Register Allocation by Puzzle Solving

EECS 322: Compiler Construction

Simone Campanoni Robby Findler

Materials

- Research paper:
- Authors: Fernando Magno Quintao Pereira, Jens Palsberg
- Title: Register Allocation by Puzzle Solving
- Conference: PLDI 2008
- Ph.D. thesis
- Author: Fernando Magno Quintao Pereira
- Title: Register Allocation by Puzzle Solving
- UCLA 2008

A compiler

Task: From Variables to Registers

(:MyVerylmportantFunction

Software

Hardware

Register Allocation

A. Spill all variables
B. Puzzle solving
C. Linear scan
D. Graph coloring
E. Integer linear programming

Summary

- Graph coloring abstraction: Houston we have a problem
- Puzzle abstraction
- From a program to a collection of puzzles
- Solve puzzles
- From solved puzzles to assembly code

To register allocators: what are you doing?

(:MyVerylmportantFunction

MyVar1
MyVar2
MyVar3

```
(MyVar1 <- 2)
```

(MyVar1 <- 2)
(MyVar2 <-40)
(MyVar2 <-40)
(MyVar3 <-0)
(MyVar3 <-0)
(MyVar3 += MyVar1)
(MyVar3 += MyVar1)
(MyVar3 += MyVar2)
(MyVar3 += MyVar2)
(print MyVar3)
(print MyVar3)
)

```
)
```

- MyVar1 -> stack (spilled)
- MyVar2 -> r8
- MyVar3 -> r9

Graph coloring abstraction: a problem

(:MyVerylmportantFunction

```
(MyVar1 <- 2)
(MyVar2 <- 40)
(MyVar3 <- 0)
|(MyVar3 += MyVar1)
(MyVar3 += MyVar2)
(print MyVar3)
```

Register aliasing \rightarrow • r8 can store either one 64-bit valuel or two 32-bit values - r9 can store 64 bit values

Can this be obtained by the graph-coloring algorithm you learned in this class?

Summary

- Graph coloring abstraction: Houston we have a problem

- Puzzle abstraction
- From a program to a collection of puzzles
- Solve puzzles
- From solved puzzles to assembly code

Puzzle Abstraction

- Puzzle $=$ board $($ areas $=\underline{\text { registers }})+\operatorname{pieces}(\underline{\text { variables }})$

- Pieces cannot overlap
- Some pieces are already placed on the board
- Task: fit the remaining pieces on the board (register allocation)

From register file to puzzle boards

\longmapsto SPARC V9, 8 quad-precision floating point registers -

SPARC v8
ARM float registers

SPARC v9

Puzzle pieces accepted by boards

	Board	Kinds of Pieces
		Y X Z
$\underset{\substack{\dot{d} \\ \underset{\sim}{\circ} \\ \hline}}{ }$		X
	-•• \square	

Summary

- Graph coloring abstraction: Houston we have a problem

- Puzzle abstraction
- From a program to a collection of puzzles
- Solve puzzles
- From solved puzzles to assembly code

From a program to puzzle pieces

1. Convert a program into an elementary program
A. Transform code into SSA form
B. Transform A into SSI form
C. Insert in B parallel copies between every instruction pair
2. Map the elementary program into puzzle pieces

Static Single Assignment (SSA) representation

- A variable is set only by one instruction in the function body
(myVar1 <-5)
(myVar2 <-7)
(myVar3 <-42)
- A static assignment can be executed more than once

SSA and not SSA example

float myF (float par1, float par2, float par3)\{ return (par1 * par2) + par3; \}
float myF(float par1, float par2, float par3) \{ myVar1 = par1 * par2 myVar1 $=$ myVar1 + (Dal3 ret myVar1\}
float myF(float par1, float par2, float par3) \{
myVar1 = par1 * par2
$m y \operatorname{Var} 2=m y \operatorname{Var} 1+\mathrm{par} 3$
ret myVar2\}

Motivation for SSA

- Code analysis needs to represent facts at every program point
float myF(float par1, float par2, float par3) \{
myVar1 = par1 * par2
$m y \operatorname{Var} 2=m y \operatorname{Var} 1+\mathrm{par} 3$
ret myVar2 \}
- What if
- There are a lot of facts and there are a lot of program points?
- potentially takes a lot of space/time

Example

Static Single Assignment (SSA)

Add SSA edges from definitions to uses

- No intervening statements define variable
- Safe to propagate facts about x only along SSA edges

What about joins?

- Add Φ functions/nodes to model joins
- One argument for each incoming branch
- Operationally
- selects one of the arguments based on how control flow reach this node
- At code generation time, need to eliminate Φ nodes

Not SSA

Still not SSA

SSA

Eliminating Φ

- Basic idea: Φ represents facts that value of join may come from different paths
- So just set along each possible path

Not SSA

Eliminating Φ in practice

- Copies performed at Φ may not be useful
- Joined value may not be used later in the program (So why leave it in?)
- Use dead code elimination to kill useless ©s
- Register allocation maps the variables to machine registers

Static Single Information (SSI) form

In a program in SSI form:

- Every basic block ends with a π-function that renames the variables that are live going out of the basic block

SSA and SSI code

Not SSA and not SSI

SSA but not SSI

SSA and SSI

Parallel copies

- Rename variables in parallel

HOLDUP...

WHATIUSTHAPREDEDP

From a program to puzzle pieces

1. Convert a program into an elementary program
A. Transform code into SSA form
B. Transform A into SSI form
C. Insert in B parallel copies between every instruction pair

Elementary form: an example

From a program to puzzle pieces

1. Convert a program into an elementary program A. Transform code into its SSA form
B. Transform code into its SSI form
C. Insert parallel copies between every instruction pair
2. Map the elementary program into puzzle pieces

Add puzzle boards

Generating puzzle pieces

- For each instruction i
- Create one puzzle piece for each live-in and live-out variable
- If the live range ends at i, then the puzzle piece is X
- If the live range begins at i, then Z-piece
- Otherwise Y-piece

V 1 (used later) $=\sqrt{2 \text { (last use) }}+3$ $r 10=r 10+3$

Example

	$\begin{gathered} \mathrm{p}_{\mathrm{x}}:(\mathrm{C}, \mathrm{~d}, \mathrm{E}, \mathrm{f}, \mathrm{~g})=\left(\mathrm{C}^{\prime}, \mathrm{d}^{\prime}, \mathrm{E}^{\prime}, \mathrm{f}^{\prime}\right) \\ \mathrm{A}, \mathrm{~b}=\mathrm{C}, \mathrm{~d}, \mathrm{E} \\ \mathrm{p}_{\mathrm{x}+1}:\left(\mathrm{A}^{\prime \prime}, \mathrm{b} \prime, \mathrm{E}^{\prime \prime}, \mathrm{f}^{\prime \prime}, \mathrm{g}^{\prime \prime}\right)=(\mathrm{A}, \mathrm{~b}, \mathrm{E}, \mathrm{f}) \end{gathered}$
或	C d A b

Example

Summary

- Graph coloring abstraction: Houston we have a problem
- Puzzle abstraction
- From a program to a collection of puzzles
- Solve puzzles
- From solved puzzles to assembly code

Solving type 1 puzzles

- Approach proposed: complete one area at a time
- For each area:
- Pad a puzzle with size-1 X- and Z-pieces until the area of puzzle pieces $==$ board

Board with 1 pre-assigned piece

- Solve the puzzle

Solving type 1 puzzles: a visual language

Puzzle solver -> Statement+
Statement -> Rule | Condition
Condition -> (Rule : Statement)

- Rule = how to complete an area
- Rule composed by pattern:
what needs to be already filled (match/not-match an area)

strategy:

what type of pieces to add and where

- A rule r succeeds in an area a iff
i. r matches a
ii. pieces of the strategy of r are available

Solving type 1 puzzles: a visual language

Puzzle solver -> Statement+
Statement -> Rule | Condition
Condition -> (Rule : Statement)

Puzzle solver success

- A program succeeds iff all statements succeeds
- A rule r succeeds in an area a iff
i. r matches a
ii. pieces of the strategy of r are available
- A condition ($r: s$) succeeds iff
- r succeeds or
- s succeeds

Solving type 1 puzzles: a visual language

Puzzle solver -> Statement+
Statement -> Rule | Condition
Condition -> (Rule : Statement)
Rule ->

	X	
	Z	Z

国

Puzzle solver execution

○ For each statement s1, ..., sn

* For each area a such that the pattern of si matches a
\square Apply si to a
\square If si fails, terminate and report failure

Program execution: an example

- A puzzle solver

- Puzzle

r9

Puzzle solved!

1. s1 matches a1 only
2. Apply s1 to a1 succeeds and returns this puzzle

3. s2 matches a2 only
4. Apply $s 2$ to a2
A. Apply first rule of $s 2$: fails
B. Apply second rule of $s 2$: success

Program execution: another example

- A puzzle solver

- Puzzle

a 1	a 2	a 3	
	x_{3}	x_{1}	y_{1}
		x_{2} y_{2} 	

Puzzle solved!

1. s1 matches a1 only
2. Apply s1 to a1
A. Apply first rule of s1: success

3. s2 matches a2 and a3
4. Apply s 2 to a2

5. Apply s2 to a3

Program execution: yet another example

- A puzzle solver

- Puzzle

Finding the right puzzle solver is the key!

1. s1 matches a1 only
2. Apply s1 to a1
A. Apply first rule of $s 1$: success

3. s 2 matches a 2 and a 3
4. Apply s2 to a2: fail No 1-size x pieces, we used them all in s1

Solution to solve type 1 puzzles

Theorem: a type-1 area is solvable iff this program succeeds

Wait, ...
did we just solve a NP problem in polynomial time?

Register allocation:
complete all areas

Simplified problem solved:

Solution to solve type 1 puzzles: complexity

> Corollary 3 .
> Spill-free register allocation with pre-coloring for an elementary program P and K registers is solvable in $O(|P| \times K)$ time

For one instruction in P :

- Application of a rule to an area: O(1)
- A puzzle solver $\mathrm{O}(1)$ rules on each area of a board
- Execution of a puzzle solver on a board with K areas takes $O(K)$ time

Solving type 0 puzzles

	Board	Kinds of Pieces
\|o		Y X Z
		Y

Solving type 0 puzzles: algorithm

 oPlace all Y-pieces on the board
oPlace all X- and Z-pieces on the board

Spilling

- If the algorithm to solve a puzzles fails
i.e., the need for registers exceeds the number of available registers
=> spill
- Observation: translating a program into its elementary form creates families of variables, one per original variable
- To spill:
- Choose a variable v to spill from the original program
- Spill all variables in the elementary form that belong to the same family of v

Summary

- Graph coloring abstraction: Houston we have a problem
- Puzzle abstraction
- From a program to a collection of puzzles
- Solve puzzles
- From solved puzzles to assembly code

From solved puzzles to assembly code

Thank you!

