
Random Testing in 321

1

Test Cases So Far

Each test relates a particular input to a particular
output.

(test (bound-ids
(with 'x (id 'y) (id 'x)))
'(x))

(test (binding-ids
(with 'x (id 'y) (id 'x)))
'(x))

2

Property-based Testing

But we can only write so many tests by hand.

To find additional bugs, we can automate testing.

We start with what we hope is a fact about our
program.

For example,

“If bound-ids says 'x is bound,
then binding-ids says 'x is binding.”

3

Property Violation

If we can find some WAE for which the property
doesn’t hold ...

(define a-WAE ...)
(bound-ids a-WAE) ; ⇒ '(x)
(binding-ids a-WAE) ; ⇒ '()

... we’ve found a bug.

4

Property Testing

We can test this property in the usual style.

; bound=>binding? : WAE -> boolean
; checks if bound ids are also binding
(define (bound=>binding? e) ...)

(test (bound=>binding? (id 'x))
true)

(test (bound=>binding?
(with 'x (num 0) (id 'x)))
true)

Expected result is always true, so if we had lots of
WAEs, then we’d have lots of tests.

5

Automated Property Testing

Write a program to generate test inputs!

6

Random WAEs

; random-WAE: -> WAE
(define (random-WAE)
 (case (random 5)
 [(0) (num (random-nat))]
 [(1) (id (random-symbol))]
 [(2) (add (random-WAE) (random-WAE))]
 [(3) (sub (random-WAE) (random-WAE))]
 [(4) (with (random-symbol)

(random-WAE)
(random-WAE))]))

Watch out – that code is buggy.... (read on for why)

7

Random WAEs

; random-nat: -> nat
(define (random-nat)
 (case (random 2)
 [(0) 0]
 [(1) (add1 (random-nat))]))

; random-symbol: -> symbol
(define (random-symbol)
 (random-elem '(x y z a b c)))

; random-elem: (listof X) -> X
(define (random-elem xs)
 (list-ref xs (random (length xs))))

8

Generation Strategy

To build a WAE,

1/5 of the time, build a number

1/5 of the time, build a symbol

3/5 of the time, first build two more WAEs

9

Expected Progress

On average, we “reduce” the problem from

Generate 1 WAE.

to

Generate 1.2 WAEs.

since 1.2 = (2/5)*0 + (3/5)*2

10

Height Bound

Limit WAE size by bounding tree height.

; random-WAE/b: nat -> WAE
(define (random-WAE/b h)
 (case (random (if (zero? h) 2 5))
 [(0) (num (random-nat))]
 [(1) (id (random-symbol))]
 [(2) (add (random-WAE/b (sub1 h))

(random-WAE/b (sub1 h)))]
 [(3) (sub (random-WAE/b (sub1 h))

(random-WAE/b (sub1 h)))]
 [(4) (with (random-symbol)

(random-WAE/b (sub1 h))
(random-WAE/b (sub1 h)))]))

(Alternatively, tweak weights.) 11

Property Implementation

; bound=>binding: WAE -> boolean
(define (bound=>binding e)
 (sublist? (bound-ids e) (binding-ids e)))

; sublist?: (listof X) (listof X) -> boolean
; Expects xs and ys to be sorted and have no dups.
(define (sublist? xs ys)
 (cond [(null? xs) #t]

[(null? ys) #f]
[(equal? (car xs) (car ys))
(sublist? (cdr xs) (cdr ys))]
[else (sublist? xs (cdr ys))]))

12

Running Tests

; test-bound=>binding: nat nat -> (or 'passed WAE)
(define (test-bound=>binding size attempts)
 (if (zero? attempts)

'passed
(let ([test-input (random-WAE/b size)])
 (if (bound=>binding test-input)

(test-bound=>binding
size
(sub1 attempts))
test-input))))

(test-bound=>binding 5 1000)

13

HW2 Test Results

We ran random tests on a past year’s HW2
submissions.

Received 99 submissions (includes multiple
attempts from the same person)

Tested 6 properties

Found a bug in 53 out of those 99 submissions

14

Interpreter Properties

• Interpreter does not crash

• Produces same result as another implementation (e.g.,
DrRacket)

• Type checker accurately predicts result (later)

• Program equivalences hold

15

With Enclosing Example

For example, we should be able to replace any
subexpression with a new variable.

{+ 1 2}
{with {x 2}

{+ 1 x}}

16

Another example:

{with {x {+ 5 26}}
{- x 4}}

{with {z {+ 5 26}}
{with {x z}

{- x 4}}}

17

Transformation Strategy

• Generate a random path for a WAE expression tree

• Pick a subexpression based on the path to bind to a
new id

• Replace subexpression with a bound occurrence of
the id

18

Generating Random Paths

• Automatically pick leaf nodes

• Flip a coin to determine whether we move further
down the tree

• Because we are "lifting" a subexpression out of its
original context, we only pick expressions which will
not contain free id’s

• Always pick the named-expr of the first with we
encounter

19

Path Generation Implementation

; coin-flip: boolean
(define (coin-flip)
 (zero? (random 2)))
; weighted-chance: number -> boolean
(define (weighted-chance pct)
 (<= (random) (/ pct 100)))

20

Path Generation Implementation

; random-path: WAE -> (listof symbol)
(define (random-path wae)
 (type-case WAE wae
 [num (n) empty]
 [id (x) empty]
 [with (name named-expr body) '(left)]
 [else

(if (weighted-chance 20)
empty
(if (coin-flip)

(cons 'left
(random-path (get-branch 'left

wae)))
(cons 'right

(random-path (get-branch 'right
wae)))))]))

21

Path Generation Implementation

; get-branch: symbol WAE -> WAE
(define (get-branch choice wae)
 (type-case WAE wae
 [add (lhs rhs) (case choice

 [(left) lhs]
 [(right) rhs])]

 [sub (lhs rhs) (case choice
 [(left) lhs]
 [(right) rhs])]

 [with (name named-expr body)
(case choice
 [(left) named-expr]
 [(right) body])]

 [else wae]))

22

Extracting the Subexpression

Given a path, we find the subexpression:

; pick-subexpr: WAE (listof symbol) -> WAE
(define (pick-subexpr wae path)
 (cond
 [(empty? path) wae]
 [else

(pick-subexpr (get-branch (car path) wae)
(cdr path))]))

23

Replacing with the New ID

; swap-subexpr WAE (listof symbol) symbol -> WAE
(define (swap-subexpr wae path new-id)
 (cond
 [(empty? path) (id new-id)]
 [else

(type-case WAE wae
 [add (lhs rhs)

(swap-in-bop path new-id add lhs rhs)]
 [sub (lhs rhs)

(swap-in-bop path new-id sub lhs rhs)]
 [with (name named-expr body)

(with name
(id new-id)
body)]

 [else wae])]))

24

Replacing with the New ID

(define (swap-in-bop path new-id op lhs rhs)
 (case (car path)
 [(left) (op (swap-subexpr lhs

(cdr path)
new-id)

rhs)]
 [(right) (op lhs

(swap-subexpr rhs
(cdr path)
new-id))]))

25

Implementing the Transformation

; rand-sym-not-in: (listof symbol) -> symbol
(define (rand-sym-not-in lst)
 (let ([leftover (remove* lst syms)])
 (list-ref leftover

(random (length leftover)))))
; wae->with-wae: WAE -> WAE
(define (wae->with-wae wae)
 (let* ([path (random-path wae)]

[subexpr (pick-subexpr wae path)]
[new-id (rand-sym-not-in (binding-ids wae))])

 (with new-id
subexpr
(swap-subexpr wae path new-id))))

26

Putting It All Together

We generate 1000 WAE’s and compare interpreter
output for the original and transformed programs:

(for ([i (in-range 0 1000)])
 (let* ([wae (random-WAE/b 2 '())]

[new-wae (wae->with-wae wae)])
 (test (interp wae)

(interp new-wae))))

27

What Went Wrong?

• Our random WAE generator builds arbitrary
expressions

• Probability we generate a WAE with free identifiers is
very high

28

Eliminating Free ID’s from the Random Generator

; rand-sym-from: (listof symbol) -> symbol
(define (rand-sym-from ss)
 (list-ref ss (random (length ss))))

29

Eliminating Free ID’s from the Random Generator

(define (random-WAE/b h bindingids)
 (case (random (if (zero? h) 2 5))
 [(0) (num (random-nat))]
 [(1) (if (empty? bindingids)

(num (random-nat))
(id (rand-sym-from bindingids)))]

 [(2) (add (random-WAE/b (sub1 h) bindingids)
(random-WAE/b (sub1 h) bindingids))]

 [(3) (sub (random-WAE/b (sub1 h) bindingids)
(random-WAE/b (sub1 h) bindingids))]

 [(4) (let ([new-id (random-symbol)])
 (with new-id

(random-WAE/b (sub1 h) bindingids)
(random-WAE/b (sub1 h)

(cons new-id
bindingids))))]))

30

