"Good" vs. "Bad" Expressions

; interp-expr FAE ... -> FAE-Value

"Good" vs. "Bad" Expressions

; interp-expr FAE ... -> FAE-Value

- Does interp-expr produce a value for all expressions?

"Good" vs. "Bad" Expressions

; interp-expr FAE ... -> FAE-Value

- Does interp-expr produce a value for all expressions?
- Of course not!

"Good" vs. "Bad" Expressions

; interp-expr FAE ... -> FAE-Value

- Does interp-expr produce a value for all expressions?
- Of course not!
- (interp-expr (parse '\{5 5\})) etc...

"Good" vs. "Bad" Expressions

; interp-expr FAE ... -> FAE-Value

- Does interp-expr produce a value for all expressions?
- Of course not!
- (interp-expr (parse '\{5 5\})) etc...
- But do we know enough about expressions to tell before actually calling interp-expr?

Quiz

- Question \#I: What is the value of the following expression?

$$
\{+12\}
$$

Quiz

- Question \#I: What is the value of the following expression?

$$
\{+12\}
$$

- Wrong answer: 0

Quiz

- Question \#I: What is the value of the following expression?

$$
\{+12\}
$$

- Wrong answer: 0
- Wrong answer: 42

Quiz

- Question \#I: What is the value of the following expression?

$$
\{+12\}
$$

- Wrong answer: 0
- Wrong answer: 42
- Answer: 3

Quiz

- Question \#2: What is the value of the following expression?

$$
\{+ \text { fun } 178\}
$$

Quiz

- Question \#2: What is the value of the following expression?

$$
\{+ \text { fun } 178\}
$$

- Wrong answer: error

Quiz

- Question \#2: What is the value of the following expression?

$$
\{+ \text { fun } 178\}
$$

- Wrong answer: error
- Answer: Trick question! \{+ fun 17 8\} is not an expression

Language Grammar for Quiz

```
<MFAE> ::= <num>
    true
    false
    \(\{+<\mathrm{MFAE}><\mathrm{MFAE}>\}\)
    \{ - <MFAE> <MFAE>\}
    \{ = <MFAE> <MFAE>\}
    <id>
    \{fun \(\left.\left\{<i d>^{*}\right\}<M F A E>\right\}\)
    \{<MFAE> <MFAE>*\}
    \{if <MFAE> <MFAE> <MFAE>\}
```


Quiz

- Question \#3: Is the following an expression?
\{\{fun $\{x \quad y\} 1\} 7\}$

Quiz

- Question \#3: Is the following an expression?

$$
\{\{\text { fun }\{x y\} 1\} 7\}
$$

- Wrong answer: No

Quiz

- Question \#3: Is the following an expression?

$$
\{\{\text { fun }\{x y\} 1\} 7\}
$$

- Wrong answer: No
- Answer: Yes (according to our grammar)

Quiz

- Question \#4: What is the value of the following expression?

$$
\{\{\text { fun }\{x y\} 1\} 7\}
$$

Quiz

- Question \#4: What is the value of the following expression?

$$
\{\{\text { fun }\{x y\} 1\} 7\}
$$

- Answer: $\{$ fun $\{y\} 1\}$ (according to some interpreters)

Quiz

- Question \#4: What is the value of the following expression?

$$
\{\{\text { fun }\{x y\} 1\} 7\}
$$

- Answer: $\{$ fun $\{y\} 1\}$ (according to some interpreters)
- But no real language would accept \{\{fun \{x y\} 1\} 7\}

Quiz

- Question \#4: What is the value of the following expression?

$$
\{\{\text { fun }\{x y\} 1\} 7\}
$$

- Answer: $\{$ fun $\{y\} 1\}$ (according to some interpreters)
- But no real language would accept \{\{fun \{x y\} 1\} 7\}
- Let's agree to call $\{\{$ fun $\{x \quad y\} 1\} 7\}$ an ill-formed expression because \{fun $\{x \mathrm{y}\} 1\}$ should be used only with two arguments
- Let's agree to never evaluate ill-formed expressions

Quiz

- Question \#5: What is the value of the following expression?

$$
\{\{\text { fun }\{x y\} 1\} 7\}
$$

Quiz

- Question \#5: What is the value of the following expression?
\{\{fun \{x y\} 1\} 7\}
- Answer: None - the expression is ill-formed

Quiz

- Question \#6: Is the following a well-formed expression?

$$
\{+\{\text { fun }\{ \} 1\} 8\}
$$

Quiz

- Question \#6: Is the following a well-formed expression?

$$
\{+\{\text { fun }\{ \} 1\} 8\}
$$

- Answer: Yes

Quiz

- Question \#7: What is the value of the following expression?

$$
\{+\{\text { fun }\{ \} 1\} 8\}
$$

Quiz

- Question \#7: What is the value of the following expression?

$$
\{+\{\text { fun }\{ \} 1\} 8\}
$$

- Answer: None - it produces an error: numeric operation expected number

Quiz

- Question \#7: What is the value of the following expression?

$$
\{+\{\text { fun }\{ \} 1\} 8\}
$$

- Answer: None - it produces an error: numeric operation expected number
- Let's agree that a fun expression cannot be inside a + form

Quiz

- Question \#8: Is the following a well-formed expression?

$$
\{+\{\text { fun }\{ \} 1\} 8\}
$$

Quiz

- Question \#8: Is the following a well-formed expression?

$$
\{+\{\text { fun }\{ \} 1\} 8\}
$$

- Answer: No

Quiz

- Question \#9: Is the following a well-formed expression?
$\{+\{\{$ fun $\{\mathbf{x}\} \mathbf{x}\} 7\} 5\}$

Quiz

- Question \#9: Is the following a well-formed expression?

$$
\{+\{\{\text { fun }\{\mathbf{x}\} \quad \mathrm{x}\} 7\} 5\}
$$

- Answer: Depends on what we meant by inside in our most recent agreement
- Anywhere inside - No
- Immediately inside - Yes

Quiz

- Question \#9: Is the following a well-formed expression?

$$
\{+\{\{\text { fun }\{\mathbf{x}\} \mathbf{x}\} 7\} 5\}
$$

- Answer: Depends on what we meant by inside in our most recent agreement
- Anywhere inside - No
- Immediately inside - Yes
- Since our intrepreter produces I2, and since that result makes sense, let's agree on immediately inside

Quiz

- Question \#I0: Is the following a well-formed expression?

$$
\{+\{\{\text { fun }\{x\} x\} \text { ffun }\{y\} y\}\} 5\}
$$

Quiz

- Question \#I0: Is the following a well-formed expression?

$$
\{+\{\{\text { fun }\{x\} x\} \text { ffun }\{y\} y\}\} 5\}
$$

- Answer: Yes, but we don't want it to be!

Quiz

- Question \#|I: Is it possible to define well-formed (as a decidable property) so that we reject all expressions that produce errors?

Quiz

- Question \#|I: Is it possible to define well-formed (as a decidable property) so that we reject all expressions that produce errors?
- Answer: Yes: reject all expressions!

Quiz

- Question \#|2: Is it possible to define well-formed (as a decidable property) so that we reject only expressions that produce errors?

Quiz

- Question \#|2: Is it possible to define well-formed (as a decidable property) so that we reject only expressions that produce errors?
- Answer: No

Quiz

- Question \#|2: Is it possible to define well-formed (as a decidable property) so that we reject only expressions that produce errors?
- Answer: No

$$
\{+1 \text { \{if } \ldots 1 \text { \{fun }\{\mathbf{x}\} \mathbf{x}\}\}\}
$$

- If we always knew whether . . . produces true or false, we could solve the halting problem

Types

- Solution to our dilemma
- In the process of rejecting expressions that are certainly bad, also reject some expressions that are good

```
    {+ 1
    {if {prime? 131101}
        1
        {fun {x} x}}}
```


Types

- Overall strategy:
- Assign a type to each expression without evaluating
- Compute the type of a complex expression based on the types of its subexpressions

Types

$$
\begin{gathered}
1 \text { : num } \\
\text { true : bool }
\end{gathered}
$$

Types

$$
\begin{gathered}
1 \text { : num } \\
\text { true : bool } \\
\{+12\}
\end{gathered}
$$

Types

```
    1 : num
true : bool
    {+ 1 2}
num
```


Types

```
    1 : num
true : bool
\(\underset{\text { num }}{\{+1} \underset{\text { num }}{2\}}\)
```


Types

$$
\begin{gathered}
1: \text { num } \\
\text { true }: \text { bool } \\
\underset{\text { num }}{\substack{\{+1}}{ }_{\text {num }}^{2\}}
\end{gathered}
$$

Types

```
1 : num
true : bool
```

$\underset{\text { num }\left.\right|_{\text {num }} ^{\{+1} \underset{\text { num }}{2\}}}{\substack{2\}}}$
$\{+1$ false $\}$

Types

1 : num
true : bool
$\underset{\text { num }\left.\right|_{\text {num }} ^{\{+1} \underset{\sim}{2\}}}{\text { num }}$

$\{+1$ false $\}$
num

Types

$$
\begin{aligned}
& 1 \text { : num } \\
& \text { true : bool } \\
& \underset{\text { num }\left.\right|_{\text {num }} ^{\{+1} \underset{\text { num }}{2\}}}{\substack{2\}}} \\
& \{+1 \text { false }\} \\
& \text { num bool }
\end{aligned}
$$

Types

$$
\begin{aligned}
& 1 \text { : num } \\
& \text { true : bool } \\
& \underset{\text { num }\left.\right|_{\text {num }} ^{\{+1} \underset{\text { num }}{2\}}}{\substack{2\}}} \\
& \frac{\{+1}{\text { num }} \frac{\text { false }\}}{\text { no type }}
\end{aligned}
$$

