
Register Allocation, i
Overview & spilling

1

L1
p ::=((i ...) (label i ...) ...)
i ::=(x <- s)

|(x <- (mem s n4))
|((mem x n4) <- s)
|(x aop= s)
|(x sop= sx)
|(x sop= num)
|(cx <- s cmp s)
|label
|(goto label)
|(cjump s cmp s label label)
|(call s)
|(tail-call s)
|(return)
|(eax <- (print s))
|(eax <- (allocate s s))
|(eax <- (array-error s s))

aop= ::=+= | -= | *= | &=
sop ::=<<= | >>=
cmp ::=< | <= | =
s ::=x | num | label

x, y ::=cx | esi | edi | ebp | esp
cx ::=eax | ecx | edx | ebx
sx ::=ecx

2

L2
p ::=((i ...) (label i ...) ...)
i ::=(x <- s)

|(x <- (mem s n4))
|((mem x n4) <- s)
|(x aop= s)
|(x sop= sx)
|(x sop= num)
|(cx <- s cmp s)
|label
|(goto label)
|(cjump s cmp s label label)
|(call s)
|(tail-call s)
|(return)
|(eax <- (print s))
|(eax <- (allocate s s))
|(eax <- (array-error s s))

aop= ::=+= | -= | *= | &=
sop ::=<<= | >>=
cmp ::=< | <= | =
s ::=x | num | label

x, y ::=any-variable-at-all | reg
cx ::=any-variable-at-all | reg
sx ::=any-variable-at-all | reg
reg ::=eax | ecx | edx | ebx | esi | edi | ebp | esp

3

L2 semantics: variables

L2 behaves just like L1, except that non-reg variables
are function local, e.g.,

(define (f x)
 (+ (g x) 1))

(define (g x)
 (+ x 2))

(f 10)

⇒ ((; :main
(eax <- 10)
(call :f))
(:f (temp <- 1)

(call :g)
(eax += temp)
(return))

(:g (temp <- 2)
(eax += temp)
(return)))

The assignment to temp in g does not break f, but if
temp were a register, it would.

4

L2 semantics: esp & ebp

L2 programs must use neither esp nor ebp. They are
in L2 to facilitate register allocation only, not for the L3
→ L2 compiler’s use.

5

From L2 to L1

Register allocation, in three parts; for each function
body we do:

• Liveness analysis ⇒ interference graph (nodes are
variables; edges indicate “cannot be in the same
register”)

• Graph coloring ⇒ register assignments

• Spilling: coping with too few registers

• Bonus part, coalescing eliminating redundant
(x <- y) instructions

6

Example Function

int f(int x) = 2x2 + 3x + 4

:f
(x2 <- eax)
(x2 *= x2)
(2x2 <- x2)
(2x2 *= 2)
(3x <- eax)
(3x *= 3)
(eax <- 2x2)
(eax += 3x)
(eax += 4)
(return)

7

Example Function: live ranges

int f(int x) = 2x2 + 3x + 4
2x2 3x x2

:f
(x2 <- eax)
(x2 *= x2)
(2x2 <- x2)
(2x2 *= 2)
(3x <- eax)
(3x *= 3)
(eax <- 2x2)
(eax += 3x)
(eax += 4)
(return)

8

Example Function: live ranges

int f(int x) = 2x2 + 3x + 4
2x2 3x x2 eax ebx ecx edi edx esi

:f
(x2 <- eax)
(x2 *= x2)
(2x2 <- x2)
(2x2 *= 2)
(3x <- eax)
(3x *= 3)
(eax <- 2x2)
(eax += 3x)
(eax += 4)
(return)

9

Example Function 2

int f(int x) = 4x (in a bad compiler)

a b c d eax ebx ecx edi edx esi
:f
(a <- eax)
(b <- eax)
(c <- eax)
(d <- eax)
(eax <- a)
(eax += b)
(eax += c)
(eax += d)
(return)

10

No way to get all of a, b, c, and d into their own
registers; so we need to spill one of them.

11

Spilling

Spilling is a program rewrite to make it easier to
allocate registers

• Pick a variable and a location on the stack for it

• Replace all writes to the variable with writes to the
stack

• Replace all reads from the variable with reads from
the stack

Sometimes that means introducing new temporaries

12

Spilling Example

Say we want to spill a to the location (mem ebp -4).
Two easy cases:

(a <- 1) ⇒ ((mem ebp -4) <- 1)

(x <- a) ⇒ (x <- (mem ebp -4))

13

Example Function 2, need to spill

int f(int x) = 4x (in a bad compiler)

a b c d eax ebx ecx edi edx esi
:f
(a <- eax)
(b <- eax)
(c <- eax)
(d <- eax)
(eax <- a)
(eax += b)
(eax += c)
(eax += d)
(return)

14

Example Function 2, spilling a

int f(int x) = 4x (in a bad compiler)

b c d ebp eax ebx ecx edi edx esi
:f
((mem ebp -4) <- eax)
(b <- eax)
(c <- eax)
(d <- eax)
(eax <- (mem ebp -4))
(eax += b)
(eax += c)
(eax += d)
(return)

15

Spilling Example

A trickier case:

(a *= a) ⇒ (anew <- (mem ebp -4))
(anew *= anew)
((mem ebp -4) <- anew)

In general, make up a new temporary for each
instruction that uses the variable to be spilled

This makes for very short live ranges.

16

Example Function 2, spilling b

int f(int x) = 4x (in a bad compiler)

a c d ebp s0 eax ebx ecx edi edx esi
:f
(a <- eax)
((mem ebp -4) <- eax)
(c <- eax)
(d <- eax)
(eax <- a)
(s0 <- (mem ebp -4))
(eax += s0)
(eax += c)
(eax += d)
(return)

17

Example Function 2, spilling b

Even though we still have four temporaries, we can still
allocate them to our three unused registers because the
live ranges of s0 and a don’t overlap and so they can go
into the same register.

18

Your job

Implement:
spill : (i ...) ;; original function
 var ;; to spill
 offset ;; multiple of 4
 var ;; prefix for temporaries
 -> (i ...) ;; spilled version

19

