherwise.

Even though dynamic-wind has a large impact on the meaning of continuations, the Re-
port formal semantics does not model it. Here we present a model of dynamic-wind that
conforms to the Report, but not all implementations conforming to the Report necessarily
match this model. In particular, section 6.4 of the Report says “The effect of using a cap-
tured continuation to enter or exit the dynamic extent of a call to [the first thunk] or [the
last thunk] is undefined.” Our semantics, however, follows the working draft of the next
version of the Report (Dybvig et al., 2006), which says that “[t]he in and out thunks of a
dynamic-wind are considered ‘outside’ of the dynamic-wind; that is, escaping from either
does not cause the [third] thunk to be invoked, and jumping back in does not cause the [first]
thunk to be invoked.” Our model of dynamic-wind is based on earlier treatments (Haynes
& Friedman, 1987; Felleisen, 1988; Gasbichler et al., 2003).

The language in figure 9 consists of the core Scheme with mutation as shown in figure 1
augmented with call/cc and dynamic-wind. The basic strategy is to maintain a stack of
all dynamic-wind calls entered but not yet exited. When a continuation is captured, the
semantics records the current dynamic-wind stack. When throwing to a continuation, the
semantics uses the difference between the current dynamic-wind stack and the one that is
associated with the captured continuation to determine which thunks need to be called.

That strategy is formally encoded in three parts. First, we add a dynamic-wind stack to
each program context. It contains one dynamic context frame (dws) for each dynamic-wind
that has been entered in the current evaluation. A dynamic context frame is a triple consist-
ing of a unique identifier and the pre and post thunks of the corresponding dynamic-wind

5 This code uses the ’append mode specifier so the file is not overwritten, but that is not part of the Report.
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call. The unique identifier allows us to disambiguate multiple dynamic evaluations of the
same syntactic appearance of a dynamic-wind expression. Second, we add the primitive
procedure value dynamic-wind to the set of values, which expects each of its three argu-
ments to evaluate to a thunk. Then using the [DWWind] rule it invokes its pre thunk, pushes
a dynamic context frame onto the stack with a fresh identifier and its own pre and post
thunks, evaluates its second thunk, pops its dynamic context frame off the stack, evaluates
its post thunk, and finally returns the value its second thunk produced. To allow the pro-
gram to manipulate the stack, we introduce the push and pop forms and their associated
reduction rules [DWPush] and [DWPop]. The former pushes a new dynamic context frame
onto the end of the stack, and the latter pops the last context frame off the stack.

Third, when call/cc is called, the [DWCallcc] rule builds a continuation that consists
of a procedure of one argument, x. That procedure’s body is a throw form that consists
of the current dynamic stack and the expression formed by plugging x into the hole of
the evaluation context where the application of call/cc itself was found. A throw form
is evaluated using the [DWThrow] rule. It discards the evaluation context in which it was
found, replacing the entire program body with a specially-constructed begin expression
built by combining the result of the T metafunction and the body of the throw.

The T function trims away the common context frames leaving only the suffixes that
need to be executed to return the dynamic context to its state when the continuation was
captured. Intuitively, it constructs a sequence of pre and post thunks that correspond to the
shortest path through the state space, in the sense of Haynes and Friedman (1987). The
metafunction compares its first argument, the dynamic-wind stack of the dynamic context
being exited, with its second argument, the dynamic-wind stack of the context being en-
tered. The first rule in its definition simply discards any common prefix the two stacks may
have, which correspond to dynamic extents that were not left or entered from the time the
continuation was created to the time it was invoked. Then, once the two stacks have been
trimmed, the metafunction produces a list of expressions consisting of applications of all
the post thunks from T ’s first argument and pop expressions to erase the current dynamic
context, followed by all the pre thunks from T ’s second argument and push expressions
to restore the old dynamic context. The thunks from T ’s first argument are invoked in re-
verse order (which we indicate with the special notation · · ·r) in order to erase the dynamic
context in the opposite order from which it was created.

PART TWO

The Combined Reduction System

This part combines the techniques described in part 1 with standard techniques for model-
ing programming languages to define a semantics for the Scheme programming language
of the Report. The semantics covers variable mutation, mutable lists, µlambda procedures
(i.e., procedures that accept extra arguments as a list), apply, object identity based equiva-
lence, and all of the features from part 1. There are a number of parts of the Report that are
not covered, but most of them can either be defined in terms of existing features (e.g. let),
are similar to features that are modeled (e.g. eq?), or would not add anything particularly
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interesting to the model (e.g. strings). Beyond those, we do not model Scheme’s numeric
tower, macros, or input and output, partly in order to keep the model a manageable size.

In general, the Report is not a complete specification, in order to give implementations
freedom to behave differently, typically to allow optimizations. This underspecification
shows up in a number of ways in our semantics, but the primary technique we use to model
it is to have the single-step relation relate one program to multiple different programs, each
corresponding to a legal transition that the abstract machine might take. Accordingly we
use the transitive closure of the single step relation to define the semantics, S , as a function
from programs (P ) to sets of answers (A):

S : P → 2A
S (P ) = { A | P →∗ A }

An implementation conforms to the semantics if, for every program P , the implementation
produces one of the results in S (P ) or, if the implementation loops forever, then there is an
infinite reduction sequence starting at P . The precise definitions of P and A are given in
section 9.

Our specification is executable, and the content of all of the figures in this part were
automatically generated from the source code that implements the specification, with the
exception of the R metafunction, which was typeset by hand. Since an executable spec-
ification was an explicit goal of our work, we have made some modeling choices whose
motivations may not be obvious at first. For example, there are many expressions whose
return values are explicitly unspecified in the Report, such as the result of a set! expres-
sion. In part 1, we modeled them with a special value, called unspecified. A non-executable
specification might not treat it as a value, and instead add the rule schema

∀ v. PC[unspecified] → PC[v]

meaning that the unspecified value reduces to all possible values. In an executable specifi-
cation, however, those reductions would overwhelm the ordinary reductions so we simply
leave the value unspecified in our full semantics. Programs that attempt to inspect it by
supplying it to other primitive operations will signal errors in our semantics, although con-
formance with the Report does not require these errors to be signaled (see section 18). Of
course, programs that ignore it continue without incident. We also chose to ignore out-of-
memory errors. These would be easy to add at the expense of a additional clutter when
visualizing traces: reductions from each allocation site to the out-of-memory error would
suffice.

While we have not established any precise relationship between our semantics and the
formal semantics in the Report, intuitively our semantics (when trimmed to the language
in the Report’s formal semantics) produces any result that the formal semantics might
produce. The reverse is not true, due to the way we handle application expressions. As an
example, our semantics produces 7, 8, 9, and 10 for this program:

(define x 1) ((lambda (t) (t) (t))
(lambda ()

((lambda (a b) x)
(set! x (+ x 1))
(set! x (∗ x 2)))))
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but the Report semantics can only produce 7 or 10. Fundamentally, the difference is that our
semantics can change the order of evaluation of the two set! expressions during evaluation,
but the Report’s semantics will pick only a single order both times the thunk is called. For
a full discussion of the difference, see section 5.

9 Grammar

The grammar for programs in the Report is shown in figure 10. In that figure, a program
(given by the nonterminal p) consists of a store, a dynamic-wind stack, and a series of top
level definitions and expressions. The sf nonterminal generates bindings for the store. The
dws nonterminal corresponds to one frame of dynamic-wind context information. The d
nonterminal produces definitions (using define), top level begin expressions (beginD), and
expressions. The e nonterminal gives expressions, which in addition to standard Scheme
core forms of application, if, begin, variables, lambda expressions and values, can be
marked applications, as in section 4, and throw, push and pop, as in section 8

Values (v) are either procedures or non-procedure values, but lambda terms are not
values themselves — procedure values (fun) can be references to procedures in the store
(ufun), or the built-in procedures, which are further refined into fun1, fun2 and aop, in order
to facilitate the error reductions. The lambda form places new procedure values into the
store when evaluated so that we can specify the behavior of eqv? on procedures. As in sec-
tion 6, we write dotted pairs with dot rather than a period to avoid meta-circular confusion
in our PLT Redex implementation, and we take advantage of that to write arbitrary arity
procedures as (lambda (dot x) e e · · ·). instead of the traditional (lambda x e e · · ·). Non-
procedure values (nonfun) include pair pointers, numbers, the empty list (null), booleans,
and the value unspecified.

Section 6 of the Report indicates that primitive procedures are bound to names in the
initial environment, but that those names can be mutated during the course of a program. To
model that, we use special names with #% prefixes to indicate the actual built-in primitives,
and we bind those values to their #%-less names in an initial store:

(store ((null #%null) (cons #%cons) (null? #%null?) (pair? #%pair?)
(car #%car) (cdr #%cdr) (set-car! #%set-car!) (set-cdr! #%set-cdr!)
(list #%list) (call/cc #%call/cc) (dynamic-wind #%dynamic-wind)
(eqv? #%eqv?) (values #%values) (call-with-values #%call-with-values)
(eval #%eval) (+ #%+) (− #%−) (/ #%/) (∗ #%∗))

· · ·)

We use four different kinds of contexts: program evaluation contexts (P), dynamic-wind
contexts (W), definition contexts (D), and expression contexts (E, E◦, and E?). Program
contexts, dynamic-wind contexts, and definition contexts nest inside each other, and they
all accept expressions in their holes. Evaluation takes place in expression contexts; they
allow evaluation in marked subexpressions of an application, the test positions of if ex-
pressions, in set! expressions, in the first position in a begin, and in the body of thunks
passed to #%call-with-values. The E◦ context expects a single value and the E? context
expects multiple values. Accordingly, top level expressions may reduce to multiple values,
but the expression on the right-hand side of a definition must be a single value.
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p ::= (store (sf · · ·) (dw (dws · · ·) d d · · ·))
sf ::= (x v) | (pp (#%cons v v)) | (cp (lambda (x · · ·) e e · · ·))

| (mp (lambda (x x · · · dot x) e e · · ·)) | (mp (lambda x e e · · ·))
dws ::= (x (v) (v))
d ::= (define x e) | (beginD d · · ·) | e
e ::= (e e · · ·) | (e · · · e� e · · ·) | (if e e e) | (if e e) | (set! x e)

| (begin e e · · ·) | x | v | (push dws) | (pop)
| (throw x dws · · · D[x]) | (lambda (x · · ·) e e · · ·)
| (lambda (x x · · · dot x) e e · · ·) | (lambda x e e · · ·)

v ::= nonfun | fun
nonfun ::= pp | #%null | ’sym | sqv | unspecified
fun ::= ufun | aop | fun1 | fun2 | #%list | #%dynamic-wind | #%apply | #%values
fun1 ::= #%null? | #%pair? | #%car | #%cdr | #%call/cc | #%eval
fun2 ::= #%cons | #%set-car! | #%set-cdr! | #%eqv? | #%call-with-values
ufun ::= cp | mp
aop ::= #%+ | #%− | #%/ | #%∗

P ::= (store (sf · · ·) W)
W ::= (dw (dws · · ·) D d · · ·)
D ::= E? | (define x E◦)
E ::= [ ] | (e · · · E◦� e · · ·) | (if E◦ e e) | (if E◦ e) | (set! x E◦)

| (begin E? e e · · ·) | (#%call-with-values (lambda () E? e · · ·) v)
E◦ ::= [ ]◦ | E
E? ::= [ ]? | E
ds ::= es | (define x es) | (beginD ds · · ·)
es ::= ’s | (ccons es es) | (es es · · ·) | (es · · · es� es · · ·)

| (if es es es) | (if es es) | (set! x es) | (begin es es · · ·) | x | v | (push dws)
| (pop) | (throw x dws · · · D[x]) | (lambda (x · · ·) es es · · ·)
| (lambda (x x · · · dot x) es es · · ·) | (lambda x es es · · ·)

s ::= (s · · ·) | (s · · · s dot sqv) | (s · · · s dot sym) | sqv | sym
sqv ::= n | #t | #f
SP ::= (store (sf · · ·) (dw (dws · · ·) d · · · SD s · · ·))
SD ::= S | (define x S) | (beginD d · · · SD s · · ·)
S ::= [ ] | (e · · · S s · · ·) | (if e e S) | (if e S s) | (if S s s) | (if e S) | (if S s)

| (set! x S) | (begin e e · · · S s · · ·) | (begin S s · · ·) | (throw x dws · · · S)
| (push (x e S)) | (push (x S s)) | (lambda (x · · ·) S s · · ·)
| (lambda (x · · ·) e e · · · S s · · ·) | (lambda (x x · · · dot x) S s · · ·)
| (lambda (x x · · · dot x) e e · · · S s · · ·) | (lambda x S s · · ·)
| (lambda x e e · · · S s · · ·) | (ccons v S) | (ccons S s) | S�

sym ::= [variables except dot]
x ::= [variables except dot and keywords]
pp ::= [pair pointers]
cp ::= [closure pointers]
mp ::= [µ closure pointers]
n ::= [numbers]

P ::= (store (sf · · ·) (dw (dws · · ·) ds ds · · ·))
A ::= (store (sf · · ·) (dw (dws · · ·) (#%values v · · ·))) | error: error message

Fig. 10. Grammar
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P[(if v1 e1 e2)] → P[e1] [5if3t]
(v1 6= #f)

P[(if #f e1 e2)] → P[e2] [5if3f]

P[(if v1 e1)] → P[e1] [5if2t]
(v1 6= #f)

P[(if #f e1)] → P[unspecified] [5if2f]

P[(begin (#%values v · · ·) e1 e2 · · ·)] → P[(begin e1 e2 · · ·)] [5beginc]

P[(begin e1)] → P[e1] [5beginl]

Fig. 11. Basic syntactic forms

P[(#%+)] → P[0] [5+0]

P[(#%+ n1 n2 · · ·)] → P[ dΣ{n1, n2· · ·}e ] [5+]

P[(#%− n1)] → P[ d− n1
e ] [5u-]

P[(#%− n1 n2 n3 · · ·)] → P[ dn1 − Σ{n2, n3· · ·}e ] [5-]

P[(#%∗)] → P[1] [5*1]

P[(#%∗ n1 n2 · · ·)] → P[ dΠ{n1, n2· · ·}e ] [5*]

P[(#%/ n1)] → P[(#%/ 1 n1)] [5u/]

P[(#%/ n1 n2 n3 · · ·)] → P[ dn1 / Π{n2, n3· · ·}e ] [5/]
(0 6∈ { n2, n3 · · · })

Fig. 12. Arithmetic

Programs with quoted s-expressions are generated by the ds and es nonterminals. They
are just like d and e, respectively, but include quoted expressions and ccons expressions.
S-expressions are generated by the s and the sqv nonterminals. The sqv nonterminal is
named for self-quoting values, i.e., those values where adding or removing a quote does not
change the value. S-expression contexts are generated by the SP, SD, and S nonterminals
and correspond to places where a quoted expression can be moved into the store. They are
larger here than in section 6 because of the additional syntactic forms in this language.

The sym nonterminal represents symbols, the x nonterminal represents both program
variables and binding locations, and the pp, cp, and mp nonterminals represent pointers to
pairs, fixed-arity procedures, and variable-arity procedures, respectively.

Finally, the P and A nonterminals specify what complete programs are and help define
the domain of the reduction relation. See section 19 for details.
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(store (sf1 · · ·) W1[(#%cons v1 v2)]) → [5cons]
(store (sf1 · · · (ppi (#%cons v1 v2))) W1[ppi]) (ppi fresh)

P[(#%list v1 v2 · · ·)] → [5listc]
P[(#%cons v1 (#%list v2 · · ·))]

P[(#%list)] → [5listn]
P[#%null]

(store (sf1 · · · (ppi (#%cons v1 v2)) sf 2 · · ·) W1[(#%car ppi)]) → [5car]
(store (sf1 · · · (ppi (#%cons v1 v2)) sf 2 · · ·) W1[v1])

(store (sf1 · · · (ppi (#%cons v1 v2)) sf 2 · · ·) W1[(#%cdr ppi)]) → [5cdr]
(store (sf1 · · · (ppi (#%cons v1 v2)) sf 2 · · ·) W1[v2])

P[(#%null? #%null)] → [5null?t]
P[#t]

P[(#%null? v1)] → [5null?f]
P[#f] (v1 6= #%null)

P[(#%pair? pp)] → [5pair?t]
P[#t]

P[(#%pair? v1)] → [5pair?f]
P[#f] (v1 6∈ pp)

(store (sf1 · · · (pp1 (#%cons v1 v2)) sf 2 · · ·) W1[(#%set-car! pp1 v3)]) → [5setcar]
(store (sf1 · · · (pp1 (#%cons v3 v2)) sf 2 · · ·) W1[unspecified])

(store (sf1 · · · (pp1 (#%cons v1 v2)) sf 2 · · ·) W1[(#%set-cdr! pp1 v3)]) → [5setcdr]
(store (sf1 · · · (pp1 (#%cons v1 v3)) sf 2 · · ·) W1[unspecified])

Fig. 13. Lists

10 Basic Syntactic Forms and Arithmetic

Figure 11 displays the rules for the basic syntactic forms. For the if form, if the test position
evaluates to anything other than #f, the term rewrites to its “then” subexpression. If the test
position evaluates to #f, it rewrites to its “else” subexpression, if present, unspecified oth-
erwise. For the begin form, the evaluation contexts defined in figure 10 ensure that the first
term of a begin expression is evaluated fully; then these rules rewrite begin expressions
that consist of a value followed by other expressions to a new begin expression without
the initial value. These rules also specifiy that a begin form with only a single expression
reduces immediately to that expression, even if that expression is not yet a value (or if it is
a single value or multiple values).

Because our model does not take into account the Report’s numeric tower, we express
its numeric operations in terms of true mathematical functions, as shown in figure 12.
We assume that we can identify the true number represented by each numeric term and
model each numeric procedure by performing the appropriate mathematical operation: +
is modeled by summation on the represented numbers, ∗ is modeled by product, and so on.
The figures use the notation dne to represent the mathematical number n’s written form.
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(store (sf1 · · ·) (dw (dws1 · · ·) (define x1 v1) d1 · · ·)) → [5def]
(store (sf1 · · · (x1 v1)) (dw (dws1 · · ·) unspecified d1 · · ·)) (x1 6∈ dom(sf1 · · ·))

(store (sf1 · · · (x1 v2) sf 2 · · ·) (dw (dws1 · · ·) (define x1 v1) d1 · · ·)) → [5redef]
(store (sf1 · · · (x1 v1) sf 2 · · ·) (dw (dws1 · · ·) unspecified d1 · · ·))

(store (sf1 · · ·) (dw (dws1 · · ·) (beginD d1 d2 · · ·) d3 · · ·)) → [5tbegin]
(store (sf1 · · ·) (dw (dws1 · · ·) d1 d2 · · · d3 · · ·))

(store (sf1 · · ·) (dw (dws1 · · ·) (beginD) d1 · · ·)) → [5tbegine]
(store (sf1 · · ·) (dw (dws1 · · ·) unspecified d1 · · ·))

(store (sf1 · · ·) (dw (dws1 · · ·) (#%values v · · ·) d1 d2 · · ·)) → [5tdrop]
(store (sf1 · · ·) (dw (dws1 · · ·) d1 d2 · · ·))

(store (sf1 · · · (x1 v1) sf 2 · · ·) W1[x1]) → [5var]
(store (sf1 · · · (x1 v1) sf 2 · · ·) W1[v1])

(store (sf1 · · · (x1 v1) sf 2 · · ·) W1[(set! x1 v2)]) → [5set]
(store (sf1 · · · (x1 v2) sf 2 · · ·) W1[unspecified])

Fig. 14. Top level and Variables

11 Lists

The rules for lists and operations on lists are given in figure 13. Since all cons cells are
mutable and therefore can be distinguished even when they hold identical values, the se-
mantics must be able to reflect such distinctions. So, (#%cons v v) itself is not a value;
instead, the #%cons rule introduces a new pair into the store and reduces to a pointer to
that new pair. The [5listc] and [5listn] rules rewrites #%list expressions to a sequence of
calls to #%cons. The rules for #%car and #%cdr rewrite calls to either procedure to the
appropriate field of a pair, extracting the field’s value from the store.

The predicates in the figure are similarly straightforward. The #%pair? procedure re-
duces to #t if its argument is identifiable as a pair pointer and #f otherwise. The #%null?
procedure reduces to #t if and only if it is supplied with the built-in null value.

The #%set-car! and #%set-cdr! rules are similar to the #%car and #%cdr rules; they
update the store and rewrite to the unspecified value.

12 Top Level and Variables

Figure 14 gives the reduction rules for top level definitions and variables in the store. Top
level definitions reduce by either extending the store with the new definition or, if the
variable is already bound in the store, by updating the store with the new variable. The
side-condition on [5def] ensures that the rule only applies when x is not already bound
in the store. Top level beginD expressions (see section 7 for a discussion of beginD) are
erased, and their contents are flattened into the sequence of definitions at the top level.
Expressions that have been reduced to values at the top level are dropped, as long as there
are more definitions to evaluate. The values of the final definition are retained. A reference
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(store (sf1 · · ·) W1[(lambda (x1 · · ·) e1 e2 · · ·)]) → [5calloc]
(store (sf1 · · · (cp (lambda (x1 · · ·) e1 e2 · · ·))) W1[cp]) (cp fresh)

(store (sf1 · · ·) W1[(lambda (x1 x2 · · · dot xr) e1 e2 · · ·)]) → [5µcalloc]
(store (sf1 · · ·

(mp (lambda (x1 x2 · · · dot xr) (cp x1 x2 · · · xr)))
(cp (lambda (x1 x2 · · · xr) e1 e2 · · ·)))

W1[mp]) (mp, cp fresh)

(store (sf1 · · ·) W1[(lambda x1 e1 e2 · · ·)]) → [5µcalloc1]
(store (sf1 · · ·

(mp (lambda x1 (cp x1)))
(cp (lambda (x1) e1 e2 · · ·)))

W1[mp]) (mp, cp fresh)

P1[(e1 · · · ei ei+1 · · ·)] → [5mark]
P1[(e1 · · · ei

� ei+1 · · ·)] (ei 6∈ v, ei is not a thunk in a #%call-with-values application)

P[(e1 · · · vi
� ei+1 · · ·)] → [5unmark]

P[(e1 · · · vi ei+1 · · ·)]

(store (sf1 · · · (cpi (lambda (x1 · · ·) ebody1 ebody2 · · ·)) sf 2 · · ·)
W1[(cpi v1 · · ·)]) →

[5app]

(store (sf1 · · ·
(cpi (lambda (x1 · · ·) ebody1 ebody2 · · ·))
sf 2 · · ·
(x2 v1) · · ·)

W1[{ x1 · · · 7→ x2 · · · }(begin ebody1 ebody2 · · ·)]) (#x1 = #v1, x2 · · · fresh)

(store (sf1 · · · (mpi (lambda (x1 x2 · · · dot xr) (cp1 x1 x2 · · · xr))) sf 2 · · ·)
W1[(mpi v1 · · · v2 · · ·)]) →

[5µapp]

(store (sf1 · · · (mpi (lambda (x1 x2 · · · dot xr) (cp1 x1 x2 · · · xr))) sf 2 · · ·)
W1[(cp1 v1 · · · (#%list v2 · · ·))]) (#v1 = #x2 + 1)

(store (sf1 · · · (mpi (lambda x1 (cp1 x1))) sf 2 · · ·)
W1[(mpi v1 · · ·)]) →

[5µapp1]

(store (sf1 · · · (mpi (lambda x1 (cp1 x1))) sf 2 · · ·)
W1[(cp1 (#%list v1 · · ·))])

(store (sf1 · · · (ppi (#%cons v2 v3)) sf 2 · · ·)
W1[(#%apply fun1 v1 · · · ppi)]) →

[5applyc]

(store (sf1 · · · (ppi (#%cons v2 v3)) sf 2 · · ·)
W1[(#%apply fun1 v1 · · · v2 v3)])

P[(#%apply fun1 v1 · · · #%null)] → [5applyn]
P[(fun1 v1 · · ·)]

Fig. 15. Procedures

to a variable in the store is replaced by its value, and an assignment to a variable in the
store updates the store with the new value.
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13 Procedures

The rules for procedure fall into three categories: procedure introduction, application mark-
ing, and procedure application, as shown in figure 15. Like cons cells, procedures are not
values, but pointers to them are. Procedures are modeled this way so that we can model
eqv?. The rule [5calloc] allocates fixed arity procedures. The allocation for µlambda pro-
cedures always puts two procedures into the store: a stub µlambda procedure whose body
contains a call to an ordinary procedure, and an ordinary procedure that contains the orig-
inal µlambda’s body expressions. We put both procedures into the store so that when a
µlambda procedure is applied, we can rewrite it into a corresponding call to the fixed-arity
code pointer and thereby use the same reduction for both kinds of applications.

The rules [5mark] and [5unmark] show how marks are placed into and removed from
applications, almost as in section 4. The only difference is that thunks that appear as the
first argument to #%call-with-values are not marked (and thus is not moved into the store)
in order to support evaluation in the body of the thunk (see section 15).

Application of a procedure pointer to arguments is modeled by creating one new binding
in the store per formal argument, replacing the formal parameters in the body with the new
variables, and binding those new variables in the store to the actual parameters. Application
of a µlambda, [5µapp], allocates a list for its extra arguments, applies the initial portion of
the arguments as usual, and constructs a list containing the rest of the arguments to be
supplied to cp, the procedure that contains the actual body of the original procedure.

The last two rules in figure 15 specify the behavior of Scheme’s apply procedure. It
accepts a procedure and an arbitrary number of arguments, the last of which must be a
list. It calls the procedure with the arguments and the contents of the list as subsequent
arguments. To specify this behavior, the two #%apply rules flatten out the argument list
and, when the list is exhausted, reduce to a normal application.

14 Call/cc and Dynamic-wind

Our technique for modeling call/cc and dynamic-wind in the full semantics, shown in fig-
ure 16, is essentially the technique from section 8. Apart from the change of using all
function values rather than just (lambda () e) expressions, the only substantial change
concerns the continuation procedures. In the model for the Report language, they accept
any number of arguments, which become multiple return values when the continuation is
invoked. The trimming metafunction T is the same as the function defined in figure 9.

The first rule rewrites #%dynamic-wind to an expression that invokes its first argument
thunk, pushes the dynamic context, invokes the second thunk, pops the dynamic context,
invokes the third thunk, and returns the result of the second thunk. In order to ensure that
the three thunks are invoked in the proper order but that the value of the second thunk is
returned, the rule uses an auxiliary procedure. The idea is that the procedure’s argument
holds the value of the second thunk while the third thunk is invoked. If dynamic-wind only
allowed a single value to be returned from its second argument thunk, an expression similar
to the one in the rule from section 8 would suffice:
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P1[(#%dynamic-wind v1 v2 v3)] → [5dw]
P1[(begin (v1)

(push (d (v1) (v3)))
(#%call-with-values
v2
(lambda x

(pop) (v3) (#%apply #%values x))))] (v1, v2, & v3 arity 0, d, x, cp, mp fresh)

(store (sf1 · · ·) (dw (dws1 · · ·) D1[(push dws2)] d1 · · ·)) → [5push]
(store (sf1 · · ·) (dw (dws1 · · · dws2) D1[unspecified] d1 · · ·))

(store (sf1 · · ·) (dw (dws1 · · · dws2) D1[(pop)] d1 · · ·)) → [5pop]
(store (sf1 · · ·) (dw (dws1 · · ·) D1[unspecified] d1 · · ·))

(store (sf1 · · ·) (dw (dws1 · · ·) D1[(#%call/cc v1)] d1 · · ·)) → [5callcc]
(store (sf1 · · ·) (dw (dws1 · · ·)

D1[(v1 (lambda (dot x1)
(throw x2 dws1 · · ·

D1[(begin x2 (#%apply #%values x1))])))]
d1 · · ·)) (x1, x2 fresh)

(store (sf1 · · ·) (dw (dws1 · · ·) D1[(throw x2 dws2 · · · D2[(begin x2 e1)])] d1 · · ·)) → [5throw]
(store (sf1 · · ·) (dw (dws1 · · ·) D2[(begin T ((dws1 · · ·) , (dws2 · · ·)) e1)] d1 · · ·))

Fig. 16. Call/cc and dynamic-wind

(begin (v1)
(push · · ·)
((lambda (x) (pop) (v3) x)
(v2)))

To cope with multiple values, however, v2 must be invoked via call-with-values, as shown
in the rule [5dw].

The second and third rules manipulate the dynamic context. The fourth rule handles
#%call/cc; it builds a variable arity procedure whose body throws to a continuation and
then passes that procedure to #%call/cc’s argument. The variable x2 is used by the throw
rule, [5throw]. That rule restores the definition evaluation context from the point where the
continuation was captured and, using the T metafunction, inserts code at x2 to adjust the
dynamic context.

15 Multiple Values and Call-with-values

Figure 17 shows our treatment of multiple values in the full language. It is nearly identical
to multiple values in section 5, and in particular the context arrangement, promotion and
demotion rules are the same: rule [5promote] promotes a single value by wrapping it with a
call to #%values in a multi-values context, and rule [5demote] demotes a single value that
is wrapped with #%values to a single value when it occurs in a single-value context.

There is one twist, though, because lambda expressions in this semantics are not values,
but are moved into the store. To support #%call-with-values, the rule for marking appli-
cations ([5mark] in figure 15) treats expressions of the form (lambda () e e · · ·) as values,



30 J. Matthews & R. B. Findler

P1[v1]? → [5promote]
P1[(#%values v1)]

P1[(#%values v1)]◦ → [5demote]
P1[v1]

P1[(#%call-with-values (lambda () (#%values v2 · · ·)) v1)] → [5cwvd]
P1[(v1 v2 · · ·)]

P1[(#%call-with-values (lambda () (#%values v1 · · ·) e1 e2 · · ·) v2)] → [5cwvc]
P1[(#%call-with-values (lambda () e1 e2 · · ·) v2)]

P1[(#%call-with-values v1 v2)] → [5cwvw]
P1[(#%call-with-values (lambda () (v1)) v2)]

Fig. 17. Multiple values and call-with-values

P[(#%eqv? v1 v1)] → P[#t] [5eqt]

P[(#%eqv? v1 v2)] → P[#f] [5eqf]
(v1 6= v2)

P[(#%eqv? ufun1 ufun2)] → P[#t] [5eqproof]
(ufun1 6= ufun2, ufun1 & ufun2 observably equivalent)

Fig. 18. Eqv and equivalence

when they appear as the second argument to #%call-with-values. In addition, the evalu-
ation contexts from figure 10 allow evaluation in the body of such lambda expressions,
meaning that the rule [5cwvd] handles the main job of #%call-with-values, i.e., combining
its second argument with the values returned by its first argument.

The next rule, [5cwvc] supports lambda expressions with multiple body expressions;
once an intermediate body expression is evaluated, its result is discarded, and evaluation
continues with the next one. The [5cwvw] handles the situation where #%call-with-values’s
first argument is already a thunk in the store, or is a primitive procedure.

16 Eqv? and Equivalence

The Report does not specify the entire behavior of eqv?, but does require conforming
implementations of eqv? to satisfy these properties (when supplied with two arguments):

• eqv? must return #t if its arguments refer to the same locations in the store,
• eqv? must return #f it its arguments are functions that behave differently,
• eqv? may return #t or #f if its arguments are functions that behave the same way for

all possible inputs, but have different locations, and
• eqv? must always return and always produce a boolean value.

We capture this behavior with the rules in figure 18. The first rule corresponds directly
to the first bullet. The second and third rules capture the second and third bullets above. In
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Fig. 19. PLT Redex GUI showing the terms requiring equivalence proofs

particular, when the two arguments are functions at different locations that behave identi-
cally, both [5eqf] and [5eqproof] apply, indicating that both #t and #f are legal results.

Since the Report does not specify how to determine if two procedures are equivalent we
leave this open as well, but a natural choice for our setting would be to build on the work
of Mason & Talcott (1991) and Felleisen & Hieb (1992).

As a practical matter, our implementation always allows the [5eqproof] reduction but
warns those using our implementation by coloring terms in red when they are only reach-
able by paths that use the [5eqproof] rule. For example, when this program:

(define f (lambda (x) x))
(define g (lambda (y) y))
(#%eqv? f g)

is run in our semantics it produces both #t and #f, but #t is only legal if the procedures
(lambda (x) x) and (lambda (y) y) have been proven to behave identically. Accordingly,
our tool colors the term with #t in red. Figure 19 shows a screenshot, starting from the
program that the above reduces to, just before the [5eqproof] rule applies.

It is possible to have multiple paths in the reduction graph that lead to the same final
answer, but where some paths require equivalence proofs and others do not. For example,
if we replace the final expression above with this one:

(if (#%eqv? f g) (#%+ 2 2) (#%∗ 2 2))

then no matter which way the test of the if expression goes, the final answer is always 4. In
situations like that, the tool colors only those intermediate states on paths that require the
extra proofs; where the paths converge, it drops the color.

17 Quote and Eval

The rules for #%eval and quote in figure 20 are essentially the same as the rules for eval
and quote in section 6. The first rule rewrites a non-empty quoted list into a compile-time
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SP1[(quote (s1 s2 · · ·))] → [5qcons]
SP1[(ccons (quote s1) (quote (s2 · · ·)))]

SP1[(quote ())] → [5qnull]
SP1[#%null]

SP1[(quote (s1 s2 s3 · · · dot s4))] → [5qconsd]
SP1[(ccons (quote s1) (quote (s2 s3 · · · dot s4)))]

SP1[(quote (s1 dot s2))] → [5qdot]
SP1[(ccons (quote s1) (quote s2))]

SP1[(quote sqv1)] → [5qsqv]
SP1[sqv1]

(store (sf1 · · ·) (dw (dws1 · · ·) d1 · · · SD1[(ccons v1 v2)] s1 · · ·)) → [5ccons]
(store (sf1 · · · (pp1 (#%cons v1 v2))) (dw (dws1 · · ·) d1 · · · SD1[pp1] s1 · · ·)) (pp1 fresh)

(store (sf1 · · ·) W1[(#%eval v1)]) → [5eval]
(store (sf1 · · ·) W1[R J(sf1 · · ·), v1 K]) (R J(sf1 · · ·), v1 K ∈ es)

R : (sequence-of sf ) × v → s C : s × s → s
R J S, #%null K = () C J s1, (s2 · · ·) K = (s1 s2 · · ·)
R J S, ’sy K = sy C J s1, s2 K = (s1 dot s2)
R J S, pp K = C J R J va K, R J vd K K (where S binds pp to (#%cons va vd))
R J S, v K = v (otherwise)

Fig. 20. Quote and eval

pair allocation and the second rule rewrites an empty quoted list into #%null. The third
rule is a generalization of the rule that drops the quote around numbers from figure 20, but
here drops the quote around any self-quoting value. The [5ccons] performs an allocation,
replacing a ccons expression with a pointer into the store. Finally, the [5eval] reifies its
argument, leaving behind new program text to evaluate. Its side-condition guarantees that
it only applies when the result of reification is a well-formed expression. The R function
is similar to the one in figure 6; the only difference is that it operates on programs in this
semantics that have #%cons and #%null instead of cons and null.

18 Errors

Figures 21 and 22 show all of the error reductions for this semantics. Each of the rules in
those figures rewrites a program into an error message and discards the context, ensuring
that no further reduction can take place. The Report, however, does not specify that any
of those errors should be signaled. In fact, it leaves all of these situations completely un-
specified. Accordingly, implementations that conform to the Report may signal the errors
as shown in the figures, or may do anything else in those situations.

The first two rules in figure 21 cover arithmetic errors. The second rule reports which
argument is a non-number by counting the number of values in (v1 · · ·) and then adding one.
The next four cover errors for the pair primitives. The rules [5errvar] and [5errset] cover free
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P[(#%/ n1 n2 n3 · · ·)] → [5/0]
error: divison by zero (0 ∈ { n2, n3 · · · })

P[(aop v1 · · · vi vi+1 · · ·)] → [5ae]
error: arith-op applied to non-number, arg (#v1)+1 (vi is not a number)

P1[(#%car vi)] → [5care]
error: can’t take car of non-pair (vi 6∈ pp)

P1[(#%cdr vi)] → [5cdre]
error: can’t take cdr of non-pair (vi 6∈ pp)

P1[(#%set-car! v1 v2)] → [5scare]
error: can’t set-car! on a non-pair (v1 6∈ pp)

P1[(#%set-cdr! v1 v2)] → [5scdre]
error: can’t set-cdr! on a non-pair (v1 6∈ pp)

(store (sf1 · · ·) (dw (dws · · ·) D[x1] d · · ·)) → [5errvar]
error: reference to free identifier: x1 (x1 6∈ dom(sf1 · · ·))

(store (sf1 · · ·) (dw (dws · · ·) D[(set! x1 v)] d · · ·)) → [5errset]
error: attempt to set! free identifier: x1 (x1 6∈ dom(sf1 · · ·))

P[(nonfun v · · ·)] → [5appe]
error: can’t apply non-function

P[(#%apply fun v1 · · · v2)] → [5applye]
error: apply’s last argument non-list (v2 6∈ pp, v2 6= #%null)

P[(#%apply nonfun v · · ·)] → [5applynf]
error: can’t apply non-function

P[(#%dynamic-wind v1 v2 v3)] → [5dwerr]
error: dynamic-wind expects arity 0 procs (v1, v2, or v3 does not have arity 0)

P[(#%values v1 · · ·)]◦ → [5valerr]
error: context received wrong # of values (#v1 6= 1)

(store (sf1 · · ·) W[(#%eval v1)]) → [5evale]
error: malformed expression: R J(sf1 · · ·), v1 K (R J(sf1 · · ·), v1 K 6∈ ds)

(store (sf1 · · ·) W[(#%eval v1)]) → [5evald]
error: eval only takes expressions (R J(sf1 · · ·), v1 K ∈ ds, R J(sf1 · · ·), v1 K 6∈ es)

Fig. 21. Non-arity errors

variable errors. The rule [5appe] covers application of a non-function. The rules [5applye]
and [5applen] cover abuse of #%apply. The [5dwerr] covers bad arguments supplied to
#%dynamic-wind and [5valerr] signals an error when a single-value context receives too
few or too many values. The last two rules signal errors when #%eval gets the wrong
number of arguments. The Report says that the argument to eval “must be a valid Scheme
expression” but that “[i]mplementations may extend eval to allow non-expression programs
(definitions) as the first argument”. Rather than extending our #%eval to accept definitions,
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(store (sf · · · (cpi (lambda (x1 · · ·) e e · · ·)) sf · · ·)
W[(cpi v1 · · ·)]) →

[5arity]

error: arity mismatch (#x1 6= #v1)

(store (sf · · · (mpi (lambda (x1 x2 · · · dot x) (cp x · · ·))) sf · · ·)
W[(mpi v1 · · ·)]) →

[5µarity]

error: arity mismatch (#v1 < #x2 + 1)

P[(fun1 v1 · · ·)] → [51arity]
error: arity mismatch (#v1 6= 1)

P[(fun2 v1 · · ·)] → [52arity]
error: arity mismatch (#v1 6= 2)

P[(#%dynamic-wind v1 · · ·)] → [5dwarity]
error: arity mismatch (#v1 6= 3)

P[(#%−)] → [5-arity]
error: arity mismatch

P[(#%/)] → [5/arity]
error: arity mismatch

P[(#%apply)] → [5apparity0]
error: arity mismatch

P[(#%apply v)] → [5apparity1]
error: arity mismatch

Fig. 22. Arity errors

we merely identify two different errors, one when #%eval’s argument is a definition and
one when it is ill-formed.

The rules in figure 22 handle all of the arity error reductions, both for primitive proce-
dures, and for user-defined procedures. The fun1 nonterminal contains all of the primitive
procedures of arity one, and fun2 contains all of the primitive procedures of arity two. The
remaining primitives, #%dynamic-wind, #%−, #%/, and #%apply are handled specially.

19 Consistency

In an effort to ensure that our semantics is sensible and defines the language we intend it to
define, we have exploited its executable nature to build a test suite for it. The test suite con-
tains 258 test expressions that together explore more than 14,000 distinct program states.
The largest test case requires 1317 states and the test case with the most non-determinism
visits 71 different states that each have multiple next states. Each test expression is checked
against its expected result (or results) and each intermediate state is checked to be sure it
is an element of P .

As we worked on the semantics, we would often find that seemingly innocuous changes
in one part of the semantics would disrupt other parts. As an example, when we improved
the way that unspecified order of evaluation was handled, the rules for #%call-with-values
broke, without us realizing it until we ran the test suite. Because we had test cases for
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#%call-with-values, however, the problem was quickly identified and fixed. Usually the
initial term of the failed test case was enough to help us identify the problem and fix it.
When that was not enough, we would first try to make the test case as small as possible
and then use PLT Redex to visualize a small graph that had the problem. Understanding
the problem via small examples inevitably led to a solution.

The test suite is the source of most of our confidence that this semantics is behaves as
we expect. But, as a further guarantee that the semantics is sensible, we also prove that
well-formed programs cannot get stuck.

Definition 1
A program P is well-formed if every pp, cp, mp that appears in the body of P is bound in
the store.

Theorem 1
For any well-formed program P , either there exists at least one A such that P →∗ A , or
for every P ′ such that P →∗ P ′, there exists a well-formed P ′′ such that P ′ → P ′′.

Proof
The proof of this theorem is structured like a standard proof of type soundness, but instead
of guaranteeing that programs are well-typed, we only guarantee that programs are well-
formed. Lemma 1 plays the role of the preservation lemma and lemma 2 plays the role of
the progress lemma. Together they establish the theorem.

Lemma 1
If there exists some well-formed P ′ that reduces to P , then P is well-formed.

Proof
Follows by inspection of the reduction rules.

Lemma 2
For any well-formed P , at least one of the following is true:

• P → P ′

• P → error: str for some error message str, or
• P = (store (sf · · ·) (dw (dws · · ·) (#%values v · · ·)))

Note that both the first and the second cases might apply to the same term, due to the
way we model unspecified order of evaluation, as discussed in section 4.

Proof
We proceed by cases on the structure of P . First, assume that P contains some quoted
sub-expression or some ccons sub-expression. Inspection of the S contexts shows that, no
matter where those expressions might occur, they will reduce, either by [5qcons], [5qnull],
or [5qsqv] in the case of a quoted expression or [5ccons] in the case of a ccons expression.

To show that the remaining cases of P satisfy the lemma, we rely on lemma 3. Exam-
ination of the top-level program context P and that lemma tells us that an expression that
appears at the top-level of a well-formed program reduces or is (#%values v · · ·). The only
other cases are top-level definitions and beginD expressions, which are covered by the first
five reduction rules in figure 14 and [5valerr].
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Lemma 3
Every e is at least one of:

• v,
• (#%values v · · ·),
• E[v]?,
• E[(#%values v · · ·)]◦, or
• E[i]◦

where i is one of the expressions that appears in the context in one of the reduction rules,
excluding [5promote], [5demote], or [5valerr].

Proof
This lemma follows directly from a straightforward inductive argument on the structure of
e, but is the key lemma in the proof of the theorem. It is complicated by multiple values,
but is analogous to a lemma that guarantees that each expression e is either E[i] or v in
more standard reduction systems.

20 Conclusions

Our journey into the Report has once again revealed the value of mechanizing a seman-
tics. In addition to improving our own understanding of operational semantics through the
process of coaxing a machine to behave as the Report decrees, we have also learned two
lessons worth sharing.

First, we learned that the under-specification of the Report goes deep. It is common
knowledge that the Report specifies a family of programming languages rather than just a
single programming language, since implementations can vary on a myriad of details: the
order of evaluation of a function’s arguments, the results of particular primitives, which
errors to report and which to ignore, etc. There are so many possibilities that writing
implementation-independent Scheme code requires tool support (Sitaram, 2003). It is less
well-known, however, that the Report is actually even less specific than that — it speci-
fies an entire family of semantics, due to the specification of eqv?. The Report specifies
that, when eqv?’s arguments are procedures with different tags, an implementation may
produce #t if it can prove that procedures behave identically when presented with identical
inputs (rule [5eqproof] from figure 18 in our semantics). Since the truth of this statement
is as difficult to prove as the observational equivalence of two phrases and the Report does
not suggest a specific proof system, the semantics itself must be parameterized over the
possible proof systems to use with this rule.

Second, and perhaps more importantly, we learned the importance of building a test
suite of programs and their expected behavior. Not only does a test suite ensure that the
semantics models the intended behavior, it also cuts down the number of errors in the se-
mantics. Much of the effort in mechanizing semantics today is focused on automatically
generating or verifying proofs of the meta-theory of a semantics. While this effort is also
clearly important, such proofs do not substitute for the ability of test suites to ensure that
the semantics is modeling what we expect it to model, nor do they substitute for the under-
standing gained by exploring the behavior of examples. This lesson is what has led us to
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spend significant effort on PLT Redex, and we believe its use will benefit the use of other
tools for the mechanization of semantic specifications.

Indeed, a test suite might have helped the authors of the Report discover an inconsis-
tency in their specification. In section 6.4, The Report’s informal semantics says that “ex-
cept for continuations created with the call-with-values procedure, all continuations take
exactly one value”. The formal semantics does not enforce this restriction on expressions
evaluated for their effects. Those expressions are evaluated by C , which does not use sin-
gle; in contrast, E∗ also evaluates sequences of expressions but does use single. For that
reason, the two definitions of Scheme’s begin given in section 7.3 of the Report are sub-
tly incompatible with each other. The first requires (begin (values) 1) to evaluate to the
implementation-specific result of the wrong metafunction, which means that an implemen-
tation should signal an error. The second requires it to evaluate to 1.6

Beyond test suites, the mechanization of the semantics also makes calculations simple.
As an example, the Report defines values using call/cc, but our semantics models values
directly (as #%values). The definition in the Report is

(define values
(lambda things

(call/cc
(lambda (cont)

(apply cont things)))))

To prove that this definition and the #%values in our semantics are observably equivalent,
one needs a standard lemma about contexts (Felleisen et al., 1987; Mason & Talcott, 1991)
to conclude that the only interesting case is when the two versions of values appear in an
application context. So, we plugged the lambda expression above into PLT Redex in an
application context and voilà: 77 steps later, out popped #%values in that same application
context.

Overall, we hope that our experience leads others to provide good support for experi-
menting with examples and maintaining test suites.
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