
EECS 321
Programming Languages

Fall 2015

Instructor: Robby Findler

1

Course Details

http://www.eecs.northwestern.edu/~robby/
courses/321-2015-fall/

(or google “findler” and follow the links)

2

TA & Office Hours

Your TAs:

Zavier Henry Anuj Iravane

Adrien Tateno Josh Xu

Office Hours in Wilkenson (see website for details)

3

Registration

Last day for registration is Friday

If you’re not registered and want to be after you do the
first assignment, send me email.

robby@eecs.northwestern.edu

4

Programming Language Concepts

This course teaches concepts in two ways:

By implementing interpreters

new concept ⇒ new interpreter

By using Racket and variants

we don’t assume that you already know Racket

5

Interpreters vs Compilers

An interpreter takes a program and produces a result

DrRacket
x86 processor
desktop calculator
bash
Algebra student

6

Interpreters vs Compilers

An interpreter takes a program and produces a result

DrRacket
x86 processor
desktop calculator
bash
Algebra student

A compiler takes a program and produces a program

DrRacket
x86 processor
gcc
javac

7

Interpreters vs Compilers

An interpreter takes a program and produces a result

Good for understanding
program behavior, easy
to implement

DrRacket
x86 processor
desktop calculator
bash
Algebra student

A compiler takes a program and produces a program

Good for speed, more
complex (take 322)

DrRacket
x86 processor
gcc
javac

8

Interpreters vs Compilers

An interpreter takes a program and produces a result

Good for understanding
program behavior, easy
to implement

DrRacket
x86 processor
desktop calculator
bash
Algebra student

A compiler takes a program and produces a program

Good for speed, more
complex (take 322)

DrRacket
x86 processor
gcc
javac

So, what’s a program?

9

A Grammar for Algebra Programs

A grammar of Algebra in BNF (Backus-Naur Form):

〈prog〉 ::= 〈defn〉* 〈expr〉
〈defn〉 ::= 〈id〉(〈id〉) = 〈expr〉
〈expr〉 ::= (〈expr〉 + 〈expr〉)

| (〈expr〉 - 〈expr〉)
| 〈id〉(〈expr〉)
| 〈id〉
| 〈num〉

〈id〉 ::= a variable name: f, x, y, z, ...

〈num〉 ::= a number: 1, 42, 17, ...

10

A Grammar for Algebra Programs

A grammar of Algebra in BNF (Backus-Naur Form):

〈prog〉 ::= 〈defn〉* 〈expr〉
〈defn〉 ::= 〈id〉(〈id〉) = 〈expr〉
〈expr〉 ::= (〈expr〉 + 〈expr〉)

| (〈expr〉 - 〈expr〉)
| 〈id〉(〈expr〉)
| 〈id〉
| 〈num〉

〈id〉 ::= a variable name: f, x, y, z, ...

〈num〉 ::= a number: 1, 42, 17, ...

Each meta-variable, such as 〈prog〉, defines a set

11

Using a BNF Grammar

〈id〉 ::= a variable name: f, x, y, z, ...

〈num〉 ::= a number: 1, 42, 17, ...

The set 〈id〉 is the set of all variable names

The set 〈num〉 is the set of all numbers

12

Using a BNF Grammar

〈id〉 ::= a variable name: f, x, y, z, ...

〈num〉 ::= a number: 1, 42, 17, ...

The set 〈id〉 is the set of all variable names

The set 〈num〉 is the set of all numbers

To make an example member of 〈num〉, simply pick an
element from the set

13

Using a BNF Grammar

〈id〉 ::= a variable name: f, x, y, z, ...

〈num〉 ::= a number: 1, 42, 17, ...

The set 〈id〉 is the set of all variable names

The set 〈num〉 is the set of all numbers

To make an example member of 〈num〉, simply pick an
element from the set

2 ∈ 〈num〉

298 ∈ 〈num〉

14

Using a BNF Grammar

〈expr〉 ::= (〈expr〉 + 〈expr〉)
| (〈expr〉 - 〈expr〉)
| 〈id〉(〈expr〉)
| 〈id〉
| 〈num〉

The set 〈expr〉 is defined in terms of other sets

15

Using a BNF Grammar

〈expr〉 ::= (〈expr〉 + 〈expr〉)
| (〈expr〉 - 〈expr〉)
| 〈id〉(〈expr〉)
| 〈id〉
| 〈num〉

To make an example 〈expr〉:

choose one case in the grammar

pick an example for each meta-variable

combine the examples with literal text

16

Using a BNF Grammar

〈expr〉 ::= (〈expr〉 + 〈expr〉)
| (〈expr〉 - 〈expr〉)
| 〈id〉(〈expr〉)
| 〈id〉
| 〈num〉

To make an example 〈expr〉:

choose one case in the grammar

pick an example for each meta-variable

combine the examples with literal text

17

Using a BNF Grammar

〈expr〉 ::= (〈expr〉 + 〈expr〉)
| (〈expr〉 - 〈expr〉)
| 〈id〉(〈expr〉)
| 〈id〉
| 〈num〉

To make an example 〈expr〉:

choose one case in the grammar

pick an example for each meta-variable

7 ∈ 〈num〉

combine the examples with literal text

18

Using a BNF Grammar

〈expr〉 ::= (〈expr〉 + 〈expr〉)
| (〈expr〉 - 〈expr〉)
| 〈id〉(〈expr〉)
| 〈id〉
| 〈num〉

To make an example 〈expr〉:

choose one case in the grammar

pick an example for each meta-variable

7 ∈ 〈num〉

combine the examples with literal text

7 ∈ 〈expr〉
19

Using a BNF Grammar

〈expr〉 ::= (〈expr〉 + 〈expr〉)
| (〈expr〉 - 〈expr〉)
| 〈id〉(〈expr〉)
| 〈id〉
| 〈num〉

To make an example 〈expr〉:

choose one case in the grammar

pick an example for each meta-variable

combine the examples with literal text

20

Using a BNF Grammar

〈expr〉 ::= (〈expr〉 + 〈expr〉)
| (〈expr〉 - 〈expr〉)
| 〈id〉(〈expr〉)
| 〈id〉
| 〈num〉

To make an example 〈expr〉:

choose one case in the grammar

pick an example for each meta-variable

f ∈ 〈id〉

combine the examples with literal text

21

Using a BNF Grammar

〈expr〉 ::= (〈expr〉 + 〈expr〉)
| (〈expr〉 - 〈expr〉)
| 〈id〉(〈expr〉)
| 〈id〉
| 〈num〉

To make an example 〈expr〉:

choose one case in the grammar

pick an example for each meta-variable

f ∈ 〈id〉 7 ∈ 〈expr〉

combine the examples with literal text

22

Using a BNF Grammar

〈expr〉 ::= (〈expr〉 + 〈expr〉)
| (〈expr〉 - 〈expr〉)
| 〈id〉(〈expr〉)
| 〈id〉
| 〈num〉

To make an example 〈expr〉:

choose one case in the grammar

pick an example for each meta-variable

f ∈ 〈id〉 7 ∈ 〈expr〉

combine the examples with literal text

f(7) ∈ 〈expr〉
23

Using a BNF Grammar

〈expr〉 ::= (〈expr〉 + 〈expr〉)
| (〈expr〉 - 〈expr〉)
| 〈id〉(〈expr〉)
| 〈id〉
| 〈num〉

To make an example 〈expr〉:

choose one case in the grammar

pick an example for each meta-variable

f ∈ 〈id〉 f(7) ∈ 〈expr〉

combine the examples with literal text

24

Using a BNF Grammar

〈expr〉 ::= (〈expr〉 + 〈expr〉)
| (〈expr〉 - 〈expr〉)
| 〈id〉(〈expr〉)
| 〈id〉
| 〈num〉

To make an example 〈expr〉:

choose one case in the grammar

pick an example for each meta-variable

f ∈ 〈id〉 f(7) ∈ 〈expr〉

combine the examples with literal text

f(f(7)) ∈ 〈expr〉
25

Using a BNF Grammar

〈prog〉 ::= 〈defn〉* 〈expr〉
〈defn〉 ::= 〈id〉(〈id〉) = 〈expr〉

f(x) = (x + 1) ∈ 〈defn〉

26

Using a BNF Grammar

〈prog〉 ::= 〈defn〉* 〈expr〉
〈defn〉 ::= 〈id〉(〈id〉) = 〈expr〉

f(x) = (x + 1) ∈ 〈defn〉

To make a 〈prog〉 pick some number of 〈defn〉s

(x + y) ∈ 〈prog〉

f(x) = (x + 1)
g(y) = f((y - 2))
g(7)

 ∈ 〈prog〉

27

Programming Language

A programming language is defined by

• a grammar for programs

• rules for evaluating any program to produce a result

28

Programming Language

A programming language is defined by

• a grammar for programs

• rules for evaluating any program to produce a result

For example, Algebra evaluation is defined in terms of
evaluation steps:

(2 + (7 - 4)) → (2 + 3) → 5

29

Programming Language

A programming language is defined by

• a grammar for programs

• rules for evaluating any program to produce a result

For example, Algebra evaluation is defined in terms of
evaluation steps:

f(x) = (x + 1)

f(10) → (10 + 1) → 11

30

Evaluation

• Evaluation → is defined by a set of pattern-matching
rules:

(2 + (7 - 4)) → (2 + 3)

due to the pattern rule

... (7 - 4) ... → ... 3 ...

31

Evaluation

• Evaluation → is defined by a set of pattern-matching
rules:

f(x) = (x + 1)

f(10) → (10 + 1)

due to the pattern rule

... 〈id〉1(〈id〉2) = 〈expr〉1 ...

... 〈id〉1(〈expr〉2) ... → ... 〈expr〉3 ...

where 〈expr〉3 is 〈expr〉1 with 〈id〉2 replaced by 〈expr〉2

32

Rules for Evaluation

• Rule 1 - one pattern

... 〈id〉1(〈id〉2) = 〈expr〉1 ...

... 〈id〉1(〈expr〉2) ... → ... 〈expr〉3 ...

where 〈expr〉3 is 〈expr〉1 with 〈id〉2 replaced by 〈expr〉2

33

Rules for Evaluation

• Rule 1 - one pattern

... 〈id〉1(〈id〉2) = 〈expr〉1 ...

... 〈id〉1(〈expr〉2) ... → ... 〈expr〉3 ...

where 〈expr〉3 is 〈expr〉1 with 〈id〉2 replaced by 〈expr〉2

• Rules 2 - ∞ special cases

... (0 + 0) ... → ... 0 (0 - 0) ... → ... 0 ...

... (1 + 0) ... → ... 1 (1 - 0) ... → ... 1 ...

... (2 + 0) ... → ... 2 (2 - 0) ... → ... 2 ...
etc. etc.

34

Rules for Evaluation

• Rule 1 - one pattern

... 〈id〉1(〈id〉2) = 〈expr〉1 ...

... 〈id〉1(〈expr〉2) ... → ... 〈expr〉3 ...

where 〈expr〉3 is 〈expr〉1 with 〈id〉2 replaced by 〈expr〉2

• Rules 2 - ∞ special cases

... (0 + 0) ... → ... 0 (0 - 0) ... → ... 0 ...

... (1 + 0) ... → ... 1 (1 - 0) ... → ... 1 ...

... (2 + 0) ... → ... 2 (2 - 0) ... → ... 2 ...
etc. etc.

When the interpreter is a program instead of an Algebra student,
the rules look a little different

35

HW 1

On the course web page:

Finger exercises in Racket

Assignment is due Friday

36

