
Garbage Collection

Today: various garbage collection strategies; basic ideas:

• Allocate until we run out of space; then try to free
stuff

• Invariant: only the PL implementation (runtime
system) knows about pointers so we can tag
everything and find all reachable data (unlike C, C++,
asm; like ruby, python, perl, java, racket, ... everything
else really)

1

Reference Counting

Reference counting: a way to know whether a
record has other users

2

Reference Counting

Reference counting: a way to know whether a
record has other users

• Attach a count to every record, starting at 0

• When installing a pointer to a record increment its
count

• When replacing a pointer to a record, decrement its
count

• When a count reaches 0, decrement counts for other
records referenced by the record, then free it

3

Reference Counting

1
1

1
1

2

1
1

Top boxes are the roots

Boxes in the blue area are
allocated memory

4

Reference Counting

1
1

0
1

3

1
1

Adjust counts when a pointer is
changed...

5

Reference Counting

1
1

1

2

1
1

... freeing a record if its count
goes to 0

6

Reference Counting

1
1

0

2

1
1

Same if the pointer is a root

7

Reference Counting

1
1

2

0
1

Adjust counts after frees, too...

8

Reference Counting

1
1

2

1

... which can trigger more frees

9

Reference Counting And Cycles

1
1

1

2

1
1

An assignment can create a
cycle...

10

Reference Counting And Cycles

1
1

2

2

1
1

Adding a reference increments a
count

11

Reference Counting And Cycles

1
1

1

2

1
1

Lower-left records are
inaccessible, but not deallocated

In general, cycles break reference
counting

12

Reference counting problems

• Cycles

• Maintaining counts wastes time & space

• Need to use free lists to track available memory

(But there are times when this is a good choice)

13

Mark & Sweep Garbage Collection Algorithm

• Color all records white

• Color records referenced by roots gray

• Repeat until there are no gray records:

Pick a gray record, r

For each white record that r points to, make it
gray

Color r black

• Deallocate all white records

14

Mark & Sweep Garbage Collection

All records are marked white

15

Mark & Sweep Garbage Collection

Mark records referenced by
roots as gray

16

Mark & Sweep Garbage Collection

Need to pick a gray record

Red arrow indicates the chosen
record

17

Mark & Sweep Garbage Collection

Mark white records referenced
by chosen record as gray

18

Mark & Sweep Garbage Collection

Mark chosen record black

19

Mark & Sweep Garbage Collection

Start again: pick a gray record

20

Mark & Sweep Garbage Collection

No referenced records; mark
black

21

Mark & Sweep Garbage Collection

Start again: pick a gray record

22

Mark & Sweep Garbage Collection

Mark white records referenced
by chosen record as gray

23

Mark & Sweep Garbage Collection

Mark chosen record black

24

Mark & Sweep Garbage Collection

Start again: pick a gray record

25

Mark & Sweep Garbage Collection

No referenced white records;
mark black

26

Mark & Sweep Garbage Collection

No more gray records;
deallocate white records

Cycles do not break garbage
collection

27

Mark & Sweep Problems

• Cost of collection proportional to (entire) heap

• Bad locality

• Need to use free lists to track available memory

(But there are times when this is a good choice)

28

Two-Space Copying Collectors

A two-space copying collector compacts memory as it
collects, making allocation easier.

Allocator:

• Partitions memory into to-space and from-space

• Allocates only in to-space

Collector:

• Starts by swapping to-space and from-space

• Coloring gray ! copy from from-space to
to-space

• Choosing a gray record ! walk once though the new
to-space, update pointers

29

Two-Space Collection

Left = from-space
Right = to-space

30

Two-Space Collection

Mark gray = copy and leave
forward address

31

Two-Space Collection

Choose gray by walking through
to-space

32

Two-Space Collection

Mark referenced as gray

33

Two-Space Collection

Mark black = move gray-choosing
arrow

34

Two-Space Collection

Nothing to color gray; increment
the arrow

35

Two-Space Collection

Color referenced record gray

36

Two-Space Collection

Increment the gray-choosing
arrow

37

Two-Space Collection

Referenced is already copied, use
forwarding address

38

Two-Space Collection

Choosing arrow reaches the end
of to-space: done

39

Two-Space Collection

Right = from-space
Left = to-space

40

Two-Space Collection on Vectors

• Everything is a number:

Some numbers are immediate integers

Some numbers are pointers

• An allocated record in memory starts with a tag,
followed by a sequence of pointers and immediate
integers

The tag describes the shape

41

Two-Space Collection on Vectors

• Use two pointers into the to-space to maintain a
queue for a breadth-first traversal

• Inc the end pointer to add to the queue, increment
the front pointer to remove from the queue; when
the pointers come together, terminate

42

Two-Space Vector Example

• 26-byte memory (13 bytes per space), 2 roots

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Root 1: 7 Root 2: 0

From: 1 75 2 0 3 2 10 3 2 2 3 1 4

43

Two-Space Vector Example

• 26-byte memory (13 bytes per space), 2 roots

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Root 1: 7 Root 2: 0

From: 1 75 2 0 3 2 10 3 2 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

44

Two-Space Vector Example

• 26-byte memory (13 bytes per space), 2 roots

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Root 1: 7 Root 2: 0

From: 1 75 2 0 3 2 10 3 2 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^

45

Two-Space Vector Example

• 26-byte memory (13 bytes per space), 2 roots

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Root 1: 7 Root 2: 0

From: 1 75 2 0 3 2 10 3 2 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 0 0 0 0 0 0 0 0 0 0 0 0 0
Q:

46

Two-Space Vector Example

• 26-byte memory (13 bytes per space), 2 roots

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Tag 99: forwarding pointer (to to space)

Root 1: 0 Root 2: 0

From: 1 75 2 0 3 2 10 99 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 3 2 2 0 0 0 0 0 0 0 0 0 0
Q: ^ ^

47

Two-Space Vector Example

• 26-byte memory (13 bytes per space), 2 roots

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Tag 99: forwarding pointer (to to space)

Root 1: 0 Root 2: 3

From: 99 3 2 0 3 2 10 99 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 3 2 2 1 75 0 0 0 0 0 0 0 0
Q: ^ ^

48

Two-Space Vector Example

• 26-byte memory (13 bytes per space), 2 roots

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Tag 99: forwarding pointer (to to space)

Root 1: 0 Root 2: 3

From: 99 3 99 5 3 2 10 99 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 3 2 5 1 75 2 0 0 0 0 0 0 0
Q: ^ ^

49

Two-Space Vector Example

• 26-byte memory (13 bytes per space), 2 roots

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Tag 99: forwarding pointer (to to space)

Root 1: 0 Root 2: 3

From: 99 3 99 5 3 2 10 99 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 3 2 5 1 75 2 0 0 0 0 0 0 0
Q: ^ ^

50

Two-Space Vector Example

• 26-byte memory (13 bytes per space), 2 roots

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Tag 99: forwarding pointer (to to space)

Root 1: 0 Root 2: 3

From: 99 3 99 5 3 2 10 99 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 3 2 5 1 75 2 3 0 0 0 0 0 0
Q: ^^

51

Further reading

Uniprocessor Garbage Collection Techniques, by Wilson

ftp://ftp.cs.utexas.edu/pub/garbage/gcsurvey.ps

52

Mark and sweep implementation, with linear-time allocator

(define (init-allocator)
 (for ([i (in-range 0 (heap-size))])
 (heap-set! i 'free)))

(define (gc:flat? loc)
 (equal? (heap-ref loc) 'flat))

(define (gc:deref loc)
 (cond
 [(equal? (heap-ref loc) 'flat)

(heap-ref (+ loc 1))]
 [else

(error 'gc:deref
"non-flat @ ~s"
loc)]))

53

Mark and sweep implementation, with linear-time allocator

(define (gc:cons? loc)
 (equal? (heap-ref loc) 'pair))

(define (gc:first pr-ptr)
 (if (equal? (heap-ref pr-ptr) 'pair)

(heap-ref (+ pr-ptr 1))
(error 'first "non pair @ ~s" pr-ptr)))

(define (gc:rest pr-ptr)
 (if (equal? (heap-ref pr-ptr) 'pair)

(heap-ref (+ pr-ptr 2))
(error 'rest "non pair @ ~s" pr-ptr)))

54

Mark and sweep implementation, with linear-time allocator

(define (gc:set-first! pr-ptr new)
 (if (equal? (heap-ref pr-ptr) 'pair)

(heap-set! (+ pr-ptr 1) new)
(error 'set-first! "non pair")))

(define (gc:set-rest! pr-ptr new)
 (if (equal? (heap-ref pr-ptr) 'pair)

(heap-set! (+ pr-ptr 2) new)
(error 'set-first! "non pair")))

55

Mark and sweep implementation, with linear-time allocator

(define (gc:alloc-flat fv)
 (let ([ptr (alloc 2

(if (procedure? fv)
(procedure-roots fv)
'())

'())])
 (heap-set! ptr 'flat)
 (heap-set! (+ ptr 1) fv)
 ptr))

(define (gc:cons hd tl)
 (let ([ptr (alloc 3 hd tl)])
 (heap-set! ptr 'pair)
 (heap-set! (+ ptr 1) hd)
 (heap-set! (+ ptr 2) tl)
 ptr))

56

Mark and sweep implementation, with linear-time allocator

; a roots is either:
; - root
; - loc
; - (listof roots)

; alloc : number[size] roots roots -> loc
(define (alloc n some-roots more-roots)
 (let ([next (find-free-space 0 n)])
 (cond
 [next next]
 [else

(collect-garbage some-roots more-roots)
(let ([next (find-free-space 0 n)])
 (unless next (error 'alloc "no space"))
 next)])))

57

Mark and sweep implementation, with linear-time allocator

; find-free-space : loc number -> loc or #f
(define (find-free-space start size)
 (cond
 [(= start (heap-size)) #f]
 [(n-free-blocks? start size) start]
 [else (find-free-space (+ start 1) size)]))

; n-free-blocks? : loc number -> loc or #f
(define (n-free-blocks? start size)
 (cond
 [(= size 0) #t]
 [(= start (heap-size)) #f]
 [else

(and (eq? 'free (heap-ref start))
(n-free-blocks? (+ start 1)

(- size 1)))]))
58

Mark and sweep implementation, with linear-time allocator

; collect-garbage : roots roots -> void
(define (collect-garbage some-roots more-roots)
 (mark-white! 0)
 (traverse/roots (get-root-set))
 (traverse/roots some-roots)
 (traverse/roots more-roots)
 (free-white! 0))

59

Mark and sweep implementation, with linear-time allocator

; mark-white! : loc -> void
; marks all records as white, starting with 'i'
; (linear scan of the heap (this linear scan isn't
; really necc but we do it that way for simplicity))
(define (mark-white! i)
 (when (< i (heap-size))
 (case (heap-ref i)
 [(pair) (heap-set! i 'white-pair)

(mark-white! (+ i 3))]
 [(flat) (heap-set! i 'white-flat)

(mark-white! (+ i 2))]
 [(free) (mark-white! (+ i 1))]
 [else (error 'mark-white!

"unknown tag ~s"
(heap-ref i))])))

60

Mark and sweep implementation, with linear-time allocator

; free-white : loc -> void
; frees all white records, starting at 'i'
(define (free-white! i)
 (when (< i (heap-size))
 (case (heap-ref i)
 [(pair) (free-white! (+ i 3))]
 [(flat) (free-white! (+ i 2))]
 [(white-pair) (heap-set! i 'free)

(heap-set! (+ i 1) 'free)
(heap-set! (+ i 2) 'free)
(free-white! (+ i 3))]

 [(white-flat) (heap-set! i 'free)
(heap-set! (+ i 1) 'free)
(free-white! (+ i 2))]

 [(free) (free-white! (+ i 1))]
 [else (error 'free-white! "~s" i)])))

61

Mark and sweep implementation, with linear-time allocator

; traverse/roots : roots -> void
; traverses the heap, marking
; everything reachable from 'roots'
(define (traverse/roots thing)
 (cond
 [(list? thing)

(for-each traverse/roots thing)]
 [(root? thing)

(traverse/loc (read-root thing))]
 [(number? thing)

(traverse/loc thing)]))

62

Mark and sweep implementation, with linear-time allocator

; traverse/loc : loc -> void
; depth first search for live records
(define (traverse/loc loc)
 (case (heap-ref loc)
 [(white-pair)

(heap-set! loc 'pair)
(traverse/loc (heap-ref (+ loc 1)))
(traverse/loc (heap-ref (+ loc 2)))]

 [(white-flat)
(heap-set! loc 'flat)
(let ([val (heap-ref (+ loc 1))])
 (when (procedure? val)
 (traverse/roots (procedure-roots val))))]

 [(pair) (void)]
 [(flat) (void)]
 [else (error 'traverse/loc "~s" loc)]))

63

