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Chapter 1

Introduction

Now, the question, What is a judgement? is no small question,
because the notion of judgement is just about the first of all the
notions of logic, the one that has to be explained before all the oth-
ers, before even the notions of proposition and truth, for instance.

— Per Martin-Löf
On the Meanings of the Logical Constants and the

Justifications of the Logical Laws [ML96]

In everyday computing we deal with a variety of different languages. Some of them
such as C, C++, Ada, ML, or Prolog are intended as general purpose languages.
Others like Emacs Lisp, Tcl, TEX, HTML, csh, Perl, SQL, Visual Basic, VHDL, or
Java were designed for specific domains or applications. We use these examples to
illustrate that many more computer science researchers and system developers are
engaged in language design and implementation than one might at first suspect. We
all know examples where ignorance or disregard of sound language design principles
has led to languages in which programs are much harder to write, debug, compose,
or maintain than they should be. In order to understand the principles which guide
the design of programming languages, we should be familiar with their theory. Only
if we understand the properties of complete languages as opposed to the properties
of individual programs, do we understand how the pieces of a language fit together
to form a coherent (or not so coherent) whole.
As these notes demonstrate, the theory of programming languages does not re-

quire a deep and complicated mathematical apparatus, but can be carried out in a
concrete, intuitive, and computational way. With only a few exceptions, the ma-
terial in these notes has been fully implemented in a meta-language, a so-called
logical framework. This implementation encompasses the languages we study, the
algorithms pertaining to these languages (for example, compilation), and the proofs
of their properties (for example, compiler correctness). This allows hands-on exper-
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2 CHAPTER 1. INTRODUCTION

imentation with the given languages and algorithms and the exploration of variants
and extensions. We now briefly sketch our approach and the organization of these
notes.

1.1 The Theory of Programming Languages

The theory of programming languages covers diverse aspects of languages and their
implementations. Logically first are issues of concrete syntax and parsing. These
have been relatively well understood for some time and are covered in numerous
books. We therefore ignore them in these notes in order to concentrate on deeper
aspects of languages.
The next question concerns the type structure of a language. The importance of

the type structure for the design and use of a language can hardly be overempha-
sized. Types help to sort out meaningless programs and type checking catches many
errors before a program is ever executed. Types serve as formal, machine-checked
documentation for an implementation. Types also specify interfaces to modules
and are therefore important to obtain and maintain consistency in large software
systems.
Next we have to ask about the meanings of programs in a language. The most

immediate answer is given by the operational semantics which specifies the behavior
of programs, usually at a relatively high level of abstraction.
Thus the fundamental parts of a language specification are the syntax, the type

system, and the operational semantics. These lead to many meta-theoretic questions
regarding a particular language. Is it effectively decidable if an input expression is
well-typed? Do the type system and the operational semantics fit together? Are
types needed during the execution of a program? In these notes we investigate such
questions in the context of small functional and logic programming languages. Many
of the same issues arise for realistic languages, and many of the same solutions still
apply.
The specification of an operational semantics rarely corresponds to an efficient

language implementation, since it is designed primarily to be easy to reason about.
Thus we also study compilation, the translation from a source language to a target
language which can be executed more efficiently by an abstract machine. Of course
we want to show that compilation preserves the observable behavior of programs.
Another important set of questions is whether programs satisfy some abstract speci-
fication, for example, if a particular function really computes the integer logarithm.
Similarly, we may ask if two programs compute the same function, even though
they may implement different algorithms and thus may differ operationally. These
questions lead to general type theory and denotational semantics, which we con-
sider only superficially in these notes. We concentrate on type systems and the
operational behavior of programs, since they determine programming style and are
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closest to the programmer’s intuition about a language. They are also amenable
to immediate implementation, which is not so direct, for example, for denotational
semantics.
The principal novel aspect of these notes is that the operational perspective

is not limited to the programming languages we study (the object language), but
encompasses the meta-language, that is, the framework in which we carry out our
investigation. Informally, the meta-language is centered on the notions of judgment
and deductive system explained below. They have been formalized in a logical
framework (LF) [HHP93] in which judgments can be specified at a high level of
abstraction, consistent with informal practice in computer science. LF has been
given an operational interpretation in the Elf meta-programming language [Pfe91a,
Pfe94], thus providing means for a computational meta-theory. Implementations of
the languages, algorithms, and proofs of meta-theorems in these notes are available
electronically and constitute an important supplement to these notes. They provide
the basis for hands-on experimentation with language variants, extensions, proofs
of exercises, and projects related to the formalization and implementation of other
topics in the theory of programming languages. The most recent implementation
of both LF and Elf is called Twelf [PS99], available from the Twelf home page at
http://www.cs.cmu.edu/~twelf/.

1.2 Deductive Systems

In logic, deductive systems are often introduced as a syntactic device for establishing
semantic properties. We are given a language and a semantics assigning meaning
to expressions in the language, in particular to a category of expressions called
formulas. Furthermore, we have a distinguished semantic property, such as truth in
a particular model. A deductive system is then defined through a set of axioms (all of
which are true formulas) and rules of inference which yield true formulas when given
true formulas. A deduction can be viewed as a tree labelled with formulas, where
the axioms are leaves and inference rules are interior nodes, and the label of the
root is the formula whose truth is established by the deduction. This naturally leads
to a number of meta-theoretic questions concerning a deductive system. Perhaps
the most immediate are soundness: “Are the axioms true, and is truth preserved by
the inference rules?” and completeness: “Can every true formula be deduced?”. A
difficulty with this general approach is that it requires the mathematical notion of
a model, which is complex and not immediately computational.
An alternative is provided by Martin-Löf [ML96, ML85] who introduces the no-

tion of a judgment (such as “A is true”) as something we may know by virtue of
a proof. For him the notions of judgment and proof are thus more basic than the
notions of proposition and truth. The meaning of propositions is explained via the
rules we may use to establish their truth. In Martin-Löf’s work these notions are
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mostly informal, intended as a philosophical foundation for constructive mathemat-
ics and computer science. Here we are concerned with actual implementation and
also the meta-theory of deductive systems. Thus, when we refer to judgments we
mean formal judgments and we substitute the synonyms deduction and derivation
for formal proof. The term proof is reserved for proofs in the meta-theory. We call
a judgment derivable if (and only if) it can be established by a deduction, using
the given axioms and inference rules. Thus the derivable judgments are defined
inductively. Alternatively we might say that the set of derivable judgments is the
least set of judgments containing the axioms and closed under the rules of inference.
The underlying view that axioms and inference rules provide a semantic definition
for a language was also advanced by Gentzen [Gen35] and is sometimes referred
to as proof-theoretic semantics. A study of deductive systems is then a semantic
investigation with syntactic means. The investigation of a theory of deductions
often gives rise to constructive proofs of properties such as consistency (not every
formula is provable), which was one of Gentzen’s primary motivations. This is also
an important reason for the relevance of deductive systems in computer science.
The study of deductive systems since the pioneering work of Gentzen has arrived

at various styles of calculi, each with its own concepts and methods independent
of any particular logical interpretation of the formalism. Systems in the style of
Hilbert [HB34] have a close connection to combinatory calculi [CF58]. They are
characterized by many axioms and a small number of inference rules. Systems
of natural deduction [Gen35, Pra65] are most relevant to these notes, since they
directly define the meaning of logical symbols via inference rules. They are also
closely related to typed λ-calculi and thus programming languages via the so-called
Curry-Howard isomorphism [How80]. Gentzen’s sequent calculus can be consid-
ered a calculus of proof search and is thus relevant to logic programming, where
computation is realized as proof search according to a fixed strategy.
In these notes we concentrate on calculi of natural deduction, investigatingmeth-

ods for

1. the definition of judgments,

2. the implementation of algorithms for deriving judgments and manipulating
deductions, and

3. proving properties of deductive systems.

As an example of these three tasks, we show what they might mean in the context
of the description of a programming language.
Let e range over expressions of a statically typed programming language, τ range

over types, and v over those expressions which are values. The relevant judgments
are

# e : τ e has type τ
e ↪→ v e evaluates to v
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1. The deductive systems that define these judgments fix the type system and
the operational semantics of our programming language.

2. An implementation of these judgments provides a program for type inference
and an interpreter for expressions in the language.

3. A typical meta-theorem is type preservation, which expresses that the type
system and the operational semantics are compatible:

If # e : τ is derivable and e ↪→ v is derivable, then # v : τ is derivable.

In this context the deductive systems define the judgments under considerations:
there simply exists no external, semantical notion against which our inference rules
should be measured. Different inference systems lead to different notions of evalu-
ation and thus to different programming languages.
We use standard notation for judgments and deductions. Given a judgment J

with derivation D we write
D
J

or, because of its typographic simplicity,D :: J . An application of a rule of inference
with conclusion J and premises J1, . . . , Jn has the general form

J1 . . . Jn
rule name.

J

An axiom is simply an inference rule with no premises (n = 0) and we still show
the horizontal line. We use script letters D, E ,P,Q, . . . to range over deductions.
Inference rules are almost always schematic, that is, they contain meta-variables.
A schematic inference rule stands for all its instances which can be obtained by
replacing the meta-variables by expressions in the appropriate syntactic category.
We usually drop the byword “schematic” for the sake of simplicity.
Deductive systems are intended to provide an explicit calculus of evidence for

judgments. Sometimes complex side conditions restrict the set of possible instances
of an inference rule. This can easily destroy the character of the inference rules in
that much of the evidence for a judgment may be implicit in the side conditions. We
therefore limit ourselves to side conditions regarding legal occurrences of variables
in the premises. It is no accident that our formalization techniques directly account
for such side conditions. Other side conditions as they may be found in the literature
can often be converted into explicit premises involving auxiliary judgments. There
are a few standard means to combine judgments to form new ones. In particular,
we employ parametric and hypothetical judgments. Briefly, a hypothetical judgment
expresses that a judgment J may be derived under the assumption or hypothesis
J ′. If we succeed in constructing a deduction D′ of J ′ we can substitute D′ in
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every place where J ′ was used in the original, hypothetical deduction of J to obtain
unconditional evidence for J . A parametric judgment J is a judgment containing a
meta-variable x ranging over some syntactic category. It is judged evident if we can
provide a deduction D of J such that we can replace x in D by any expression in the
appropriate syntactic category and obtain a deduction for the resulting instance of
J .
In the statements of meta-theorems we generally refer to a judgment J as deriv-

able or not derivable. This is because judgments and deductions have now become
objects of study and are themselves subjects of judgments. However, using the
phrase “is derivable” pervasively tends to be verbose, and we will take the liberty
of using “J” to stand for “J is derivable” when no confusion can arise.

1.3 Goals and Approach

We pursue several goals with these notes. First of all, we would like to convey a
certain style of language definition using deductive systems. This style is standard
practice in modern computer science and students of the theory of programming
languages should understand it thoroughly.
Secondly, we would like to impart the main techniques for proving properties of

programming languages defined in this style. Meta-theory based on deductive sys-
tems requires surprisingly few principles: induction over the structure of derivations
is by far the most common technique.
Thirdly, we would like the reader to understand how to employ the LF logical

framework [HHP93] and the Twelf system [PS99] in order to implement these def-
initions and related algorithms. This serves several purposes. Perhaps the most
important is that it allows hands-on experimentation with otherwise dry definitions
and theorems. Students can get immediate feedback on their understanding of the
course material and their ideas about exercises. Furthermore, using a logical frame-
work deepens one’s understanding of the methodology of deductive systems, since
the framework provides an immediate, formal account of informal explanations and
practice in computer science.
Finally, we would like students to develop an understanding of the subject mat-

ter, that is, functional and logic programming. This includes an understanding
of various type systems, operational semantics for functional languages, high-level
compilation techniques, abstract machines, constructive logic, the connection be-
tween constructive proofs and functional programs, and the view of goal-directed
proof search as the foundation for logic programming. Much of this understanding,
as well as the analysis and implementation techniques employed here, apply to other
paradigms and more realistic, practical languages.
The notes begin with the theory of Mini-ML, a small functional language includ-

ing recursion and polymorphism (Chapter 2). We informally discuss the language
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specification and its meta-theory culminating in a proof of type preservation, always
employing deductive systems. This exercise allows us to identify common concepts
of deductive systems which drive the design of a logical framework . In Chapter 3 we
then incrementally introduce features of the logical framework LF, which is our for-
mal meta-language. Next we show how LF is implemented in the Elf programming
language (Chapter 4). Elf endows LF with an operational interpretation in the style
of logic programming, thus providing a programming language for meta-programs
such as interpreters or type inference procedures. Our meta-theory will always be
constructive and we observe that meta-theoretic proofs can also be implemented
and executed in Elf, although at present they cannot be verified completely. Next
we introduce the important concepts of parametric and hypothetical judgments
(Chapter 5) and develop the implementation of the proof of type preservation. At
this point the basic techniques have been established, and we devote the remaining
chapters to case studies: compilation and compiler correctness (Chapter 6), natural
deduction and the connection between constructive proofs and functional programs
(Chapter ??), the theory of logic programming (Chapter ??), and advanced type
systems (Chapter ??).
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Chapter 2

The Mini-ML Language

Unfortunately one often pays a price for [languages which impose
no discipline of types] in the time taken to find rather inscrutable
bugs—anyone who mistakenly applies CDR to an atom in LISP
and finds himself absurdly adding a property list to an integer, will
know the symptoms.

— Robin Milner
A Theory of Type Polymorphism in Programming [Mil78]

In preparation for the formalization of Mini-ML in a logical framework, we begin
with a description of the language in a common mathematical style. The version
of Mini-ML we present here lies in between the language introduced in [CDDK86,
Kah87] and call-by-value PCF [Plo75, Plo77]. The description consists of three
parts: (1) the abstract syntax, (2) the operational semantics, and (3) the type
system. Logically, the type system would come before the operational semantics,
but we postpone the more difficult typing rules until Section 2.5.

2.1 Abstract Syntax

The language of types centrally affects the kinds of expression constructs that should
be available in the language. The types we include in our formulation of Mini-
ML are natural numbers, products, and function types. Many phenomena in the
theory of Mini-ML can be explored with these types; some others are the subject
of Exercises 2.7, 2.8, and 2.10. For our purposes it is convenient to ignore certain
questions of concrete syntax and parsing and present the abstract syntax of the
language in Backus Naur Form (BNF). The vertical bar “|” separates alternatives
on the right-hand side of the definition symbol “::=”. Definitions in this style

9
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can be understood as inductive definitions of syntactic categories such as types or
expressions.

Types τ ::= nat | τ1 × τ2 | τ1 → τ2 | α

Here, nat stands for the type of natural numbers, τ1×τ2 is the type of pairs with
elements from τ1 and τ2, τ1 → τ2 is the type of functions mapping elements of type
τ1 elements of type τ2. Type variables are denoted by α. Even though our language
supports a form of polymorphism, we do not explicitly include a polymorphic type
constructor in the language; see Section 2.5 for further discussion of this issue. We
follow the convention that × and → associate to the right, and that × has higher
precendence than→. Parentheses may be used to explicitly group type expressions.
For example,

nat× nat→ nat→ nat

denotes the same type as

(nat× nat)→ (nat→ nat).

For each concrete type (excluding type variables) we have expressions that allow
us to construct elements of that type and expressions that allow us to destruct
elements of that type. We choose to separate the languages of types and expressions
so we can define the operational semantics without recourse to typing. We have in
mind, however, that only well-typed programs will ever be executed.

Expressions e ::= z | s e | (case e1 of z⇒ e2 | s x⇒ e3) Natural numbers
| 〈e1, e2〉 | fst e | snd e Pairs
| lam x. e | e1 e2 Functions
| letval x = e1 in e2 Definitions
| letname x = e1 in e2
| fix x. e Recursion
| x Variables

Most of these constructs should be familiar from functional programming lan-
guages such as ML: z stands for zero, s e stands for the successor of e. A case-
expression chooses a branch based on whether the value of the first argument is
zero or non-zero. Abstraction, lam x. e, forms functional expressions. It is often
written λx. e, but we will reserve “λ” for the formal meta-language. Application of
a function to an argument is denoted simply by juxtaposition.
Definitions introduced by let val provide for explicit sequencing of computation,

while letname introduces a local name abbreviating an expression. The latter
incorporates a form of polymorphism. Recursion is introduced via the fixed point
construct fix x. e explained below using the example of addition.
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We use e, e′, . . ., possibly subscripted, to range over expressions. The letters
x, y, and occasionally u, v, f and g, range over variables. We use a boldface font
for language keywords. Parentheses are used for explicit grouping as for types.
Juxtaposition associates to the left. The period (in lam x. and fix x. ) and the
keywords in and of act as a prefix whose scope extends as far to the right as possible
while remaining consistent with the present parentheses. For example, lam x. x z
stands for lam x. (x z) and

letval x = z in case x of z⇒ y | s x′ ⇒ f x′ x

denotes the same expression as

letval x = z in (case x of z⇒ y | s x′ ⇒ ((f x′) x)).

As a first example, consider the following implementation of the predecessor
function, where the predecessor of 0 is defined to be 0.

pred = lam x. case x of z⇒ z | s x′ ⇒ x′

Here “=” introduces a definition in our mathematical meta-language.
As a second example, we develop the definition of addition that illustrates the

fixed point operator in the language. We begin with an informal recursive specifi-
cation of the behavior or plus1.

plus1 z m = m
plus1 (s n

′) m = s (plus1 n
′ m)

In order to express this within our language, we need to perform several transforma-
tions. The first is to replace the two clauses of the specification by one, expressing
the case distinction in Mini-ML.

plus1 n m = case n of z⇒ m | s x′ ⇒ s (plus1 x′ m)

In the second step we explicitly abstract over the arguments of plus1.

plus1 = lam x. lam y. case x of z⇒ y | s x′⇒ s (plus1 x′ y)

At this point we have an equation of the form

f = e(. . . f . . .)

where f is a variable (plus1) and e(. . . f . . .) is an expression with some occurrences
of f . If we think of e as a function that depends on f , then f is a fixed point of
e since e(. . . f . . .) = f . The Mini-ML language allows us to construct such a fixed
point directly.

f = fix x. e(. . . x . . .)
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In our example, this leads to the definition

plus1 = fix add . lam x. lam y. case x of z⇒ y | s x′ ⇒ s (add x′ y).

Our operational semantics will have to account for the recursive nature of computa-
tion in the presence of fixed point expressions, including possible non-termination.
The reader may want to convince himself now or after the detailed presentation

of the operational semantics that the following are correct alternative definitions of
addition.

plus2 = lam y. fix add . lam x. case x of z⇒ y | s x′ ⇒ s (add x′)
plus3 = fix add . lam x. lam y. case x of z⇒ y | s x′ ⇒ add x′ (s y)

2.2 Substitution

The concepts of free and bound variable are fundamental in this and many other
languages. In Mini-ML variables are scoped as follows:

case e1 of z⇒ e2 | s x⇒ e3 binds x in e3,
lam x. e binds x in e,
let val x = e1 in e2 binds x in e2,
let name x = e1 in e2 binds x in e2,
fix x. e binds x in e.

An occurrence of variable x in an expression e is a bound occurrence if it lies within
the scope of a binder for x in e, in which case it refers to the innermost enclosing
binder. Otherwise the variable is said to be free in e. For example, the two non-
binding occurrences of x and y below are bound, while the occurrence of u is free.

letname x = lam y. y in x u

The names of bound variables may be important to the programmer’s intuition,
but they are irrelevant to the formal meaning of an expression. We therefore do
not distinguish between expressions that differ only in the names of their bound
variables. For example, lam x. x and lam y. y both denote the identity function.
Of course, variables must be renamed “consistently”, that is, corresponding variable
occurrences must refer to the same binder. Thus

lam x. lam y. x = lam u. lam y. u

but
lam x. lam y. x '= lam y. lam y. y.

When we wish to be explicit, we refer to expressions that differ only in the names of
their bound variables as α-convertible and the renaming operation as α-conversion.
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Languages in which meaning is invariant under variable renaming are said to be
lexically scoped or statically scoped, since it is clear from program text, without
considering the operational semantics, where a variable occurrence is bound. Lan-
guages such as Lisp that permit dynamic scoping for some variables are semantically
less transparent and more difficult to describe formally and reason about.
A fundamental operation on expressions is substitution, the replacement of a

free variable by an expression. We write [e′/x]e for the result of substituting e′ for
all free occurrences of x in e. During this substitution operation we must make
sure that no variable that is free in e′ is captured by a binder in e. But since we
may tacitly rename bound variables, the result of substitution is always uniquely
defined. For example,

[x/y]lam x. y = [x/y]lam x′. y = lam x′. x '= lam x. x.

This form of substitution is often called capture-avoiding substitution. It is the only
meaningful form of substitution under the variable renaming convention: with pure
textual replacement we could conclude that

lam x. x = [x/y](lam x. y) = [x/y](lam x′. y) = lam x′. x,

which is clearly nonsensical.
Substitution has a number of obvious and perhaps not so obvious properties.

The first class of properties may be considered part of a rigorous definition of
substitution. These are equalities of the form

[e′/x]x = e′

[e′/x]y = y for x '= y
[e′/x](e1 e2) = ([e′/x]e1) ([e′/x]e2)

[e′/x](lam y. e) = lam y. [e′/x]e for x '= y and y not free in e′.

Of course, there exists one of these equations for every construct in the language. A
second important property states that consecutive substitutions can be permuted
with each other under certain circumstances:

[e2/x2]([e1/x1]e) = [([e2/x2]e1)/x1]([e2/x2]e)

provided x1 does not occur free in e2. The reader is invited to explore the formal
definition and properties of substitution in Exercise 2.9. We will take such simple
properties largely for granted.

2.3 Operational Semantics

The first judgment to be defined is the evaluation judgment, e ↪→ v (read: e eval-
uates to v). Here v ranges over expressions; in Section 2.4 we define the notion of
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a value and show that the result of evaluation is in fact a value. For now we only
informally think of v as representing the value of e. The definition of the evaluation
judgment is given by inference rules. Here, and in the remainder of these notes, we
think of axioms as inference rules with no premises, so that no explicit distinction
between axioms and inference rules is necessary. A definition of a judgment via
inference rules is inductive in nature, that is, e evaluates to v if and only if e ↪→ v
can be established with the given set of inference rules. We will make use of this in-
ductive structure of deductions throughout these notes in order to prove properties
of deductive systems.
This approach to the description of the operational semantics of programming

languages goes back to Plotkin [Plo75, Plo81] under the name of structured oper-
ational semantics and Kahn [Kah87], who calls his approach natural semantics.
Our presentation follows the style of natural semantics.
We begin with the rules concerning the natural numbers.

ev z
z ↪→ z

e ↪→ v
ev s

s e ↪→ s v

The first rule expresses that z is a constant and thus evaluates to itself. The second
expresses that s is a constructor, and that its argument must be evaluated, that is,
the constructor is eager and not lazy. For more on this distinction, see Exercise 2.13.
Note that the second rule is schematic in e and v: any instance of this rule is valid.
The next two inference rules concern the evaluation of the case construct. The

second of these rules requires substitution as introduced in the previous section.

e1 ↪→ z e2 ↪→ v
ev case z

(case e1 of z⇒ e2 | s x⇒ e3) ↪→ v

e1 ↪→ s v′1 [v′1/x]e3 ↪→ v
ev case s

(case e1 of z⇒ e2 | s x⇒ e3) ↪→ v

The substitution of v′1 for x in case e1 evaluates to s v
′
1 eliminates the need for

environments which are present in many other semantic definitions. These rules
are declarative in nature, that is, we define the operational semantics by declaring
rules of inference for the evaluation judgment without actually implementing an
interpreter. This is exhibited clearly in the two rules for the conditional: in an
interpreter, we would evaluate e1 and then branch to the evaluation of e2 or e3,
depending on the value of e1. This interpreter structure is not contained in these
rules; in fact, naive search for a deduction under these rules will behave differently
(see Section 4.3).
As a simple example that can be expressed using only the four rules given so

far, consider the derivation of (case s (s z) of z ⇒ z | s x′ ⇒ x′) ↪→ s z. This
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would arise as a subdeduction in the derivation of pred (s (s z)) with the earlier
definition of pred .

ev z
z ↪→ z

ev s
s z ↪→ s z

ev s
s (s z) ↪→ s (s z)

ev z
z ↪→ z

ev s
s z ↪→ s z

ev case s
(case s (s z) of z⇒ z | s x′⇒ x′) ↪→ s z

The conclusion of the second premise arises as [(s z)/x′]x′ = s z. We refer to a
deduction of a judgment e ↪→ v as an evaluation deduction or simply evaluation of
e. Thus deductions play the role of traces of computation.

Pairs do not introduce any new ideas.

e1 ↪→ v1 e2 ↪→ v2
ev pair

〈e1, e2〉 ↪→ 〈v1, v2〉

e ↪→ 〈v1, v2〉
ev fst

fst e ↪→ v1

e ↪→ 〈v1, v2〉
ev snd

snd e ↪→ v2

This form of operational semantics avoids explicit error values: for some ex-
pressions e there simply does not exist any value v such that e ↪→ v would be
derivable. For example, when trying to construct a v and a deduction of the ex-
pression (case 〈z, z〉 of z ⇒ z | s x′ ⇒ x′) ↪→ v, one arrives at the following
impasse:

ev z
z ↪→ z

ev z
z ↪→ z

ev pair
〈z, z〉 ↪→ 〈z, z〉 ?

?
case 〈z, z〉 of z⇒ z | s x′ ⇒ x′ ↪→ v

There is no inference rule “?” which would allow us to fill v with an expression and
obtain a valid deduction. This particular kind of example will be excluded by the
typing system, since the argument which determines the cases here is not a natural
number. On the other hand, natural semantics does not preclude a formulation
with explicit error elements (see Exercise 2.10).

In programming languages such as Mini-ML functional abstractions evaluate to
themselves. This is true for languages with call-by-value and call-by-name seman-
tics, and might be considered a distinguishing characteristic of evaluation compared
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to normalization.

ev lam
lam x. e ↪→ lam x. e

e1 ↪→ lam x. e′1 e2 ↪→ v2 [v2/x]e
′
1 ↪→ v ev app

e1 e2 ↪→ v

This specifies a call-by-value discipline for our language, since we evaluate e2 and
then substitute the resulting value v2 for x in the function body e′1. In a call-by-
name discipline, we would omit the second premise and the third premise would be
[e2/x]e′1 ↪→ v (see Exercise 2.13).
The inference rules above have an inherent inefficiency: the deduction of a judg-

ment of the form [v2/x]e′1 ↪→ v may have many copies of a deduction of v2 ↪→ v2.
In an actual interpreter, we would like to evaluate e′1 in an environment where x is
bound to v2 and simply look up the value of x when needed. Such a modification in
the specification, however, is not straightforward, since it requires the introduction
of closures. We make such an extension to the language as part of the compilation
process in Section 6.1.
The rules for let are straightforward, given our understanding of function ap-

plication. There are two variants, depending on whether the subject is evaluated
(let val) or not (let name).

e1 ↪→ v1 [v1/x]e2 ↪→ v
ev letv

let val x = e1 in e2 ↪→ v

[e1/x]e2 ↪→ v
ev letn

let name x = e1 in e2 ↪→ v

The letval construct is intended for the computation of intermediate results that
may be needed more than once, while the let name construct is primarily intended
to give names to functions so they can be used polymorphically. For more on this
distinction, see Section 2.5.
Finally, we come to the fixed point construct. Following the considerations in

the example on page 11, we arrive at the rule

[fix x. e/x]e ↪→ v
ev fix.

fix x. e ↪→ v

Thus evaluation of a fixed point construct unrolls the recursion one level and eval-
uates the result. Typically this uncovers a lam-abstraction which evaluates to
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itself. This rule clearly exhibits another situation in which an expression does not
have a value: consider fix x. x. There is only one rule with a conclusion of the
form fix x. e ↪→ v, namely ev fix. So if fix x. x ↪→ v were derivable for some v,
then the premise, namely [fix x. x/x]x ↪→ v would also have to be derivable. But
[fix x. x/x]x = fix x. x, and the instance of ev fix would have to have the form

fix x. x ↪→ v
ev fix.

fix x. x ↪→ v

Clearly we have made no progress, and hence there is no evaluation of fix x. x.
As an example of a successful evaluation, consider the function which doubles its
argument.

double = fix f. lam x. case x of z⇒ z | s x′ ⇒ s (s (f x′))

The representation of the evaluation tree for double (s z) uses a linear notation
which is more amenable to typesetting. The lines are shown in the order in which
they would arise during a left-to-right, depth-first construction of the evaluation
deduction. Thus it might be easiest to read this from the bottom up. We use
double as a short-hand for the expression shown above and not as a definition
within the language in order to keep the size of the expressions below manageable.
Furthermore, we use double′ for the result of unrolling the fixed point expression
double once.

1 double′ ↪→ double′ ev lam
2 double ↪→ double′ ev fix 1
3 z ↪→ z ev z
4 s z ↪→ s z ev s 3
5 z ↪→ z ev z
6 s z ↪→ s z ev s 5
7 double′ ↪→ double′ ev lam
8 double ↪→ double′ ev fix 1
9 z ↪→ z ev z
10 z ↪→ z ev z
11 z ↪→ z ev z
12 (case z of z⇒ z | s x′ ⇒ s (s (double x′))) ↪→ z ev case z 10, 11
13 double z ↪→ z ev app 8, 9, 12
14 s (double z) ↪→ s z ev s 13
15 s (s (double z)) ↪→ s (s z) ev s 14
16 (case s z of z⇒ z | s x′⇒ s (s (double x′))) ↪→ s (s z) ev case s 6, 15
17 double (s z) ↪→ s (s z) ev app 2, 4, 16

where

double = fix f. lam x. case x of z⇒ z | s x′ ⇒ s (s (f x′))
double′ = lam x. case x of z⇒ z | s x′ ⇒ s (s (double x′))
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The inefficiencies of the rules we alluded to above can be seen clearly in this
example: we need two copies of the evaluation of s z, one of which should in principle
be unnecessary, since we are in a call-by-value language (see Exercise 2.12).

2.4 Evaluation Returns a Value

Before we discuss the type system, we will formulate and prove a simple meta-
theorem. The set of values in Mini-ML can be described by the BNF grammar

Values v ::= z | s v | 〈v1, v2〉 | lam x. e.

This kind of grammar can be understood as a form of inductive definition of a
subcategory of the syntactic category of expressions: a value is either z, the successor
of a value, a pair of values, or any lam-expression. There are alternative equivalent
definition of values, for example as those expressions which evaluate to themselves
(see Exercise 2.14). Syntactic subcategories (such as values as a subcategory of
expressions) can also be defined using deductive systems. The judgment in this
case is unary: e Value. It is defined by the following inference rules:

val z
z Value

e Value
val s

s e Value

e1 Value e2 Value
val pair

〈e1, e2〉 Value
val lam

lam x. e Value

Again, this definition is inductive: an expression e is a value if and only if e Value
can be derived using these inference rules. It is common mathematical practice to
use different variable names for elements of the smaller set in order to distinguish
them in the presentation. But is it justified to write e ↪→ v with the understanding
that v is a value? This is the subject of the next theorem. The proof is instructive
as it uses an induction over the structure of a deduction. This is a central technique
for proving properties of deductive systems and the judgments they define. The
basic idea is simple: if we would like to establish a property for all deductions of a
judgment we show that the property is preserved by all inference rules, that is, we
assume the property holds of the deduction of the premises and we must show that
the property holds of the deduction of the conclusion. For an axiom (an inference
rule with no premises) this just means that we have to prove the property outright,
with no assumptions. An important special case of this induction principle is an
inversion principle: in many cases the form of a judgment uniquely determines
the last rule of inference which must have been applied, and we may conclude the
existence of a deduction of the premise.
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Theorem 2.1 (Value Soundness) For any two expressions e and v, if e ↪→ v is
derivable, then v Value is derivable.

Proof: The proof is by induction over the structure of the deduction D :: e ↪→ v.
We show a number of typical cases.

Case: D = ev z.
z ↪→ z

Then v = z is a value by the rule val z.

Case:

D =

D1
e1 ↪→ v1

ev s.
s e1 ↪→ s v1

The induction hypothesis on D1 yields a deduction of v1 Value. Using the
inference rule val s we conclude that s v1 Value.

Case:

D =

D1
e1 ↪→ z

D2
e2 ↪→ v

ev case z.
(case e1 of z⇒ e2 | s x⇒ e3) ↪→ v

Then the induction hypothesis applied to D2 yields a deduction of v Value,
which is what we needed to show in this case.

Case:

D =

D1
e1 ↪→ s v′1

D3
[v′1/x]e3 ↪→ v

ev case s.
(case e1 of z⇒ e2 | s x⇒ e3) ↪→ v

Then the induction hypothesis applied to D3 yields a deduction of v Value,
which is what we needed to show in this case.

Case: If D ends in ev pair we reason similar to cases above.
Case:

D =

D′
e′ ↪→ 〈v1, v2〉

ev fst.
fst e′ ↪→ v1

Then the induction hypothesis applied to D′ yields a deduction P ′ of the
judgment 〈v1, v2〉 Value. By examining the inference rules we can see that P ′
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must end in an application of the val pair rule, that is,

P ′ =

P1
v1 Value

P2
v2 Value

val pair
〈v1, v2〉 Value

for some P1 and P2. Hence v1 Value must be derivable, which is what we
needed to show. We call this form of argument inversion.

Case: If D ends in ev snd we reason similar to the previous case.

Case: D = ev lam.
lam x. e ↪→ lam x. e

Again, this case is immediate, since v = lam x. e is a value by rule val lam.

Case:

D =

D1
e1 ↪→ lam x. e′1

D2
e2 ↪→ v2

D3
[v2/x]e′1 ↪→ v

ev app.
e1 e2 ↪→ v

Then the induction hypothesis on D3 yields that v Value.

Case: D ends in ev letv. Similar to the previous case.

Case: D ends in ev letn. Similar to the previous case.
Case:

D =

D1
[fix x. e/x]e ↪→ v

ev fix.
fix x. e ↪→ v

Again, the induction hypothesis on D1 directly yields that v is a value.

Since it is so pervasive, we briefly summarize the principle of structural induction
used in the proof above. We assume we have an arbitrary derivation D of e ↪→ v
and we would like to prove a property P of D. We show this by induction on the
structure of D: For each inference rule in the system defining the judgment e ↪→ v
we show that the property P holds for the conclusion under the assumption that
it holds for every premise. In the special case of an inference rule with no premises
we have no inductive assumptions; this therefore corresponds to a base case of the
induction. This suffices to establish the property P for every derivation D since it
must be constructed from the given inference rules. In our particular theorem the
property P states that there exists a derivation P of the judgment that v is a value.
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2.5 The Type System

In the presentation of the language so far we have not used types. Thus types
are external to the language of expressions and a judgment such as # e : τ may
be considered as establishing a property of the (untyped) expression e. This view
of types has been associated with Curry [Cur34, CF58], and systems in this style
are often called type assignment systems. An alternative is a system in the style
of Church [Chu32, Chu33, Chu41], in which types are included within expressions,
and every well-typed expression has a unique type. We will discuss such a system
in Section ??.
Mini-ML as presented by Clément et al. [CDDK86] is a language with some

limited polymorphism in that it explicitly distinguishes between simple types and
type schemes with some restrictions on the use of type schemes. This notion of
polymorphism was introduced by Milner [Mil78, DM82]. We will refer to it as
schematic polymorphism. In our formulation, we will be able to avoid using type
schemes completely by distinguishing two forms of definitions via let, one of which is
polymorphic. A formulation in this style orginates with Hannan and Miller [HM89,
Han91, Han93].

Types τ ::= nat | τ1 × τ2 | τ1 → τ2 | α

Here, α stands for type variables. We also need a notion of context which assigns
types to free variables in an expression.

Contexts Γ ::= · | Γ, x:τ

We generally omit the empty context, “·”, and, for example, write x:τ for ·, x:τ .
We also have to deal again with the problem of variable names. In order to avoid
ambiguities and simplify the presentation, we stipulate that each variable may be
declared at most once in a context Γ. When we wish to emphasize this assumption,
we refer to contexts without repeated variables as valid contexts. We write Γ(x) for
the type assigned to x in Γ.
The typing judgment

Γ # e : τ

states that expression e has type τ in context Γ. It is important for the meta-theory
that there is exactly one inference rule for each expression constructor. We say that
the definition of the typing judgment is syntax-directed. Of course, many deduc-
tive systems defining typing judgments are not syntax-directed (see, for example,
Section ??).
We begin with typing rules for natural numbers. We require that the two

branches of a case-expression have the same type τ . This means that no mat-
ter which of the two branches of the case-expression applies during evaluation, the
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value of the whole expression will always have type τ .

tp z
Γ # z : nat

Γ # e : nat
tp s

Γ # s e : nat

Γ # e1 : nat Γ # e2 : τ Γ, x:nat # e3 : τ
tp case

Γ # (case e1 of z⇒ e2 | s x⇒ e3) : τ

Implicit in the third premise of the tp case rule is the information that x is a bound
variable whose scope is e3. Moreover, x stands for a natural number (the predecessor
of the value of e1). Note that we may have to rename the variable x in case another
variable with the same name already occurs in the context Γ.
Pairing is straightforward.

Γ # e1 : τ1 Γ # e2 : τ2
tp pair

Γ # 〈e1, e2〉 : τ1 × τ2

Γ # e : τ1 × τ2
tp fst

Γ # fst e : τ1

Γ # e : τ1 × τ2
tp snd

Γ # snd e : τ2

Because of the following rule for lam-abstraction, the type of an expression is
not unique. This is a characteristic property of a type system in the style of Curry.

Γ, x:τ1 # e : τ2
tp lam

Γ # lam x. e : τ1 → τ2

Γ # e1 : τ2 → τ1 Γ # e2 : τ2
tp app

Γ # e1 e2 : τ1

The rule tp lam is (implicitly) restricted to the case where x does not already occur
in Γ, since we made the general assumption that no variable occurs more than once
in a context. This restriction can be satisfied by renaming the bound variable x,
thus allowing the construction of a typing derivation for # lam x. lam x. x : α →
(β → β), but not for # lam x. lam x. x : α → (β → α). Note that together with
this rule, we need a rule for looking up variables in the context.

Γ(x) = τ
tp var

Γ # x : τ

As variables occur at most once in a context, this rule does not lead to any inherent
ambiguity.



2.5. THE TYPE SYSTEM 23

Our language incorporates a let val expression to compute intermediate values.
This is not strictly necessary, since it may be defined using lam-abstraction and
application (see Exercise 2.20).

Γ # e1 : τ1 Γ, x:τ1 # e2 : τ2
tp letv

Γ # letval x = e1 in e2 : τ2

Even though e1 may have more than one type, only one of these types (τ1) can be
used for occurrences of x in e2. In other words, x can not be used polymorphically,
that is, at various types.
Schematic polymorphism (or ML-style polymorphism) only plays a role in the

typing rule for let name. What we would like to achieve is that, for example, the
following judgment holds:

# let name f = lam x. x in 〈f z, f (lam y. s y)〉 : nat× (nat→ nat)

Clearly, the expression can be evaluated to 〈z, (lam y. s y)〉, since lam x. x can act
as the identity function on any type, that is, both

# lam x. x : nat→ nat,
and # lam x. x : (nat→ nat)→ (nat→ nat)

are derivable. In a type system with explicit polymorphism a more general judg-
ment might be expressed as # lam x. x : ∀α. α → α (see Section ??). Here, we
use a different device by allowing different types to be assigned to e1 at different
occurrences of x in e2 when type-checking let name x = e1 in e2. We achieve this
by substituting e1 for x in e2 and checking only that the result is well-typed.

Γ # e1 : τ1 Γ # [e1/x]e2 : τ2
tp letn

Γ # letname x = e1 in e2 : τ2

Note that τ1, the type assigned to e1 in the first premise, is not used anywhere.
We require such a derivation nonetheless so that all subexpressions of a well-typed
term are guaranteed to be well-typed (see Exercise 2.21). The reader may want to
check that with this rule the example above is indeed well-typed.
Finally we come to the typing rule for fixed point expressions. In the evaluation

rule, we substitute [fix x. e/x]e in order to evaluate fix x. e. For this to be well-
typed, the body e must be well-typed under the assumption that the variable x has
the type of whole fixed point expression. Thus we are lead to the rule

Γ, x:τ # e : τ
tp fix.

Γ # fix x. e : τ
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More general typing rules for fixed point constructs have been considered in the
literature, most notably the rule of the Milner-Mycroft calculus which is discussed
in Section ??.
An important property of the system is that an expression uniquely determines

the last inference rule of its typing derivation. This leads to a principle of inversion:
from the type of an expression we can draw conclusions about the types of its
constituents expressions. The inversion principle is used pervasively in the proof of
Theorem 2.5, for example. In many deductive systems similar inversion principles
hold, though often they turn out to be more difficult to prove.

Lemma 2.2 (Inversion) Given a context Γ and an expression e such that Γ # e : τ
is derivable for some τ . Then the last inference rule of any derivation of Γ # e : τ ′

for some τ ′ is uniquely determined.

Proof: By inspection of the inference rules.

Note that this does not imply that types are unique. In fact, they are not, as
illustrated above in the rule for lam-abstraction.

2.6 Type Preservation

Before we come to the statement and proof of type preservation in Mini-ML, we need
a few preparatory lemmas. The reader may wish to skip ahead and reexamine these
lemmas wherever they are needed. We first note the property of weakening and then
state and prove a substitution lemma for typing derivations. Substitution lemmas
are basic to the investigation of many deductive systems, and we will pay special
attention to them when considering the representation of proofs of meta-theorems
in a logical framework. We use the notation Γ,Γ′ for the result of appending the
declarations in Γ and Γ′ assuming implicitly that the result is valid. Recall that a
context is valid if no variable in it is declared more than once.

Lemma 2.3 (Weakening) If Γ1,Γ2 # e : τ then Γ1,Γ′,Γ2 # e : τ provided Γ1,Γ′,Γ2
is a valid context.

Proof: By straightforward induction over the structure of the derivation of Γ #
e : τ . The only inference rule where the context is examined is tp var which will
be applicable if a declaration x:τ is present in the context Γ. It is clear that the
presence of additional non-conflicting declarations does not alter this property.

Type derivations which differ only by weakening in the type declarations Γ have
identical structure. Thus we permit the weakening of type declarations in Γ during
a structural induction over a typing derivation. The substitution lemma below is
also central. It is closely related to the notions of parametric and hypothetical
judgments introduced in Chapter 5.
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Lemma 2.4 (Substitution) If Γ # e′ : τ ′ and Γ, x:τ ′,Γ′ # e : τ then Γ,Γ′ # [e′/x]e :
τ .

Proof: By induction over the structure of the derivation D :: (Γ, x:τ ′,Γ′ # e : τ).
The result should be intuitive: wherever x occurs in e we are at a leaf in the typing
derivation of e. After substitution of e′ for x, we have to supply a derivation showing
that e′ has type τ ′ at this leaf position, which exists by assumption. We only show
a few cases in the proof in detail; the remaining ones follow the same pattern.

Case: D =
(Γ, x:τ ′,Γ′)(x) = τ ′

tp var.
Γ, x:τ ′,Γ′ # x : τ ′

Then [e′/x]e = [e′/x]x = e′, so the lemma reduces to showing Γ,Γ′ # e′ : τ ′

from Γ # e′ : τ ′ which follows by weakening.

Case: D =
(Γ, x:τ ′,Γ′)(y) = τ

tp var,
Γ, x:τ ′,Γ′ # y : τ

where x '= y.

In this case, [e′/x]e= [e′/x]y = y and hence the lemma follows from

(Γ,Γ′)(y) = τ
tp var.

Γ,Γ′ # y : τ

Case: D =

D1
Γ, x:τ ′,Γ′ # e1 : τ2 → τ1

D2
Γ, x:τ ′,Γ′ # e2 : τ2

tp app.
Γ, x:τ ′,Γ′ # e1 e2 : τ1

Then we construct a deduction

E1
Γ,Γ′ # [e′/x]e1 : τ2 → τ1

E2
Γ,Γ′ # [e′/x]e2 : τ2

tp app
Γ,Γ′ # ([e′/x]e1) ([e

′/x]e2) : τ1

where E1 and E2 are known to exist from the induction hypothesis applied
to D1 and D2, respectively. By definition of substitution, [e′/x](e1 e2) =
([e′/x]e1) ([e′/x]e2), and the lemma is established in this case.

Case: D =

D1
Γ, x:τ ′,Γ′, y:τ1 # e2 : τ2

tp lam
Γ, x:τ ′,Γ′ # lam y. e2 : τ1 → τ2

.

In this case we need to apply the induction hypothesis by using Γ′, y:τ1 for Γ′.
This is why the lemma is formulated using the additional context Γ′. From
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the induction hypothesis and one inference step we obtain

E1
Γ,Γ′, y:τ1 # [e′/x]e2 : τ2

tp lam
Γ,Γ′ # lam y. [e′/x]e2 : τ1 → τ2

which yields the lemma by the equation [e′/x](lam y. e2) = lam y. [e′/x]e2 if
y is not free in e′ and distinct from x. We can assume that these conditions
are satisfied, since they can always be achieved by renaming bound variables.

The statement of the type preservation theorem below is written in such a way
that the induction argument will work directly.

Theorem 2.5 (Type Preservation) For any e and v, if e ↪→ v is derivable, then
for any τ such that # e : τ is derivable, # v : τ is also derivable.

Proof: By induction on the structure of the deduction D of e ↪→ v. The justification
“by inversion” refers to Lemma 2.2. More directly, from the form of the judgment
established by a derivation we draw conclusions about the possible forms of the
premise, which, of course, must also derivable.

Case: D = ev z.
z ↪→ z

Then we have to show that for any type τ such that # z : τ is derivable, # z : τ
is derivable. This is obvious.

Case: D =

D1
e1 ↪→ v1

ev s.
s e1 ↪→ s v1

Then

# s e1 : τ By assumption
# e1 : nat and τ = nat By inversion
# v1 : nat By ind. hyp. on D1
# s v1 : nat By rule tp s

Case: D =

D1
e1 ↪→ z

D2
e2 ↪→ v

ev case z.
(case e1 of z⇒ e2 | s x⇒ e3) ↪→ v

# (case e1 of z⇒ e2 | s x⇒ e3) : τ By assumption
# e2 : τ By inversion
# v : τ By ind. hyp. on D2
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Case: D =

D1
e1 ↪→ s v′1

D3
[v′1/x]e3 ↪→ v

ev case s.
(case e1 of z⇒ e2 | s x⇒ e3) ↪→ v

# (case e1 of z⇒ e2 | s x⇒ e3) : τ By assumption
x:nat # e3 : τ By inversion
# e1 : nat By inversion
# s v′1 : nat By ind. hyp. on D1
# v′1 : nat By inversion
# [v′1/x]e3 : τ By the Substitution Lemma 2.4
# v : τ By ind. hyp. on D3

Cases: If D ends in ev pair, ev fst, or ev snd we reason similar to cases above (see
Exercise 2.16).

Case: D = ev lam.
lam x. e ↪→ lam x. e

This case is immediate as for ev z.

Case: D =

D1
e1 ↪→ lam x. e′1

D2
e2 ↪→ v2

D3
[v2/x]e′1 ↪→ v

ev app.
e1 e2 ↪→ v

# e1 e2 : τ By assumption
# e1 : τ2 → τ and # e2 : τ2 for some τ2 By inversion
# lam x. e′1 : τ2 → τ By ind. hyp. on D1
x:τ2 # e′1 : τ By inversion
# v2 : τ2 By ind. hyp. on D2
# [v2/x]e′1 : τ By the Substitution Lemma 2.4
# v : τ By ind. hyp. on D3

Case: D =

D1
e1 ↪→ v1

D2
[v1/x]e2 ↪→ v

ev letv.
let val x = e1 in e2 ↪→ v

# let val x = e1 in e2 : τ By assumption
# e1 : τ1 and x:τ1 # e2 : τ for some τ1 By inversion
# v1 : τ1 By ind. hyp. on D1
# [v1/x]e2 : τ By the Substitution Lemma 2.4
# v : τ By ind. hyp. on D2
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Case: D =

D2
[e1/x]e2 ↪→ v

ev letn.
let name x = e1 in e2 ↪→ v

# let name x = e1 in e2 : τ By assumption
# [e1/x]e2 : τ By inversion
# v : τ By ind. hyp. on D2

Case: D =

D1
[fix x. e1/x]e1 ↪→ v

ev fix.
fix x. e1 ↪→ v

# fix x. e1 : τ By assumption
x : τ # e1 : τ By inversion
# [fix x. e1/x]e1 : τ By the Substitution Lemma 2.4
# v : τ By ind. hyp. on D1

It is important to recognize that this theorem cannot be proved by induction on
the structure of the expression e. The difficulty is most pronounced in the cases for
let and fix: The expressions in the premises of these rules are in general much larger
than the expressions in the conclusion. Similarly, we cannot prove type preservation
by an induction on the structure of the typing derivation of e.

2.7 Further Discussion

Ignoring details of concrete syntax, the Mini-ML language is completely specified
by its typing and evaluation rules. Consider a simple simple model of an interaction
with an implementation of Mini-ML consisting of two phases: type-checking and
evaluation. During the first phase the implementation only accepts expressions
e that are well-typed in the empty context, that is, # e : τ for some τ . In the
second phase the implementation constructs and prints a value v such that e ↪→ v
is derivable. This model is simplistic in some ways, for example, we ignore the
question which values can actually be printed or observed by the user. We will
return to this point in Section ??.
Our self-contained language definition by means of deductive systems does not

establish a connection between types, values, expressions, and mathematical objects
such as partial functions. This can be seen as the subject of denotational semantics.
For example, we understand intuitively that the expression

ss = lam x. s (s x)
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denotes the function from natural numbers to natural numbers that adds 2 to its
argument. Similarly,

pred0 = lam x. case x of z⇒ fix y. y | s x′ ⇒ x′

denotes the partial function from natural numbers to natural numbers that returns
the predecessor of any argument greater or equal to 1 and is undefined on 0. But
is this intuitive interpretation of expressions justified? As a first step, we establish
that the result of evaluation (if one exists) is unique. Recall that expressions that
differ only in the names of their bound variables are considered equal.

Theorem 2.6 (Uniqueness of Values) If e ↪→ v1 and e ↪→ v2 are derivable then
v1 = v2.

Proof: Straightforward (see Exercise 2.17).

Intuitively the type nat can be interpreted by the set of natural numbers. We
write vnat for values v such that # v : nat. It can easily be seen by induction on the
structure of the derivation of vnat Value that vnat could be defined inductively by

vnat ::= z | s vnat.

The meaning or denotation of a value vnat, [[vnat]], can be defined almost trivially as

[[z]] = 0
[[s vnat]] = [[vnat]] + 1.

It is immediate that this is a bijection between closed values of type nat and the
natural numbers. The meaning of an arbitrary closed expression enat of type nat
can then be defined by

[[enat]] =

{
[[v]] if enat ↪→ v is derivable
undefined otherwise

Determinism of evaluation (Theorem 2.6) tells us that v, if it exists, is uniquely
defined. Value soundness 2.1 tells us that v is indeed a value. Type preservation
(Theorem 2.5) tells us that v will be a closed expression of type nat and thus that
the meaning of an arbitrary expression of type nat, if it is defined, is a unique
natural number. Furthermore, we are justified in overloading the [[·]] notation for
values and arbitrary expressions, since values evaluate to themselves (Exercise 2.14).
Next we consider the meaning of expressions of functional type. Intuitively, if

# e : nat → nat, then the meaning of e should be a partial function from natural
numbers to natural numbers. We define this as follows:

[[e]](n) =

{
[[v2]] if e v1 ↪→ v2 and [[v1]] = n
undefined otherwise
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This definition is well-formed by reasoning similar to the above, using the observa-
tion that [[·]] is a bijection between closed values of type nat and natural numbers.
Thus we were justified in thinking of the type nat → nat as consisting of

partial functions from natural numbers to natural numbers. Partial functions in
mathematics are understood in terms of their input/output behavior rather than in
terms of their concrete definition; they are viewed extensionally. For example, the
expressions

ss = lam x. s (s x) and
ss ′ = fix f. lam x. case x of z⇒ s (s z) | s x′⇒ s (f x′)

denote the same function from natural numbers to natural numbers: [[ss]] = [[ss ′]].
Operationally, of course, they have very different behavior. Thus denotational se-
mantics induces a non-trivial notion of equality between expressions in our language.
On the other hand, it is not immediately clear how to take advantage of this equal-
ity due to its non-constructive nature. The notion of extensional equality between
partial recursive function is not recursively axiomatizable and therefore we cannot
write a complete deductive system to prove functional equalities. The denotational
approach can be extended to higher types (for example, functions that map func-
tions from natural numbers to natural numbers to functions from natural numbers
to natural numbers) in a natural way.
It may seem from the above development that the denotational semantics of

a language is uniquely determined. This is not the case: there are many choices.
Especially the mathematical domains we use to interpret expressions and the struc-
ture we impose on them leave open many possibilites. For more on the subject of
denotational semantics see, for example, [Gun92].
In the approach above, the meaning of an expression depends on its type. For

example, for the expression id = lam x. x we have # id : nat → nat and by the
reasoning above we can interpret it as a function from natural numbers to natural
numbers. We also have # id : (nat → nat) → (nat → nat), so it also maps
every function between natural numbers to itself. This inherent ambiguity is due
to our use of Curry’s approach where types are assigned to untyped expressions. It
can be remedied in two natural ways: we can construct denotations independently
of the language of types, or we can give meaning to typing derivations. In the
first approach, types can be interpreted as subsets of a universe from which the
meanings of untyped expressions are drawn. The disadvantage of this approach is
that we have to give meanings to all expressions, even those that are intuitively
meaningless, that is, ill-typed. In the second approach, we only give meaning to
expressions that have typing derivations. Any possible ambiguity in the assignment
of types is resolved, since the typing derivation will choose are particular type for the
expression. On the other hand we may have to consider coherence: different typing
derivations for the same expression and type should lead to the same meaning. At
the very least the meanings should be compatible in some way so that arbitrary
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decisions made during type inference do not lead to observable differences in the
behavior of a program. In the Mini-ML language we discussed so far, this property
is easily seen to hold, since an expression uniquely determines its typing derivation.
For more complex languages this may require non-trivial proof. Note that the
ambiguity problem does not usually arise when we choose a language presentation
in the style of Church where each expression contains enough type information to
uniquely determine its type.

2.8 Exercises

Exercise 2.1 Write Mini-ML programs for multiplication, exponentiation, sub-
traction, and a function that returns a pair of (integer) quotient and remainder of
two natural numbers.

Exercise 2.2 The principal type of an expression e is a type τ such that any type
τ ′ of e can be obtained by instantiating the type variables in τ . Even though types
in our formulation of Mini-ML are not unique, every well-typed expression has a
principal type [Mil78]. Write Mini-ML programs satisfying the following informal
specifications and determine their principal types.

1. compose f g to compute the composition of two functions f and g.

2. iterate n f x to iterate the function f n times over x.

Exercise 2.3 Write down the evaluation of plus2 (s z) (s z), given the definition
of plus2 in the example on page 11.

Exercise 2.4 Write out the typing derivation that shows that the function double
on page 17 is well-typed.

Exercise 2.5 Explore a few alternatives to the definition of expressions given in
Section 2.1. In each case, give the relevant inference rules for evaluation and typing.

1. Add a type of Booleans and replace the constructs concerning natural numbers
by

e ::= . . . | z | s e | pred e | zerop e

2. Replace the constructs concerning pairs by

e ::= . . . | pair | fst | snd

3. Replace the constructs concerning pairs by

e ::= . . . | 〈e1, e2〉 | split e1 as 〈x1, x2〉 ⇒ e2
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Exercise 2.6 One might consider replacing the rule ev fst by

e1 ↪→ v1
ev fst′.

fst 〈e1, e2〉 ↪→ v1

Show why this is incorrect.

Exercise 2.7 Consider an extension of the language by the unit type 1 (often
written as unit) and disjoint sums τ1 + τ2:

τ ::= . . . | 1 | (τ1 + τ2)
e ::= . . . | 〈 〉 | inl e | inr e | (case e1 of inl x2 ⇒ e2 | inr x3 ⇒ e3)

For example, an alternative to the predecessor function might return 〈 〉 if the argu-
ment is zero, and the predecessor otherwise. Because of the typing discipline, the
expression

pred ′ = lam x. case x of z⇒ 〈 〉 | s x′ ⇒ x′

is not typable. Instead, we have to inject the values into a disjoint sum type:

pred ′ = lam x. case x of z⇒ inl 〈 〉 | s x′ ⇒ inr x′

so that
# pred ′ : nat→ (1 + nat)

Optional values of type τ can be modelled in general by using the type (1 + τ).

1. Give appropriate rules for evaluation and typing.

2. Extend the notion of value.

3. Extend the proof of value soundness (Theorem 2.1).

4. Extend the proof type preservation (Theorem 2.5).

Exercise 2.8 Consider a language extension

τ ::= . . . | τ∗.

where τ∗ is the type of lists whose members have type τ . Introduce appropriate
value constructor and destructor expressions and proceed as in Exercise 2.7.

Exercise 2.9 In this exercise we explore the operation of substitution in some
more detail than in Section 2.2. We limit ourselves to the fragment containing
lam-abstraction and application.

1. Define x free in e which should hold when the variable x occurs free in e.
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2. Define e =α e′ which should hold when e and e′ are alphabetic variants, that
is, they differ only in the names assigned to their bound variables as explained
in Section 2.2.

3. Define [e′/x]e, the result of substituting e′ for x in e. This operation should
avoid capture of variables free in e′ and the result should be unique up to
renaming of bound variables.

4. Prove [e′/x]e =α e if x does not occur free in e′.

5. Prove [e2/x2]([e1/x1]e) =α [([e2/x2]e1)/x1]([e2/x2]e), provided x1 does not
occur free in e2.

Exercise 2.10 In this exercise we will explore different ways to treat errors in the
semantics.

1. Assume there is a new value error of arbitary type and modify the operational
semantics appropriately. You may assume that only well-typed expressions are
evaluated. For example, evaluation of s (lam x. x) does not need to result in
error.

2. Add an empty type 0 (often called void) containing no values. Are there
any closed expressions of type 0? Add a new expression form abort e which
has arbitrary type τ whenever e has type 0, but add no evaluation rules for
abort. Do the value soundness and type preservation properties extend to
this language? How does this language compare to the one in item 1.

3. An important semantic property of type systems is often summarized as “well-
typed programs cannot go wrong.” The meaning of ill-typed expressions such
as fst z would be defined as a distinguished semantic value wrong (in contrast
to intuitively non-terminating expressions such as fix x. x) and it is then
shown that no well-typed expression has meaning wrong. A related phrase
is that in statically typed languages “no type-errors can occur at runtime.”
Discuss how these properties might be expressed in the framework presented
here and to what extent they are already reflected in the type preservation
theorem.

Exercise 2.11 In the language Standard ML [MTH90], occurrences of fixed point
expressions are syntactially restricted to the form fix x. lam y. e. This means that
evaluation of a fixed point expression always terminates in one step with the value
lam y. [fix x. lam y. e/x]e.
It has occasionally been proposed to extend ML so that one can construct re-

cursive values. For example, ω = fix x. s x would represent a “circular value”
s (s . . .) which could not be printed finitely. The same value could also be defined,
for example, as ω′ = fix x. s (s x).
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In our language, the expressions ω and ω′ are not values and, in fact, they do
not even have a value. Intuitively, their evaluation does not terminate.
Define an alternative semantics for the Mini-ML language that permits recursive

values. Modify the definition of values and the typing rules as necessary. Sketch the
required changes to the statements and proofs of value soundness, type preservation,
and uniqueness of values. Discuss the relative merits of the two languages.

Exercise 2.12 Explore an alternative operational semantics in which expressions
that are known to be values (since they have been evaluated) are not evaluated
again. State and prove in which way the new semantics is equivalent to the one
given in Section 2.3.
Hint: It may be necessary to extend the language of expressions or explicitly
separate the language of values from the language of expressions.

Exercise 2.13 Specify a call-by-name operational semantics for our language,
where function application is given by

e1 ↪→ lam x. e′1 [e2/x]e
′
1 ↪→ v ev app.

e1 e2 ↪→ v

We would like constructors (successor and pairing) to be lazy, that is, they should
not evaluate their arguments. Consider if it still makes sense to have let val and
let name and what their respective rules should be. Modify the affected inference
rules, define the notion of a lazy value, and prove that call-by-name evaluation
always returns a lazy value. Furthermore, write a function observe : nat → nat
that, given a lazy value of type nat, returns the corresponding eager value if it
exists.

Exercise 2.14 Prove that v Value is derivable if and only if v ↪→ v is derivable.
That is, values are exactly those expressions that evaluate to themselves.

Exercise 2.15 A replacement lemma is necessary in some formulations of the type
preservation theorem. It states:

If, for any type τ ′, # e′1 : τ
′ implies # e′2 : τ

′, then # [e′1/x]e : τ implies
# [e′2/x]e : τ .

Prove this lemma. Be careful to generalize as necessary and clearly exhibit the
structure of the induction used in your proof.

Exercise 2.16 Complete the proof of Theorem 2.5 by giving the cases for ev pair,
ev fst, and ev snd.

Exercise 2.17 Prove Theorem 2.6.
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Exercise 2.18 (Non-Determinism) Consider a non-deterministic extension of Mini-
ML with two new expression constructors ◦ and e1 ⊕ e2 with the evaluation rules

e1 ↪→ v
ev choice1

e1 ⊕ e2 ↪→ v

e2 ↪→ v
ev choice2

e1 ⊕ e2 ↪→ v

Thus, ⊕ signifies non-deterministic choice, while ◦ means failure (choice between
zero alternatives).

1. Modify the type system and extend the proofs of value soundness and type
preservation.

2. Write an expression that may evaluate to an arbitrary natural number.

3. Write an expression that may evaluate precisely to the numbers that are not
prime.

4. Write an expression that may evaluate precisely to the prime numbers.

Exercise 2.19 (General Pattern Matching) Patterns for Mini-ML can be defined
by

Patterns p ::= x | z | s p | 〈p1, p2〉.
Devise a version of Mini-ML where case (for natural numbers), fst, and snd are
replaced by a single form of case-expression with arbitrarily many branches. Each
branch has the form p⇒ e, where the variables in p are bound in e.

1. Define an operational semantics.

2. Define typing rules.

3. Prove type preservation and any lemmas you may need. Show only the critical
cases in proofs that are very similar to the ones given in the notes.

4. Is your language deterministic? If not, devise a restriction that makes your
language deterministic.

5. Does your operational semantics require equality on expressions of functional
type? If yes, devise a restriction that requires equality only on observable
types—in this case (inductively) natural numbers and products of observable
type.

Exercise 2.20 Prove that the expressions let val x = e1 in e2 and (lam x. e2) e1
are equivalent in sense that

1. for any context Γ, Γ # let val x = e1 in e2 : τ iff Γ # (lam x. e2) e1 : τ , and

2. letval x = e1 in e2 ↪→ v iff (lam x. e2) e1 ↪→ v.
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Is this sufficient to guarantee that if we replace one expression by the other some-
where in a larger program, the value of the whole program does not change?

Exercise 2.21 Carefully define a notion of subexpression for Mini-ML and prove
that if Γ # e : τ then every subexpression e′ of e is also well-typed in an appropriate
context.



Chapter 3

Formalization in a Logical
Framework

We can look at the current field of problem solving by computers
as a series of ideas about how to present a problem. If a problem
can be cast into one of these representations in a natural way, then
it is possible to manipulate it and stand some chance of solving it.

— Allen Newell,
Limitations of the Current Stock of Ideas for Problem Solving [New65]

In the previous chapter we have seen a typical application of deductive systems
to specify and prove properties of programming languages. In this chapter we
present techniques for the formalization of the languages and deductive systems
involved. In the next chapter we show how these formalization techniques can lead
to implementations.
The logical framework we use in these notes is called LF and sometimes ELF (for

Edinburgh Logical Framework), not to be confused with Elf, which is the program-
ming language based on the LF logical framework we introduce in Chapter 4. LF
was introduced by Harper, Honsell, and Plotkin [HHP93]. It has its roots in similar
languages used in the project Automath [dB68, NGdV94]. LF has been explicitly
designed as a meta-language for high-level specification of languages in logic and
computer science and thus provides natural support for many of the techniques we
have seen in the preceding chapter. For example, it can capture the convention that
expressions that differ only in the names of bound variables are identified. Similarly,
contexts and variable lookup as they arise in the typing judgment can be modelled
concisely. The fact that these techniques are directly supported by the logical frame-
work is not just a matter of engineering an implementation of the deductive systems
in question, but it will be a crucial factor for the succinct implementation of proofs

37
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of meta-theorems such as type preservation.
By codifying formalization techniques into a meta-language, a logical framework

also provides insight into principles of language presentation. Just as it is interesting
to know if a mathematical proof depends on the axiom of choice or the law of
excluded middle, a logical framework can be used to gauge the properties of the
systems we are investigating.
The formalization task ahead of us consists of three common stages. The first

stage is the representation of abstract syntax of the object language under investi-
gation. For example, we need to specify the languages of expressions and types of
Mini-ML. The second stage is the representation of the language semantics. This
includes the static semantics (for example, the notion of value and the type system)
and the dynamic semantics (for example, the operational semantics). The third
stage is the representation of meta-theory of the language (for example, the proof of
type preservation). Each of these uses its own set of techniques, some of which are
explained in this chapter using the example of Mini-ML from the preceding chapter.
In the remainder of this chapter we introduce the framework in stages, always

motivating new features using our example. The final summary of the system is
given in Section 3.8 at the end of this chapter.

3.1 The Simply-Typed Fragment of LF

For the representation of the abstract syntax of a language, the simply-typed λ-
calculus (λ→) is usually adequate. When we tackle the task of representing inference
rules, we will have to refine the type system by adding dependent types. The reader
should bear in mind that λ→ should not be considered as a functional programming
language, but only as a representation language. In particular, the absence of
recursion will be crucial in order to guarantee adequacy of representations. Our
formulation of the simply-typed λ-calculus has two levels: the level of types and the
level of objects, where types classify objects. Furthermore, we have signatures which
declare type and object constants, and contexts which assign types to variables.
Unlike Mini-ML, the presentation is given in the style of Church: every object
will have a unique type. This requires that types appear in the syntax of objects
to resolve the inherent ambiguity of certain functions, for example, the identity
function. We let a range over type constants, c over object constants, and x over
variables.

Types A ::= a | A1 → A2
Objects M ::= c | x | λx:A. M |M1 M2
Signatures Σ ::= · | Σ, a:type | Σ, c:A
Contexts Γ ::= · | Γ, x:A

We make the general restriction that constants and variables can occur at most
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once in a signature or context, respectively. We will write Σ(c) = A if c:A occurs
in Σ and Σ(a) = type if a:type occurs in Σ. Similarly Γ(x) = A if x:A occurs in Γ.
We will use A and B to range over types, and M and N to range over objects. We
refer to type constants a as atomic types and types of the form A→ B as function
types.
The judgments defining λ→ are

+Σ A : type A is a valid type

Γ +Σ M : A M is a valid object of type A in context Γ

+ Σ Sig Σ is a valid signature

+Σ Γ Ctx Γ is a valid context

They are defined via the following inference rules.

Σ(c) = A
con

Γ +Σ c : A

Γ(x) = A
var

Γ +Σ x : A

+Σ A : type Γ, x:A +Σ M : B
lam

Γ +Σ λx:A. M : A→ B

Γ +Σ M : A→ B Γ +Σ N : A app
Γ +Σ M N : B

Σ(a) = type
tcon

+Σ a : type

+Σ A : type +Σ B : type
arrow

+Σ A→ B : type

esig
+ · Sig

+ Σ Sig
tconsig

+ Σ, a:type Sig

+ Σ Sig +Σ A : type
consig

+ Σ, c:A Sig

ectx
+Σ · Ctx

+Σ Γ Ctx +Σ A : type
varctx

+Σ Γ, x:A Ctx
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The rules for valid objects are somewhat non-standard in that they contain no
check whether the signature Σ or the context Γ are valid. These are often added to
the base cases, that is, the cases for variables and constants. We can separate the
validity of signatures, since the signature Σ does not change in the rules for valid
types and objects, Furthermore, the rules guarantee that if we have a derivation
D :: Γ +Σ M : A and Γ is valid, then every context appearing in D is also valid. This
is because the type A in the lam rule is checked for validity as it is added to the
context. For an alternative formulation see Exercise 3.1.
Our formulation of the simply-typed λ-calculus above is parameterized by a

signature in which new constants can be declared. In contrast, our formulation of
Mini-ML has only a fixed set of constants and constructors. So far, we have left
the dynamic semantics of λ→ unspecified. We later consider canonical forms as
an analogue to Mini-ML values and conversion to canonical form as an analogue
to evaluation. However, every well-typed λ→ object has a canonical form, while
not every well-typed Mini-ML expression evaluates to a value. Moreover, we will
start with a notion of definitional equality rather than an operational semantics.
These differences illustrate that the similarity between Mini-ML as a programming
language and λ→ as a representation language are rather superficial.
The notion of definitional equality for objects in λ→, written as M ≡ N , can be

based on three conversions. The first is α-conversion: two objects are considered
identical if they differ only in the names of their bound variables. The second is
β-conversion: (λx:A. M) N ≡ [N/x]M . It employs substitution [N/x]M which
renames bound variables to avoid variable capture. The third is derived from an
extensionality principle. Roughly, two objects of functional type should be equal if
applying them to equal arguments yields equal results. This can be incorporated
by the rule of η-conversion: (λx:A. M x) ≡ M provided x does not occur free
in M . The conversion rules can be applied to any subobject of an object M to
obtain an object M ′ that is definitionally equal to M . Furthermore the relation
of definitional equality is assumed to be an equivalence relation. We define the
conversion judgment more formally in Section 3.8, once we have seen which role it
plays in the logical framework.

3.2 Higher-Order Abstract Syntax

The first task in the formalization of a language in a logical framework is the rep-
resentation of its expressions. We base the representation on abstract (rather than
concrete) syntax in order to expose the essential structure of the object language so
we can concentrate on semantics and meta-theory, rather than details of lexical anal-
ysis and parsing. The representation technique we use is called higher-order abstract
syntax. It is supported by the simply-typed fragment λ→ of the logical framework
LF. The idea of higher-order abstract syntax goes back to Church [Chu40] and has
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since been employed in a number of different contexts and guises. Church observed
that once λ-notation is introduced into a language, all constructs that bind vari-
ables can be reduced to λ-abstraction. If we apply this principle in a setting where
we distinguish a meta-language (the logical framework) from an object language
(Mini-ML, in this example) then variables in the object language are represented
by variables in the meta-language. Variables bound in the object language (by con-
structs such as case, lam, let, and fix) will be bound by λ in the meta-language.
This has numerous advantages and a few disadvantages over the more immediate
technique of representing variables by strings; some of the trade-offs are discussed
in Section 3.10.
In the development below it is important not to confuse the typing of Mini-

ML expressions with the type system employed by the logical framework, even
though some overloading of notation is unavoidable. For example, “:” is used in
both systems. For each (abstract) syntactic category of the object language we
introduce a new type constant in the meta-language via a declaration of the form
a:type. Thus, in order to represent Mini-ML expressions we declare a type exp in
the meta-language. Since the representation techniques do not change when we
generalize from the simply-typed λ-calculus to LF, we refer to the meta-language
as LF throughout.

exp : type

We intend that every LF object M of type exp represents a Mini-ML expression
and vice versa. The Mini-ML constant z is now represented by an LF constant z
declared in the meta-language to be of type exp.

z : exp

The successor s is an expression constructor. It is represented by a constant of
functional type that maps expressions to expressions so that, for example, s z has
type exp.

s : exp→ exp

We now introduce the function !·" which maps Mini-ML expressions to their
representation in the logical framework. Later we will use !·" generically for repre-
sentation functions. So far we have

!z" = z
!s e" = s !e".

We would like to achieve that !e" has type exp in LF, given appropriate declara-
tions for constants representing Mini-ML expression constructors. The constructs
that do not introduce bound variables can be treated in a straightforward manner.
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!z" = z z : exp
!s e" = s !e" s : exp→ exp

!〈e1, e2〉" = pair !e1" !e2" pair : exp→ exp→ exp
!fst e" = fst !e" fst : exp→ exp
!snd e" = snd !e" snd : exp→ exp
!e1 e2" = app !e1" !e2" app : exp→ exp→ exp

Traditionally, one might now represent lam x. e by lam !x" !e", where !x"may
be a string or have some abstract type of identifier. This approach leads to a rela-
tively low-level representation, since renaming of bound variables, capture-avoiding
substitution, etc. as given in Section 2.2 now need to be axiomatized explicitly. Us-
ing higher-order abstract syntax means that variables of the object language (the
language for which we are designing a representation) are represented by variables in
the meta-language (the logical framework). Variables bound in the object language
must then be bound correspondingly in the meta-language. As a first and immedi-
ate benefit, expressions which differ only in the names of their bound variables will
be α-convertible in the meta-language. This leads to the representation

!x" = x
!lam x. e" = lam (λx:exp. !e") lam : (exp→ exp)→ exp.

Recall that LF requires explicit types wherever variables are bound by λ, and free
variables must be assigned a type in a context. Note also that the two occurrences
of x in the first line above represent two variables with the same name in different
languages, Mini-ML and LF. One can allow explicit renaming in the translation,
but it complicates the presentation unnecessarily. The four remaining Mini-ML
constructs, case, letval, let name, and fix, also introduce binding operators. Their
representation follows the scheme for lam, taking care that variables bound in Mini-
ML are also bound at the meta-level and have proper scope. For example, the
representation of letval x = e1 in e2 reflects that x is bound in e2 but not in e1.

!case e1 of z⇒ e2 | s x⇒ e3" = case !e1" !e2" (λx:exp. !e3")
!letval x = e1 in e2" = letv !e1" (λx:exp. !e2")

!let name x = e1 in e2" = letn !e1" (λx:exp. !e2")
!fix x. e" = fix (λx:exp. !e")

Hence we have

case : exp→ exp→ (exp→ exp)→ exp
letv : exp→ (exp→ exp)→ exp
letn : exp→ (exp→ exp)→ exp
fix : (exp→ exp)→ exp.
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As an example, consider the program double from page 17.

!fix f. lam x. case x of z⇒ z | s x′ ⇒ s (s (f x′))"
= fix (λf :exp. lam (λx:exp. case x z (λx′:exp. s (s (app f x′)))))

One can easily see that the object on the right-hand side is valid and has type exp,
given the constant declarations above.
The next step will be to formulate (and later prove) what this representation

accomplishes, namely that every expression has a representation, and every LF
object of type exp constructed with constants from the signature above represents an
expression. In practice we want a stronger property, namely that the representation
function is a compositional bijection, something we will return to later in this chapter
in Section 3.3.
Recall that +Σ is the typing judgment of LF. We fix the signature E to contain

all declarations above starting with exp:type through fix:(exp → exp) → exp. At
first it might appear that we should be able to prove:

1. For any Mini-ML expression e, +E !e" : exp.

2. For any LF object M such that +E M : exp, there is a Mini-ML expression e
such that !e" =M .

As stated, neither of these two propositions is true. The first one fails due to the
presence of free variables in e and therefore in !e" (recall that object-language
variables are represented as meta-language variables). The second property fails
because there are many objects M of type exp that are not in the image of !·".
Consider, for example, (λx:exp. x) z for which it is easy to show that

+E (λx:exp. x) z : exp.

Examining the representation function reveals that the resulting LF objects contain
no β-redices, that is, no objects of the form (λx:A. M) N .
A more precise analysis later yields the related notion of canonical form. Tak-

ing into account free variables and restricting ourselves to canonical forms (yet to
be defined), we can reformulate the proposition expressing the correctness of the
representation.

1. Let e be a Mini-ML expression with free variables among x1, . . . , xn. Then
x1:exp, . . . , xn:exp +E !e" : exp, and !e" is in canonical form.

2. For any canonical form M such that x1:exp, . . . , xn:exp +E M : exp there is a
Mini-ML expression e with free variables among x1, . . . , xn such that !e" =M .

It is a deep property of LF that every valid object is definitionally equal to a unique
canonical form. Thus, if we want to answer the question which Mini-ML expression
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is represented by a non-canonical object M of type exp, we convert it to canonical
form M ′ and determine the expression e represented directly by M ′.
The definition of canonical form is based on two observations regarding the

inverse of the representation function. The first is that if we are considering an LF
object M of type exp we can read off the top-level constructor (the alternative in
the definition of Mini-ML expressions) if the term has the form c M1 . . .Mn, where
c is one of the LF constants in the signature defining Mini-ML expressions. For
example, ifM has the form (sM1) we know that M represents an expression of the
form s e1, where M1 is the representation of e1.
The second observation is less obvious. Let us consider an LF object of type

exp → exp. Such objects arise in the representation, for example, in the second
argument to letv, which has type exp→ (exp→ exp)→ exp. For example,

!letval x = s z in 〈x, x〉" = letv (s z) (λx:exp. pair x x).

The argument (λx:exp. pair x x) represents the body of the let-expression, ab-
stracted over the let-bound variable x. Since we model the scope of a bound
variable in the object language by the scope of a corresponding λ-abstraction in the
meta-language, we always expect an object of type exp→ exp to be a λ-abstraction.
As a counterexample consider the object

letv (pair (s z) z) fst

which is certainly well-typed in LF and has type exp, since fst : exp → exp. This
object is not the image of any expression e under the representation function !·".
However, there is an η-equivalent object, namely

letv (pair (s z) z) (λx:exp. fst x)

which represents let val x = 〈s z, z〉 in fst x.
We can summarize these two observations as the following statement constrain-

ing our definition of canonical forms.

1. A canonical object of type exp should either be a variable or have the form
c M1 . . .Mn, where M1, . . . ,Mn are again canonical; and

2. a canonical object of type exp→ exp should have the form λx:exp. M1, where
M1 is again canonical.

Returning to an earlier counterexample, ((λx:exp. x) z), we notice that it is not
canonical, since it is of atomic type (exp), but does not have the form of a constant
applied to some arguments. In this case, there is a β-equivalent object which is
canonical form, namely z. In general each valid object has a βη-equivalent object
in canonical form, but this is a rather deep theorem about LF.
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For the representation of more complicated languages, we have to generalize the
observations above and allow an arbitrary number of type constants (rather than
just exp) and allow arguments to variables. We write the general judgment as

Γ +Σ M ⇑ A M is canonical of type A.

This judgment is defined by the following inference rules. Recall that a stands
for constants at the level of types.

+Σ A : type Γ, x:A +Σ M ⇑ B
carrow

Γ +Σ λx:A. M ⇑ A→ B

Σ(c) = A1 → · · ·→ An → a Γ +Σ M1 ⇑ A1 . . . Γ +Σ Mn ⇑ An
conapp

Γ +Σ c M1 . . .Mn ⇑ a

Γ(x) = A1 → · · ·→ An → a Γ +Σ M1 ⇑ A1 . . . Γ +Σ Mn ⇑ An
varapp

Γ +Σ x M1 . . .Mn ⇑ a

This judgment singles out certain valid objects, as the following theorem shows.

Theorem 3.1 (Validity of Canonical Objects) Let Σ be a valid signature and Γ a
context valid in Σ. If Γ +Σ M ⇑ A then Γ +Σ M : A.

Proof: See Exercise 3.2 and Section 3.9.

The simply-typed λ-calculus we have introduced so far has some important
properties. In particular, type-checking is decidable, that is, it is decidable if a given
object is valid. It is also decidable if a given object is in canonical form, and every
well-typed object can effectively be converted to a unique canonical form. Further
discussion and proof of these and other properties can be found in Section ??.

3.3 Representing Mini-ML Expressions

In order to obtain a better understanding of the representation techniques, it is
worthwile to state in full detail and carry out the proofs that the representation of
Mini-ML introduced in this chapter is correct. First, we summarize the representa-
tion function and the signature E defining the abstract syntax of Mini-ML.
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!z" = z
!s e" = s !e"

!case e1 of z⇒ e2 | s x⇒ e3" = case !e1" !e2" (λx:exp. !e3")
!〈e1, e2〉" = pair !e1" !e2"
!fst e" = fst !e"
!snd e" = snd !e"

!lam x. e" = lam (λx:exp. !e")
!e1 e2" = app !e1" !e2"

!letval x = e1 in e2" = letv !e1" (λx:exp. !e2")
!let name x = e1 in e2" = letn !e1" (λx:exp. !e2")

!fix x. e" = fix (λx:exp. !e")
!x" = x

exp : type
z : exp
s : exp→ exp
case : exp→ exp→ (exp→ exp)→ exp
pair : exp→ exp→ exp
fst : exp→ exp
snd : exp→ exp
lam : (exp→ exp)→ exp
app : exp→ exp→ exp
let : exp→ (exp→ exp)→ exp
fix : (exp→ exp)→ exp

Lemma 3.2 (Validity of Representation) For any context Γ = x1:exp, . . . , xn:exp
and Mini-ML expression e with free variables among x1, . . . , xn,

Γ +E !e" ⇑ exp

Proof: The proof is a simple induction on the structure of e. We show three
representative cases—the others follow similarly.

Case: e = z. Then !z" = z and Γ +E z ⇑ exp.

Case: e = e1 e2. Then !e" = app !e1" !e2". By induction hypothesis there are
derivations

D1 :: Γ +E !e1" ⇑ exp, and
D2 :: Γ +E !e2" ⇑ exp.



3.3. REPRESENTING MINI-ML EXPRESSIONS 47

Since E(app) = exp→ exp→ exp we can apply rule conapp from the definition
of canonical forms to D1 and D2 to conclude that

Γ +E app !e1" !e2" ⇑ exp

is derivable.

Case: e = (letval x = e1 in e2). Then !e" = let !e1" (λx:exp. !e2"). Note
that if e has free variables among x1, . . . , xn, then e2 has free variables among
x1, . . . , xn, x. Hence, by induction hypothesis, we have derivations

D1 :: Γ +E !e1" ⇑ exp, and
D2 :: Γ, x:exp +E !e2" ⇑ exp.

Applying rule carrow yields the derivation

E(exp) = type
con

+E exp : type
D2

Γ, x:exp +E !e2" ⇑ exp
carrow

Γ +E λx:exp. !e2" ⇑ exp→ exp

Using this derivation, E(let) = exp→ (exp → exp) → exp, derivation D1 and
rule conapp yields a derivation of

Γ +E let !e1" (λx:exp. !e2") ⇑ exp,

which is what we needed to show.

Next we define the inverse of the representation function, #·$. We need to keep
in mind that it only needs to be defined on canonical forms of type exp.

#z$ = z
#sM$ = s #M$

#caseM1 M2 (λx:exp. M3)$ = case #M1$ of z⇒ #M2$ | s x⇒ #M3$
#pairM1 M2$ = 〈#M1$, #M2$〉

#fstM$ = fst #M$
#sndM$ = snd #M$

#lam (λx:exp. M)$ = lam x. #M$
#appM1 M2$ = #M1$ #M2$

#letvM1 (λx:exp. M2)$ = letval x = #M1$ in #M2$
#letn M1 (λx:exp. M2)$ = letname x = #M1$ in #M2$

#fix (λx:exp. M)$ = fix x. #M$
#x$ = x
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Lemma 3.3 For any Γ = x1:exp, . . . , xn:exp and M such that Γ +E M ⇑ exp, #M$
is defined and yields a Mini-ML expression such that !#M$" =M .

Proof: The proof is by induction on the structure of the derivation D of Γ +E M ⇑
exp. Note that D cannot end with an application of the carrow rule, since exp is
atomic.

Case: D ends in varapp. From the form of Γ we know that x = xi for some i and
x has no arguments. Hence #M$ = #x$ = x is defined.

Case: D ends in conapp. Then c must be one of the constants in E. We now
further distinguish subcases, depending on c. We only show three subcases;
the others follow similarly.

Subcase: c = z. Then c has no arguments and #M$ = #z$ = z, which is a
Mini-ML expression. Furthermore, !z" = z.

Subcase: c = app. Then c has two arguments, #M$ = #app M1 M2$ =
#M1$ #M2$, and, suppressing the premise E(app) = exp → exp → exp,
D has the form

D1
Γ +E M1 ⇑ exp

D2
Γ +E M2 ⇑ exp

conapp
Γ +E appM1 M2 ⇑ exp

By the induction hypothesis on D1 and D2, #M1$ and #M2$ are defined
and therefore #M$ = #M1$ #M2$ is also defined. Furthermore, !#M$" =
!#M1$ #M2$" = app !#M1$" !#M2$" = app M1 M2, where the last
equality follows by the induction hypothesis on M1 and M2.

Subcase: c = letv. Then c has two arguments and, suppressing the premise
E(letv) = exp→ (exp→ exp)→ exp, D has the form

D1
Γ +E M1 ⇑ exp

D2
Γ +E M2 ⇑ exp→ exp

conapp
Γ +E letvM1 M2 ⇑ exp

There is only one inference rule which could have been used as the last
inference in D2, namely carrow. Hence, by inversion, D2 must have the
form

D′2
Γ, x:exp +E M ′2 ⇑ exp

carrow
Γ +E λx:exp. M ′2 ⇑ (exp→ exp)

where M2 = λx:exp. M ′2. Then

#M$ = #letvM1 (λx:exp. M ′2)$ = (let val x = #M1$ in #M ′2$)
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which is a Mini-ML expression by induction hypothesis on D1 and D′2.
We reason as in the previous cases that here, too, !#M$" =M .

Lemma 3.4 For any Mini-ML expression e, #!e"$ = e.

Proof: The proof is a simple induction over the structure of e (see Exercise 3.3).

The final lemma of this section asserts compositionality of the representation
function, connecting meta-level substitution with object-level substitution. We only
state this lemma for substitution of a single variable, but other, more general vari-
ants are possible. This lemma gives a formal expression to the statement that the
representation of a compound expression is constructed from the representations of
its immediate constituents. Note that in the statement of the lemma, the substitu-
tion on the left-hand side of the equation is substitution in the Mini-ML language
as defined in Section 2.2, while on the right-hand side we have substitution at the
level of the framework.

Lemma 3.5 (Compositionality) ![e1/x]e2" = [!e1"/x]!e2".

Proof: The proof is by induction on the structure of e2. We show three cases—the
remaining ones follow the same pattern.

Case: e2 = x. Then

![e1/x]e2" = ![e1/x]x" = !e1" = [!e1"/x]x = [!e1"/x]!e2".

Case: e2 = y and y '= x. Then

![e1/x]e2" = ![e1/x]y" = y = [!e1"/x]y = [!e1"/x]!e2".

Case: e2 = (let val y = e′2 in e
′′
2 ), where y '= x and y is not free in e1. Note that

this condition can always be achieved via renaming of the bound variable y.
Then

= ![e1/x]e2"
= ![e1/x](letval y = e′2 in e′′2 )"
= !letval y = [e1/x]e′2 in [e1/x]e′′2"
= letv ![e1/x]e′2" (λy:exp. ![e1/x]e′′2")
= letv ([!e1"/x]!e′2") (λy:exp. [!e1"/x]!e′′2") by induction hypothesis
= [!e1"/x](letv !e′2" (λy:exp. !e′′2"))
= [!e1"/x]!letval y = e′2 in e′′2"
= [!e1"/x]!e2".
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We usually summarize Lemmas 3.2, 3.3, 3.4, and 3.5 into a single adequacy
theorem, whose proof is is immediate from the preceding lemmas.

Theorem 3.6 (Adequacy) There is a bijection !·" between Mini-ML expressions
with free variables among x1, . . . , xn and (canonical) LF objects M such that

x1:exp, . . . , xn:exp +E M ⇑ exp

is derivable. The bijection is compositional in the sense that

![e1/x]e2" = [!e1"/x]!e2".

3.4 Judgments as Types

So far, we have only discussed the representation of the abstract syntax of a lan-
guage, taking advantage of the expressive power of the simply-typed λ-calculus.
The next step is the representation of deductions. The general approach is to rep-
resent deductions as objects and judgments as types. For example, given closed
expressions e and v and a deduction

D
e ↪→ v

we would like to establish that

+EV !D" ⇑ !e ↪→ v",

where !·" is again a representation function and EV is an LF signature from which
the constants in !D" are drawn. That is, the representation of D is a canonical
object of type !e ↪→ v". The main difficulty will be achieving the converse, namely
that if

+EV M ⇑ !e ↪→ v"
then there is a deduction D such that !D" =M .
As a first approximation, assume we declare a type eval of evaluations, similar

to the way we declared a type exp of Mini-ML expressions.

eval : type

An axiom would simply be represented as a constant of type eval. An inference rule
can be viewed as a constructor which, given deductions of the premises, yields a
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deduction of the conclusion. For example, the rules

ev z
z ↪→ z

e ↪→ v
ev s

s e ↪→ s v

e1 ↪→ z e2 ↪→ v
ev case z

(case e1 of z⇒ e2 | s x⇒ e3) ↪→ v

would be represented by

ev z : eval
ev s : eval→ eval
ev case z : eval→ eval→ eval.

One can easily see that this representation is not faithful: the declaration of a
constant in the signature contains much less information than the statement of the
inference rule. For example,

+EV ev case z (ev s ev z) ev z ⇑ eval

would be derivable, but the object above does not represent a valid evaluation. The
problem is that the first premise of the rule ev case z must be an evaluation yielding
z, while the corresponding argument to ev case z, namely (ev s ev z), represents an
evaluation yielding s z.
One solution to this representation problem is to introduce a validity predicate

and define when a given object of type eval represents a valid deduction. This is,
for example, the solution one would take in a framework such as higher-order Horn
clauses or hereditary Harrop formulas. This approach is discussed in a number of
papers [MNPS91, Pau86] and also is the basis for the logic programming language
λProlog [NM99] and the theorem prover Isabelle [Pau94]. Here we take a different
approach in that we refine the type system instead in such a way that only the
representations of valid deductions (evaluations, in this example) will be well-typed
in the meta-language. This has a number of methodological advantages. Perhaps
the most important is that checking the validity of a deduction is reduced to a type-
checking problem in the logical framework. Since LF type-checking is decidable, this
means that checking deductions of the object language is automatically decidable,
once a suitable representation in LF has been chosen.
But how do we refine the type system so that the counterexample above is

rejected as ill-typed? It is clear that we have to subdivide the type of all evaluations
into an infinite number of subtypes: for any expression e and value v there should be
a type of deductions of e ↪→ v. Of course, many of of these types should be empty.
For example, there is no deduction of the judgment s z ↪→ z. These considerations
lead to the view that eval is a type family indexed by representations of e and v.
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Following our representation methodology, both of these will be LF objects of type
exp. Thus we have types, such as (eval z z) which depend on objects, a situation
which can easily lead to an undecidable type system. In the case of LF we can
preserve decidability of type-checking (see Section 3.5). A first approximation to a
revision of the representation for evaluations above would be

eval : exp→ exp→ type
ev z : eval z z
ev s : eval E V → eval (s E) (s V )
ev case z : eval E1 z→ eval E2 V → eval (case E1 E2 E3) V.

The declarations of ev s and ev case z are schematic in the sense that they are
intended to represent all instances with valid objects E, E1, E2, E3, and V of
appropriate type. With these declarations the object (ev case z (ev s ev z) ev z)
is no longer well-typed, since (ev s ev z) has type eval (s z) (s z), while the first
argument to ev case z should have type eval E1 z for some E1.

Although it is not apparent in this example, allowing unrestricted schematic
declarations would lead to an undecidable type-checking problem for LF, since it
would require a form of higher-order unification. Instead we add E1, E2, E3, and
V as explicit arguments to ev case z. In practice this is often unnecessary and
the Elf programming language allows schematic declarations in the form above
and performs type reconstruction. A simple function type (formed by →) is not
expressive enough to capture the dependencies between the various arguments. For
example,

ev case z : exp→ exp→ (exp→ exp)→ exp
→ eval E1 z→ eval E2 V → eval (case E1 E2 E3) V

does not express that the first argument is supposed to be E1, the second argument
E2, etc. Thus we must explicitly label the first four arguments: this is what the
dependent function type constructor Π achieves. Using dependent function types we
write

ev case z : ΠE1:exp. ΠE2:exp. ΠE3:exp→ exp. ΠV :exp.
eval E1 z→ eval E2 V → eval (case E1 E2 E3) V.

Note that the right-hand side is now a closed type since Π binds the variable it
quantifies. The function ev case z is now a function of six arguments.

Before continuing the representation, we need to extend the simply-typed frame-
work as presented in Section 3.1 to account for the two new phenomena we have
encountered: type families indexed by objects and dependent function types.
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3.5 Adding Dependent Types to the Framework

We now introduce type families and dependent function types into the simply-typed
fragment, although at this point not in the full generality of LF.
The first change deals with type families: it is now more complicated to check if

a given type is well-formed, since types depend on objects. Moreover, we must be
able to declare the type of the indices of type families. This leads to the introduction
of kinds, which form another level in the definition of the framework calculus.

Kinds K ::= A1 → . . .→ An → type
Types A ::= a M1 . . .Mn | A1 → A2 | Πx:A1. A2
Objects M ::= c | x | λx:A. M |M1 M2
Signatures Σ ::= · | Σ, a:K | Σ, c:A
Contexts Γ ::= · | Γ, x:A

Note that the level of objects has only changed insofar as the types occurring
in λ-abstractions may now be more general. Indeed, all functions which can be
expressed in this version of the framework could already be expressed in the simply-
typed fragment. This highlights our motivation and intuition behind this extension:
we refine the type system so that objects that do not represent deductions will be
ill-typed. We are not interested in extending the language so that, for example,
more functions would be representable.
Type families can be declared via a:K in signatures and instantiated to types as

a M1 . . .Mn. We refer to such types as atomic types, to types of the form A1 → A2
as simple function types, and to types of the form Πx:A1. A2 as dependent function
types. We also need to extend the inference rules for valid types and objects. We
now have the basic judgments

Γ +Σ A : type A is a valid type

Γ +Σ M : A M is a valid object of type A

and auxiliary judgments

+ Σ Sig Σ is a valid signature

+Σ Γ Ctx Γ is a valid context

Γ +Σ K : kind K is a valid kind

Γ +Σ M ≡ N : A M is definitionally equal to N at type A

Γ +Σ A ≡ B : type A is definitionally equal to B
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The judgments are now mutually dependent to a large degree. For example, in
order to check that a type is valid, we have to check that the objects occuring in
the indices of a type family are valid. The need for the convertibility judgments
will be motivated below. Again, there are a variety of possibilities for defining these
judgments. The one we give below is perhaps not the most convenient for the meta-
theory of LF, but it reflects the process of type-checking fairly directly. We begin
with the rules defining the valid types.

Σ(a) = A1 → · · ·→ An → type Γ +Σ M1 : A1 . . . Γ +Σ Mn : An
atom

Γ +Σ a M1 . . .Mn : type

Γ +Σ A : type Γ +Σ B : type
arrow

Γ +Σ A→ B : type

Γ +Σ A : type Γ, x:A +Σ B : type
pi

Γ +Σ Πx:A. B : type

The basic rules for valid objects are as before, except that we now have to allow
for dependency. The typing rule for applying a function with a dependent type
requires some thought. Recall, from the previous section,

ev case z : ΠE1:exp. ΠE2:exp. ΠE3:exp→ exp. ΠV :exp.
eval E1 z→ eval E2 V → eval (case E1 E2 E3) V.

The Π construct was introduced to express the dependency between the first argu-
ment and the type of the fifth argument. This means, for example, that we would
expect

+EV ev case z z z (λx:exp. x) z
: eval z z→ eval z z→ eval (case z z (λx:exp. x)) z

to be derivable. We have instantiated E1 with z, E2 with z, E3 with (λx:exp. x)
and V with z. Thus the typing rule

Γ +Σ M : Πx:A. B Γ +Σ N : A app
Γ +Σ M N : [N/x]B

emerges. In this rule we can see that the type (and not just the value) of an
application of a function M to an argument N may depend on N . This is the
reason why Πx:A. B is called a dependent function type. For different reasons it is
also sometimes referred to as the dependent product. The rule for λ-abstraction and
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the other rules do not change significantly.

Σ(c) = A
con

Γ +Σ c : A

Γ(x) = A
var

Γ +Σ x : A

Γ +Σ A : type Γ, x:A +Σ M : B
lam

Γ +Σ λx:A. M : Πx:A. B

The prior rules for functions of simple type are still valid, with the restriction that
x may not occur free in B in the rule lam′′. This restriction is necessary, since it is
now possible for x to occur in B because objects (including variables) can appear
inside types.

Γ +Σ A : type Γ, x:A +Σ M : B
lam′′

Γ +Σ λx:A. M : A→ B

Γ +Σ M : A→ B Γ +Σ N : A
app′′

Γ +Σ M N : B

The type system as given so far has a certain redundancy and is also no longer
syntax-directed. That is, there are two rules for λ-abstraction (lam and lam′′) and
application. It is convenient to eliminate this redundancy by allowing A → B as a
notation for Πx:A. B whenever x does not occur in B. It is easy to see that under
this convention, the rules lam′′ and app′′ are valid rules of inference, but are no
longer necessary since any of their instances are also instances of lam and app.
The rules for valid signatures, contexts, and kinds are straightforward and left

as Exercise 3.10. They are a special case of the rules for full LF given in Section 3.8.
One rule which is still missing is the rule of type conversion. Type conversion

introduces a major complication into the type system and is difficult to motivate
and illustrate with the example as we have developed it so far. We take a brief
excursion and introduce another example to illustrate the necessity for the type
conversion rule. Consider a potential application of dependent types in functional
programming, where we would like to index the type of vectors of integers by the
length of the vector. That is, vector is a type family, indexed by integers.

int : type
plus : int→ int→ int
vector : int→ type

Furthermore, assume we can assign the following type to the function which con-
catenates two vectors:

concat : Πn:int. Πm:int. vector n→ vector m→ vector (plus n m).
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Then we would obtain the typings

concat 3 2 〈1, 2, 3〉 〈4, 5〉 : vector (plus 3 2)
〈1, 2, 3, 4, 5〉 : vector 5.

But since the first expression presumably evaluates to the second, we would expect
〈1, 2, 3, 4, 5〉 to have type vector (plus 3 2), or the first expression to have type
vector 5—otherwise the language would not preserve types under evaluation.
This example illustrates two points. The first is that adding dependent types

to functional languages almost invariably leads to an undecidable type-checking
problem, since with the approach above one could easily encode arbitrary arithmetic
equations. The second is that we need to allow conversion between equivalent types.
In the example above, vector (plus 3 2) ≡ vector 5. Thus we need a notion of
definitional equality and add the rule of type conversion to the system we have
considered so far.

Γ +Σ M : A Γ +Σ A ≡ B : type
conv

Γ +Σ M : B

It is necessary to check the validity of B in the premise, since we have followed
the standard technique of formulating definitional equality as an untyped judgment,
and a valid type may be convertible to an invalid type. As hinted earlier, the notion
of definitional equality that is most useful for our purposes is based on β- and η-
conversion. We postpone the full definition until the need for these conversions is
better motivated from the example.

3.6 Representing Evaluations

We summarize the signature for evaluations as we have developed it so far, taking
advantage of type families and dependent types.

eval : exp→ exp→ type
ev z : eval z z
ev s : ΠE:exp. ΠV :exp. eval E V → eval (s E) (s V )
ev case z : ΠE1:exp. ΠE2:exp. ΠE3:exp→ exp. ΠV :exp.

eval E1 z→ eval E2 V → eval (case E1 E2 E3) V

The representation function on derivations using these rules is defined induc-
tively on the structure of the derivation.

!
ev z

z ↪→ z
"
= ev z
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!
D
e ↪→ v

ev s
s e ↪→ s v

"

= ev s !e" !v" !D"

!
D1
e1 ↪→ z

D2
e2 ↪→ v

ev case z
(case e1 of z⇒ e2 | s x⇒ e3) ↪→ v

"

= ev case z !e1" !e2" (λx:exp. !e3") !v" !D1" !D2"

The rules dealing with pairs are straightforward and introduce no new repre-
sentation techniques. We leave them as Exercise 3.4. Next we consider the rule for
evaluating a Mini-ML expression formed with lam. For this rule we will examine
more closely why, for example, E3 in the ev case z rule was assumed to be of type
exp→ exp.

ev lam
lam x. e ↪→ lam x. e

Recall that the representation function employs the idea of higher-order abstract
syntax:

!lam x. e" = lam (λx:exp. !e").

An incorrect attempt at a direct representation of the inference rule above would
be

ev lam : ΠE:exp. eval (lam (λx:exp. E)) (lam (λx:exp. E)).

The problem with this formulation is that, because of the variable naming hygiene
of the framework, we cannot instantiate E with an object that contains x free. That
is, for example,

ev lam
lam x. x ↪→ lam x. x

could not be represented by (ev lam x) since its type would be

[x/E]eval (lam (λx:exp. E)) (lam (λx:exp. E))
= eval (lam (λx′:exp. x)) (lam (λx′:exp. x))
'= eval (lam (λx:exp. x)) (lam (λx:exp. x))
= eval !lam x. x" !lam x. x"
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for some new variable x′. Instead, we have to bundle the scope of the bound variable
with its binder into a function from exp to exp, the type of the argument to lam.

ev lam : ΠE:exp→ exp. eval (lam E) (lam E).

Now the evaluation of the identity function above would be correctly represented
by (ev lam (λx:exp. x)) which has type

[(λx:exp. x)/E]eval (lam E) (lam E)
= eval (lam (λx:exp. x)) (lam (λx:exp. x)).

To summarize this case, we have

!
ev lam

lam x. e ↪→ lam x. e
"
= ev lam (λx:exp. !e").

Yet another new technique is introduced in the representation of the rule which
deals with applying a function formed by lam to an argument.

e1 ↪→ lam x. e′1 e2 ↪→ v2 [v2/x]e
′
1 ↪→ v ev app

e1 e2 ↪→ v

As in the previous example, e′1 must be represented with its binder as a function
from exp to exp. But how do we represent [v2/x]e′1? Compositionality (Lemma 3.5)
tell us that

![v2/x]e′1" = [!v2"/x]!e′1".
The right-hand side is β-convertible to (λx:exp. !e′1") !v2". Note that the function
part of this application, (λx:exp. !e′1") will be an argument to the constant repre-
senting the rule, and we can thus directly apply it to the argument representing v2.
These considerations lead to the declaration

ev app : ΠE1:exp. ΠE2:exp. ΠE′1:exp→ exp. ΠV2:exp. ΠV :exp.
eval E1 (lam E′1)
→ eval E2 V2
→ eval (E′1 V2) V
→ eval (app E1 E2) V

where

!
D1

e1 ↪→ lam x. e′1
D2

e2 ↪→ v2
D3

[v2/x]e′1 ↪→ v
ev app

e1 e2 ↪→ v

"

= ev app !e1" !e2" (λx:exp. !e′1") !v2" !v" !D1" !D2" !D3".
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Consider the evaluation of the Mini-ML expression (lam x. x) z:

ev lam
lam x. x ↪→ lam x. x

ev z
z ↪→ z

ev z
z ↪→ z

ev app
(lam x. x) z ↪→ z

Note that the third premise is a deduction of [z/x]x ↪→ z which is z ↪→ z. The
whole deduction is represented by the LF object

ev app (lam (λx:exp. x)) z (λx:exp. x) z z
(ev lam (λx:exp. x))
ev z
ev z.

But why is this well-typed? The crucial question arises with the last argument to
ev app. By substitution into the type of ev app we find that the last argument is
required to have type (eval ((λx:exp. x) z) z), while the actual argument, ev z, has
type eval z z. The rule of type conversion allows us to move from one type to the
other provided they are definitionally equal. Thus our notion of definitional equality
must include β-conversion in order to allow the representation technique whereby
object-level substitution is represented by meta-level β-reduction.
In the seminal paper on LF [HHP93], definitional equality was based only on

β-reduction, due to technical problems in proving the decidability of the system
including η-conversion. The disadvantage of the system with only β-reduction is
that not every object is convertible to a canonical form using only β-conversion (see
the counterexample on page 44). This property holds once η-conversion is added.
The decidability of the system with both βη-conversion has since been proven using
four different techniques [Sal90, Coq91, Geu92, HP00].
The remaining rules of the operational semantics of Mini-ML follow the pattern

of the previous rules.

e1 ↪→ s v′1 [v′1/x]e3 ↪→ v
ev case s

(case e1 of z⇒ e2 | s x⇒ e3) ↪→ v

ev case s : ΠE1:exp. ΠE2:exp. ΠE3:exp→ exp. ΠV ′1 :exp. ΠV :exp.
eval E1 (s V ′1)→ eval (E3 V ′1) V → eval (case E1 E2 E3) V

e1 ↪→ v1 [v1/x]e2 ↪→ v
ev letv

let val x = e1 in e2 ↪→ v

ev letv : ΠE1:exp. ΠE2:exp→ exp. ΠV1:exp. ΠV :exp.
eval E1 V1 → eval (E2 V1) V → eval (letv E1 E2) V
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[e1/x]e2 ↪→ v
ev letn

let name x = e1 in e2

ev letn : ΠE1:exp. ΠE2:exp→ exp. ΠV :exp.
eval (E2 E1) V → eval (letn E1 E2) V

For the fixpoint construct, we have to substitute a compound expression and
not just a variable.

[fix x. e/x]e ↪→ v
ev fix

fix x. e ↪→ v

ev fix : ΠE:exp→ exp. ΠV :exp.
eval (E (fix E)) V → eval (fix E) V

Again we are taking advantage of compositionality in the form

![fix x. e/x]e" = [!fix x. e"/x]!e" ≡ (λx:exp. !e") !fix x. e".

The succession of representation theorems follows the pattern of Section 3.3.
Note that we postulate that e and v be closed, that is, do not contain any free
variables. We state this explicitly, because according to the earlier inference rules,
there is no requirement that lam x. e be closed in the ev lam rule. However, we
would like to restrict attention to closed expressions e, since they are the only
ones which will be well-typed in the empty context within the Mini-ML typing
discipline. The generalization of the canonical form judgment to LF in the presence
of dependent types is given in Section 3.9.

Lemma 3.7 Let e and v be closed Mini-ML expressions, and D a derivation of
e ↪→ v. Then

+EV !D" ⇑ eval !e" !v".

Proof: The proof proceeds by induction on the structure of D. We show only one
case—the others are similar and simpler.

Case: D =

D1
e1 ↪→ lam x. e′1

D2
e2 ↪→ v2

D3
[v2/x]e′1 ↪→ v

ev app
e1 e2 ↪→ v

. Then

!D" = ev app !e1" !e2" (λx:exp. !e′1") !v2" !v" !D1" !D2" !D3"
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By the adequacy of the representation of expressions (Theorem 3.6), !e1",
!e2", !v2", and !v" are canonical of type exp. Furthermore, !e′1" is canonical
of type exp and one application of the carrow rule yields

x:exp +EV !e′1" ⇑ exp carrow,
+EV λx:exp. !e′1" ⇑ exp→ exp

that is, λx:exp. !e′1" is canonical of type exp→ exp.
By the induction hypothesis on D1, we have

+EV D1 ⇑ eval !e1" !lam x. e′1"

and hence by the definition of the representation function

+EV D1 ⇑ eval !e1" (lam (λx:exp. !e′1"))

Furthermore, by induction hypothesis on D2,

+EV D2 ⇑ eval !e2" !v2".

Recalling the declaration of ev app,

ev app : ΠE1:exp. ΠE2:exp. ΠE′1:exp→ exp. ΠV2:exp. ΠV :exp.
eval E1 (lam E′1)
→ eval E2 V2
→ eval (E′1 V2) V
→ eval (app E1 E2) V,

we conclude that

ev app !e1" !e2" (λx:exp. !e′1") !v2" !v" !D1" !D2"
: eval ((λx:exp. !e′1") !v2") !v"→ eval (app !e1" !e2") !v".

The type here is not in canonical form, since (λx:exp. !e′1") is applied to !v2".
With the rule of type conversion we now obtain

ev app !e1" !e2" (λx:exp. !e′1") !v2" !v" !D1" !D2"
: eval ([!v2"/x]!e′1") !v"→ eval (app !e1" !e2") !v".

where [!v2"/x]!e′1" is a valid object of type exp. The application of the ob-
ject above to !D3" (which yields !D") can be seen as type-correct, since the
induction hypothesis on D3 yields

+EV D3 ⇑ eval ![v2/x]e′1" !v",
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and from compositionality (Lemma 3.5) we know that

![v2/x]e′1" = [!v2"/x]!e′1".

Furthermore, D is canonical, since it is atomic and all the arguments to ev app
are in canonical form.

Lemma 3.8 For any LF objects E, V , and M such that +EV E ⇑ exp, +EV V ⇑ exp
and +EV M ⇑ eval E V , there exist unique Mini-ML expressions e and v and a
deduction D :: e ↪→ v such that !e" = E, !v" = V and !D" =M .

Proof: The proof is by structural induction on the derivation of +EV M ⇑ eval E V
(see Exercise 3.12).

A compositionality property does not arise here in the same way as it arose
for expressions since evaluations are closed. However, as we know from the use of
Lemma 2.4 in the proof of type preservation (Theorem 2.5), a substitution lemma
for Mini-ML typing derivations plays an important role. We will return to this in
Section 5.4. As before, we summarize the correctness of the representation into an
adequacy theorem. It follows directly from Lemmas 3.7 and 3.8.

Theorem 3.9 (Adequacy) There is a bijection between deductions of e ↪→ v for
closed Mini-ML expressions e and v and canonical LF objects M such that

+EV M ⇑ eval !e" !v"

As a second example for the representation of deductions we consider the judg-
ment e Value, defined in Section 2.4. Again, the judgment is represented as a type
family, value, indexed by the representation of the expression e. That is,

value : exp→ type

Objects of type value !e" then represent deductions, and inference rules are encoded
as constructors for objects of such types.

val z : value z
val s : ΠE:exp. value E → value (s E)
val pair : ΠE1:exp. ΠE2:exp. value E1→ value E2 → value (pair E1 E2)
val lam : ΠE:exp→ exp. value (lam E)

In the last rule, the scope of the binder lam is represented as a function from
expressions to expressions. We refer to the signature above (including the signature
E representing Mini-ML expressions) as V . We omit the obvious definition of the
representation function on value deductions. The adequacy theorem only refers to
its existence implicitly.
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Theorem 3.10 (Adequacy) For closed expressions e there is a bijection between
deductions P :: e Value and canonical LF objects M such that +V M ⇑ value !e" is
derivable.

Proof: See Exercise 3.13.

3.7 Meta-Theory via Higher-Level Judgments

So far we have completed two of the tasks we set out to accomplish in this chapter:
the representation of abstract syntax and the representation of deductive systems
in a logical framework. This corresponds to the specification of a language and its
semantics. The third task now before us is the representation of the meta-theory of
the language, that is, proofs of properties of the language and its semantics.
This representation of meta-theory should naturally fit within the framework we

have laid out so far. It should furthermore reflect the structure of the informal proof
as directly as possible. We are thus looking for a formal language and methodology
for expressing a given proof, and not for a system or environment for finding such a
proof. Once such a methodology has been developed it can also be helpful in proof
search, but we would like to emphasize that this is a secondary consideration. In
order to design a proof representation we must take stock of the proof techniques
we have seen so far. By far the most pervasive is structural induction. Structural
induction is applied in various forms: we have used induction over the structure of
expressions, and induction over the structure of deductions. Within proofs of the
latter kind we have also frequent cause to appeal to inversion, that is, from the
form of a derivable judgment we make statements about which inference rule must
have been applied to infer it. Of course, as is typical in mathematics, we break
down a proof into a succession of lemmas leading up to a main theorem. A kind of
lemma which arises frequently when dealing with deductive systems is a substitution
lemma.
We first consider the issue of structural induction and its representation in the

framework. At first glance, this seems to require support for logical reasoning, that
is, we need quantifiers and logical connectives to express a meta-theorem, and log-
ical axioms and inference rules to prove it. Our framework does not support this
directly—we would either have to extend it very significantly or encode the logic
we are attempting to model just like any other deductive system. Both of these
approaches have some problems. The first does not mesh well with the idea of
higher-order abstract syntax, basically because the types (such as the type exp of
Mini-ML expressions) are not inductively defined in the usual sense. The problem
arises from the negative occurrences of exp in the type of case, lam, let, and fix.
Similar problems arise when encoding deductive systems employing parametric and
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hypothetical judgments such as the Mini-ML typing judgment. The second ap-
proach, that is, to first define a logical system and then reason within it, incurs a
tremendous overhead in additional machinery to be developed. Furthermore, the
connection between the direct representations given in the previous sections of this
chapter and this indirect method is problematic.
Thus we are looking for a more direct way to exploit the expressive power of the

framework we have developed so far. We will use Theorem 2.1 (value soundness for
Mini-ML) and its proof as a motivating example. Recall that the theorem states
that whenever e ↪→ v is derivable, then v Value is also derivable. The proof proceeds
by an induction on the structure of the derivation of e ↪→ v.
A first useful observation is that the proof is constructive in the sense that

it implicitly contains a method for constructing a deduction P of the judgment
v Value, given a deduction D of e ↪→ v. This is an example of the relation-
ship between constructive proofs and programs considered further in Sections ??
through ??. Could we exploit the converse, that is, in what sense might the
function f for constructing P from D represent a proof of the theorem? Such a
function f , if it were expressible in the framework, would presumably have type
ΠE:exp. ΠV :exp. eval E V → value V . If it were guaranteed that a total function
of this type existed, our meta-theorem would be verified. Unfortunately, such a
function is not realizable within the logical framework, since it would have to be
defined by a form of recursion on an object of type eval E V . Attempting to ex-
tend the framework in a straightforward way to encompass such function definitions
invalidates our approach to abstract syntax and hypothetical judgments.
But we have one further possibility: why not represent the connection between

D :: e ↪→ v and P :: v Value as a judgment (defined by inference rules) rather than a
function? This technique is well-known from logic programming, where predicates
(defined via Horn clauses) rather than functions give rise to computation. A related
operational interpretation for LF signatures (which properly generalize sets of Horn
clauses) forms the basis for the Elf programming language discussed in Chapter 4.
To restate the idea: we represent the essence of the proof of value soundness as
a judgment relating deductions D :: e ↪→ v and P :: v Value. Judgments relating
deductions are not uncommon in the meta-theory of logic. An important example is
the judgment that a natural deduction reduces to another natural deduction, which
we will discuss in Section ??.
In order to illustrate this approach, we quote various cases in the proof of value

soundness and try to extract the inference rules for the judgment we motivated
above. We write the judgment as

D
e ↪→ v =⇒

P
v Value

and read it as “D reduces to P.” Following this analysis, we give its representation
in LF. Recall that the proof is by induction over the structure of the deduction
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D :: e ↪→ v.

Case: D = ev z.
z ↪→ z

Then v = z is a value by the rule val z.

This gives rise to the axiom

vs z
ev z

z ↪→ z
=⇒ val z

z Value

Case:

D =

D1
e1 ↪→ v1

ev s.
s e1 ↪→ s v1

The induction hypothesis on D1 yields a deduction of v1 Value. Using the
inference rule val s we conclude that s v1 Value.

This case in the proof is represented by the following inference rule.

D1
e1 ↪→ v1

=⇒ P1
v1 Value

vs s
D1

e1 ↪→ v1
ev s

s e1 ↪→ s v1
=⇒

P1
v1 Value

val s
s v1 Value

Here, the appeal to the induction hypothesis on D1 has been represented in the
premise, where we have to establish that D1 reduces to P1.

Case:

D =

D1
e1 ↪→ z

D2
e2 ↪→ v

ev case z.
(case e1 of z⇒ e2 | s x⇒ e3) ↪→ v

Then the induction hypothesis applied to D2 yields a deduction of v Value,
which is what we needed to show in this case.
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In this case, the appeal to the induction hypothesis immediately yields the cor-
rect deduction; no further inference is necessary.

D2
e2 ↪→ v

=⇒ P2
v Value

vs case z
D1
e1 ↪→ z

D2
e2 ↪→ v

ev case z
(case e1 of z⇒ e2 | s x⇒ e3) ↪→ v

=⇒ P2
v Value

Case:

D =

D1
e1 ↪→ s v′1

D3
[v′1/x]e3 ↪→ v

ev case s.
(case e1 of z⇒ e2 | s x⇒ e3) ↪→ v

Then the induction hypothesis applied to D3 yields a deduction of v Value,
which is what we needed to show in this case.

This is like the previous case.

D3
[v′1/x]e3 ↪→ v

=⇒ P3
v Value

vs case s
D1

e1 ↪→ s v′1
D3

[v′1/x]e3 ↪→ v
ev case s

(case e1 of z⇒ e2 | s x⇒ e3) ↪→ v
=⇒ P3

v Value

If D ends in ev pair we reason similar to cases above.
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Case:

D =

D′
e ↪→ 〈v1, v2〉

ev fst.
fst e ↪→ v1

Then the induction hypothesis applied to D′ yields a deduction P ′ of the
judgment 〈v1, v2〉 Value. By examining the inference rules we can see that
P ′ must end in an application of the val pair rule, that is,

P ′ =

P1
v1 Value

P2
v2 Value

val pair
〈v1, v2〉 Value

for some P1 and P2. Hence v1 Value must be derivable, which is what we
needed to show.

In this case we also have to deal with an application of inversion in the informal
proof, analyzing the possible inference rules in the last step of the derivation P ′ ::
〈v1, v2〉 Value. The only possibility is val pair. In the representation of this case as
an inference rule for the reduction judgment, we require that the right-hand side of
the premise end in this inference rule.

D′
e ↪→ 〈v1, v2〉

=⇒

P1
v1 Value

P2
v2 Value

val pair
〈v1, v2〉 Value

vs fst
D′

e ↪→ 〈v1, v2〉
ev fst

fst e ↪→ v1
=⇒ P1

v1 Value

The remaining cases are similar to the ones shown above and left as an exercise
(see Exercise 3.8). While our representation technique should be clear from the
example, it also appears to be extremely unwieldy. The explicit definition of the
reduction judgment given above is fortunately only a crutch in order to explain the
LF signature which follows below. In practice we do not make this intermediate form
explicit, but directly express the proof of a meta-theorem as an LF signature. Such
signatures may seem very cumbersome, but the type reconstruction phase of the
Elf implementation allows very concise signature specifications that are internally
expanded into the form shown below.
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The representation techniques given so far suggest that we represent the judg-
ment

D
e ↪→ v =⇒

P
v Value

as a type family indexed by the representation of the deductions D and P, that is,

vs : eval E V → value V → type

Once again we need to resolve the status of the free variables E and V in order
to achieve (in general) a decidable type reconstruction problem. Before, we used
the dependent function type constructor Π to turn them into explicit arguments to
object level constants. Here, we need to index the type family vs explicitly by E
and V , both of type exp. Thus we need to extend the language for kinds (which
classify type families) to admit dependencies and allow the declaration

vs : ΠE:exp. ΠV :exp. eval E V → value V → type.

The necessary generalization of the system from Section 3.5 is given in Section 3.8.
The main change is a refinement of the language for kinds by admitting dependen-
cies, quite analogous to the previous refinement of the language of types when we
generalized the simply-typed fragment of Section 3.1.
We now consider the representation of some of the rules of the judgment D =⇒ P

as LF objects. The axiom

vs z
ev z

z ↪→ z
=⇒ val z

z Value

is represented as

vs z : vs z z ev z val z.

The instantiation of the type family vs is valid, since ev z : eval z z and val z : value z.
The second rule we considered arose from the case where the evaluation ended

in the rule for successor.

D1
e1 ↪→ v1

=⇒ P1
v1 Value

vs s
D1

e1 ↪→ v1
ev s

s e1 ↪→ s v1
=⇒

P1
v1 Value

val s
s v1 Value

Recall the declarations for ev s and val s.
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ev s : ΠE:exp. ΠV :exp. eval E V → eval (s E) (s V )
val s : ΠE:exp. value E → value (s E)

The declaration corresponding to vs s:

vs s : ΠE1:exp. ΠV1:exp.
ΠD1:eval E1 V1. ΠP1:value V1.
vs E1 V1 D1 P1 → vs (s E1) (s V1) (ev s E1 V1 D1) (val s V1 P1).

We consider one final example, where inversion was employed in the informal
proof.

D′
e ↪→ 〈v1, v2〉

=⇒

P1
v1 Value

P2
v2 Value

val pair
〈v1, v2〉 Value

vs fst
D′

e ↪→ 〈v1, v2〉
ev fst

fst e ↪→ v1
=⇒ P1

v1 Value

We recall the types for the inference rule encodings involved here:

val pair : ΠE:exp. ΠE2:exp. value E1 → value E2→ value (pair E1 E2)
ev fst : ΠE:exp. ΠV1:exp. ΠV2:exp.

eval E (pair V1 V2)→ eval (fst E) V1
The rule above can then be represented as

vs fst : ΠE1:exp. ΠV1:exp. ΠV2:exp.
ΠD′:eval E (pair V1 V2). ΠP1:value V1. ΠP2:value V2.
vs E (pair V1 V2) D′ (val pair V1 V2 P1 P2)
→ vs (fst E) V1 (ev fst E V1 V2 D′) P1

What have we achieved with this representation of the proof of value soundness
in LF? The first observation is the obvious one, namely a representation theorem
relating this signature to the judgment D =⇒ P. Let P be the signature containing
the declaration for expressions, evaluations, value deductions, and the declarations
above encoding the reduction judgment via the type family vs.

Theorem 3.11 (Adequacy) For closed expressions e and v, there is a composi-
tional bijection between deductions of

D
e ↪→ v =⇒

P
v Value

and canonical LF objects M such that

+P M ⇑ vs !e" !v" !D" !P"
is derivable.
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This representation theorem is somewhat unsatisfactory, since the connection
between the informal proof of value soundness and the LF signature remains un-
stated and unproven. It is difficult to make this relationship precise, since the
informal proof is not given as a mathematical object. But we can claim and prove
a stronger version of the value soundness theorem in which this connection is more
explicit.

Theorem 3.12 (Explicit Value Soundness) For any two expressions e and v and
deduction D :: e ↪→ v there exists a deduction P :: v Value such that

D
e ↪→ v =⇒

P
v Value

is derivable.

Proof: By a straightfoward induction on the structure of D :: e ↪→ v (see Exer-
cise 3.14).

Coupled with the proofs of the various representation theorems for expressions
and deductions this establishes a formal connection between value soundness and the
vs type family. Yet the essence of the relationship between the informal proof and
its representation in LF lies in the connection between to the reduction judgment,
and this remains implicit. To appreciate this problem, consider the judgment

D
e ↪→ v

triv
=⇒ P

v Value

which is defined via a single axiom

vs triv.
D
e ↪→ v

triv
=⇒ P

v Value

By value soundness and the uniqueness of the deduction of v Value for a given v,

D =⇒ P is derivable iff D triv
=⇒ P is derivable, but one would hardly claim that

D triv
=⇒ P represents some informal proof of value soundness.
Ideally, we would like to establish some decidable, formal notion similar to the

validity of LF objects which would let us check that the type family vs indeed
represents some proof of value soundness. Such a notion can be given in the form of
schema-checking which guarantees that a type family such as vs inductively defines
a total function from its first three arguments to its fourth argument. A discussion
of schema-checking [RP96, Sch00] is beyond the scope of these notes. Some material
may also be found in the documentation which accompanies the implementation of
Elf in the Twelf system [PS99].1

1[update on final revision]
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3.8 The Full LF Type Theory

The levels of kinds and types in the system from Section 3.5 were given as

Kinds K ::= type | A1 → · · ·→ An → K
Types A ::= a M1 . . .Mn | A1 → A2 | Πx:A1. A2

We now make two changes: the first is a generalization in that we allow dependent
kinds Πx:A. K. The kind of the form A → K is then a special case of the new
construct where x does not occur in K. The second change is to eliminate the
multiple argument instantiation of type families. This means we generalize to a
level of families, among which we distinguish the types as families of kind “type.”

Kinds K ::= type | Πx:A. K
Families A ::= a | A M | Πx:A1. A2
Objects M ::= c | x | λx:A. M |M1 M2
Signatures Σ ::= · | Σ, a:K | Σ, c:A
Contexts Γ ::= · | Γ, x:A

This system differs only minimally from the one given by Harper, Honsell, and
Plotkin in [HHP93]. They also allow families to be formed by explicit abstraction,
that is, λx:A1. A2 is a legal family. These do not occur in normal forms and we
have thus chosen to omit them from our system. As mentioned previously, it also
differs in that we allow β and η-conversion between objects as the basis for our
notion of definitional equality, while in [HHP93] only β-conversion is considered.
The judgments take a slightly different form than in Section 3.5, in that we now
need to introduce a judgment to explicitly classify families.

Γ +Σ A : K A is a valid family of kind K

Γ +Σ M : A M is a valid object of type A

Γ +Σ K : kind K is a valid kind

+ Σ Sig Σ is a valid signature

+Σ Γ Ctx Γ is a valid context

Γ +Σ M ≡ N : A M is definitionally equal to N at type A

Γ +Σ A ≡ B : K A is definitionally equal to B at kind K

Γ +Σ K ≡ K′ : kind kind K is definitionally equal to K′

These judgments are defined via the following inference rules.
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Σ(a) = K
famcon

Γ +Σ a : K

Γ +Σ A : Πx:B. K Γ +Σ M : B
famapp

Γ +Σ A M : [M/x]K

Γ +Σ A : type Γ, x:A +Σ B : type
fampi

Γ +Σ Πx:A. B : type

Σ(c) = A
objcon

Γ +Σ c : A

Γ(x) = A
objvar

Γ +Σ x : A

Γ +Σ A : type Γ, x:A +Σ M : B
objlam

Γ +Σ λx:A. M : Πx:A. B

Γ +Σ M : Πx:A. B Γ +Σ N : A
objapp

Γ +Σ M N : [N/x]B

Γ +Σ M : A Γ +Σ A ≡ B : type
typcnv

Γ +Σ M : B

kndtyp
Γ +Σ type : kind

Γ +Σ A : type Γ, x:A +Σ K : kind
kndpi

Γ +Σ Πx:A. K : kind

Γ +Σ A : K Γ +Σ K ≡K′ : kind
kndcnv

Γ +Σ A : K′

ctxemp
+Σ · Ctx

+Σ Γ Ctx Γ +Σ A : type
ctxobj

+Σ Γ, x:A Ctx
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sigemp
+ · Sig

+ Σ Sig +Σ K : kind
sigfam

+ Σ, a : K Sig

+ Σ Sig +Σ A : type
sigobj

+ Σ, c : A Sig

For definitional equality, we have several classes of rules. The first rules intro-
duces β-conversion.

Γ +Σ A : type Γ, x:A +Σ M : B Γ +Σ N : A
beta

Γ +Σ (λx:A. M) N ≡ [N/x]M : [N/x]B

We verify the validity of the objects and types involved in order to guarantee that
Γ +Σ M ≡ N : A implies Γ +Σ M : A and Γ +Σ N : A. The second rule is
extensionality: two objects of function type are equal, if they are equal on an
arbitrary argument x.

Γ +Σ A : type Γ, x:A +Σ M x ≡ N x : B
ext

Γ +Σ M ≡ N : Πx:A. B

This rule is equivalent to η-conversion

Γ +Σ M : Πx:A. B
eta∗.

Γ +Σ (λx:A. M x) ≡M : Πx:A. B

where η is restricted to the case the x is not free in M . The second class of rules
specifies that ≡ is an equivalence, satisfying reflexivity, symmetry, and transitivity
at each level. We only show the rules for objects; the others are obvious analogues.

Γ +Σ M : A
objrefl

Γ +Σ M ≡M : A

Γ +Σ N ≡M : A
objsym

Γ +Σ M ≡ N : A

Γ +Σ M ≡ O : A Γ +Σ O ≡ N : A
objtrans

Γ +Σ M ≡ N : A
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Finally we require rules to ensure that ≡ is a congruence, that is, conversion can be
applied to subterms. Technically, we use the notion of a simultaneous congruence
that allows simultaneous conversion in all subterms of a given term. We only show
the congruence rules at the levels of objects.

Σ(c) = A
cngobjcon

Γ +Σ c = c : A

Γ(x) = A
cngobjvar

Γ +Σ x = x : A

Γ +Σ M1 ≡ N1 : Πx:A2. A1 Γ +Σ M2 ≡ N2 : A2
cngobjapp

Γ +Σ M1 M2 ≡ N1 N2 : [M2/x]A1
Γ +Σ A′ ≡ A : type Γ +Σ A′′ ≡ A : type Γ, x:A +Σ M ≡ N : B

cngobjlam
Γ +Σ λx:A′. M ≡ λx:A′′. N : Πx:A. B

In addition we also need type and kind conversion rules for the same reason they
are needed in the typing judgments (see Exercise 3.15). Some important properties
of the LF type theory are stated at the end of next section.

3.9 Canonical Forms in LF

The notion of a canonical form, which is central to the representation theorems
for LF encodings, is somewhat more complicated in full LF than in the simply
typed fragment given in Section 3.1. In particular, we need to introduce auxil-
iary judgments for canonical types. At the same time we replace the rules with
an indeterminate number of premises by using another auxiliary judgment which
establishes that an object is atomic, that is, of the form x M1 . . .Mn or c M1 . . .Mn,
and its arguments M1, . . . ,Mn are again canonical. An analogous judgment exists
at the level of families. Thus we arrive at the judgments

Γ +Σ M ⇑ A M is canonical of type A

Γ +Σ A ⇑ type A is a canonical type

Γ +Σ M ↓ A M is atomic of type A

Γ +Σ A ↓ K A is atomic of kind K

These are defined by the following inference rules.
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Γ +Σ A ⇑ type Γ, x:A +Σ M ⇑ B
canpi

Γ +Σ λx:A. M ⇑ Πx:A. B

Γ +Σ A ↓ type Γ +Σ M ↓ A
canatm

Γ +Σ M ⇑ A

Γ +Σ M ⇑ A Γ +Σ A ≡ B : type
cancnv

Γ +Σ M ⇑ B

Σ(c) = A
atmcon

Γ +Σ c ↓ A

Γ(x) = A
atmvar

Γ +Σ x ↓ A

Γ +Σ M ↓ Πx:A. B Γ +Σ N ⇑ A
atmapp

Γ +Σ M N ↓ [N/x]B

Γ +Σ M ↓ A Γ +Σ A ≡ B : type
atmcnv

Γ +Σ M ↓ B

The conversion rules are included here for the same reason they are included
among the inference rules for valid types and terms.

Σ(a) = K
attcon

Γ +Σ a ↓ K

Γ +Σ A ↓ Πx:B. K Γ +Σ M ⇑ B
attapp

Γ +Σ AM ↓ [M/x]K

Γ +Σ A ↓ K Γ +Σ K ≡ K′ : kind
attcnv

Γ +Σ A ↓ K′

Γ +Σ A ⇑ type Γ, x:A +Σ B ⇑ type
cntpi

Γ +Σ Πx:A. B ⇑ type

Γ +Σ A ↓ type
cntatm

Γ +Σ A ⇑ type

We state, but do not prove a few critical properties of the LF type theory. Basic
versions of the results are due to Harper, Honsell, and Plotkin [HHP93], but their
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seminal paper does not treat extensionality or η-conversion. The theorem below is
a consequence of results in [HP00]. The proofs are quite intricate, because of the
mutually dependent nature of the levels of objects and types and are beyond the
scope of these notes.

Theorem 3.13 (Properties of LF) Assume Σ is a valid signature, and Γ a context
valid in Σ. Then the following hold.

1. If Γ +Σ M ⇑ A then Γ +Σ M : A.

2. If Γ +Σ A ⇑ type then Γ +Σ A : type.

3. For each object M such that Γ +Σ M : A there exists a unique object M ′ such
that Γ +Σ M ≡ M ′ : A and Γ +Σ M ′ ⇑ A. Moreover, M ′ can be effectively
computed.

4. For each type A such that Γ +Σ A : type there exists a unique type A′ such
that Γ +Σ A ≡ A′ : type and Γ +Σ A′ ⇑ type. Moreover, A′ can be effectively
computed.

5. Type checking in the LF type theory is decidable.

3.10 Summary and Further Discussion

In this chapter we have developed a methodology for representing deductive systems
and their meta-theory within the LF Logical Framework. The LF type theory is a
refinement of the Church’s simply-typed λ-calculus with dependent types.
The cornerstone of the methodology is a technique for representing the expres-

sions of a language, whereby object-language variables are represented by meta-
language variables. This leads to the notion of higher-order abstract syntax, since
now syntactic operators that bind variables must be represented by corresponding
binding operators in the meta-language. As a consequence, expressions that differ
only in the names of bound variables in the object language are α-convertible in the
meta-language. Furthermore, substitution can be modelled by β-reduction. These
relationships are expressed in the form of an adequacy theorem for the represen-
tation which postulates the existence of a compositional bijection between object
language expressions and meta-language objects of a given type. Ordinarily, the
representation of abstract syntax of a language does not involve dependent, but only
simple types. This means that the type of representations of expressions, which was
exp in the example used throughout this chapter, is a type constant and not an in-
dexed type family. We refer to such a constant as a family at level 0. We summarize
the methodology in the following table.
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Object Language Meta-Language

Syntactic Category Level 0 Type Family
Expressions exp : type
Variable Variable
x x

Constructor Constant
〈e1, e2〉 pair !e1" !e2", where

pair : exp→ exp→ exp
Binding Constructor Second-Order Constant
let val x = e1 in e2 letv !e1" (λx:exp. !e2"), where

letv : exp→ (exp→ exp)→ exp

An alternative approach, which we do not pursue here, is to use terms in a first-
order logic to represent Mini-ML expressions. For example, we may have a binary
function constant pair and a ternary function constant letv . We then define a pred-
icate exp which is true for expressions and false otherwise. This predicate is defined
via a set of axioms. For example, ∀e1. ∀e2. exp(e1) ∧ exp(e1) ⊃ exp(pair(e1, e2)).
Similarly, ∀x. ∀e1. ∀e2. var (x) ∧ exp(e1) ∧ exp(e2) ⊃ exp(letv(x, e1, e2)), where var
is another predicate which is true on variables and false otherwise. Since first-
order logic is undecidable, we must then impose some restriction on the possible
definitions of predicates such as exp or var in order to guarantee decidable rep-
resentations. Under appropriate restrictions such predicates can then be seen to
define types. A commonly used class are regular tree types. Membership of a term
in such a type can be decided by a finite tree automaton [GS84]. This approach
to representation and types is the one usually taken in logic programming which
has its roots in first-order logic. For a collection of papers describing this and re-
lated approaches see [Pfe92]. The principal disadvantage of regular tree types in a
first-order term language is that it does not admit representation techniques such
as higher-order abstract syntax. Its main advantage is that it naturally permits
subtypes. For example, we could easily define the set of Mini-ML values as a sub-
type of expressions, while the representation of values in LF requires an explicit
judgment. Thus, we do not capture in LF that it is decidable if an expression is a
value. Some initial work towards combining regular tree types and function types
is reported in [FP91] and [Pfe93].
The second representation technique translates judgments to types and deduc-

tions to objects. This is often summarized by the motto judgments-as-types. This
can be seen as a methodology for formalizing the semantics of a language, since
semantic judgments (such as evaluation or typing judgments) can be given conve-
niently and elegantly as deductive systems. The goal is now to reduce checking of
deductions to type-checking within the framework (which is decidable). For this
reduction to work correctly, the simply-typed framework which is sufficient for ab-
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stract syntax in most cases, needs to be refined by type families and dependent
function types. The index objects for type families typically are representations of
expressions, which means that they are typed at level 0. We refer to a family which
is indexed by objects typed at level 0 as a level 1 family. We can summarize this
representation technique in the following table.

Object Language Meta-Language

Semantic Judgment Level 1 Type Family
e ↪→ v eval : exp→ exp→ type

Inference Rule Constant Declaration

e ↪→ v
ev s

s e ↪→ s v

ev s :
ΠE:exp. ΠV :exp.
eval E V

→ eval (s E) (s V )
Deduction Well-Typed Object

Deductive System Signature

An alternative to dependent types (which we do not pursue here) is to define
predicates in a higher-order logic which are true of valid deductions and false oth-
erwise. The type family eval, indexed by two expressions, then becomes a simple
type eval and we additionally require a predicate valid . The logics of higher-order
Horn clauses [NM98] and hereditary Harrop formulas [MNPS91] support this ap-
proach and the use of higher-order abstract syntax. They have been implemented
in the logic programming language λProlog [NM99] and the theorem prover Is-
abelle [Pau94]. The principal disadvantage of this approach is that checking the
validity of a deduction is reduced to theorem proving in the meta-logic. Thus de-
cidability is not guaranteed by the representation and we do not know of any work
to isolate decidable classes of higher-order predicates which would be analogous to
regular tree types. Hereditary Harrop formulas have a natural logic programming
interpretation, which permits them to be used as the basis for implementing pro-
grams related to judgments specified via deductive systems. For example, programs
for evaluation or type inference in Mini-ML can be easily and elegantly expressed
in λProlog. In Chapter 4 we show that a similar operational interpretation is also
possible for the LF type theory, leading to the language Elf.
The third question we considered was how to represent the proofs of properties

of deductive systems. The central idea was to formulate the functions implicit in a
constructive proof as a judgment relating deductions. For example, the proof that
evaluation returns a value proceeds by induction over the structure of the deduction
D :: e ↪→ v. This gives rise to a total function f , mapping each D :: e ↪→ v into a
deduction P :: v Value. We then represent this function as a judgment D =⇒ P
such that D =⇒ P is derivable if and only if f(D) = P. A strong adequacy theorem,
however, is not available, since the mathematical proof is informal, and not itself
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introduced as a mathematical object. The judgment between deductions is then
again represented in LF using the idea of judgments-as-types, although now the
index objects to the representing family represent deductions. We refer to a family
indexed by objects whose type is constructed from a level 1 family as a level 2 family.
The technique for representing proofs of theorems about deductive systems which
have been formalized in the previous step is summarized in the following table.

Object Language Meta-Language

Informal Proof Level 2 Type Family

Value Soundness
vs : ΠE:exp. ΠV :exp.
eval E V → value V → type

Case in Structural Induction Constant Declaration
Base Case for Axioms Constant of Atomic Type
Induction Step Constant of Functional Type

A decidable criterion on when a given type family represents a proof of a theorem
about a deductive system is subject of current research [RP96, Sch00].2

An alternative to this approach is to work in a stronger type theory with explicit
induction principles in which we can directly express induction arguments. This
approach is taken, for example, in the Calculus of Inductive Constructions [PM93]
which has been implemented in the Coq system [DFH+93]. The disadvantage of
this approach is that it does not coexist well with the techniques of higher-order
abstract syntax and judgments-as-types, since the resulting representation types
(for example, exp) are not inductively defined in the usual sense.

3.11 Exercises

Exercise 3.1 Consider a variant of the typing rules given in Section 3.1 where the
rules var, con, lam, tcon, and ectx are replaced by the following rules.

+Σ Γ Ctx Σ(c) = A
con′

Γ +Σ c : A

+Σ Γ Ctx Γ(x) = A
var′

Γ +Σ x : A

Γ, x:A +Σ M : B
lam′

Γ +Σ λx:A. M : A→ B

+ Σ Sig Σ(a) = type
tcon′

+Σ a : type

+ Σ Sig
ectx

+Σ · Ctx

In what sense are these two systems equivalent? Formulate and carefully prove an
appropriate theorem.
2[update in final revision ]
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Exercise 3.2 Prove Theorem 3.1.

Exercise 3.3 Prove Lemma 3.4

Exercise 3.4 Give LF representations of the natural semantics rules ev pair, ev fst,
and ev snd (see Section 2.3).

Exercise 3.5 Reconsider the extension of the Mini-ML language by unit and dis-
joint sum type (see Exercise 2.7). Give LF representation for

1. the new expression constructors,

2. the new rules in the evaluation and value judgments, and

3. the new cases in the proof of value soundness.

Exercise 3.6 Give the LF representation of the evaluations in Exercise 2.3. You
may need to introduce some abbreviations in order to make it feasible to write it
down.

Exercise 3.7 Complete the definition of the representation function for evaluations
given in Section 3.6.

Exercise 3.8 Complete the definition of the judgment

D
e ↪→ v =⇒

P
v Value

given in Section 3.7 and give the LF encoding of the remaining inference rules.

Exercise 3.9 Formulate and prove a theorem which expresses that the rules lam′′

and app′′ in Section 3.5 are no longer necessary, if A → B stands for Πx:A. B for
some x which does not occur in B.

Exercise 3.10 State the rules for valid signatures, contexts, and kinds which were
omitted in Section 3.8.

Exercise 3.11 Formulate an adequacy theorem for the representation of evalua-
tions which is more general than Theorem 3.9 by allowing free variables in the
expressions e and v.

Exercise 3.12 Show the case for ev app in the proof of Lemma 3.8.

Exercise 3.13 Prove Theorem 3.10.

Exercise 3.14 Prove Theorem 3.12.
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Exercise 3.15 Complete the rules defining the full LF type theory.

Exercise 3.16 Prove items 1 and 2 of Theorem 3.13.

Exercise 3.17 In Exercise 2.13 you were asked to write a function observe : nat→
nat that, given a lazy value of type nat returns the corresponding eager value if it
exists.

1. Carefully state and prove the correctness of your function observe.

2. Explain the meaning of your proof as a higher-level judgment (without nec-
essarily giving all details).
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Chapter 4

The Elf Programming
Language

Elf, thou lovest best, I think,
The time to sit in a cave and drink.

— William Allingham
In Fairy Land [All75]

In Chapter 2 we have seen how deductive systems can be used systematically to
specify aspects of the semantics of programming languages. In later chapters, we
will see many more examples of this kind, including some examples from logic. In
Chapter 3 we explored the logical framework LF as a formal meta-language for the
representation of programming languages, their semantics, and their meta-theory.
An important motivation behind the development of LF has been to provide a
formal basis for the implementation of proof-checking and theorem proving tools,
independently of any particular logic or deductive system. Note that search in the
context of LF is the dual of type-checking: given a type A, find a closed object
M of type A. If such an object M exists we refer to A as inhabited. Since types
represent judgments and objects represent deductions, this is a natural formulation
of the search for a deduction of a judgment via its representation in LF. Unlike
type-checking, of course, the question whether a closed object of a given type exists
is in general undecidable. The question of general search procedures for LF has
been studied by Elliott [Ell89, Ell90] and Pym and Wallen [PW90, Pym90, PW91,
Pym92], including the question of unification of LF objects modulo βη-conversion.

In the context of the study of programming languages, we encounter problems
that are different from general proof search. For example, once a type system has
been specified as a deductive system, how can we implement a type-checker or

83
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a type inference procedure for the language? Another natural question concerns
the operational semantics: once specified as a deductive system, how can we take
advantage of this specification to obtain an interpreter for the language? In both
of these cases we are in a situation where algorithms are known and need to be
implemented. The problem of proof search can also be phrased in these terms:
given a logical system, implement algorithms for proof search that are appropriate
to the system at hand.
Our approach to the implementation of algorithms is inspired by logic program-

ming: specifications and programs are written in the same language. In traditional
logic programming, the common basis for specifications and implementations has
been the logic of Horn clauses; here, the common basis will be the logical framework
LF. We would like to emphasize that specifications and programs are generally not
the same: many specifications are not useful if interpreted as programs, and many
programs would not normally be considered specifications. In the logic program-
ming paradigm, execution is the search for a derivation of some instance of a query.
The operational semantics of the logic programming language specifies precisely
how this search will be performed, given a list of inference rules that constitute
the program. Thus, if one understands this operational reading of inference rules,
the programmer can obtain the desired execution behavior by defining judgments
appropriately. We explain this in more detail in Section ?? and investigate it more
formally in Chapter ??.
Elf is a strongly typed language, since it is directly based on LF. The Elf

interpreter must thus perform type reconstruction on programs and queries before
executing them. Because of the complex type system of LF, this is a non-trivial task.
In fact, it has been shown by Dowek [Dow93] that the general type inference problem
for LF is undecidable, and thus not all types may be omitted from Elf programs.
The algorithm for type reconstruction which is used in the implementation [Pfe91a,
Pfe94] is based on the same constraint solving algorithm employed during execution.
The current implementation of Elf is within the Twelf system [PS99]. The reader

should consult an up-to-date version of the User’s Guide for further information
regarding the language, its implementation, and its use. Sources, binaries for various
architectures, examples, and other materials are available from the Twelf home
page [Twe98].

4.1 Concrete Syntax

The concrete syntax of Elf is very simple, since we only have to model the relatively
few constructs of LF. While LF is stratified into the levels of kinds, families, and
objects, the syntax is overloaded in that, for example, the symbol Π constructs
dependent function types and dependent kinds. Similarly, juxtaposition is concrete
syntax for instantiation of a type family and application of objects. Wemaintain this
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overloading in the concrete syntax for Elf and refer to expressions from any of the
three levels collectively as terms. A signature is given as a sequence of declarations.
We describe here only the core language which corresponds very closely to LF.
The main addition is a form of declaration id : term1 = term2 that introduces an
abbreviation id for term2.

Terms term ::= id a or c or x
| {id:term1}term2 Πx:A1. A2 or Πx:A. K
| [id:term1]term2 λx:A. M
| term1 term2 A M or M1 M2
| type type
| term1 -> term2 A1 → A2
| term1 <- term2 A2 → A1
| {id}term | [id]term | _ omitted terms
| term1:term2 type ascription
| (term) grouping

Declarations decl ::= id : term. a:K or c:A
| id : term1 = term2. c:A =M

The terminal id stands either for a bound variable, a free variable, or a constant
at the level of families or objects. Bound variables and constants in Elf can be
arbitrary identifiers, but free variables in a declaration or query must begin with an
uppercase letter (a free, undeclared lowercase identifier is flagged as an undeclared
constant). An uppercase identifier is one which begins with an underscore _ or
a letter in the range A through Z; all others are considered lowercase, including
numerals. Identifiers may contain all characters except (){}[]:.% and whitespace.
In particular, A->B would be a single identifier, while A -> B denotes a function
type. The left-pointing arrow as in B <- A is a syntactic variant and parsed into the
same representation as A -> B. It improves the readability of some Elf programs.
Recall that A -> B is just an abbreviation for {x:A} B where x does not occur in
B.
The right-pointing arrow -> is right associative, while the left-pointing arrow <-

is left associative. Juxtaposition binds tighter than the arrows and is left associative.
The scope of quantifications {x : A} and abstractions [x : A] extends to the next
closing parenthesis, bracket, brace or to the end of the term. Term reconstruction
fills in the omitted types in quantifications {x} and abstractions [x] and omitted
types or objects indicated by an underscore _ (see Section 4.2). In case of essential
ambiguity a warning or error message results.
Single-line comments begin with % and extend through the end of the line. A

delimited comment begins with %{ and ends with the matching }%, that is, delimited
comments may be properly nested. The parser for Elf also supports infix, prefix,
and postfix declarations.
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4.2 Type and Term Reconstruction

A crucial element in a practical implementation of LF is an algorithm for type
reconstruction. We will illustrate type reconstruction with the Mini-ML examples
from the previous chapter. First, the straightforward signature defining Mini-ML
expressions which is summarized on page 46.

exp : type. %name exp E x.

z : exp.
s : exp -> exp.
case : exp -> exp -> (exp -> exp) -> exp.
pair : exp -> exp -> exp.
fst : exp -> exp.
snd : exp -> exp.
lam : (exp -> exp) -> exp.
app : exp -> exp -> exp.
letv : exp -> (exp -> exp) -> exp.
letn : exp -> (exp -> exp) -> exp.
fix : (exp -> exp) -> exp.

The declaration %name exp E x. indicates to Elf that fresh variables of type
exp which are created during type reconstruction or search should be named E, E1,
E2, etc.

Next, we turn to the signature defining evaluations. Here are three declarations
as they appear on page 56.

eval : exp→ exp→ type
ev z : eval z z
ev s : ΠE:exp. ΠV :exp. eval E V → eval (s E) (s V )
ev case z : ΠE1:exp. ΠE2:exp. ΠE3:exp→ exp. ΠV :exp.

eval E1 z→ eval E2 V → eval (case E1 E2 E3) V

In Elf’s concrete syntax these would be written as

eval : exp -> exp -> type.
ev_z : eval z z.
ev_s : {E:exp} {V:exp} eval E V -> eval (s E) (s V).
ev_case_z :
{E1:exp} {E2:exp} {E3:exp -> exp} {V:exp}
eval E1 z -> eval E2 V -> eval (case E1 E2 E3) V.
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A simple deduction, such as

ev z
z ↪→ z

ev z
z ↪→ z

ev s
s z ↪→ s z

ev case z
case z of z⇒ s z | s x⇒ z

is represented in Elf as

ev_case_z z (s z) ([x:exp] z) (s z) ev_z (ev_s z z ev_z).

The Elf implementation performs type checking and reconstruction; later we will
see how the user can also initiate search. In order to check that the object above
represents a derivation of case z of z⇒ s z | s x⇒ z, we construct an anonymous
definition

_ = ev_case_z z (s z) ([x:exp] z) (s z) ev_z (ev_s z z ev_z)
: eval (case z (s z) ([x:exp] z)) (s z).

The interpreter re-prints the declaration, which indicates that the given judgment
holds, that is, the object to the left of the colon has type type to the right of the
colon in the current signature. The current signature is embodied in the state of
the Twelf system and comprises all loaded files. Please see the Twelf User’s Guide
for details.
We now reconsider the declaration of ev_case_z. The types of E1, E2, E3, and

V are unambiguously determined by the kind of eval and the type of case. For
example, E1 must have type exp, since the first argument of eval must have type
exp. This means, the declaration of ev_case_z could be replaced by

ev_case_z :
{E1} {E2} {E3} {V}
eval E1 z -> eval E2 V -> eval (case E1 E2 E3) V.

It will frequently be the case that the types of the variables in a declaration can
be determined from the context they appear in. To abbreviate declarations further
we allow the omission of the explicit Π-quantifiers. Consequently, the declaration
above can be given even more succinctly as

ev_case_z : eval E1 z -> eval E2 V -> eval (case E1 E2 E3) V.

This second step introduces a potential problem: the order of the quantifiers is not
determined by the abbreviated declaration. Therefore, we do not know which argu-
ment to ev_case_z stands for E1, which for E2, etc. Fortunately, these arguments
(which are objects) can be determined from the context in which ev_case_z occurs.
Let E1, E2, E3, V, E’ and V’ stand for objects yet to be determined and consider
the incomplete object
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ev_case_z E1 E2 E3 V (ev_z) (ev_s E’ V’ (ev_z)).

The typing judgment

ev_case_z E1 E2 E3 V
: eval E1 z -> eval E2 V -> eval (case E1 E2 E3) V

holds for all valid objects E1, E2, E3, and V of appropriate type. The next argument,
ev_z has type eval z z. For the object to be well-typed we must thus have

eval E1 z = eval z z

where = represents definitional equality. Thus E1 = z. We can similarly determine
that E2 = s z, V = s z, E’ = z, and V’ = z. However, E3 is as yet undetermined.
But if we also know the type of the whole object, namely

eval (case z (s z) ([x:exp] z)) (s z),

then E3 = [x:exp] z also follows. Since it will generally be possible to determine
these arguments (up to conversion), we omit them in the input. We observe a strict
correspondence between implicit quantifiers in a constant declaration and implicit
arguments wherever the constant is used. This solves the problem that the order of
implicit arguments is unspecified. With the abbreviated declarations

eval : exp -> exp -> type.
ev_z : eval z z.
ev_s : eval E V -> eval (s E) (s V).
ev_case_z :

eval E1 z -> eval E2 V -> eval (case E1 E2 E3) V.

the derivation above is concisely represented by

ev_case_z (ev_z) (ev_s (ev_z))
: eval (case z (s z) ([x:exp] z)) (s z).

While arguments to an object of truly dependent function type (Πx:A. B where
x occurs free in B) are often redundant, there are examples where arguments cannot
be reconstructed unambiguously. It is a matter of practical experience that the great
majority of arguments to dependently typed functions do not need to be explicitly
given, but can be reconstructed from context. The Elf type reconstruction algorithm
will give a warning when an implicit quantifier in a constant declaration is likely to
lead to essential ambiguity later.
For debugging purposes it is sometimes useful to know the values of recon-

structed types and objects. The front-end of the Elf implementation can thus print
the internal and fully explicit form of all the declarations if desired. Type recon-
struction is discussed in further detail in the documentation of the implementation.
For the remainder of this chapter, the main feature to keep in mind is the duality
between implicit quantifiers and implicit arguments.
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4.3 A Mini-ML Interpreter in Elf

Let us recap the signatureEV defining evaluation as developed so far in the previous
section.

eval : exp -> exp -> type.
ev_z : eval z z.
ev_s : eval E V -> eval (s E) (s V).
ev_case_z :

eval E1 z -> eval E2 V -> eval (case E1 E2 E3) V.

One can now follow follow the path of Section 3.6 and translate the LF signature
into Elf syntax. Our main concern in this section, however, will be to implement
an executable interpreter for Mini-ML in Elf. In logic programming languages in
general computation is search for a derivation. In Elf, computation is search for
a derivation of a judgment according to a particular operational interpretation of
inference rules. In the terminology of the LF type theory, this translates to the
search for an object of a given type over a particular signature.
To consider a concrete example, assume we are given a Mini-ML expression e.

We would like to find an object V and a closed object D of type eval !e" V. Thus,
we are looking simultaneously for a closed instance of a type, eval !e" V, and a
closed object of this instance of the type. How would this search proceed? As an
example, consider e = case z of z ⇒ s z | s x ⇒ z. The query would have the
form

?- D : eval (case z (s z) ([x:exp] z)) V.

where V is a free variable. Now the Elf interpreter will attempt to use each of the
constants in the given signature in turn in order to construct a canonical object of
this type. Neither ev_z nor ev_s are appropriate, since the types do not match.
However, there is an instance of the last declaration

ev_case_z : eval E1 z -> eval E2 V -> eval (case E1 E2 E3) V.

whose conclusion eval (case E1 E2 E3) V matches the current query by instanti-
ating E1 = z, E2 = (s z), E3 = ([x:exp] z), and V = V. Thus, solutions to the
subgoals

?- D2 : eval (s z) V.
?- D1 : eval z z.

would provide a solution D = ev_case_z D1 D2 to the original query. At this point
during the search, the incomplete derivation in mathematical notation would be

D1
z ↪→ z

D2
s z ↪→ v

ev case z
(case z of z⇒ s z | s x⇒ z) ↪→ v
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where D1, D2, and v are still to be filled in. Thus computation in Elf corresponds to
bottom-up search for a derivation of a judgment. We solve the currently unsolved
subgoals going through the partial deduction in a depth-first, left-to-right manner.
So the next step would be to solve

?- D1 : eval z z.

We see that only one inference rule can apply, namely ev z, instantiating D1 to
ev_z. Now the subgoal D2 can be matched against the type of ev_s, leading to the
further subgoal

?- D3 : eval z V1.

while instantiating V to s V1 for a new variable V1 and D2 to ev_s D3. In mathe-
matical notation, the current state of search would be the partial derivation

ev z
z ↪→ z

D3
z ↪→ v1

ev s
s z ↪→ s v1

ev case z.
(case z of z⇒ s z | s x⇒ z) ↪→ s v1

The subgoals D3 can be solved directly by ev_z, instantiating V1 to z. We obtain
the following cumulative substitution:

D = ev_case_z D1 D2
D2 = ev_s D3,
V = s V1,
D3 = ev_z,
V1 = z,
D1 = ev_z.

Eliminating the intermediate variables we obtain the same answer that Elf would
return.

?- D : eval (case z (s z) ([x:exp] z)) V.

V = s z,
D = ev_case_z ev_z (ev_s ev_z).

One can see that the matching process which is required for this search procedure
must allow instantiation of the query as well as the declarations. The problem of
finding a common instance of two terms is called unification. A unification algorithm
for terms in first-order logic was first sketched by Herbrand [Her30]. The first full
description of an efficient algorithm for unification was given by Robinson [Rob65],
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which has henceforth been a central building block for automated theorem prov-
ing procedures and logic programming languages. In Elf, Robinson’s algorithm is
not directly applicable because of the presence of types and λ-abstraction. Huet
showed that unification in the simply-typed λ-calculus is undecidable [Hue73], a
result later sharpened by Goldfarb [Gol81]. The main difficulty stems from the
notion of definitional equality, which can be taken as β or βη-convertibility. Of
course, the simply-typed λ-calculus is a subsystem of the LF type theory, and thus
unifiability is undecidable for LF as well. A practical semi-decision procedure for
unifiability in the simply-typed λ-calculus has been proposed by Huet [Hue75] and
used in a number of implementations of theorem provers and logic programming
languages [AINP88, Pfe91a, Pau94]. However, the procedure has the drawback
that it may not only diverge but also branch, which is difficult to control in logic
programming. Thus, in Elf, we have adopted the approach of constraint logic pro-
gramming languages first proposed by Jaffar and Lassez [JL87], whereby difficult
unification problems are postponed and carried along as constraints during execu-
tion. We will say more about the exact nature of the constraint solving algorithm
employed in Elf in Section ??. In this chapter, all unification problems encountered
will be essentially first-order.

We have not payed close attention to the order of various operations during
computation. In the first approximation, the operational semantics of Elf can be
described as follows. Assume we are given a list of goals A1, . . . , An with some
free variables. Each type of an object-level constant c in a signature has the form
Πy1:B1 . . .Πym:Bm. C1 → · · · → Ck → C, where C is an atomic type. We call C
the target type of c. Also, in analogy to logic programming, we call c a clause, C the
head of the clause c. Recall, that some of these quantifiers may remain implicit in
Elf. We instantiate y1, . . . , ym with fresh variables Y1, . . . , Ym and unify the resulting
instance of C ′ with A1, trying each constant in the signature in turn until unification
succeeds. Unification may instantiate C1, . . . , Ck to C ′1, . . . , C

′
k. We now set these

up as subgoals, that is, we obtain the new list of goals C ′k, . . . , C
′
1, A2, . . . , An. The

object we were looking for will be c Y1 . . . Yn M1 . . .Mk, where M1, . . . ,Mk are the
objects of type C ′1, . . . , C

′
k, respectively, yet to be determined. We say that the goal

A1 has been resolved with the clause c and refer to the process as back-chaining.
Note that the subgoals will be solved “from the inside out,” that is, C ′k is the first
one to be considered. If unification should fail and no further constants are available
in the signature, we backtrack, that is, we return to the most recent point where a
goal unified with a clause head (that is, a target type of a constant declaration in
a signature) and further choices were available. If there are no such choice points,
the overall goal fails.

Logic programming tradition suggests writing the (atomic) target type C first
in a declaration, since it makes is visually much easier to read a program. We
follow the same convention here, although the reader should keep in mind that
A -> B and B <- A are parsed to the same representation: the direction of the arrow
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has no semantic significance. The logical reading of B <- A is “B if A,” although
strictly speaking it should be “B is derivable if A is derivable.” The left-pointing
arrow is left associative so that C <- B <- A, (C <- B) <- A, A -> (B -> C), and
A -> B -> C are all syntactically different representations for the same type. Since
we solve innermost subgoals first, the operational interpretation of the clause

ev_case_z :
eval E1 z -> eval E2 V -> eval (case E1 E2 E3) V.

would be: “To solve a goal of the form eval (case E1 E2 E3) V, solve eval E2 V
and, if successful, solve eval E1 z.” On the other hand, the clause

ev_case_z : eval (case E1 E2 E3) V
<- eval E1 z
<- eval E2 V.

reads as: “to solve a goal of the form eval (case E1 E2 E3) V, solve eval E1 z
and, if successful, eval E2 V.” Clearly this latter interpretation is desirable from
the operational point of view, even though the argument order to ev_case_z is
reversed when compared to the LF encoding of the inference rules we have used so
far. This serves to illustrate that a signature that is adequate as a specification of
a deductive system is not necessarily adequate for search. We need to pay close
attention to the order of the declarations in a signature (since they will be tried in
succession) and the order of the subgoals (since they will be solved from the inside
out).
We now complete the signature describing the interpreter for Mini-ML in Elf.

It differs from the LF signature in Section 3.6 only in the order of the arguments
to the constants. First the complete rules concerning natural numbers.

ev_z : eval z z.
ev_s : eval (s E) (s V)

<- eval E V.
ev_case_z : eval (case E1 E2 E3) V

<- eval E1 z
<- eval E2 V.

ev_case_s : eval (case E1 E2 E3) V
<- eval E1 (s V1’)
<- eval (E3 V1’) V.

Recall that the application (E3 V1’) was used to implement substitution in
the object language. We discuss how this is handled operationally below when
considering ev_app. Pairs are straightforward.

ev_pair : eval (pair E1 E2) (pair V1 V2)
<- eval E1 V1
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<- eval E2 V2.
ev_fst : eval (fst E) V1

<- eval E (pair V1 V2).
ev_snd : eval (snd E) V2

<- eval E (pair V1 V2).

Abstraction and function application employ the notion of substitution. Recall
the inference rule and its representation in LF:

e1 ↪→ lam x. e′1 e2 ↪→ v2 [v2/x]e
′
1 ↪→ v ev app

e1 e2 ↪→ v

ev app : ΠE1:exp. ΠE2:exp. ΠE′1:exp→ exp. ΠV2:exp. ΠV :exp.
eval E1 (lam E′1)
→ eval E2 V2
→ eval (E′1 V2) V
→ eval (app E1 E2) V.

As before, we transcribe this (and the trivial rule for evaluating λ-expressions) into
Elf.

ev_lam : eval (lam E) (lam E).

ev_app : eval (app E1 E2) V
<- eval E1 (lam E1’)
<- eval E2 V2
<- eval (E1’ V2) V.

The operational reading of the ev_app rule is as follows. In order to evaluate an
application e1 e2 we evaluate e1 and match the result against lam x. e′1. If this
succeeds we evaluate e2 to the value v2. Then we evaluate the result of substituting
v2 for x in e′1. The Mini-ML expression lam x. e

′
1 is represented as in LF as

lam (λx:exp. !e′1"), and the variable E1’ : exp -> exp will be instantiated to
([x:exp] !e′1"). In the operational semantics of Elf, an application which is not in
canonical form (such as (E1’ V2) after instantiation of E1’ and V2) will be reduced
until it is in head-normal form (see Section ??)—in this case this means performing
the substitution of V2 for the top-level bound variable in E1’. As an example,
consider the evaluation of (lam x. x) z which is given by the deduction

ev lam
lam x. x ↪→ lam x. x

ev z
z ↪→ z

ev z
z ↪→ z

ev app.
(lam x. x) z ↪→ z

The first goal is
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?- D : eval (app (lam [x:exp] x) z) V.

This is resolved with the clause ev_app, yielding the subgoals

?- D1 : eval (lam [x:exp] x) (lam E1’).
?- D2 : eval z V2.
?- D3 : eval (E1’ V2) V.

The first subgoal will be resolved with the clause ev_lam, instantiating E1’ to
([x:exp] x). The second subgoal will be resolved with the clause ev_z, instan-
tiating V2 to z. Thus, by the time the third subgoal is considered, it has been
instantiated to

?- D3 : eval (([x:exp] x) z) V.

When this goal is unified with the clauses in the signature, (([x:exp] x) z) is
reduced to z. It thus unifies with the head of the clause ev_z, and V is instantiated
to z to yield the answer

V = z.
D = ev_app ev_z ev_z ev_lam.

Note that because of the subgoal ordering, ev_lam is the last argument to ev_app.
Evaluation of let-expressions follows the same schema as function application,

and we again take advantage of meta-level β-reduction in order to model object-level
substitution.

ev_letv : eval (letv E1 E2) V
<- eval E1 V1
<- eval (E2 V1) V.

ev_letn : eval (letn E1 E2) V
<- eval (E2 E1) V.

The Elf declaration for evaluating a fixpoint construct is again a direct tran-
scription of the corresponding LF declaration. Recall the rule

[fix x. e/x]e ↪→ v
ev fix

fix x. e ↪→ v

ev_fix : eval (fix E) V
<- eval (E (fix E)) V.

This declaration introduces non-terminating computations into the interpreter. Re-
consider the example from page 17, fix x. x. Its representation in Elf is given by
fix ([x:exp] x). Attempting to evaluate this expression leads to the following
sequence of goals.
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?- D : eval (fix ([x:exp] x)) V.
?- D1 : eval (([x:exp] x) (fix ([x:exp] x))) V.
?- D1 : eval (fix ([x:exp] x)) V.

The step from the original goal to the first subgoal is simply the back-chaining step,
instantiating E to [x:exp] x. The second is a β-reduction required to transform
the goal into canonical form, relying on the rule of type conversion. The third goal
is then a renaming of the first one, and computation will diverge. This corresponds
to the earlier observation (see page 17) that there is no v such that the judgment
fix x. x ↪→ v is derivable.
It is also possible that evaluation fails finitely, although in our formulation of

the language this is only possible for Mini-ML expressions that are not well-typed
according to the Mini-ML typing rules. For example,

?- D : eval (fst z) V.
no

The only subgoal considered is D’ : eval z (pair V V2) after resolution with
the clause ev_fst. This subgoal fails, since there is no rule that would permit a
conclusion of this form, that is, no clause head unifies with eval z (pair V V2).
As a somewhat larger example, we reconsider the evaluation which doubles the

natural number 1, as given on page 17. Reading the justifications of the lines 1–17
from the bottom-up yields the same sequence of inference rules as reading the object
D below from left to right.

%query 1 *
D : eval (app

(fix [f:exp] lam [x:exp]
(case x z ([x’:exp] s (s (app f x’)))))

(s z))
V.

This generates the following answer:

V = s (s z),
D =
ev_app
(ev_case_s

(ev_s (ev_s (ev_app (ev_case_z ev_z ev_z)
ev_z (ev_fix ev_lam))))

(ev_s ev_z))
(ev_s ev_z) (ev_fix ev_lam).

The example above exhibits another feature of the Elf implementation. We can
pose query in the form %query n k A. which solves the query A and verifies that
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it produces precisely n solutions after k tries. Here * as either n or k represents
infinity.
One can also enter queries interactively after typing top in the Twelf server.

Then, after after displaying the first solution for V and D the Elf interpreter pauses.
If one simply inputs a newline then Elf prompts again with ?- , waiting for another
query. If the user types a semi-colon, then the interpreter backtracks as if the
most recent subgoal had failed, and tries to find another solution. This can be a
useful debugging device. We know that evaluation of Mini-ML expressions should
be deterministic in two ways: there should be only one value (see Theorem 2.6) and
there should also be at most one deduction of every evaluation judgment. Thus
backtracking should never result in another value or another deduction of the same
value. Fortunately, the interpreter confirms this property in this particular example.
As a second example for an Elf program, we repeat the definition of value

Values v ::= z | s v | 〈v1, v2〉 | lam x. e

which was presented as a judgment on page 18 and as an LF signature on page 62.

value : exp -> type. %name value P.

val_z : value z.
val_s : value (s E) <- value E.
val_pair : value (pair E1 E2) <- value E1 <- value E2.
val_lam : value (lam E).

This signature can be used as a program to decide if a given expression is a
value. For example,

?- value (pair z (s z)).
Empty Substitution.
More? n
?- value (fst (pair z (s z))).
no
?- value (lam [x] (fst x)).
Empty Substitution.
More? y
No more solutions

Here we use a special query form that consists only of a type A, rather than a typing
judgment M : A. Such a query is interpreted as X : A for a new free variable X
whose instantiation will not be shown with in the answer substitution. In many
cases this query form is substantially more efficient than the form M : A, since the
interpreter can optimize such queries and does not construct the potentially large
object M .
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4.4 An Implementation of Value Soundness

We now return to the proof of value soundness which was first given in Section 2.4
and formalized in Section 3.7. The theorem states that evaluation always returns
a value. The proof of the theorem proceeds by induction over the structure of the
derivation D of the judgment e ↪→ v, that is, the evaluation of e. The first step in
the formalization of this proof is to formulate a judgment between deductions,

D
e ↪→ v =⇒

P
v Value

which relates every D to some P and whose definition is based on the structure
of D. This judgment is then represented in LF as a type family vs, following the
judgments-as-types principle.

vs : ΠE:exp. ΠV :exp. eval E V → value V → type.

Each of the various cases in the induction proof gives rise to one inference rule
for the =⇒ judgment, and each such inference rule is represented by a constant
declaration in LF. We illustrate the Elf implementation with the case where D
ends in the rule ev fst and then present the remainder of the signature in Elf more
tersely.

Case:

D =

D′
e′ ↪→ 〈v1, v2〉

ev fst.
fst e′ ↪→ v1

Then the induction hypothesis applied to D′ yields a deduction P ′ of the
judgment 〈v1, v2〉 Value. By examining the inference rules we can see that
P ′ must end in an application of the val pair rule, that is,

P ′ =

P1
v1 Value

P2
v2 Value

val pair
〈v1, v2〉 Value

for some P1 and P2. Hence v1 Value must be derivable, which is what we
needed to show.
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This is represented by the following inference rule for the =⇒ judgment.

D′
e′ ↪→ 〈v1, v2〉

=⇒

P1
v1 Value

P2
v2 Value

val pair
〈v1, v2〉 Value

vs fst
D′

e ↪→ 〈v1, v2〉
ev fst

fst e′ ↪→ v1
=⇒ P1

v1 Value

Its representation in LF is given by

vs fst : ΠE′:exp. ΠV1:exp. ΠV2:exp.
ΠD′:eval E′ (pair V1 V2). ΠP1:value V1. ΠP2:value V2.
vs E (pair V1 V2) D′ (val pair V1 V2 P1 P2)
→ vs (fst E′) V1 (ev fst E V1 V2 D′) P1

This may seem unwieldy, but Elf’s type reconstruction comes to our aid. In the
declaration of vs, the quantifiers on E and V can remain implicit:

vs : eval E V -> value V -> type.

The corresponding arguments to vs now also remain implicit. We also repeat the
declarations for the inference rules involved in the deduction above.

ev_fst : eval (fst E) V1 <- eval E (pair V1 V2).
val_pair : value (pair E1 E2) <- value E1 <- value E2.

Here is the declaration of the vs fst constant:

vs_fst : vs (ev_fst D’) P1 <- vs D’ (val_pair P2 P1).

Note that this declaration only has to deal with deductions, not with expressions.
Term reconstruction expands this into

vs_fst :
{E:exp} {E1:exp} {E2:exp} {D’:eval E (pair E1 E2)}
{P2:value E2} {P1:value E1}
vs E (pair E1 E2) D’ (val_pair E2 E1 P2 P1)
-> vs (fst E) E1 (ev_fst E E1 E2 D’) P1.

Disregarding the order of quantifiers and the choice of names, this is the LF dec-
laration given above. We show the complete signature which implements the proof
of value soundness without further comment. The declarations can be derived from
the material and the examples in Sections 2.4 and 3.7.
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vs : eval E V -> value V -> type.

% Natural Numbers
vs_z : vs (ev_z) (val_z).
vs_s : vs (ev_s D1) (val_s P1)

<- vs D1 P1.
vs_case_z : vs (ev_case_z D2 D1) P2

<- vs D2 P2.
vs_case_s : vs (ev_case_s D3 D1) P3

<- vs D3 P3.

% Pairs
vs_pair : vs (ev_pair D2 D1) (val_pair P2 P1)

<- vs D1 P1
<- vs D2 P2.

vs_fst : vs (ev_fst D’) P1
<- vs D’ (val_pair P2 P1).

vs_snd : vs (ev_snd D’) P2
<- vs D’ (val_pair P2 P1).

% Functions
vs_lam : vs (ev_lam) (val_lam).
vs_app : vs (ev_app D3 D2 D1) P3

<- vs D3 P3.

% Definitions
vs_letv : vs (ev_letv D2 D1) P2

<- vs D2 P2.
vs_letn : vs (ev_letn D2) P2

<- vs D2 P2.

% Recursion
vs_fix : vs (ev_fix D1) P1

<- vs D1 P1.

This signature can be used to transform evaluations into value deductions. For
example, the evaluation of case z of z ⇒ s z | s x ⇒ z considered above is given
by the Elf object

ev_case_z (ev_s ev_z) ev_z

of type

eval (case z (s z) ([x:exp] z)) (s z).
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We can transform this evaluation into a derivation which shows that s z is a value:

?- vs (ev_case_z (ev_s ev_z) ev_z) P.

P = val_s val_z.

The sequence of subgoals considered is

?- vs (ev_case_z (ev_s ev_z) ev_z) P.
% Resolved with clause vs_case_z
?- vs (ev_s ev_z) P.
% Resolved with clause vs_s [with P = val_s P1]
?- vs ev_z P1.
% Resolved with clause vs_z [with P1 = val_z]

This approach to testing the meta-theory is feasible for this simple example. As
evaluations become more complicated, however, we would like to use the program
for evaluation to generate a appropriate derivations and then transform them. This
form of sequencing of computation can be achieved in Elf by using the declaration
%solve c : A. This will solve the query A obtain the first solution A’ with proof
term M and then making the definition c : A’ = M. Later queries can then refer to
c. For example,

%solve d0 : eval (case z (s z) ([x:exp] z) (s z)).
%query 1 * vs d0 P.

will construct d0 and then transform it to a value derivation using the higher-level
judgment vs that implements value soundness.

4.5 Input and Output Modes

Via the judgments-as-types and deductions-as-object principles of representation,
Elf unifies concepts which are ordinarily distinct in logic programming languages.
For example, a goal is represented as a type in Elf. If we look a little deeper, Elf
associates a variable M with each goal type A such that solving the goal requires
finding an object M of some instance of A. Therefore in some way Elf unifies the
concepts of goal and logic variable. On the other hand, the intuition underlying
the operational interpretation of judgments makes a clear distinction between con-
struction of a derivation and unification: unification is employed only to see if an
inference rule can be applied to reduce a goal to subgoals.
In Elf, the distinction between subgoals and logic variables is made based on the

presence or absence of a true dependency. Recall that the only distinction between
Πx:A. B and A → B is that x may occur in B in the first form, but not in the
second. For the purposes of the operational semantics of Elf, the truly dependent
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function type Πx:A. B where x does in fact occur somewhere in B is treated by
substituting a new logic variable for x which is subject to unification. The non-
dependent function type A→ B is treated by introducing A as a subgoal necessary
for the solution of B.
Therefore, a typical constant declaration which has the form

c : Πx1:A1 . . .Πxn:An. B1 → · · ·→ Bm. C

for an atomic type C, introduces logic variables X1, . . . , Xn, then finds most general
common instance between the goal G and C (possibly instantiatingX1, . . . , Xn and
then solves Bm, . . . , B1 as subgoals, in that order. Note that in practical programs,
the quantifiers on x1, . . . , xn are often implicit.
When writing a program it is important to kept this interpretation in mind. In

order to illustrate it, we write some simple programs.
First, the declaration of natural numbers. We declare s, the successor function,

as a prefix operator so we can write 2, for example, as s s 0 without additional
parentheses. Note that without the prefix declaration this term would be associated
to the left and parsed incorrectly as ((s s) 0).

nat : type. %name nat N.
0 : nat.
s : nat -> nat. %prefix 20 s.

The prefix declaration has the general form %prefix prec id1 . . . idn and gives the
constants id1, . . . , idn precedence prec. The second declaration introduces lists of
natural numbers. We declare “;” as a right-associative infix constructor for lists.

list : type. %name list L.
nil : list.
; : nat -> list -> list. %infix right 10 ;.

For example, (0 ; s 0 ; s s 0 ; nil) denotes the list of the first three natural
numbers; (0 ; ((s 0) ; ((s (s 0)) ; nil))) is its fully parenthesized version,
and (; 0 (; (s 0) (; (s (s 0)) nil))) is the prefix form which would have to
be used if no infix declarations had been supplied.
The definition of the append program is straightforward. It is implemented

as a type family indexed by three lists, where the third list must be the result of
appending the first two. This can easily be written as a judgment (see Exercise 4.6).

append : list -> list -> list -> type.
%mode append +L +K -M.

ap_nil : append nil K K.
ap_cons : append (X ; L) K (X ; M)

<- append L K M.
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The mode declaration

%mode append +L +K -M.

specifies that, for the operational reading, we should consider the first two argument
L and K as given input, while the third argument M is to be constructed by the
program as output. To make this more precise, we define that a term is ground if it
does not contain any logic variables. With the above mode declaration we specify
that first two arguments l and k to append should always be ground when a goal of
the form append l k m is to be solved. Secondly, it expresses that upon success, the
third argument m should always be ground. The Elf compiler verifies this property
as each declaration is read and issues an appropriate error message if it is violated.
This mode verification proceeds as follows. We first consider

ap_nil : append nil K K.

We may assume that the first two arguments are ground, that is, nil and K will be
ground when append is invoked. Therefore, if this rule succeeds, the third argument
K will indeed be ground.
Next we consider the second clause.

ap_cons : append (X ; L) K (X ; M)
<- append L K M.

We may assume that the first two arguments are ground when append is invoked.
Hence X, L, and K may be assumed to be ground. This is necessary to know that the
recursive call append L K M is well-moded: L and K are indeed ground. Inductively,
we may now assume that M is ground if this subgoal succeeds, since the third argu-
ment to M was designated as an output argument. Since we also already know that
X is ground, we thus conclude that (X ; M) is ground. Therefore the declaration is
well-moded.
This program exhibits the expected behavior when given ground lists as the first

two arguments. It can also be used to split a list when the third argument is given
the first two are variables. For example,

?- append (0 ; s 0 ; nil) (s s 0 ; nil) M.

M = 0 ; s 0 ; s s 0 ; nil.

We can also use the same implementation to split a list into two parts by posing
a query of the form append L K m for a given list m. This query constitutes a use
of append in the mode

%mode append -L -K +M.
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The reader may wish to analyze append to see why append also satisfies this mode
declaration. We can now use the %query construct to verify that the actual and
expected number of solutions coincide.

%query 4 *
append L K (0 ; s 0 ; s s 0 ; nil).
---------- Solution 1 ----------
K = 0 ; s 0 ; s s 0 ; nil;
L = nil.
---------- Solution 2 ----------
K = s 0 ; s s 0 ; nil;
L = 0 ; nil.
---------- Solution 3 ----------
K = s s 0 ; nil;
L = 0 ; s 0 ; nil.
---------- Solution 4 ----------
K = nil;
L = 0 ; s 0 ; s s 0 ; nil.

Mode-checking is a valuable tool for the programmer to check the correct def-
inition and use of predicate. Incorrect use often leads to non-termination. For
example, consider the following definition of the even numbers.

even : nat -> type.
%mode even +N.
even_ss : even (s (s N)) <- even N.
even_0 : even 0.

The mode declaration indicates that it should be used only to verify if a given
(ground) natural numbers is even. Indeed, the query

?- even N.

will fail to terminate without giving a single answer. It is not mode-correct, since N
is a logic variable in an input position. To see why this fails to terminate, we step
through the execution:

?- even N.
Solving...
% Goal 1:
even N.
% Resolved with clause even_ss
N = s s N1.
% Solving subgoal (1) of clause even_ss
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% Goal 2:
even N1.
% Resolved with clause even_ss
N1 = s s N2.
% Solving subgoal (1) of clause even_ss
% Goal 3:
even N2.
...

If definition of even was intended to enumerate all even numbers instead, we would
exchange the order of the two declarations even_0 and even_ss. We call this new
family even*.

even* : nat -> type.
%mode even* -N.

even*_0 : even* 0.
even*_ss : even* (s (s N)) <- even* N.

The mode declaration now indicates that the argument of even* is no longer an
input, but an output. Since the declarations are tried in order, execution now
succeeds infinitely many times, starting with 0 as the first answer. The query

%query * 10 even* N.

enumerates the first 10 answers and then stops.
It is also possible to declare variables to be neither input nor output by using

the pattern *X for an argument X. This kind of pattern is used, for example, in
the implementation of type inference in Section 5.5.

4.6 Exercises

Exercise 4.1 Show the sequence of subgoals generated by the query which at-
tempts to evaluate the Mini-ML expression (lam x. x x) (lam x. x x). Also show
that this expression is not well-typed in Mini-ML, although its representation is of
course well-typed in LF.

Exercise 4.2 The Elf interpreter for Mini-ML contains some obvious redundancies.
For example, while constructing an evaluation of case e1 of z ⇒ e2 | s x ⇒ e3,
the expression e1 will be evaluated twice if its value is not zero. Write a program
for evaluation of Mini-ML expressions in Elf that avoids this redundant computa-
tion and prove that the new interpreter and the natural semantics given here are
equivalent. Implement this proof as a higher-level judgment relating derivations.
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Exercise 4.3 Implement the optimized version of evaluation from Exercise 2.12 in
which values that are substituted for variables during evaluation are not evaluated

again. Based on the modified interpreter, implement bounded evaluation e
n
↪→ v

with the intended meaning that e evaluates to v in at most n steps (for a natural
number n). You may make the simplifying but unrealistic assumption that every
inference rule represents one step in the evaluation.

Exercise 4.4 Write Elf programs to implement quicksort and insertion sort for
lists of natural numbers, including all necessary auxiliary judgments.

Exercise 4.5 Write declarations to represent natural numbers in binary notation.

1. Implement a translation between binary and unary representations in Elf.

2. Formulate an appropriate representation theorem and prove it.

3. Implement the proof of the representation theorem in Elf.

Exercise 4.6 Give the definition of the judgment append as a deductive system.
append l1 l2 l3 should be derivable whenever l3 is the result of appending l1 and l2.
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Chapter 5

Parametric and Hypothetical
Judgments

Many deductive systems employ reasoning from hypotheses. We have seen an exam-
ple in Section 2.5: a typing derivation of a Mini-ML expression requires assumptions
about the types of its free variables. Another example occurs in the system of natu-
ral deduction in Chapter ??, where a deduction of the judgment that A⊃B is true
can be given as a deduction of B is true from the hypothesis A is true. We refer to
a judgment that J is derivable under a hypothesis J ′ as a hypothetical judgment. Its
critical property is that we can substitute a derivation D of J ′ for every use of the
hypothesis J ′ to obtain a derivation which no longer depends on the assumption J ′.
Related is reasoning with parameters, which also occurs frequently. The system

of natural deduction provides once again a typical example: we can infer that
∀x. A is true if we can show that [a/x]A is true, where a is a new parameter which
does not occur in any undischarged hypothesis. Similarly, in the typing rules for
Mini-ML we postulate that every variable is declared at most once in a context Γ,
that is, in the rule

Γ, x:τ1 # e : τ2
tp lam

Γ # lam x. e : τ1 → τ2

the variable x is new with respect to Γ (which represents the hypotheses of the
derivation). This side condition can always be fulfilled by tacitly renaming the
bound variable. We refer to a judgment that J is derivable with parameter x as a
parametric judgment. Its critical property is that we can substitute an expression
t for x throughout a derivation of a parametric judgment to obtain a derivation
which no longer depends on the parameter x.
Since parametric and hypothetical judgments are common, it is natural to ask

if we can directly support them within the logical framework. The answer is

107
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affirmative—the key is the notion of function provided in LF. Briefly, the derivation
of a hypothetical judgment is represented by a function which maps a derivation of
the hypothesis to a derivation of the conclusion. Applying this function corresponds
to substituting a derivation for appeals to the hypothesis. Similarly, the derivation
of a parametric judgment is represented by a function which maps an expression to
a derivation of the instantiated conclusion. Applying this function corresponds to
substituting an expressions for the parameter throughout the parametric derivation.
In the remainder of this chapter we elaborate the notions of parametric and

hypothetical judgment and their representation in LF. We also show how to ex-
ploit them to arrive at a natural and elegant representation of the proof of type
preservation for Mini-ML.

5.1 Closed Expressions

When employing parametric and hypothetical judgments, we must formulate the
representation theorems carefully in order to avoid paradoxes. As a simple example,
we consider the judgment e Closed which expresses that e has no free variables.
Expression constructors which do not introduce any bound variables are treated in
a straightforward manner.

clo z
z Closed

e Closed
clo s

s e Closed

e1 Closed e2 Closed
clo pair

〈e1, e2〉 Closed

e Closed
clo fst

fst e Closed

e Closed
clo snd

snd e Closed

e1 Closed e2 Closed
clo app

e1 e2 Closed

In order to give a concise formulation of the judgment whenever variables are
bound we use hypothetical judgments. For example, in order to conclude that
lam x. e is closed, we must show that e is closed under the assumption that x
is closed. The hypothesis about x may only be used in the deduction of e, but
not elsewhere. Furthermore, in order to avoid confusion between different bound
variables with the same name, we would like to make sure that the name x is not
already used, that is, the judgment should be parametric in x. The hypothetical
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judgment that J is derivable from hypotheses J1, . . . , Jn is written as

J1 . . . Jn
...
J

The construction of a deduction of a hypothetical judgment should be intuitively
clear: in addition to the usual inference rules, we may also use a hypothesis as evi-
dence for a judgment. But we must also indicate where an assumption is discharged,
that is, after which point in a derivation it is no longer available. We indicate this
by providing a name for the hypothesis J and labelling the inference at which the
hypothesis is discharged correspondingly. Similarly, we label the inference at which
a parameter is discharged. The remaining inference rules for the judgment e Closed
using this notation are given below.

e1 Closed e2 Closed

u
x Closed
...

e3 Closed
clo casex,u

(case e1 of z⇒ e2 | s x⇒ e3) Closed

u
x Closed
...

e Closed
clo lamx,u

lam x. e Closed

e1 Closed

u
x Closed
...

e2 Closed
clo letvx,u

letval x = e1 in e2 Closed

e1 Closed

u
x Closed
...

e2 Closed
clo letnx,u

letname x = e1 in e2 Closed

u
x Closed
...

e Closed
clo fixx,u

fix x. e Closed

In order to avoid ambiguity we assume that in a given deduction, all labels for
the inference rules clo case, clo lam, clo letv, clo letn and clo fix are distinct. An
alternative to this rather stringent, but convenient requirement is suggestive of the
representation of hypothetical judgments in LF: we can think of a label u as a
variable ranging over deductions. The variable is bound by the inference which
discharges the hypothesis.
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The following derivation shows that the expression let name f = lam x. x in f (f z)
is closed.

u
x Closed

clo lamx,u
lam x. x Closed

w
f Closed

w
f Closed

clo z
z Closed

clo app
f z Closed

clo app
f (f z) Closed

clo letnf,w
let name f = lam x. x in f (f z) Closed

This deduction has no undischarged assumptions, but it contains subderiva-
tions with hypotheses. The right subderivation, for example, would traditionally
be written as

f Closed

f Closed
clo z

z Closed
clo app

f z Closed
clo app.

f (f z) Closed

In this notation we can not determine if there are two hypotheses (which happen
to coincide) or two uses of the same hypothesis. This distinction may be irrelevant
under some circumstances, but in many situations it is critical. Therefore we retain
the labels even for hypothetical derivations, with the restriction that the free labels
must be used consistently, that is, all occurrences of a label must justify the same
hypothesis. The subderivation above then reads

w
f Closed

w
f Closed

clo z
z Closed

clo app
f z Closed

clo app.
f (f z) Closed

There are certain reasoning principles for hypothetical derivations which are
usually not stated explicitly. One of them is that hypotheses need not be used. For
example, lam x. z is closed as witnessed by the derivation

clo z
z Closed

clo lamx,u
lam x. z Closed

which contains a subdeduction of z Closed from hypothesis u :: x Closed. Another
principle is that hypotheses may be used more than once and thus, in fact, arbitrarily
often. Finally, the order of the hypotheses is irrelevant (although their labelling is
not). This means that a hypothetical deduction in this notation could be evidence
for a variety of hypothetical judgments which differ in the order of the hypotheses
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or may contain further, unused hypotheses. One can make these principles explicit
as inference rules, in which case we refer to them as weakening (hypotheses need not
be used), contraction (hypotheses may be used more than once), and exchange (the
order of the hypotheses is irrelevant). We should keep in mind that if these principles
do not apply then the judgment should not be considered to be hypothetical in the
usual sense, and the techniques below may not apply. These properties have been
studied abstractly as consequence relations [Gar92].
The example derivation above is not only hypothetical in w, but also parametric

in f , and we can therefore substitute an expression such as lam x. x for f and obtain
another valid deduction.

w
lam x. x Closed

w
lam x. x Closed

clo z
z Closed

clo app
(lam x. x) z Closed

clo app
(lam x. x) ((lam x. x) z) Closed

If C :: e Closed is parametric in x, then we write [e′/x]C :: [e′/x]e Closed for the
result of substituting e′ for x in the deduction C. In the example, the deduction still
depends on the hypothesis w, which suggests another approach to understanding
hypothetical judgments. If a deduction depends on a hypothesis u :: J we can
substitute any valid deduction of J for this hypothesis to obtain another deduction
which no longer depends on u :: J . Let C be the deduction above and let C′ ::
lam x. x Closed be

u
x Closed

clo lamx,u.
lam x. x Closed

Note that this deduction is not parametric in x, that is, x must be considered a
bound variable within C′. The result of substituting C′ for w in C is

u
x Closed

clo lamx,u
lam x. x Closed

u′
x′ Closed

clo lamx
′,u′

lam x′. x′ Closed
clo z

z Closed
clo app

(lam x′. x′) z Closed
clo app

(lam x. x) ((lam x′. x′) z) Closed

where we have renamed some occurrences of x and u in order to satisfy our global
side conditions on parameter names. In general we write [D′/u]D for the result of
substituting D′ for the hypothesis u :: J ′ in D, where D′ :: J ′. During substitution
we may need to rename parameters or labels of assumptions to avoid violating side
conditions on inference rules. This is analogous to the renaming of bound variables
during substitution in terms in order to avoid variable capture.
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The representation of the judgment e Closed in LF follows the judgment-as-types
principle: we introduce a type family ‘closed’ indexed by an expression.

closed : exp→ type

The inference rules that do not employ hypothetical judgments are represented
straightforwardly.

clo z : closed z
clo s : ΠE:expclosed E → closed (s E)
clo pair : ΠE1:exp. ΠE2:exp.

closed E1 → closed E2 → closed (pair E1 E2)
clo fst : ΠE:exp. closed E → closed (fst E)
clo snd : ΠE:exp. closed E → closed (snd E)
clo app : ΠE1:exp. ΠE2:exp.

closed E1 → closed E2 → closed (app E1 E2)

Now we reconsider the rule clo lam.

u
x Closed
...

e Closed
clo lamx,u

lam x. e Closed

The judgment in the premiss is parametric in x and hypothetical in x Closed.
We thus consider it as a function which, when applied to an e′ and a deduction
C :: e′ Closed yields a deduction of [e′/x]e Closed.

clo lam : ΠE:exp→ exp.
(Πx:exp. closed x→ closed (E x))→ closed (lam E)

Recall that it is necessary to represent the scope of a binding operator in the lan-
guage of expressions as a function from expressions to expressions. Similar declara-
tions are necessary for the hypothetical judgments in the premisses of the clo letv,
clo letn, and clo fix rules.
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clo case : ΠE1:exp. ΠE2:exp. ΠE3:exp→ exp.
closed E1 → closed E2
→ (Πx:exp. closed x→ closed (E3 x))
→ closed (case E1 E2 E3)

clo letv : ΠE1:exp. ΠE2:exp→ exp.
closed E1 → (Πx:exp. closed x→ closed (E2 x))
→ closed (letv E1 E2)

clo letn : ΠE1:exp. ΠE2:exp→ exp.
closed E1 → (Πx:exp. closed x→ closed (E2 x))
→ closed (letn E1 E2)

clo fix : ΠE:exp→ exp.
(Πx:exp. closed x→ closed (E x))→ closed (fix E)

We refer to the signature which includes expression constructors, the declarations
of the family closed and the encodings of the inference rules above as EC.
In order to appreciate how this representation works, it is necessary to under-

stand the representation function !·" on deductions. As usual, the definition of the
representation function follows the structure of C :: e Closed. We only show a few
typical cases.

Case: C =

C1
e1 Closed

C2
e2 Closed

clo app
e1 e2 Closed

. Then

!C" = clo app !e1" !e2" !C1" !C2".

Case: C =

u
x Closed
C1

e Closed
clo lamx.u

lam x. e Closed
. Then

!C" = clo lam (λx:exp. !e") (λx:exp. λu:closed x. !C1").

Case: C = u
x Closed

. Then

!C" = u.

The example deduction above which is evidence for the judgment letname f =
lam x. x in f z Closed is represented as

+EC clo letn (lam (λx:exp. x)) (λf :exp. app f z)
(clo lam (λx:exp. x) (λx:exp. λu:closed u. u))
(λf :exp. λw:closed f. clo app f z w clo z)
: closed (letn (lam (λx:exp. x)) (λf :exp. app f z))
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To show that the above is derivable we need to employ the rule of type conversion
as in the example on page 59. The naive formulation of the soundness of the
representation does not take the hypothetical or parametric judgments into account.

Property 5.1 (Soundness of Representation, Version 1)
Given any deduction C :: e Closed. Then +EC !C" ⇑ closed !e".

While this indeed a theorem, it cannot be proven directly by induction—the
induction hypothesis will not be strong enough to deal with the inference rules whose
premisses require deductions of hypothetical judgments. In order to formulate and
prove a more general property we have to consider the representation of hypothetical
judgments. As one can see from the example above, the deduction fragment

w
f Closed

clo z
z Closed

clo app
f z Closed

is represented by the LF object

clo app f z w clo z

which is valid in the context with the declarations f :exp and w:closed f . In order
to make the connection between the hypotheses and the LF context explicit, we
retain the labels of the assumptions and explicitly define the representation of a list
of hypotheses. Let ∆ = u1 :: x1 Closed, . . . , un :: xn Closed be a list of hypotheses
where all labels are distinct. Then

!∆" = x1:exp, u1:closed x1, . . . , xn:exp, un:closed xn.

The reformulated soundness property now references the available hypotheses.

Property 5.2 (Soudness of Representation, Version 2)
Given any deduction C :: e Closed from hypotheses ∆ = u1 :: x1 Closed, . . . , un ::
xn Closed. Then +EC !∆" Ctx and

!∆" +EC !C" ⇑ closed !e".

Proof: The proof is by induction on the structure of C. We show three typical
cases.
Case:

C =

C1
e1 Closed

C2
e2 Closed

clo app.
e1 e2 Closed

Since C is a deduction from hypotheses ∆, both C1 and C2 are also deductions
from hypotheses ∆. From the induction hypothesis we conclude then that
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1. !∆" +EC !C1" ⇑ closed !e1", and
2. !∆" +EC !C2" ⇑ closed !e2"

are both derivable. Thus, from the type of clo app,

!∆" +EC clo app !e1" !e2" !C1" !C2" ⇑ closed (app !e1" !e2").

It remains to notice that !e1 e2" = app !e1" !e2".
Case:

C =

u
x Closed
C1

e Closed
clo lamx,u.

lam x. e Closed

Then C1 is a deduction from hypotheses ∆, u :: x Closed, and

!∆, u :: x Closed" = !∆", x:exp, u:closed x.

By the induction hypothesis on C1 we thus conclude that

!∆", x:exp, u:closed x +EC !C1" ⇑ closed !e"

is derivable. Hence, by two applications of the canpi rule for canonical forms,

!∆" +EC λx:exp. λu:closed x. !C1" ⇑ Πx:exp. Πu:closed x. closed !e"

is also derivable.

By the representation theorem for expressions (Theorem 3.6) and the weak-
ening for LF we also know that

!∆" +EC λx:exp. !e" ⇑ exp→ exp

is derivable. From this and the type of clo lam we infer

!∆" +EC clo lam (λx:exp. !e")
↓ (Πx:exp. Πu:closed x. closed ((λx:exp. !e") x))

→ closed (lam (λx:exp. !e")).

By the rule atmcnv, using one β-conversion in the type above, we conclude

!∆" +EC clo lam (λx:exp. !e")
↓ (Πx:exp. Πu:closed x. closed !e")

→ closed (lam (λx:exp. !e")).
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Using the rules atmapp and cancon which are now applicable we infer

!∆" +EC clo lam (λx:exp. !e") (λx:exp. λu:closed x. !C1")
⇑ closed (lam (λx:exp. !e")),

which is the desired conclusion since !lam x. e" = lam (λx:exp. !e").

Case:

C = u.
x Closed

Then !C" = u, to which !∆" assigns type closed x = closed !x", which is
what we needed to show.

The inverse of the representation function, #·$, is defined on canonical objects C
of type closed E for some E of type exp. This is sufficient for the adequacy theorem
below—one can extend it to arbitrary valid objects via conversion to canonical form.
Again, we only show three critical cases.

#clo app E1 E2 C1 C2$ =
#C1$ #C2$

clo app
#E1$ #E2$ Closed

#clo lam (λx:exp. E) (λx:exp. λu:closed x. C1)$ =

u
x Closed
#C1$

#E$ Closed
clo lamx,u

lam x. #E$ Closed

#u$ = u
x Closed

The last case reveals that the inverse of the representation function should be param-
eterized by a context so we can find the x which is assumed to be closed according
to hypothesis u. Alternatively, we can assume that we always know the type of
the canonical object we are translating to a deduction. Again, we are faced with
the problem that the natural theorem regarding the function #·$ cannot be proved
directly by induction.

Property 5.3 (Completeness of Representation, Version 1) Given LF objects E
and C such that +EC E ⇑ exp and +EC C ⇑ closed E. Then #C$ :: #E$ Closed.
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In order to prove this, we generalize it to allow appropriate contexts. These
contexts need to be translated to an appropriate list of hypotheses. Let Γ be a
context of the form x1:exp, u1:closed x1, . . . , xn:closed xn. Then #Γ$ is the list of
hypotheses u1 :: x1 Closed, . . . , un :: xnClosed.

Property 5.4 (Completeness of Representation, Version 2) Given a context Γ =
x1:exp, u1:closed x1, . . . , xn:closed xn and LF objects E and C such that Γ +EC E ⇑
exp and Γ +EC C ⇑ closed E. Then #C$ :: #E$ Closed is a valid deduction from
hypotheses #Γ$. Moreoever, #!C"$ = C and #!∆"$ = ∆ for deductions C :: e Closed
and hypotheses ∆.

Proof: By induction on the structure of the derivation Γ +EC C ⇑ closed E. The
restriction to contexts Γ of a certain form is crucial in this proof (see Exercise 5.1).

The usual requirement that !·" be a compositional bijection can be understood
in terms of substitution for deductions. Let C :: e Closed be a deduction from
hypothesis u :: x closed. Then compositionality of the representation function
requires

![C′/u][e′/x]C" = [!C′"/u][!e′"/x]!C"
whenever C′ :: e′ Closed. Note that the substitution on the left-hand side is substi-
tution for undischarged hypotheses in a deduction, while substitution on the right
is at the level of LF objects. Deductions of parametric and hypothetical judgments
are represented as functions in LF. Applying such functions means to substitute for
deductions, which can be exhibited if we rewrite the right-hand side of the equation
above, preserving definitional equality.

[!C′"/u][!e′"/x]!C" ≡ (λx:exp. λu:closed x. !C") !e′" !C′"

The discipline of dependent function types ensures the validity of the object on the
right-hand side:

(λx:exp. λu:closed x. !C") !e′" : [!e′"/x](closed x→ closed !e").

Hence, by compositionality of the representation for expressions,

(λx:exp. λu:closed x. !C") !e′" : closed !e′"→ closed ![e′/x]e"

and the application of this object to !C′" is valid and of the appropriate type.

Theorem 5.5 (Adequacy) There is a bijection between deductions C :: e Closed
from hypotheses u1 :: x1 Closed, . . . , un :: xn Closed and LF objects C such that

x1:exp, u1:closed x1, . . . , xn:exp, un:closed xn +EC C ⇑ closed !e".
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The bijection is compositional in the sense that for an expression ei and a deduction
Ci :: ei Closed, we have

![Ci/ui][ei/xi]C" = [!Ci"/ui][!ei"/xi]!C"

Proof: Properties 5.2 and 5.4 show the existence of the bijection. To show that it
is compositional we reason by induction over the structure of C (see Exercise 5.2).

5.2 Function Types as Goals in Elf

Below we give the transcription of the LF signature above in Elf.

closed : exp -> type. %name closed U u.

% Natural Numbers
clo_z : closed z.
clo_s : closed (s E)

<- closed E.
clo_case : closed (case E1 E2 E3)

<- closed E1
<- closed E2
<- ({x:exp} closed x -> closed (E3 x)).

% Pairs
clo_pair : closed (pair E1 E2)

<- closed E1
<- closed E2.

clo_fst : closed (fst E)
<- closed E.

clo_snd : closed (snd E)
<- closed E.

% Functions
clo_lam : closed (lam E)

<- ({x:exp} closed x -> closed (E x)).
clo_app : closed (app E1 E2)

<- closed E1
<- closed E2.

% Definitions
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clo_letv : closed (letv E1 E2)
<- closed E1
<- ({x:exp} closed x -> closed (E2 x)).

clo_letn : closed (letn E1 E2)
<- closed E1
<- ({x:exp} closed x -> closed (E2 x)).

% Recursion
clo_fix : closed (fix E)

<- ({x:exp} closed x -> closed (E x)).

Note that we have changed the order of arguments as in other examples. It seems
reasonable to expect that this signature could be used as a program to determine
if a given object e of type exp is closed. Let us consider the subgoals as they arise
in a query to check if lam y. y is closed.

?- closed (lam [y:exp] y).
% Resolved with clause clo_lam
?- {x:exp} closed x -> closed (([y:exp] y) x).

Recall that solving a goal means to find a closed expression of the query type.
Here, the query type is a (dependent) function type. From Theorem 3.13 we know
that if a closed object of type Πx:A. B exists, then there is a definitionally equal
object of the form λx:A. M such that M has type B in the context augmented
with the assumption x:A. It is thus a complete strategy in this case to make the
assumption that x has type exp and solve the goal

?- closed x -> closed (([y:exp] y) x).

However, x now is not a free variable in same sense as V in the query

?- eval (lam [y:exp] y) V.

since it is not subject to instantiation during unification. In order to distinguish
these different kinds of variables, we call variables which are subject to instantiation
logic variables and variables which act as constants to unification parameters. Unlike
logic variables, parameters are shown as lower-case constants. Thus the current goal
might be presented as

x : exp
?- closed x -> closed (([y:exp] y) x).

Here we precede the query with the typings for the current parameters. Now recall
that A -> B is just a concrete syntax for {_:A} B where _ is an anonymous variable
which cannot appear free in B. Thus, this case is handled similarly: we introduce a
new parameter u of type closed x and then solve the subgoal
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x : exp
u : closed x
?- closed (([y:exp] y) x).

By an application of β-conversion this is transformed into the equivalent goal

x : exp
u : closed x
?- closed x.

Now we can use the parameter u as the requested object of type closed x and the
query succeeds without further subgoals.
We now briefly consider, how the appropriate closed object of the original

query, namely ?- closed (lam [y:exp] y). would be constructed. Recall that
if Γ, x:A +Σ M : B then Γ +Σ λx:A. M : Πx:A. B. Using this we can now through
the trace of the search in reverse, constructing inhabiting objects as we go along
and inserting conversions where necessary.

u : closed x.
[u:closed x] u : closed x -> closed x.

[x:exp][u:closed x] u : {x:exp} closed x -> closed x.
[x:exp][u:closed x] u : {x:exp} closed x -> closed (([y:exp] y) x).
clo_lam ([x:exp][u:closed x] u)

: closed (lam [y:exp] y).

Just as in Prolog, search proceeds according to a fixed operational semantics.
This semantics specifies that clauses (that is, LF constant declarations) are tried
in order from the first to the last. Before referring to the fixed signature, however,
the temporary hypotheses are consulted, always considering the most recently in-
troduced parameter first. After all of them have been considered, then the current
signature is traversed. In this example the search order happens to be irrelevant as
there will always be at most one assumption available for any expression parameter.
The representations of parametric and hypothetical judgments can also be given

directly at the top-level. Here are two examples: the first to find the representation
of the hypothetical deduction of f (f z) closed from the hypothesis f closed, the
second to illustrate failure when given an expression (〈x, x〉) which is not closed.

?- Q : {f:exp} closed f -> closed (app f (app f z)).

Q = [f:exp] [u:closed f] clo_app (clo_app clo_z u) u.
More? y
no more solutions
?- Q : {x:exp} closed (pair x x).

no
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Note that the quantification on the variable x is necessary, since the query
?- closed (pair x x). is considered to contain an undeclared constant x (which
is an error), and the query ?- closed (pair X X) considers X as a logic variable
subject to instantation:

?- Q : closed (pair X X).
Solving...

X = z,
Q = clo_pair clo_z clo_z.
More? y

X = s z,
Q = clo_pair (clo_s clo_z) (clo_s clo_z).

yes

5.3 Negation

Now that we have seen how to write a program to detect closed expressions, how
do we write a program which succeeds if an expression is not closed? In Prolog, one
has the possibility of using the unsound technique of negation-as-failure to write
a predicate which succeeds if and only if another predicate fails finitely. In Elf,
this technique is not available. Philosophically one might argue that the absence of
evidence for e Closed does not necessarily mean that e is not closed. More pragmat-
ically, note that if we possess evidence that e is closed, then this will continue to be
evidence regardless of any further inference rules or hypotheses we might introduce
to demonstrate that expressions are closed. However, the judgment that 〈x, x〉 is
not closed does not persist if we add the hypothesis that x is closed. Only under a
so-called closed-world assumption, that is, the assumption that no further hypothe-
ses or inference rules will be considered, is it reasonable to conclude the 〈x, x〉 is
not closed. The philosophy behind the logical framework is that we work with an
implicit open-world assumption, that is, all judgments, once judged to be evident
since witnessed by a deduction, should remain evident under extensions of the cur-
rent rules of inference. Note that this is clearly not the case for the meta-theorems
we prove. Their proofs rely on induction on the structure of derivations and they
may no longer be valid when further rules are added.
Thus it is necessary to explicitly define a judgment e Open to provide means for

giving evidence that e is open, that is, it contains at least one free variable. Below
is the implementation of such a judgment in Elf.

open : exp -> type. %name open v
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% Natural Numbers
open_s : open (s E) <- open E.
open_case1 : open (case E1 E2 E3) <- open E1.
open_case2 : open (case E1 E2 E3) <- open E2.
open_case3 : open (case E1 E2 E3) <- ({x:exp} open (E3 x)).

% Pairs
open_pair1 : open (pair E1 E2) <- open E1.
open_pair2 : open (pair E1 E2) <- open E2.
open_fst : open (fst E) <- open E.
open_snd : open (snd E) <- open E.

% Functions
open_lam : open (lam E) <- ({x:exp} open (E x)).
open_app1 : open (app E1 E2) <- open E1.
open_app2 : open (app E1 E2) <- open E2.

% Definitions
open_letv1 : open (letv E1 E2) <- open E1.
open_letv2 : open (letv E1 E2) <- ({x:exp} open (E2 x)).
open_letn1 : open (letn E1 E2) <- open E1.
open_letn2 : open (letn E1 E2) <- ({x:exp} open (E2 x)).

% Recursion
open_fix : open (fix E) <- ({x:exp} open (E x)).

One curious fact about this judgment is that there is no base case, that is,
without any hypotheses any query of the form ?- open !e". will fail! That is,
with a given query we must provide evidence that any parameters which may occur
in it are open. For example,

?- Q : {x:exp} open (pair x x).
no
?- Q : {x:exp} open x -> open (pair x x).

Empty Substitution.
Q = [x:exp] [v:open x] open_pair1 v.
More? y
Empty Substitution.
Q = [x:exp] [v:open x] open_pair2 v.
More? y
No more solutions
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?- Q : {x:exp} open x -> open (lam [x:exp] pair x x).
no

5.4 Representing Mini-ML Typing Derivations

In this section we will show a natural representation of Mini-ML typing derivations
in LF. In order to avoid confusion between the contexts of LF and the contexts of
Mini-ML, we will use ∆ throughout the remainder of this chapter to designate a
Mini-ML context. The typing judgment of Mini-ML then has the form

∆ # e : τ

and expresses that e has type τ in context ∆. We observe that this judgment
can be interpreted as a hypothetical judgment with hypotheses ∆. There is thus
an alternative way to describe the judgment e : τ which employs hypothetical
judgments without making assumptions explicit.

∆, x:τ1 # e : τ2
tp lam

∆ # lam x. e : τ1 → τ2

u
# x : τ1
...

# e : τ2
tp lamx,u

# lam x. e : τ1 → τ2

The judgment in the premiss in the formulation of the rule on the right is parametric
in x and hypothetical in u :: x:τ1. On the left, all available hypothesis are repre-
sented explicitly. The restriction that each variable may be declared at most once
in a context and bound variables may be renamed tacitly encodes the parametricity
with respect to x.
First, however, the representation of Mini-ML types. We declare an LF type

constant, tp, for the representation of Mini-ML types. Recall, from Section 2.5,

Types τ ::= nat | τ1 × τ2 | τ1 → τ2 | α

It is important to bear in mind that → is overloaded here, since it stands for the
function type constructor in Mini-ML and in LF. It should be clear from the context
which constructor is meant in each instance. The representation function and the
LF declarations are straightforward.

tp : type
!α" = α
!nat" = nat nat : tp

!τ1 × τ2" = cross !τ1" !τ2" cross : tp→ tp→ tp
!τ1 → τ2" = arrow !τ1" !τ2" arrow : tp→ tp→ tp



124 CHAPTER 5. PARAMETRIC AND HYPOTHETICAL JUDGMENTS

Here α on the right-hand side stands for a variable named α in the LF type theory.
We refer to the signature in the right-hand column as T . We briefly state (without
proof) the representation theorem.

Theorem 5.6 (Adequacy) The representation function !·" is a compositional bi-
jection between Mini-ML types and canonical LF objects of type tp over the signature
T .

Now we try to apply the techniques for representing hypothetical judgments
developed in Section 5.1 to the representation of the typing judgment (for an al-
ternative, see Exercise 5.6). The representation will be as a type family ‘of’ such
that

!∆" + !P" : of !e" !τ"
whenever P is a deduction of ∆ # e : τ . Thus,

of : exp→ tp→ type

with the representation for Mini-ML contexts ∆ as LF contexts !∆".

!·" = ·
!∆, x:τ" = !∆", x:exp, u:of x !τ"

Here u must be chosen to be different from x and any other variable in !∆" in
order to satisfy the general assumption about LF contexts. This assumption can
be satisfied since we made a similar assumption about ∆.
For typing derivation themselves, we only show three critical cases in the defi-

nition of !P" for P :: ∆ # e : τ . The remainder is given directly in Elf later. The
type family of : exp→ tp→ type represents the judgment e : τ .

Case:

P =

P1
∆ # e1 : τ2 → τ1

P2
∆ # e2 : τ2

tp app.
∆ # e1 e2 : τ1

In this simple case we let

!P" = tp app !τ1" !τ2" !e1" !e2" !P1" !P2"

where

tp app : ΠT1:tp. ΠT2:tp. ΠE1:exp. ΠE2:exp
of E1 (arrow T2 T1)→ of E2 T2 → of (app E1 E2) T1
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Case:

P =

P ′
∆, x:τ1 # e : τ2

tp lam.
∆ # lam x. e : τ1 → τ2

In this case we view P ′ as a deduction of a hypothetical judgment, that is, a
derivation of e : τ2 from the hypothesis x:τ1. We furthermore note that P ′ is
parametric in x and choose an appropriate functional representation.

!P" = tp lam !τ1" !τ2" (λx:exp. !e") (λx:exp. λu:of x !τ1". !P ′")

The constant tp lam must thus have the following type:

tp lam : ΠT1:tp. ΠT2:tp. ΠE:exp→ exp.
(Πx:exp. of x T1 → of (E x) T2)
→ of (lam E) (arrow T1 T2).

Representation of a deduction P with hypotheses ∆ requires unique labels for
the various hypotheses, in order to return the appropriate variable whenever
an hypothesis is used. While we left this correspondence implicit, it should be
clear that in the case of !P ′" above, the hypothesis x:τ1 should be considered
as labelled by u.

Case:

P =
∆(x) = τ

tp var.
∆ # x : τ

This case is not represented using a fixed inference rule, but we will have a
variable u of type ‘of x !τ"’ which implicitly provides a label for the assump-
tion x. We simply return this variable.

!P" = u

The adequacy of this representation is now a straightforward exercise, given in
the following two properties. We refer to the full signature (which includes the
signatures T for Mini-ML types and E for Mini-ML expressions) as TD.

Property 5.7 (Soundness) If P :: ∆ # e : τ then +TD !∆" Ctx and

!∆" +TD !P" ⇑ of !e" !τ".
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Property 5.8 (Completeness) Let ∆ be a Mini-ML context and Γ = !∆". If
+TD E ⇑ exp, +TD T ⇑ tp, and

Γ +TD P ⇑ of E T

then there exist e, τ , and a derivation P :: ∆ # e : τ such that !e" = E, !T" = τ ,
and !P" = P .

It remains to understand the compositionality property of the bijection. We
reconsider the substitution lemma (Lemma 2.4):

If ∆ # e1 : τ1 and ∆, x1:τ1 # e2 : τ2 then ∆ # [e1/x1]e2 : τ2.

The proof is by induction on the structure of P2 :: (∆, x1:τ1 # e2 : τ2). Wherever
the assumption x1:τ1 is used, we substitute a version of the derivation P1 :: ∆ # e1 :
τ1 where some additional (and unused) typing assumptions may have been added
to ∆. A reformulation using the customary notation for hypothetical judgments
exposes the similarity to the considerations for the judgment e Closed considered in
Section 5.1.

If

u1
# x1:τ1
P2

# e2:τ2

and
P1

# e1:τ1
then

P1
u1

# e1:τ1
[e1/x1]P2

# [e1/x1]e2 : τ2

Here, [e1/x1]P2 is the substitution of e1 for x1 in the deduction P2, which is legal
since P2 is a deduction of a judgment parametric in x1. Furthermore, the deduction
P1 has been substituted for the hypotheses labelled u in P2, indicated by writing
P1 above the appropriate hypothesis. Using the conventions established for hypo-
thetical and parametric judgments, the final deduction above can also be written
as [P1/u1][e1/x1]P2. Compositionality of the representation then requires

![P1/u1][e1/x1]P2" = [!P1"/u1][!e1"/x1]!P2"
≡ (λx1:exp. λu1:of x1 !τ1". !P2") !e1" !P1"

After appropriate generalization, this is proved by a straightforward induction over
the structure of P2, just as the substitution lemma for typing derivation which lies
at the heart of this property.

Theorem 5.9 (Adequacy) There is a bijection between deductions

P
x1:τ1, . . . , xn:τn # e : τ
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and LF objects P such that

x1:exp, u1:of x1 !τ1", . . . , xn:exp, un:of xn !τn" +TD P ⇑ of !e" !τ".

The bijection is compositional in the sense that for an expression ei and deduction
Pi :: ∆i # ei : τi we have

![Pi/ui][ei/xi]P" = [!Pi"/ui][!ei"/xi]!P"

where ∆i = x1:exp, u1:of x1 !τ1", . . . , xi:exp, ui:of xi !τi".

Proof: As usual, by induction on the given derivations in each direction combined
with verifying that correctness of the inverse of the representation function. Com-
positionality follows by induction on the structure of P.

5.5 An Elf Program for Mini-ML Type Inference

We now complete the signature from the previous section by transcribing the rules
from the previous section and Section 2.5 into Elf. The notation will be suggestive
of a reading of this signature as a program for type inference. First, the declarations
of Mini-ML types.

tp : type. %name tp T.

nat : tp.
cross : tp -> tp -> tp.
arrow : tp -> tp -> tp.

Next, the typing rules.

of : exp -> tp -> type. %name of P u.
%mode of +E *T.

% Natural Numbers
tp_z : of z nat.
tp_s : of (s E) nat

<- of E nat.
tp_case : of (case E1 E2 E3) T

<- of E1 nat
<- of E2 T
<- ({x:exp} of x nat -> of (E3 x) T).

% Pairs
tp_pair : of (pair E1 E2) (cross T1 T2)
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<- of E1 T1
<- of E2 T2.

tp_fst : of (fst E) T1
<- of E (cross T1 T2).

tp_snd : of (snd E) T2
<- of E (cross T1 T2).

% Functions
tp_lam : of (lam E) (arrow T1 T2)

<- ({x:exp} of x T1 -> of (E x) T2).
tp_app : of (app E1 E2) T1

<- of E1 (arrow T2 T1)
<- of E2 T2.

% Definitions
tp_letv : of (letv E1 E2) T2

<- of E1 T1
<- ({x:exp} of x T1 -> of (E2 x) T2).

tp_letn : of (letn E1 E2) T2
<- of E1 T1
<- of (E2 E1) T2.

% Recursion
tp_fix : of (fix E) T

<- ({x:exp} of x T -> of (E x) T).

As for evaluation, we take advantage of compositionality in order to represent sub-
stitution of an expression for a bound variable in representation of tp letn,

∆ # e1 : τ1 ∆ # [e1/x]e2 : τ2
tp letn.

∆ # letname x = e1 in e2 : τ2

Since we are using higher-order abstract syntax, e2 is represented together with
its bound variable as a function of type exp → exp. Applying this function to the
representation of e1 yields the representation of [e1/x]e2.
The Elf declarations above are suggestive of an operational interpretation as a

program for type inference. The idea is to pose queries of the form ?- of !e" T.
where T is a free variable subject to instantiation and e is a concrete Mini-ML
expression. We begin by considering a simple example: lam x. 〈x, s x〉. For this
purpose we assume that of has been declared dynamic and exp and tp are static.
This means that free variables of type exp and tp may appear in an answer.

?- of (lam [x] pair x (s x)) T.
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Resolved with clause tp_lam
?- {x:exp} of x T1 -> of (pair x (s x)) T2.

In order to perform this first resolution step, the interpreter performed the substi-
tutions

E = [x:exp] pair x (s x),
T1 = T1,
T2 = T2,
T = arrow T1 T2.

where E, T1, and T2 come from the clause tp_lam, and T appears in the original
query. Now the interpreter applies the rules for solving goals of functional type and
introduces a new parameter x.

Introducing new parameter x : exp

x : exp
?- of x T1 -> of (pair x (s x)) T2.
Introducing new parameter u : of x T1.

x : exp,
u : of x T1
?- of (pair x (s x)) T2.
Resolved with clause tp_pair

This last resolution again requires some instantiation. We have

E1 = x,
E2 = (s x),
T2 = cross T21 T22.

Here, E1, E2, T21, and T22 come from the clause (the latter two renamed from T1 and
T2, respectively). Now we have to solve two subgoals, namely ?- of x T21. and
?- of (s x) T22. The first subgoal immediately succeeds by using the assump-
tion u, which requires the instantiation T21 = T1 (or vice versa).

x : exp,
u : of x T1
?- of x T21.
Resolved with clause u

Here is the remainder of the computation.

x : exp,
u : of x T1
?- of (s x) T22.
Resolved with clause tp_s
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This instantiates T22 to nat and produces one subgoal.

x : exp,
u : of x T1
?- of x nat.
Resolved with clause u

This last step instantiates T1 (and thereby indirectly T21) to nat. Thus we obtain
the final answer

T = arrow nat (cross nat nat).

We can also ask for the typing derivation Q:

?- Q : of (lam [x] pair x (s x)) T.

T = arrow nat (cross nat nat),
Q = tp_lam [x:exp] [P:of x nat] tp_pair (tp_s P) P.

There will always be at most one answer to a type query, since for each expression
constructor there exists at most one applicable clause. Of course, type inference
will fail for ill-typed queries, and it will report failure, again because the rules are
syntax-directed. We have stated above that there will be at most one answer yet we
also know that types of expressions such as lam x. x are not unique. This apparent
contradiction is resolved by noting that the given answer subsumes all others in the
sense that all other types will be instances of the given type. This deep property of
Mini-ML type inference is called the principal type property.

?- of (lam [x] x) T.
Resolved with clause tp_lam
?- {x:exp} of x T1 -> of x T2.
Introducing new parameter x
?- of x T1 -> of x T2.
Assuming u1 : of x T1
?- of x T2.
Resolved with clause u1 [with T2 = T1]

T = arrow T1 T1.

Here the final answer contains a free variable T1 of type tp. This is legal, since we
have declare tp to be a static type. Any instance of the final answer will yield an
answer to the original problem and an object of the requested type. This can be
expressed by stating that search has constructed a closed object, namely

([T1:tp] tp_lam ([x:exp] [P:of x T1] P)) :
{T1:tp} of (lam ([x:exp] x)) (arrow T1 T1).
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If we interpret this result as a deduction, we see that search has constructed a
deduction of a parametric judgment, namely that # lam x. x : τ1 → τ1 for any
concrete type τ1. In order to include such generic derivations we permitted type
variables α in our language. The most general or principal derivation above would
then be written (in two different notations):

u
# x : α

tp lamx,u

# lam x. x : α → α

tp var
x:α # x : α

tp lam
# lam x. x : α → α

From the program above one can see, that the type inference problem has
been reduced to the satisfiability of some equations which arise from the ques-
tion if a clause head and the goal have a common instance. For example, the goal
?- of (lam [x] x) (cross T1 T2). will fail immediately, since the only possible
rule, tp_lam, is not applicable because arrow T1 T2 and cross T1 T2 do not have
a common instance. The algorithm for finding common instances which also has the
additional property that it does not make any unnecessary instantiation is called a
unification algorithm. For first-order terms (such as LF objects of type tp in the
type inference problem) a least committed common instance can always be found
and is unique (modulo renaming of variables). When variables are allowed to range
over functions, this is no longer the case. For example, consider the objects E2 z
and pair z z, where E2 is a free variable of type exp -> exp. Then there are four
canonical closed solutions for E2:1

E2 = [x:exp] pair x x ;
E2 = [x:exp] pair z x ;
E2 = [x:exp] pair x z ;
E2 = [x:exp] pair z z.

In general, the question whether two objects have a common instance in the LF type
theory is undecidable. This follows from the same result (due to Goldfarb [Gol81])
for a much weaker theory, the second-order fragment of the simply-typed lambda-
calculus.
The operational reading of LF we sketched so far thus faces a difficulty: one

of the basic steps (finding a common instance) is an undecidable problem, and,
moreover, may not have a least committed solution. We deal with this problem by
approximation: Elf employs an algorithm which finds a greatest common instance
or detects failure in many cases and postpones other equations which must be
satisfied as constraints. In particular, it will solve all problems which are essentially
first order, as they arise in the type inference program above. Thus Elf is in spirit a
constraint logic programming language, even though in many aspects it goes beyond
the definition of the CLP family of languages described by Jaffar and Lassez [JL87].
1A fifth possibility, E2 = pair z is not canonical and η-equivalent to the second solution.
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The algorithm, originally discovered byMiller in the simply-typed λ-calculus [Mil91]
has been generalized to dependent and polymorphic types in [Pfe91b]. The precise
manner in which it is employed in Elf is described in [Pfe91a].2. Here we content
ourselves with a simple example which illustrates how constraints may arise.

?- of (lam [x] x) ((F:tp -> tp) nat).

F = F.
(( arrow T1 T1 = F nat ))

Here the remaining constraint is enclosed within double parentheses. Any solution
to this equation yields an answer to the original query. It is important to realize
that this constitutes only a conditional success, that is, we can in general not be
sure that the given constraint set is indeed be satisfiable. In the example above,
this is obvious: there are infinitely many solutions of which we show two.

F = [T:tp] arrow T1 T1,
T1 = T1 ;
F = [T:tp] arrow (arrow T T) (arrow T T),
T1 = arrow nat nat.

The same algorithm is also employed during Elf’s term reconstruction phase. In
practice this means that Elf term reconstruction may also terminate with remaining
constraints which, in this case, is considered an error and accompanied by a request
to the programmer to supply more type information.
The operational behavior of the program above may not be satisfactory from the

point of view of efficiency, since expressions bound to a variable by a let name are
type-checked once for each occurrence of the variable in the body of the expression.
The following is an example for a derivation involving let name in Elf.

?- Q : of (letn (lam [y] y) ([f] pair (app f z) (app f (pair z z)))) T.
Solving...

T = cross nat (cross nat nat),
Q =
tp_letn
(tp_pair

(tp_app (tp_pair tp_z tp_z)
(tp_lam [x:exp] [P:of x (cross nat nat)] P))

(tp_app tp_z (tp_lam [x:exp] [P:of x nat] P)))
(tp_lam [x:exp] [P:of x T1] P).

More? y
no more solutions

2[further discussion of unification elsewhere? ]



5.6. REPRESENTING THE PROOF OF TYPE PRESERVATION 133

Notice the two occurrences of tp_lam which means that (lam [y] y) was type-
checked twice. Usually, ML’s type system is defined with explicit constructors for
polymorphic types so that we can express # lam x. x : ∀t. t → t. The type
inference algorithm can then instantiate such a most general type in the body e2 of a
let name-expression let name x = e1 in e2 without type-checking e1 again. This is
the essence of Milner’s algorithmW in [Mil78]. It is difficult to realize this algorithm
directly in Elf. Some further discussion and avenues towards a possible solution
are given in [Har90], [DP91], and [Lia95]. . Theoretically, however, algorithm W
of [Mil78] is not more efficient compared to the algorithm presented above as shown
by [Mai92].

5.6 Representing the Proof of Type Preservation

We now return to the proof of type preservation from Section 2.6. In order to prepare
for its representation in Elf, we reformulate the theorem to explicitly mention the
deductions involved.

For any e, v, τ , D :: e ↪→ v, and P :: # e : τ there exists a Q :: # v : τ .

The proof is by induction on the structure of D and relies heavily on inversion
to predict the shape of P from the structure of e. The techniques from Section 3.7
suggest casting this proof as a higher-level judgment relating D, P, and Q. This
higher-level judgment can be represented in LF and then be implemented in Elf as
a type family. We forego the intermediate step and directly map the informal proof
into Elf, calling the type family tps.

tps : eval E V -> of E T -> of V T -> type.
%mode tps +D +P -Q.

All of the cases in the induction proof now have a direct representation in Elf. The
interesting cases involve appeals to the substitution lemma (Lemma 2.4).

Case: D = ev z.
z ↪→ z

Then we have to show that for any type τ such that # z : τ is derivable,
# z : τ is derivable. This is obvious.

There are actually two slightly different, but equivalent realizations of this case.
The first uses the deduction P :: # z : τ that exists by assumption.

tps_z0 : tps (ev_z) P P.

The second, which we prefer, uses inversion to conclude that P must be tp z, since
it is the only rule which assigns a type to z.
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tps_z : tps (ev_z) (tp_z) (tp_z).

The appeal to the inversion principle is implicit in these declarations. For each
D and P there should be a Q such that tps !D" !P" !Q" is inhabited. The
declaration above appears to work only for the case where the second argument P
is the axiom tp z. But by inversion we know that this is the only possible case.
This pattern of reasoning is applied frequently when representing proofs of meta-
theorems.
The next case deals with the successor constructor for natural numbers. We

have taken the liberty of giving names to the deductions whose existence is shown
in the proof in Section 2.6. This will help use to connect the informal statement
with its implementation in Elf.

Case: D =

D1
e1 ↪→ v1

ev s.
s e1 ↪→ s v1

Then

P :: # s e1 : τ By assumption
P1 :: # e1 : nat and τ = nat By inversion
Q1 :: # v1 : nat By ind. hyp. on D1
Q :: # s v1 : nat By rule tp s

Recall that an appeal to the induction hypothesis is modelled by a recursive
call in the program which implements the proof. Here, the induction hypothesis
is applied to D1 :: e1 ↪→ v1 and P1 :: # e1 : nat to conclude that there is a Q1 ::
# v1 : nat. This is what we needed to show and can thus be directly returned.

tps_s : tps (ev_s D1) (tp_s P1) (tp_s Q1)
<- tps D1 P1 Q1.

We return to the cases involving case-expressions later after we have discussed the
case for functions. The rules for pairs are straightforward.

tps_pair : tps (ev_pair D2 D1) (tp_pair P2 P1) (tp_pair Q2 Q1)
<- tps D1 P1 Q1
<- tps D2 P2 Q2.

tps_fst : tps (ev_fst D1) (tp_fst P1) Q1
<- tps D1 P1 (tp_pair Q2 Q1).

tps_snd : tps (ev_snd D1) (tp_snd P1) Q2
<- tps D1 P1 (tp_pair Q2 Q1).

There is an important phenomenon one should note here. Since we used the back-
wards arrow notation in the declarations for ev_pair and tp_pair
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ev_pair : eval (pair E1 E2) (pair V1 V2)
<- eval E1 V1
<- eval E2 V2.

tp_pair : of (pair E1 E2) (cross T1 T2)
<- of E1 T1
<- of E2 T2.

their arguments are reversed from what one might expect. This is why we called the
first argument to ev_pair above D2 and the second argument D1, and similiary for
tp_pair. The case for lam-expressions is simple, since they evaluate to themselves.
For stylistic reasons we apply inversion here as in all other cases.

tps_lam : tps (ev_lam) (tp_lam P) (tp_lam P).

The case for evaluating an application e1 e2 is more complicated than the cases
above. The informal proof appeals to the substitution lemma.

Case: D =

D1
e1 ↪→ lam x. e′1

D2
e2 ↪→ v2

D3
[v2/x]e

′
1 ↪→ v

ev app
e1 e2 ↪→ v

.

P :: # e1 e2 : τ1 By assumption
P1 :: # e1 : τ2 → τ1 and P2 :: # e2 : τ2 for some τ2 By inversion
Q1 :: # lam x. e′1 : τ2 → τ1 By ind. hyp. on D1
Q′1 :: x:τ2 # e′1 : τ1 By inversion
Q2 :: # v2 : τ2 By ind. hyp. on D2
P3 :: # [v2/x]e′1 : τ1 By the Substitution Lemma 2.4
Q3 :: # v : τ1 By ind. hyp. on D3

We repeat the declarations of the ev_app and tp_lam clauses here with some
variables renamed in order to simplify the correspondence to the names used above.

ev_lam : eval (app E1 E2) V
<- eval E1 (lam E1’)
<- eval E2 V2
<- eval (E1’ V2) V.

tp_lam : of (lam E1’) (arrow T2 T1)
<- ({x:exp} of x T2 -> of (E1’ x) T1).

The deduction Q1 is a deduction of a parametric and hypothetical judgment (para-
metric in x, hypothetical in # x:τ2). In Elf this is represented as a function
which, when applied to V2 and an object Q2 : of V2 T2 yields an object of type
of (E1’ V2) T1, that is
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Q1’ : {x:exp} of x T2 -> of (E1’ x) T1.

The Elf variable E1’ : exp -> exp represents λx:exp. !e′1", and V2 represents v2.
Thus the appeal to the substitution lemma has been transformed into a function
application using Q1’, that is, P3 = Q1’ V2 Q2.

tps_app : tps (ev_app D3 D2 D1) (tp_app P2 P1) Q3
<- tps D1 P1 (tp_lam Q1’)
<- tps D2 P2 Q2
<- tps D3 (Q1’ V2 Q2) Q3.

This may seem like black magic—where did the appeal to the substitution lemma
go? The answer is that it is hidden in the proof of the adequacy theorem for the
representation of typing derivations (Theorem 5.9) combined with the substitution
lemma for LF itself! We have thus factored the proof effort: in the proof of the
adequacy theorem, we establish that the typing judgment employs parametric and
hypothetical judgments (which permit weakening and substitution). The implemen-
tation above can then take this for granted and model an appeal to the substitution
lemma simply by function application.
One very nice property is the conciseness of the representation of the proofs of

the meta-theorems in this fashion. Each case in the induction proof is represented
directly as a clause, avoiding explicit formulation and proof of many properties of
substitution, variable occurrences, etc. This is due to the principles of higher-order
abstract syntax, judgments-as-types, and hypothetical judgments as functions. An-
other important factor is the Elf type reconstruction algorithm which eliminates the
need for much redundant information. In the clause above, for example, we need
to refer explicitly to only one expression (the variable V2). All other constraints
imposed on applications of inferences rules can be inferred in a most general way in
all of these examples. To illustrate this point, here is the fully explicit form of the
above declaration, as generated by Elf’s term reconstruction.

tps_app :
{E:exp -> exp} {V2:exp} {E1:exp} {T:tp} {D3:eval (E V2) E1}
{T1:tp} {Q1’:{E1:exp} of E1 T1 -> of (E E1) T} {Q2:of V2 T1}
{Q3:of E1 T} {E2:exp} {D2:eval E2 V2} {P2:of E2 T1} {E3:exp}
{D1:eval E3 (lam E)} {P1:of E3 (arrow T1 T)}
tps (E V2) E1 T D3 (Q1’ V2 Q2) Q3 -> tps E2 V2 T1 D2 P2 Q2
-> tps E3 (lam E) (arrow T1 T) D1 P1 (tp_lam T1 E T Q1’)
-> tps (app E3 E2) E1 T (ev_app E V2 E1 E2 E3 D3 D2 D1)

(tp_app E2 T1 E3 T P2 P1) Q3.

We skip the two cases for case-expressions and only show their implementation.
The techniques we need have all been introduced.
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tps_case_z: tps (ev_case_z D2 D1) (tp_case P3 P2 P1) Q2
<- tps D2 P2 Q2.

tps_case_s: tps (ev_case_s D3 D1) (tp_case P3 P2 P1) Q3
<- tps D1 P1 (tp_s Q1’)
<- tps D3 (P3 V1 Q1’) Q3.

Next, we come to the cases for definitions. For let val-expressions, no new
considerations arise.

Case: D =

D1
e1 ↪→ v1

D2
[v1/x]e2 ↪→ v

ev letv.
let val x = e1 in e2 ↪→ v

P :: # let val x = e1 in e2 : τ By assumption
P1 :: # e1 : τ1 and
P2 :: x:τ1 # e2 : τ for some τ1 By inversion
Q1 :: # v1 : τ1 By ind. hyp. on D1
P ′2 :: # [v1/x]e2 : τ By the Substitution Lemma 2.4
Q2 :: # v : τ By ind. hyp. on D2

tps_letv : tps (ev_letv D2 D1) (tp_letv P2 P1) Q2
<- tps D1 P1 Q1
<- tps D2 (P2 V1 Q1) Q2.

let name-expressions may at first sight appear to be the most complicated case.
However, the substitution at the level of expressions is dealt with via composition-
ality as in evaluation, so the representation of this case is actually quite simple.

Case: D =

D2
[e1/x]e2 ↪→ v

ev letn.
let name x = e1 in e2 ↪→ v

P :: # let name x = e1 in e2 : τ By assumption
P2 :: # [e1/x]e2 : τ By inversion
Q2 :: # v : τ By ind. hyp. on D2

tps_letn : tps (ev_letn D2) (tp_letn P2 P1) Q2
<- tps D2 P2 Q2.

The case of fixpoint follows the same general pattern as the case for application
in that we need to appeal to the substitution lemma. The solution is analogous.
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Case: D =

D1
[fix x. e1/x]e1 ↪→ v

ev fix
fix x. e1 ↪→ v

.

P :: # fix x. e1 : τ By assumption
P1 :: x : τ # e1 : τ By inversion
P ′1 :: # [fix x. e1/x]e1 : τ By the Substitution Lemma 2.4
Q1 :: # v : τ By ind. hyp. on D1

In the representation,

P1 : {x:exp} of x T -> of (E1 x) T

and thus

(P1 (fix E1)) : of (fix E1) T -> of (E1 (fix E1)) T

and

(P1 (fix E1) (tp_fix P1)) : of (E1 (fix E1)) T

This is the representation of the deduction P ′1, since

![fix x. e1/x]e1" = [!fix x. e1"/x]!e1" ≡ (λx:exp. !e1") (fix (λx:exp. !e1")).
tps_fix : tps (ev_fix D1) (tp_fix P1) Q1

<- tps D1 (P1 (fix E1) (tp_fix P1)) Q1.

Here is a simple example which illustrates the use of the tps type family as a
program. First, we abbreviate the expression

letname f = lam x. x in let g = f f in g g

by e0, using the definitional mechanism of Elf. The we generate the typing deriva-
tion with a %solve declaration and call it p0. Next we evaluate e0 and call the
evaluation d0. Then we pose a query that will execute the proof of type preservation
to generate a substitution for Q, the typing derivation for the value of the expression
above.

e0 : exp = letn (lam [x] x) ([f] letn (app f f) ([g] app g g)).
%solve p0 : of e0 T.
%solve d0 : eval e0 V.
%query 1 * tps d0 p0 Q.

Among other information, this will print

Q = tp_lam ([x:exp] [u:of x T1] u).

Of course, this is a very indirect way to generate a typing derivation of lam x. x,
but illustrates the computational content of the type family tps we defined.
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5.7 Exercises

Exercise 5.1 Carry out three representative cases in the proof of Property 5.4.
Where do we require the assumption that Γ must be of a certain form? Construct a
counterexample which shows the falsehood of careless generalization of the theorem
to admit arbitary contexts Γ.

Exercise 5.2 Carry out three representative cases in the proof of the Adequacy
Theorem 5.5.

Exercise 5.3 Modify the natural semantics for Mini-ML such that only closed λ-
expressions have a value. How does this affect the proof of type preservation?

Exercise 5.4 Write Elf programs

1. to count the number of occurrences of bound variables in a Mini-ML expres-
sion;

2. to remove all vacuous let-bindings from a Mini-ML expression;

3. to rewrite all occurrences of expressions of the form (lam x. e2) e1 to let x =
e1 in e2.

Exercise 5.5 For each of the following statements, prove them informally and
represent the proof in Elf, or give a counterexample if the statement is false.

1. For any expressions e1 and e2, evaluation of (lam x. e2) e1 yields a value v if
and only if evaluation of let val x = e1 in e2 yields v.

2. For any expressions e1 and e2, evaluation of (lam x. e2) e1 yields a value v if
and only if evaluation of let name x = e1 in e2 yields v.

3. For values v1, the expression (lam x. e2) v1 has type τ if and only if the
expression letval x = v1 in e2 has type τ .

4. For values v1, the expression (lam x. e2) v1 has type τ if and only if the
expression letname x = v1 in e2 has type τ .

5. Evaluation is deterministic, that is, whenever e ↪→ v1 and e ↪→ v2 then v1 = v2
(modulo renaming of bound variables, as usual).

Exercise 5.6 Give an LF representation of the fragment of Mini-MLwhich includes
pairing, first and second projection, functions and application, and definitions with
let val without using hypothetical judgments. Thus the typing judgment should be
represented as a ternary type family, say, hastype, indexed by a representation of the
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context ∆ and representations of e and τ . We would then look for a representation
function !·" which satisfies

Γ + !P" : hastype !∆" !e" !τ"

for a suitable Γ, whenever P is a valid deduction of ∆ # e : τ .

Exercise 5.7 Illustrate by means of an example why declaring the type tp as
dynamic might lead to undesirable backtracking and unexpected answers during
type inference for Mini-ML with the program in Section 5.5. Can you construct a
situation where the program diverges on a well-typed Mini-ML expression? How
about on a Mini-ML expression which is not well-typed?

Exercise 5.8 Extend the implementation of the Mini-ML interpreter, type infer-
ence, and proof of type preservation to include

1. unit, void, and disjoint sum types (see Exercise 2.7),

2. lists (see Exercise 2.8).

Exercise 5.9 Consider the call-by-name version of Mini-ML with lazy constructors
as sketched in Exercise 2.13. Recall that neither the arguments to functions, nor
the arguments to constructors (s and 〈·, ·〉) should be evaluated.

1. Implement an interpreter for the language and show a few expressions that
highlight the differences in the operational semantics.

2. Implement type inference.

3. Define and implement a suitable notion of value.

4. Prove value soundness and implement your proof.

5. Prove type preservation and implement your proof.

Discuss the main differences between the development for Mini-ML and its call-by-
name variant.

Exercise 5.10 The definition of the judgment e Closed follows systematically from
the representation of expressions in higher-order abstract syntax, because object-
level variables are represented by meta-level variables. This exercise explores a
generalization of this fact. Assume we have a signature Σ0 in the simply-typed
lambda-calculus that declares exactly one type constant a and some unspecified
number of object constants c1, . . . , cn. Define an LF signature Σ1 that extends Σ0
by a new family

closed : a→ type
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such that
+Σ0 N : a

if and only if
Γ +Σ1 N : a and Γ +Σ1 M : closed N

provided Γ no has declaration of the form u:Πy1:A1 . . .Πym:Am. closed P .

Exercise 5.11 Write Elf programs to determine if a Mini-ML expression is free of
the recursion operation fix and at the same time

1. linear (every bound variable occurs exactly once);

2. affine (every bound variable occurs at most once);

3. relevant (every bound variable occurs at least once).

Since only one branch in a case statement will be taken during evaluation, a bound
variable must occur exactly once in each branch in a linear expression, may occur
at most once in each branch in an affine expression, and must occur at least once
in each branch in a relevant expression.

Exercise 5.12 Instead of substituting in the typing rule for letname-expressions
we could extend contexts to record the definitions for variables bound with letname.

Contexts ∆ ::= · | ∆, x:τ | ∆, x = e

Variables must still occur at most once in a context (no variable may be declared
and defined). We would replace the rule tp letn by the following two rules.

∆ # e1 : τ1 ∆, x = e1 # e2 : τ1
tp letn0

∆ # letname x = e1 in e2 : τ2

x = e in ∆ ∆ # e : τ
tp var0

∆ # x : τ

There are at least two ways we can view this modification for representation in the
framework.

1. We use a new judgment, x = e, which is introduced only as a hypothesis into
a derivation.

2. We view a hypothesis x = e as the assumption of an inference rule. We might
write this as

# e1 : τ1

# e1 : τ
uτ

# x : τ
...

# e2 : τ2
tp letx,u.

# let name x = e1 in e2
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The subscript τ in the hypothetical rule u indicates that in each application of
u we may choose a different type τ . Hypothetical rules have been investigated
by Schroeder-Heister [SH84].

1. Show the proper generalization and the new cases in the informal proof of
type preservation using rules tp letn0 and tp var0.

2. Give the Elf implementation of type inference using alternative 1.

3. Implement the modified proof of type preservation in Elf using alternative 1.

4. Give the Elf implementation of type inference using alternative 2.

5. Implement the modified proof of type preservation in Elf using alternative 2.

Exercise 5.13 [ on the value restriction or its absence ]

Exercise 5.14 [ on interpreting let name as let value, connect to value
restriction ]

Exercise 5.15 The typing rules for Mini-ML in Section 2.5 are not a realistic
basis for an implementation, since they require e1 in an expression of the form
let name u = e1 in e2 to be re-checked at every occurrence of u in e2. This is
because we may need to assign different types to e1 for different occurrences of u.
Fortunately, all the different types for an expression e can be seen as instances

of a most general type schema for e. In this exercise we explore an alternative
formulation of Mini-ML which uses explicit type schemas.

Types τ ::= nat | τ1 × τ2 | τ1 → τ2 | α
Type Schemas σ ::= τ | ∀α. σ

Type schemas σ are related to types τ through instantiation, written as σ 1 τ .
This judgment is defined by

inst tp
τ 1 τ

[τ ′/α]σ 1 τ
inst all.

∀α. σ 1 τ

We modify the judgment ∆ # e : τ and add a second judgment, ∆ ## e : σ stating
that e has type schema σ. The typing rule for letname now no longer employs
substitution, but refers to a schematic type for the definition. It must therefore be
possible to assign type schemas to variables which are instantiated when we need
an actual type for a variable.

∆ ## e1 : σ1 ∆, x:σ1 # e2 : τ2
tp letn

∆ # letname x = e1 in e2 : τ2

∆(x) = σ σ 1 τ
tp var

∆ # x : τ



5.7. EXERCISES 143

Type schemas can be derived for expressions by means of quantifying over free type
variables.

∆ # e : τ
tpsc tp

∆ ## e : τ

∆ ## e : σ
tpsc allα

∆ ## e : ∀α. σ

Here the premiss of the tpsc allα rule must be parametric in α, that is, α must not
occur free in the context ∆.
In the proofs and implementations below you may restrict yourself to the frag-

ment of the language with functions and let name, since the changes are orthogonal
to the other constructs of the language.

1. Give an example which shows why the restriction on the tpsc all rule is nec-
essary.

2. Prove type preservation for this formulation of Mini-ML. Carefully write
out and prove any substitution lemmas you might need, but you may take
weakening and exchange for granted.

3. State the theorem which asserts the equivalence of the new typing rules when
compared to the formulation in Section 2.5.

4. Prove the easy direction of the theorem in item 3. Can you conjecture the
critical lemma for the opposite direction?

5. Implement type schemas, schematic instantiation, and the new typing judg-
ments in Elf.

6. Unlike our first implementation, the new typing rules do not directly provide
an implementation of type inference for Mini-ML in Elf. Show the difficulty
by means of an example.

7. Implement the proof of type preservation from item 2 in Elf.

8. Implement one direction of the equivalence proof from item 3 in Elf.

Exercise 5.16 [ about the Milner-Mycroft calculus with explicit types
for polymorphic let and recursion ]
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Chapter 6

Compilation

The model of evaluation introduced in Section 2.3 and formalized in Section 3.6
builds only on the expressions of the Mini-ML language itself. This leads very
naturally to an interpreter in Elf which is given in Section 4.3. Our specification of
the operational semantics is in the style of natural semantics which very often lends
itself to direct, though inefficient, execution. The inefficiency of the interpreter
in 4.3 is more than just a practical issue, since it is clearly the wrong model if we
would like to reason about the complexity of functions defined in Mini-ML. One can
refine the evaluation model in two ways: one is to consider more efficient interpreters
(see Exercises 2.12 and 4.2), another is to consider compilation. In this chapter we
pursue the latter possibility and describe and prove the correctness of a compiler
for Mini-ML.

In order to define a compiler we need a target language for compilation, that is,
the language into which programs in the source language are translated. This target
language has its own operational semantics, and we must show the correctness of
compilation with respect to these two languages and their semantics. The ultimate
target language for compilation is determined by the architecture and instruction
set of the machine the programs are to be run on. In order to insulate compilers
from the details of particular machine architectures it is advisable to design an
intermediate language and execution model which is influenced by a set of target
architectures and by constructs of the source language. We refer to this intermedi-
ate level as an abstract machine. Abstract machine code can then itself either be
interpreted or compiled further to actual machine code. In this chapter we take a
stepwise approach to compilation, using two intermediate forms between Mini-ML
and a variant of the SECD machine [Lan64] which is also related to the Categorical
Abstract Machine (CAM) [CCM87]. This decomposition simplifies the correctness
proofs and localizes ideas which are necessary to understand the compiler in its
totality.

145
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The material presented in this chapter follows work by Hannan [HM90, Han91],
both in general approach and in many details. An extended abstract that also
addresses correctness issues and methods of formalization can be found in [HP92].
A different approach to compilation using continuations may be found in Section ??.

6.1 An Environment Model for Evaluation

The evaluation judgment e ↪→ v requires that all information about the state of the
computation is contained in the Mini-ML expression e. The application of a function
formed by λ-abstraction, lam x. e, to an argument v thus requires the substitution
of v for x in e and evaluation of the result. In order to avoid this substitution
it may seem reasonable to formulate evaluation as a hypothetical judgment (e is
evaluated under the hypothesis that x evaluates to v) but this attempt fails (see
Exercise 6.1). Instead, we allow free variables in expressions which are given values
in an environment, which is explicitly represented as part of a revised evaluation
judgment. Variables are evaluated by looking up their value in the environment;
previously we always eliminated them by substitution, so no separate rule was
required. However, this leads to a problem with the scope of variables. Consider
the expression lam y. x in an environment that binds x to z. According to our
natural semantics the value of this expression should be lam y. z, but this requires
the substitution of z for x. Simply returning lam y. x is incorrect if this value
may later be interpreted in an environment in which x is not bound, or bound
to a different value. The practical solution is to return a closure consisting of an
environment η and an expression lam y. e. η must contain at least all the variables
free in lam y. e. We ignore certain questions of efficiency in our presentation and
simply pair up the complete current environment with the expression to form the
closure.
This approach leads to the question how to represent environments and closures.

A simple solution is to represent an environment as a list of values and a variable
as a pointer into this list. It was de Bruijn’s idea [dB72] to implement such pointers
as natural numbers where n refers to the nth element of the environment list. This
works smoothly if we also represent bound variables in this fashion: an occurence
of a bound variable points backwards to the place where it is bound. This pointer
takes the form of a positive integer, where 1 refers to the innermost binder and 1
is added for every binding encountered when going upward through the expression.
For example

lam x. lam y. x (lam z. y z)

would be written as
Λ (Λ (2 (Λ (2 1))))

where Λ binds an (unnamed) variable. In this form expressions that differ only
in the names of their bound variables are syntactically identical. If we restrict
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attention to pure λ-terms for the moment, this leads to the definition

de Bruijn Expressions D ::= n | ΛD | D1 D2
de Bruijn Indices n ::= 1 | 2 | . . .

Instead of using integers and general arithmetic operations on them, we use only
the integer 1 to refer to the innermost element of the environment and the operator
↑ (read: shift, written in post-fix notation) to increment variable references. That
is, the integer n+ 1 is represented as

1 ↑ · · · ↑︸ ︷︷ ︸
n times

.

But ↑ can also be applied to other expressions, in effect raising each integer in the
expression by 1. For example, the expression

lam x. lam y. x x

can be represented by
Λ (Λ ((1↑) (1↑)))

or
Λ (Λ ((1 1)↑)).

This is a very simple form of a λ-calculus with explicit substitutions where ↑ is the
only available substitution (see [ACCL91]).

Modified de Bruijn Expressions F ::= 1 | F↑ | ΛF | F1 F2

We use the convention that the postfix operator ↑ binds stronger than application
which in turn binds stronger that the prefix operator Λ. Thus the two examples
above can be written as Λ Λ 1↑ 1↑ and Λ Λ (1 1)↑, respectively.
The next step is to introduce environments. These depend on values and vice

versa, since a closure is a pair of an environment and an expression, and an envi-
ronment is a list of values. This can be carried to the extreme: in the Categorical
Abstract Machine (CAM), for example, environments are built as iterated pairs and
are thus values. Our representation will not make this identification. Since we have
simplified our language to a pure λ-calculus, the only kind of value which can arise
is a closure.

Environments η ::= · | η,W
Values W ::= {η;F}

Wewrite w for parameters ranging over values. During the course of evaluation, only
closures over Λ-expressions will arise, that is, all closures have the form {η;ΛF ′}
(see Exercise 6.2).
The specification of modified de Bruijn expressions, values, and environments

is straightforward. The abstract syntax is now first-order, since the language does
not contain any name binding constructs.
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exp’ : type. %name exp’ F f.

1 : exp’.
^ : exp’ -> exp’. %postfix 20 ^.
lam’ : exp’ -> exp’.
app’ : exp’ -> exp’ -> exp’.

% Environments and values

env : type. %name env N.
val : type. %name val W w.

empty : env.
, : env -> val -> env. %infix left 10 ,.

clo : env -> exp’ -> val.

There are two main judgments that achieve compilation: one relates a de Bruijn
expression F in an environment η to an ordinary expression e, another relates a
value W to an expression v. We also need an evaluation judgment relating de
Bruijn expressions and values in a given environment.

η + F ↔ e F translates to e in environment η
W ⇔ v W translates to v
η + F ↪→W F evaluates to W in environment η

When we evaluate a given expression e using these judgments, we translate it to a de
Bruijn expression F in the empty environment, evaluate F in the empty environment
to obtain a value W , and then translate W to an expression v in the original
language. This is depicted in the following diagram.

e

F W

v

C :: · + F ↔ e

D′ :: · + F ↪→W

U ::W ⇔ v

D :: e ↪→ v

The correctness of this phase of compilation can then be decomposed into two
statements. For completeness, we assume that D and therefore e and v are given,
and we would like to show that there exist C, D′, and U completing the diagram.
This means that for every evaluation of e to a value v, this value could also have
been produced by evaluating the compiled expression and translating the resulting
value back to the original language. The dual of this is soundness: we assume that
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C, D′ and U are given and we have to show that an evaluation D exists. That
is, every value which can be produced by compilation and evaluation of compiled
expressions can also be produced by direct evaluation.
We will continue to restrict ourselves to expressions built up only from ab-

straction and application. When we generalize this later only the case of fixpoint
expressions will introduce an essential complication. First we define evaluation of
de Bruijn expressions in an environment η, written as η + F ↪→ W . The vari-
able 1 refers to the first value in the environment (counting from right to left); its
evaluation just returns that value.

fev 1
η,W + 1 ↪→W

The meaning of an expression F↑ in an environment η,W is the same as the meaning
of F in the environment η. Intuitively, the environment references from F into η
are shifted by one. The typical case is one where a reference to the nth value in η
is represented by the expression 1↑ · · · ↑, where the shift operator is applied n − 1
times.

η + F ↪→W
fev ↑

η,W ′ + F↑ ↪→W

A functional abstraction usually immediately evaluates to itself. Here this is in-
sufficient, since an expression ΛF may contain references to the environment η.
Thus we need to combine the environment η with ΛF to produce a closed (and
self-contained) value.

fev lam
η + ΛF ↪→ {η;ΛF}

In order to evaluate F1 F2 in an environment η we evaluate both F1 and F2 in that
environment, yielding the closure {η′;ΛF ′1} and value W2, respectively. We then
add W2 to the environment η′, in effect binding the variable previously bound by
Λ in ΛF ′1 to W2 and then evaluate F

′
1 in the extended environment to obtain the

overall value W .

η + F1 ↪→ {η′;ΛF ′1} η + F2 ↪→W2 η′,W2 + F ′1 ↪→W
fev app

η + F1 F2 ↪→W

Here is the implementation of this judgment as the type family feval in Elf.

feval : env -> exp’ -> val -> type. %name feval D’.
%mode feval +N +F -W.

% Variables
fev_1 : feval (N , W) 1 W.
fev_^ : feval (N , W’) (F ^) W
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<- feval N F W.

% Functions
fev_lam : feval N (lam’ F) (clo N (lam’ F)).
fev_app : feval N (app’ F1 F2) W

<- feval N F1 (clo N’ (lam’ F1’))
<- feval N F2 W2
<- feval (N’ , W2) F1’ W.

We have written this signature in a way that emphasizes its operational reading,
because it serves as an implementation of an interpreter. As an example, consider
the evaluation of the expression (Λ (Λ (1↑))) (Λ 1), which is a representation of
(lam x. lam y. x) (lam v. v).

?- D : feval empty (app’ (lam’ (lam’ (1 ^))) (lam’ 1)) W.

W = clo (empty , clo empty (lam’ 1)) (lam’ (1 ^)).
D’ = fev_app fev_lam fev_lam fev_lam.

The resulting closure, {(·, {·,Λ1});Λ(1↑)}, represents the de Bruijn expressions
Λ(Λ1), since (1↑) refers to the first value in the environment.
The translation between ordinary and de Bruijn expressions is specified by the

following rules which employ a parametric and hypothetical judgment.

η + F1 ↔ e1 η + F2 ↔ e2
tr app

η + F1 F2 ↔ e1 e2

u
w⇔ x
...

η, w + F ↔ e
tr lamw,x,u

η + ΛF ↔ lam x. e

W ⇔ e
tr 1

η,W + 1↔ e

η + F ↔ e
tr ↑

η,W + F↑ ↔ e

where the rule tr lam is restricted to the case where w and x are new parameters
not free in any other hypothesis, and u is a new label. The translation of values is
defined by a single rule in this language fragment.

η + ΛF ↔ lam x. e
vtr lam

{η;ΛF}⇔ lam x. e

As remarked earlier this translation can be non-deterministic if η and e are given
and F is to be generated. This is the direction in which this judgment would be
used for compilation. Here is an example of a translation.
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u
w ⇔ x

tr 1
·, w + 1↔ x

tr ↑
·, w, w′ + 1↑ ↔ x

tr lamw,
′,y,u′

·, w + Λ1↑ ↔ lam y. x
tr lamw,x,u

· + ΛΛ1↑ ↔ lam x. lam y. x

u′′
w′′ ⇔ v

tr 1
·, w′′ + 1↔ v

tr lamw
′′,v,u′′

· + Λ1↔ lam v. v
tr app

· + (ΛΛ1↑) (Λ1)↔ (lam x. lam y. x) (lam v. v)

The representation of the translation judgment relies on the standard technique
for representing deductions of hypothetical judgments as functions.

trans : env -> exp’ -> exp -> type. %name trans C.
vtrans : val -> exp -> type. %name vtrans U.
% can be used in different directions
%mode trans +N +F -E.
%mode vtrans +W -V.

% Functions
tr_lam : trans N (lam’ F) (lam E)

<- ({w:val} {x:exp}
vtrans w x -> trans (N , w) F (E x)).

tr_app : trans N (app’ F1 F2) (app E1 E2)
<- trans N F1 E1
<- trans N F2 E2.

% Variables
tr_1 : trans (N , W) 1 E

<- vtrans W E.
tr_^ : trans (N , W) (F ^) E

<- trans N F E.

% Values
vtr_lam : vtrans (clo N (lam’ F)) (lam E)

<- trans N (lam’ F) (lam E).

The judgment
u

w⇔ x
...

η, w + F ↔ e
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in the premiss of the tr lam is parametric in the variables w and x and hypothetical
in u. It is represented by a function which, when given a value W ′, an expression
e′, and a deduction U ′ :: W ′ ⇔ e′ returns a deduction D′ :: η,W ′ + F ↔ [e′/x]e.
This property is crucial in the proof of compiler correctness.
The signature above can be executed as a non-deterministic program for trans-

lation between de Bruijn and ordinary expressions in both directions. For the
compilation of expressions it is important to keep the clauses tr_1 and tr_^ in the
given order so as to avoid unnecessary backtracking. This non-determinism arises,
since the expression E in the rules tr_1 and tr_^ does not change in the recursive
calls. For other possible implementations see Exercise 6.3. Here is an execution
which yields the example deduction above.

?- C : trans empty F (app (lam [x] lam [y] x) (lam [z] z)).

F = app’ (lam’ (lam’ (1 ^))) (lam’ 1).
C =
tr_app (tr_lam ([w:val] [x:exp] [u3:vtrans w x] tr_1 u3))
(tr_lam

([w:val] [x:exp] [u1:vtrans w x]
tr_lam ([w1:val] [x1:exp] [u2:vtrans w1 x1]

tr_^ (tr_1 u1)))).

It is not immediately obvious that every source expression e can in fact be
compiled using this judgment. This is the subject of the following theorem.

Theorem 6.1 For every closed expression e there exists a de Bruijn expression F
such that · + F ↔ e.

Proof: A direct attempt at an induction argument fails—a typical situation when
proving properties of judgments which involve hypothetical reasoning. However,
the theorem follows immediately from Lemma 6.2 below.

Lemma 6.2 Let w1, . . . , wn be parameters ranging over values and let η be the
environment ·, wn, . . . , w1. Furthermore, let x1, . . . , xn range over expression vari-
ables. For any expression e with free variables among x1, . . . , xn there exists a de
Bruijn expression F and a deduction C of η + F ↔ e from hypotheses u1 :: w1 ⇔
x1, . . . , un :: wn ⇔ xn.

Proof: By induction on the structure of e.

Case: e = e1 e2. By induction hypothesis on e1 and e2, there exist F1 and F2 and
deductions C1 :: η + F1 ↔ e1 and C2 :: η + F2 ↔ e2. Applying the rule tr app
to C1 and C2 yields the desired deduction C :: η + F1 F2 ↔ e1 e2.
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Case: e = lam x. e1. Here we apply the induction hypothesis to the expression
e1, environment η, w for a new parameter w, and hypotheses u1 :: w1 ⇔
x1, . . . , un :: wn ⇔ xn, u :: w ⇔ x to obtain an F1 and a deduction

u
w ⇔ x
C1

η, w + F1 ↔ e1

possibly also using hypotheses labelled u1, . . . , un. Note that e1 is an ex-
pression with free variables among x1, . . . , xn, x. Applying the rule tr lam
discharges the hypothesis u and we obtain the desired deduction

C =

u
w ⇔ x
C1

η, w + F1 ↔ e1
tr lamu

η + ΛF1 ↔ lam x. e1

Case: e = x. Then x = xi for some i between 1 and n and we let F = 1 ↑ · · · ↑︸ ︷︷ ︸
i−1 times

and

C =

ui
wi ⇔ xi

tr 1
·, wn, . . . , wi + 1↔ xi

tr ↑
· · ·

tr ↑
·, wn, . . . , w1 + 1↑ · · · ↑ ↔ xi

This proof cannot be represented directly in Elf because we cannot employ the
usual technique for representing hypothetical judgments as functions. The difficulty
is that the order of the hypotheses is important for returning the correct variable
1↑ · · · ↑, but hypothetical judgments are generally invariant under reordering of hy-
potheses. Hannan [Han91] has suggested a different, deterministic translation for
which termination is relatively easy to show, but which complicates the proofs of the
remaining properties of compiler correctness. Thus our formalization does not cap-
ture the desirable property that compilation always terminates. All the remaining
parts, however, are implemented. The first property states that translation followed
by evaluation leads to the same result as evaluation followed by translation. We
generalize this for arbitrary environments η in order to allow a proof by induction.
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This property is depicted in the following diagram.

e

η;F W

v

C :: η + F ↔ e

D :: e ↪→ v

. . . . . . . . . . . . . . . . . . .
D′ :: η + F ↪→W

..

..

..

..

U ::W ⇔ v

The solid lines indicate deductions that are assumed, dotted lines represent the
deductions whose existence we assert and prove below.

Lemma 6.3 For any closed expressions e and v, environment η, de Bruijn expres-
sion F , deductions D :: e ↪→ v and C :: η + F ↔ e, there exist a value W and
deductions D′ :: η + F ↪→W and U ::W ⇔ v.

Proof: By induction on the structures of D :: e ↪→ v and C :: η + F ↔ e. In
this induction we assume the induction hypothesis on the premisses of D and for
arbitrary C and on the premisses of C, but for the same D. This is sometimes called
lexicographic induction on the pair consisting of D and C. It should be intuitively
clear that this form of induction is valid. We represent this proof as a judgment
relating the four deductions involved in the diagram.

map_eval : eval E V -> trans N F E
-> feval N F W -> vtrans W V -> type.

%mode map_eval +D +C -D’ -U.

Case: C ends in an application of the tr 1 rule.

C =
U1

W1 ⇔ e
tr 1

η1,W1 + 1↔ e

D :: e ↪→ v Assumption
C1 :: η′1 + ΛF ′1 ↔ e and W1 = {η′1;ΛF ′1} By inversion on U1
e = lam x. e1 By inversion on C1
v = lam x. e1 = e By inversion on D

Then W = W1, U = U1 :: W1 ⇔ e and D′ = fev 1 :: η1,W1 + 1 ↪→ W1 satisfy
the requirements of the theorem. This case is captured in the clause

mp_1 : map_eval (ev_lam) (tr_1 (vtr_lam (tr_lam C2)))
(fev_1) (vtr_lam (tr_lam C2)).
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Case: C ends in an application of the tr ↑ rule.

C =
C1

η1 + F1 ↔ e
tr ↑

η1,W
′
1 + F1↑ ↔ e

D :: e ↪→ v Assumption
D′1 :: η1 + F1 ↪→W1
and U1 ::W1 ⇔ v By ind. hyp. on D and C1

Now we let W = W1, U = U1, and obtain D′ :: η1,W ′1 + F1↑ ↪→ W1 by fev ↑
from D′1.

mp_^ : map_eval D (tr_^ C1) (fev_^ D1’) U1
<- map_eval D C1 D1’ U1.

For the remaining cases we assume that the previous two cases do not apply. We
refer to this assumption as exclusion.

Case: D ends in an application of the ev lam rule.

D = ev lam
lam x. e1 ↪→ lam x. e1

C :: η + F ↔ lam x. e1 By assumption
F = ΛF1 By inversion and exclusion

Then we let W = {η;ΛF1}, D′ = fev lam :: η + ΛF1 ↪→ {η;ΛF1}, and obtain
U :: {η;ΛF1}⇔ lam x. e1 by vtr lam from C.

mp_lam : map_eval (ev_lam) (tr_lam C1)
(fev_lam) (vtr_lam (tr_lam C1)).

Case: D ends in an application of the ev app rule.

D =
D1

e1 ↪→ lam x. e′1
D2

e2 ↪→ v2
D3

[v2/x]e′1 ↪→ v
ev app

e1 e2 ↪→ v

This is the most interesting case, since it contains the essence of the argu-
ment how substitution can be replaced by binding variables to values in an
environment.
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C :: η + F ↔ e1 e2 By assumption
F = F1 F2,
C1 :: η + F1 ↔ e1, and
C2 :: η + F2 ↔ e2 By inversion and exclusion
D′2 :: η + F2 ↪→W2 and
U2 ::W2 ⇔ v2 By ind. hyp. on D2 and C2
D′1 :: η + F1 ↪→W1 and
U1 ::W1 ⇔ lam x. e′1 By ind. hyp. on D1 and C1
W1 = {η1;ΛF ′1} and
C′1 :: η1 + ΛF ′1 ↔ lam x. e′1 By inversion on U1

Applying inversion again to C′1 shows that the premiss must be the deduction
of a hypothetical judgment. That is,

C′1 =

u
w ⇔ x
C3

η1, w + F ′1 ↔ e′1
where w is a new parameter ranging over values. This judgment is parametric
in w and x and hypothetical in u. We can thus substitute W2 for w, v2 for x,
and U2 for u to obtain a deduction

C′3 :: η1,W2 + F ′1 ↔ [v2/x]e′1.

Now we apply the induction hypothesis to D3 and C′3 to obtain a W3 and

D′3 :: η1,W2 + F ′1 ↪→W3 and
U3 ::W3 ⇔ v.

We let W = W3, U = U3, and obtain D′ :: η + F1 F2 ↪→ W by fev app from
D′1, D′2, and D′3.
The implementation of this relatively complex reasoning employs again the
magic of hypothetical judgments: the substitution we need to carry out to
obtain C′3 from C3 is implemented as a function application.

mp_app : map_eval (ev_app D3 D2 D1) (tr_app C2 C1)
(fev_app D3’ D2’ D1’) U3

<- map_eval D1 C1 D1’ (vtr_lam (tr_lam C3))
<- map_eval D2 C2 D2’ U2
<- map_eval D3 (C3 W2 V2 U2) D3’ U3.

This completes the proof once we have convinced ourselves that all possible cases
have been considered. Note that whenever C ends in an application of the tr 1 or
tr ↑ rules, then the first two cases apply. Otherwise one of the other two cases must
apply, depending on the shape of D.
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Theorem 6.1 and Lemma 6.3 together guarantee completeness of the translation.

Theorem 6.4 (Completeness) For any closed expressions e and v and evaluation
D :: e ↪→ v, there exist a de Bruijn expression F , a value W and deductions C :: · +
F ↔ e, D′ :: · + F ↪→W , and U ::W ⇔ v.

Proof: Lemma 6.3 shows that an evaluation D′ :: η + F ↪→ W and a translation
W ⇔ v exist for any translation C :: η + F ↔ e. Theorem 6.1 shows that a
particular F and translation C :: · + F ↔ e exist, thus proving the theorem.

Completeness is insufficient to guarantee compiler correctness. For example,
the translation of values W ⇔ v could relate any expression v to any value W ,
which would make the statement of the previous theorem almost trivially true. We
need to check a further property, namely that any value which could be produced
by evaluating the compiled code, could also be produced by direct evaluation as
specified by the natural semantics. This is shown in the diagram below.

e

η;F W

v

C :: η + F ↔ e

D′ :: η + F ↪→W

U ::W ⇔ v

. . . . . . . . . . . . . . . . . . . . . .D :: e ↪→ v

We call this property soundness of the compiler, since it prohibits the compiled code
from producing incorrect values. We prove this from a lemma which asserts the
existence of an expression v, evaluation D and translation U , given the translation
C and evaluation D′. This yields the theorem by showing that the translation
U ::W ⇔ v, is uniquely determined from W .

Lemma 6.5 For any closed expression e, de Bruijn expression F , environment η,
value W , deductions D′ :: η + F ↪→W and C :: η + F ↔ e, there exist an expression
v and deductions D :: e ↪→ v and U ::W ⇔ v.

Proof: The proof proceeds by a straightforward induction over the structure of
D′ :: η + F ↪→ W . It heavily employs inversion (as the proof of completeness,
Lemma 6.3). Interestingly, this proof can be implemented by literally the same
judgment. We leave it as exercise 6.6 to write out the informal proof—its represen-
tation from the proof of completeness is summarized below. Using is as a program
in this instance means that we assume that second and third arguments are given
and the first and last argument are logic variables whose instantiation terms are to
be constructed.
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map_eval’ : eval E V -> trans N F E
-> feval N F W -> vtrans W V -> type.

%mode map_eval’ -D +C +D’ -U.

mp’_1 : map_eval’ (ev_lam) (tr_1 (vtr_lam (tr_lam C2)))
(fev_1) (vtr_lam (tr_lam C2)).

mp’_^ : map_eval’ D (tr_^ C1) (fev_^ D1’) U1
<- map_eval’ D C1 D1’ U1.

mp’_lam : map_eval’ (ev_lam) (tr_lam C1)
(fev_lam) (vtr_lam (tr_lam C1)).

mp’_app : map_eval’ (ev_app D3 D2 D1) (tr_app C2 C1)
(fev_app D3’ D2’ D1’) U3
<- map_eval’ D1 C1 D1’ (vtr_lam (tr_lam C3))
<- map_eval’ D2 C2 D2’ U2
<- map_eval’ D3 (C3 W2 V2 U2) D3’ U3.

%terminates D’ (map_eval’ _ C D’ _).

Theorem 6.6 (Uniqueness of Translations) For any value W if there exist a v
and a translation U :: W ⇔ v, then v and U are unique. Furthermore, for any
environment η and de Bruijn expression F , if there exist an e and a translation
C :: η + F ↔ e, then e and C are unique.

Proof: By simultaneous induction on the structures of U and C. In each case, either
W or F uniquely determine the last inference. Since the translated expressions in
the premisses are unique by induction hypothesis, so is the translated value in the
conclusion.

The proof requires no separate implementation in Elf in the same way that
appeals to inversion remain implicit in the formulation of higher-level judgments.
It is obtained by direct inspection of properties of the inference rules.

Theorem 6.7 (Soundness) For any closed expressions e and v, de Bruijn expres-
sion F , environment η, value W , deductions D′ :: η + F ↪→W , C :: η + F ↔ e, and
U ::W ⇔ v, there exists a deduction D :: e ↪→ v.

Proof: From Lemma 6.5 we infer the existence of a v, U , and D, given C and D′.
Theorem 6.6 shows that v and U are unique, and thus the property must hold for
all v and U ::W ⇔ v, which is what we needed to show.
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6.2 Adding Data Values and Recursion

In the previous section we treated only a very restricted core language of Mini-
ML. In this section we will extend the compiler to the full Mini-ML language as
presented in Chapter 2. The main additions to the core language which affect the
compiler are data values (such as natural numbers and pairs) and recursion. The
language of de Bruijn expressions is extended by allowing constructors that parallel
ordinary expressions. We maintain a similar syntax, but mark de Bruijn expression
constructors with a prime (′).

Expressions F ::= | z′ | s′ F | case′ F1 F2 F3 Natural Numbers
| 〈F1, F2〉′ | fst′ F | snd′ F Pairs
| ΛF | F1 F2 Functions
| let′ val F1 in F2 Definitions
| let′ name F1 in F2
| fix′ F Recursion
| 1 | F↑ Variables

Expressions of the form F↑ are not necessarily variables (where F is a sequence of
shifts applied to 1), but it may be intuitively helpful to think of them that way.
In the representation we need only first-order constants, since this language has no
constructs binding variables by name.

exp’ : type. %name exp’ F f.

1 : exp’.
^ : exp’ -> exp’. %postfix 20 ^.
z’ : exp’.
s’ : exp’ -> exp’.
case’ : exp’ -> exp’ -> exp’ -> exp’.
pair’ : exp’ -> exp’ -> exp’.
fst’ : exp’ -> exp’.
snd’ : exp’ -> exp’.
lam’ : exp’ -> exp’.
app’ : exp’ -> exp’ -> exp’.
letv’ : exp’ -> exp’ -> exp’.
letn’ : exp’ -> exp’ -> exp’.
fix’ : exp’ -> exp’.

Next we need to extend the language of values. While data values can be
added in a straightforward fashion, let name and recursion present some difficulties.
Consider the evaluation rule for fixpoints.

[fix x. e/x]e ↪→ v
ev fix

fix x. e ↪→ v
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We introduced the environment model of evaluation in order to eliminate the need
for explicit substitution, where an environment is a list of values. In the case of the
fixpoint construction we would need to bind the variable x to the expression fix x. e
in the environment in order to avoid substutition, but fix x. e is not a value. The
evaluation rules for de Bruijn expressions take advantage of the invariant that an
environment contains only values. In particular, the rule

fev 1
η,W + 1 ↪→W

requires that an environment contain only values. We will thus need to add a
new environment constructor η+F in order to allow unevaluated expressions in the
environment. These considerations yield the followingmutually recursive definitions
of environments and values. We mark data values with a star (∗) to distinguish them
from expressions and de Bruijn expressions with the same name.

Environments η ::= · | η,W | η + F
Values W ::= | z∗ | s∗ W Natural Numbers

| 〈W1,W2〉∗ Pairs
| {η;F} Closures

The Elf representation is direct.

env : type. %name env N.
val : type. %name val W w.

empty : env.
, : env -> val -> env. %infix left 10 ,.
+ : env -> exp’ -> env. %infix left 10 +.

z* : val.
s* : val -> val.

pair* : val -> val -> val.

clo : env -> exp’ -> val.

In the extension of the evaluation rule to this completed language, we must
exercise care in the treatment of the new environment constructor for unevaluated
expression: when such an expression is looked up in the environment, it must be
evaluated.

η + F ↪→W
fev 1+

η + F + 1 ↪→W

η + F ↪→W
fev ↑+

η + F ′ + F↑ ↪→W



6.2. ADDING DATA VALUES AND RECURSION 161

The rules involving data values generally follow the patterns established in the
natural semantics for ordinary expressions. The main departure from the earlier
formulation is the separation of values from expressions. We show only four of the
relevant rules.

fev z
η + z′ ↪→ z∗

η + F ↪→W
fev s

η + s′ F ↪→ s∗ W

η + F1 ↪→ z∗ η + F2 ↪→W
fev case z

η + case′ F1 F2 F3 ↪→W

η + F1 ↪→ s∗ W ′1 η,W ′1 + F3 ↪→W
fev case s

η + case′ F1 F2 F3 ↪→W

Evaluating a let val-expression also binds a variable to value by extending the
environment.

η + F1 ↪→W1 η,W1 + F2 ↪→W
fev letv

η + let val′ F1 in F2 ↪→W
Evaluating a let name-expression binds a variable to an expression and thus re-
quires the new environment constructor.

η + F1 + F2 ↪→W
fev letn

η + letname′ F1 in F2 ↪→W

Fixpoint expressions are similar, except that the variable is bound to the fix ex-
pression itself.

η + fix′ F + F ↪→W
fev fix

η + fix′ F ↪→W

For example, fix x. x (considered on page 17) is represented by fix′ 1. Intuitively,
evaluation of this expression should not terminate. An attempt to construct an
evaluation leads to the sequence

...
fev fix

· + fix′ 1 ↪→W
fev 1+

·+fix′ 1 + 1 ↪→W
fev fix.

· + fix′ 1 ↪→W

The implementation of these rules in Elf poses no particular difficulties. We
show only the rules from above.
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feval : env -> exp’ -> val -> type. %name feval D.
%mode feval +N +F -W.

% Variables
fev_1 : feval (N , W) 1 W.
fev_^ : feval (N , W’) (F ^) W

<- feval N F W.

fev_1+ : feval (N + F) 1 W
<- feval N F W.

fev_^+ : feval (N + F’) (F ^) W
<- feval N F W.

% Natural Numbers
fev_z : feval N z’ z*.
fev_s : feval N (s’ F) (s* W)

<- feval N F W.
fev_case_z : feval N (case’ F1 F2 F3) W

<- feval N F1 z*
<- feval N F2 W.

fev_case_s : feval N (case’ F1 F2 F3) W
<- feval N F1 (s* W1)
<- feval (N , W1) F3 W.

% Pairs
fev_pair : feval N (pair’ F1 F2) (pair* W1 W2)

<- feval N F1 W1
<- feval N F2 W2.

fev_fst : feval N (fst’ F) W1
<- feval N F (pair* W1 W2).

fev_snd : feval N (snd’ F) W2
<- feval N F (pair* W1 W2).

% Functions
fev_lam : feval N (lam’ F) (clo N (lam’ F)).
fev_app : feval N (app’ F1 F2) W

<- feval N F1 (clo N’ (lam’ F1’))
<- feval N F2 W2
<- feval (N’ , W2) F1’ W.

% Definitions
fev_letv : feval N (letv’ F1 F2) W
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<- feval N F1 W1
<- feval (N , W1) F2 W.

fev_letn : feval N (letn’ F1 F2) W
<- feval (N + F1) F2 W.

% Recursion
fev_fix : feval N (fix’ F) W

<- feval (N + (fix’ F)) F W.

Next we need to extend the translation between expressions and de Bruijn ex-
pressions and values. We show a few interesting cases in the extended judgments
η + F ↔ e and W ⇔ v. The case for let val is handled just like the case for lam,
since we will always substitute a value for the variable bound by the let during
execution.

tr z
η + z′ ↔ z

η + F ↔ e
tr s

η + s′ F ↔ s e

η + F1 ↔ e1

u
w⇔ x
...

η, w + F2 ↔ e2
tr letvw,x,u

η + let val′ F1 in F2 ↔ let x = e1 in e2

where the right premiss of tr let is parametric in w and x and hypothetical in u.
In order to preserve the basic structure of the proofs of lemmas 6.3 and 6.5, we
must treat the let name and fix constructs somewhat differently: we extend the
environment with an expression parameter (not a value parameter) using the new
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environment constructor +.

η + F1 ↔ e1

u
η + f ⇔ x

...
η + f + F2↔ e2

tr letnf,x,u
η + let name′ F1 in F2 ↔ let x = e1 in e2

u
η + f ↔ x

...
η + f + F ↔ e

tr fixf,x,u
η + fix′ F ↔ fix x. e

η + F ↔ e
tr 1+

η + F + 1↔ e

η + F ↔ e
tr ↑+

η + F ′ + F↑ ↔ e

Finally, the value translation does not have to deal with fixpoint-expressions (they
are not values). We only show the three new cases.

vtr z
z∗ ⇔ z

W ⇔ v
vtr s

s∗ W ⇔ s v

W1 ⇔ v1 W2 ⇔ v2
vtr pair

〈W1,W2〉∗ ⇔ 〈v1, v2〉

Deductions of parametric and hypothetical judgments are represented by functions,
as usual.

trans : env -> exp’ -> exp -> type. %name trans C.
vtrans : val -> exp -> type. %name vtrans U.
% can be used in different directions
%mode trans +N +F -E.
%mode vtrans +W -V.

% Natural numbers
tr_z : trans N z’ z.
tr_s : trans N (s’ F) (s E)

<- trans N F E.
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tr_case : trans N (case’ F1 F2 F3) (case E1 E2 E3)
<- trans N F1 E1
<- trans N F2 E2
<- ({w:val} {x:exp}

vtrans w x -> trans (N , w) F3 (E3 x)).

% Pairs
tr_pair : trans N (pair’ F1 F2) (pair E1 E2)

<- trans N F1 E1
<- trans N F2 E2.

tr_fst : trans N (fst’ F1) (fst E1)
<- trans N F1 E1.

tr_snd : trans N (snd’ F1) (snd E1)
<- trans N F1 E1.

% Functions
tr_lam : trans N (lam’ F) (lam E)

<- ({w:val} {x:exp}
vtrans w x -> trans (N , w) F (E x)).

tr_app : trans N (app’ F1 F2) (app E1 E2)
<- trans N F1 E1
<- trans N F2 E2.

% Definitions
tr_letv: trans N (letv’ F1 F2) (letv E1 E2)

<- trans N F1 E1
<- ({w:val} {x:exp}

vtrans w x -> trans (N , w) F2 (E2 x)).

tr_letn: trans N (letn’ F1 F2) (letn E1 E2)
<- trans N F1 E1
<- ({f:exp’} {x:exp}

trans N f x -> trans (N + f) F2 (E2 x)).

% Recursion
tr_fix : trans N (fix’ F) (fix E)

<- ({f:exp’} {x:exp}
trans N f x -> trans (N + f) F (E x)).

% Variables
tr_1 : trans (N , W) 1 E <- vtrans W E.
tr_^ : trans (N , W) (F ^) E <- trans N F E.
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tr_1+ : trans (N + F) 1 E <- trans N F E.
tr_^+ : trans (N + F’) (F ^) E <- trans N F E.

% Natural number values
vtr_z : vtrans z* z.
vtr_s : vtrans (s* W) (s V)

<- vtrans W V.

% Pair values
vtr_pair : vtrans (pair* W1 W2) (pair V1 V2)

<- vtrans W1 V1
<- vtrans W2 V2.

% Function values
vtr_lam : vtrans (clo N (lam’ F)) (lam E)

<- trans N (lam’ F) (lam E).

In order to extend the proof of compiler correctness in Section 6.1 we need to
extend various lemmas.

Theorem 6.8 For every closed expression e there exists a de Bruijn expression F
such that · + F ↔ e.

Proof: We generalize analogously to Lemma 6.2 and prove the modified lemma by
induction on the structure of e (see Exercise 6.7).

Lemma 6.9 If W ⇔ e is derivable, then e Value is derivable.

Proof: By a straightforward induction on the structure of U ::W ⇔ e.

Lemma 6.10 If e Value and e ↪→ v are derivable then e = v.

Proof: By a straightforward induction on the structure of P :: e Value.

The Elf implementations of the proofs of Lemmas 6.9 and 6.10 is straightforward
and can be found in the on-line material that accompanies these notes. The type
families are

vtrans_val : vtrans W E -> value E -> type.
%mode vtrans_val +U -P.

val_eval : value E -> eval E E -> type.
%mode val_eval +P -D.
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The next lemma is the main lemma is the proof of completeness, that is, every
value which can obtained by direct evaluation can also be obtained by compilation,
evaluation of the compiled code, and translation of the returned value to the original
language.

Lemma 6.11 For any closed expressions e and v, environment η, de Bruijn ex-
pression F , deduction D :: e ↪→ v and C :: η + F ↔ e, there exist a value W and
deductions D′ :: η + F ↪→W and U ::W ⇔ v.

Proof: By induction on the structure of D :: e ↪→ v and C :: η + F ↔ e. In this
induction, as in the proof of Lemma 6.3, we assume the induction hypothesis on the
premisses of D and for arbitrary C, and on the premisses of C if D remains fixed.
The implementation is an extension of the previous higher-level judgment,

map_eval : eval E V -> trans N F E
-> feval N F W -> vtrans W V -> type.

%mode map_eval +D +C -D’ -U.

We show only some of the typical cases—the others are straightforward and left to
the reader or remain unchanged from the proof of Lemma 6.3

Case: C ends in an application of the tr 1 rule.

C =
U1

W1 ⇔ e
tr 1

η1,W1 + 1↔ e

This case changes from the previous proof, since there we applied simple
inversion (there was only one possible kind of value) to conclude that e = v.
Here we need two lemmas from above.

D :: e ↪→ v Assumption
P :: e Value By Lemma 6.9 from U1
e = v By Lemma 6.10 from P

Hence we can let W be W1, U be U1, and D′ be fev 1 :: η1,W1 + 1 ↪→ W1.
The implementation explicitly appeals to the implementations of the lemmas.

mp_1 : map_eval D (tr_1 U1) (fev_1) U1
<- vtrans_val U1 P
<- val_eval P D.

Case: C ends in an application of the tr ↑ rule. This case proceeds as before.
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mp_^ : map_eval D (tr_^ C1) (fev_^ D1’) U1
<- map_eval D C1 D1’ U1.

Case: C ends in an application of the tr 1+ rule.

C =
C1

η1 + F1 ↔ e
tr 1+

η1 + F1 + 1↔ e

D :: e ↪→ v Assumption
D′1 :: η1 + F1 ↪→W1 and
U1 ::W1 ⇔ v By ind. hyp. on D and C1
D′ :: η1 + F1 + 1 ↪→W By fev 1+ from D′1

and we can let W =W1 and U = U1.

mp_1+ : map_eval D (tr_1+ C1) (fev_1+ D1’) U1
<- map_eval D C1 D1’ U1.

Case: C ends in an application of the tr ↑+ rule. This case is just like the tr ↑ case.

mp_^+ : map_eval D (tr_^+ C1) (fev_^+ D1’) U1
<- map_eval D C1 D1’ U1.

For the remaining cases we may assume that none of the four cases above apply.
We only show the case for fixpoints.

Case: D ends in an application of the ev fix rule.

D =
D1

[fix x. e1/x]e1 ↪→ v
ev fix

fix x. e1 ↪→ v

C :: η + F ↔ fix x. e1 By assumption

By inversion and exclusion (of the previous cases), C must end in an applica-
tion of the tr fix rule and thus F = fix′ F1 for some F1 and there is a deduction
C1, parametric in f and x and hypothetical in u, of the form

u
η + f ↔ x
C1

η + f + F1 ↔ e1
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In this deduction we can substitute fix′ F1 for f and fix x. e1 for x, and
replace the resulting hypothesis u :: η + fix′ F1 ↔ fix x. e1 by C! This way
we obtain a deduction

C′1 :: η + fix
′ F1 + F1 ↔ [fix x. e1/x]e1.

Now we can apply the induction hypothesis to D1 and C′1 which yields a W1
and deductions

D′1 :: η + fix
′ F1 + F1 ↪→W1 and

U1 ::W1 ⇔ v By ind. hyp. on D1 and C′1

Applying fev fix to D′1 results in a deduction

D′ :: η + fix′ F1 ↪→W1

and we letW beW1 and U be U1. In Elf, the substitutions into the hypothet-
ical deduction are implemented by applications of the representing function
C1.

mp_fix : map_eval (ev_fix D1) (tr_fix C1)
(fev_fix D1’) U1

<- map_eval D1 (C1 (fix’ F1) (fix E1) (tr_fix C1))
D1’ U1.

This lemma and the totality of the translation relation in its expression argument
(Theorem 6.8) together guarantee completeness of the translation.

Theorem 6.12 (Completeness) For any closed expressions e and v and evaluation
D :: e ↪→ v, there exist a de Bruijn expression F , a value W and deductions C :: · +
F ↔ e, D′ :: · + F ↪→W , and U ::W ⇔ v.

Proof: As in the proof of Theorem 6.4, but using Lemma 6.11 and Theorem 6.8
instead of Lemma 6.3 and Theorem 6.1.

Lemma 6.13 For any closed expression e, de Bruijn expression F , environment η,
value W , deduction D′ :: η + F ↪→W and C :: η + F ↔ e, there exist an expression
v and deductions D :: e ↪→ v and U ::W ⇔ v.

Proof: By induction on the structure of D′ :: η + F ↪→ W . The family map_eval
which implements the main lemma in the soundness proof, also implements the
proof of this lemma without any change.
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Theorem 6.14 (Uniqueness of Translations) For any value W if there exist a v
and a translation U :: W ⇔ v, then v and U are unique. Furthermore, for any
environment η and de Bruijn expression F , if there exist an e and a translation
C :: η + F ↔ e, then e and C are unique.

Proof: As before, by a simultaneous induction on the structures of U and C.

Theorem 6.15 (Soundness) For any closed expressions e and v, de Bruijn expres-
sion F , environment η, value W , deductions D′ :: η + F ↪→W , C :: η + F ↔ e, and
U ::W ⇔ v, there exists a deduction D :: e ↪→ v.

Proof: From Lemma 6.13 we infer the existence of a v, U , and D, given C and D′.
Theorem 6.14 shows that v and U are unique, and thus the property must hold for
all v and U ::W ⇔ v, which is what we needed to show.

6.3 Computations as Transition Sequences

So far, we have modelled evaluation as the construction of a deduction of the eval-
uation judgment. This is true for evaluation based on substitution in Section 2.3
and for evaluation based on environments in Section 6.1. In an abstract machine
(and, of course, in an actual machine) a more natural model for computation is a
sequence of states. In this section we will develop the CLS machine, an abstract
machine similar in scope to the SECD machine [Lan64]. The CLS machine still in-
terprets expressions, so the step from environment based evaluation to this abstract
machine does not involve any compilation. Instead, we flatten evaluation trees to
sequences of states that describe the computation. This flattening involves some
rather arbitrary decisions about which subcomputations should be performed first.
We linearize the evaluation deductions beginning with the deduction of the leftmost
premiss.
Throughout the remainder of this chapter, we will drop the prime (′) from the

expression constructors. This should not lead to any confusion, since we no longer
need to refer to the original expressions. Now consider the rule for evaluating pairs
as a simple example where an evaluation tree has two branches.

η + F1 ↪→W1 η + F2 ↪→W2
fev pair

η + 〈F1, F2〉 ↪→ 〈W1,W2〉∗

An abstract machine would presumably start in a state where it is given the
environment η and the expression 〈F1, F2〉. The final state of the machine should
somehow indicate the final value 〈W1,W2〉∗. The computation naturally decomposes
into three phases: the first phase computes the value of F1 in environment η, the
second phase computes the value of F2 in environment η, and the third phase
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combines the two values to form a pair. These phases mean that we have to preserve
the environment η and also the expression F2 while we are computing the value of F1.
Similarly, we have to save the valueW1 while computing the value of F2. A natural
data structure for saving components of a state is a stack. The considerations
above suggest three stacks: a stack Ξ of environments, a stack of expressions to be
evaluated, and a stack S of values. However, we also need to remember that, after
the evaluation of F2 we need to combine W1 and W2 into a pair. Thus, instead
of a stack of expression to be evaluated, we maintain a program which consists of
expressions and special instructions (such as: make a pair written as mkpair).
We will need more instructions later, but so far we have:

Instructions I ::= F | mkpair | . . .
Programs P ::= done | I&P

Environment Stacks Ξ ::= · | Ξ; η
Value Stacks S ::= · | S,W

State St ::= 〈Ξ, P, S〉

Note that value stacks are simply environments, so we will not formally distinguish
them from environments. The instructions of a program a sequenced with &; the
program done indicates that there are no further instructions, that is, computation
should stop.
A state consists of an environment stack Ξ, a program P and a value stack S,

written as 〈Ξ, P, S〉. We have single-step and multi-step transition judgments:

St =⇒ St ′ St goes to St ′ in one computation step
St

∗
=⇒ St ′ St goes to St ′ in zero or more steps

We define the transition judgment so that

〈(·; η), F & done , ·〉 ∗
=⇒ 〈·, done, (·,W )〉

corresponds to the evaluation of F in environment η to valueW . The free variables
of F are therefore bound in the innermost environment, and the value resulting
from evaluation is deposited on the top of the value stack, which starts out empty.
Global evaluation is expressed in the judgment

η + F ∗
=⇒=⇒W F computes to W in environment η

which is defined by the single inference rule

〈(·; η), F & done , ·〉 ∗
=⇒ 〈·, done, (·,W )〉

run.
η + F ∗

=⇒=⇒ W

We prove in Theorem 6.19 that η + F ∗
=⇒=⇒ W iff η + F ↪→W . We cannot prove this

statement directly by induction (in either direction), since during a computation
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situations arise where the environment stack consists of more than a single envi-
ronment, the remaining program is not done , etc. In one direction we generalize it
to

〈(Ξ; η), F &P, S〉 ∗
=⇒ 〈Ξ, P, (S,W )〉

if η + F ↪→W . This is the subject of Lemma 6.16. A slightly modified form of the
converse is given in Lemma 6.18.
The transition rules and the remaining instructions can be developed system-

atically from the intuition provided above. First, we reconsider the evaluation of
pairing. The first rule decomposes the pair expression and saves the environment η
on the environment stack.

c pair :: 〈(Ξ; η), 〈F1, F2〉&P, S〉 =⇒ 〈(Ξ; η; η), F1&F2&mkpair &P, S〉

Here c pair labels the rule and can be thought of as the deduction of the given
transition judgment. The evaluation of F1, if it terminates, leads to a state

〈(Ξ; η), F2&mkpair &P, (S,W1)〉,

and the further evaluation of F2 then leads to a state

〈Ξ,mkpair &P, (S,W1,W2)〉.

Thus, the mkpair instruction should cause the machine to create a pair from the
first two elements on the value stack and deposit the result again on the value stack.
That is, we need as another rule:

c mkpair :: 〈Ξ,mkpair &P, (S,W1,W2)〉 =⇒ 〈Ξ, P, (S, 〈W1,W2〉∗)〉.

We consider one other construct in detail: application. To evaluate an appli-
cation F1 F2 we first evaluate F1 and then we evaluate F2. If the value of F1 is a
closure, we have to bind its variable to the value of F2 and continue evaluation in
an extended environment. The instruction that unwraps the closure and extends
the environment is called apply .

c app :: 〈(Ξ; η), F1 F2&P, S〉 =⇒ 〈(Ξ; η; η), F1&F2& apply &P, S〉
c apply :: 〈Ξ, apply &P, (S, {η′;ΛF ′1},W2)〉 =⇒ 〈(Ξ; (η′,W2)), F ′1&P, S〉

The rules for applying zero and successor are straightforward, but they necessitate
a new operator add1 to increment the first value on the stack.

c z :: 〈(Ξ; η), z&P, S〉 =⇒ 〈Ξ, P, (S, z∗)〉
c s :: 〈(Ξ; η), s F &P, S〉 =⇒ 〈(Ξ; η), F & add1 &P, S〉

c add1 :: 〈Ξ, add1 &P, (S,W )〉 =⇒ 〈Ξ, P, (S, s∗ W )〉

For expressions of the form case F1 F2 F3, we need to evaluate F1 and then evaluate
either F2 or F3, depending on the value of F1. This requires a new instruction,
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branch , which either goes to the next instructions or skips the next instruction.
In the latter case it also needs to bind a new variable in the environment to the
predecessor of the value of F1.

c case :: 〈(Ξ; η), case F1 F2 F3&P, S〉
=⇒ 〈(Ξ; η; η), F1& branch&F2&F3&P, S〉

c branch z :: 〈(Ξ; η), branch&F2&F3&P, (S, z∗)〉 =⇒ 〈(Ξ; η), F2&P, S〉
c branch s :: 〈(Ξ; η), branch&F2&F3&P, (S, s∗ W )〉

=⇒ 〈(Ξ; (η,W )), F3&P, S〉

Rules for fst and snd require new instructions to extract the first or second
element of the value on the top of the stack.

c fst :: 〈(Ξ; η), fst F &P, S〉 =⇒ 〈(Ξ; η), F & getfst &P, S〉
c getfst :: 〈Ξ, getfst&P, (S, 〈W1,W2〉∗)〉 =⇒ 〈Ξ, P, (S,W1)〉
c snd :: 〈(Ξ; η), snd F &P, S〉 =⇒ 〈(Ξ; η), F & getsnd &P, S〉

c getsnd :: 〈Ξ, getsnd &P, (S, 〈W1,W2〉∗)〉 =⇒ 〈Ξ, P, (S,W2)〉

In order to handle let val we introduce another new instruction bind , even
though it is not strictly necessary and could be simulated with other instructions
(see Exercise 6.10).

c let :: 〈(Ξ; η), let F1 in F2&P, S〉 =⇒ 〈(Ξ; η; η), F1& bind &F2&P, S〉
c bind :: 〈(Ξ; η), bind &F2&P, (S;W1)〉 =⇒ 〈(Ξ; (η,W1)), F2&P, S〉

We leave the rules for recursion to Exercise 6.11. The rules for variables and
abstractions thus complete the specification of the single-step transition relation.

c 1 :: 〈(Ξ; (η,W )), 1&P, S〉 =⇒ 〈Ξ, P, (S,W )〉
c ↑ :: 〈(Ξ; (η,W ′)), F↑&P, S〉 =⇒ 〈(Ξ; η), F &P, S〉

c lam :: 〈(Ξ; η),ΛF &P, S〉 =⇒ 〈Ξ, P, (S, {η;ΛF})〉

The set of instructions extracted from these rules is

Instructions I ::= F | add1 | branch | mkpair | getfst | getsnd | apply | bind .

We view each of the transition rules for the single-step transition judgment as
an axiom. Note that there are no other inference rules for this judgment. A partial
computation is defined as a multi-step transition. This is easily defined via the
following two inference rules.

id
St

∗
=⇒ St

St =⇒ St ′ St ′
∗
=⇒ St ′′

step
St

∗
=⇒ St ′′

This definition guarantees that the end state of one transition matches the beginning
state of the remaining transition sequence. Without the aid of dependent types we
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would have to define a computation as a list states and ensure externally that the
end state of each transition matches the beginning state of the next. This use of
dependent types to express complex constraints is one of the reasons why simple
lists do not arise very frequently in Elf programming.
Deductions of the judgment St

∗
=⇒ St ′ have a very simple form: They all consist

of a sequence of single steps terminated by an application of the id rule. We will
follow standard practice and use a linear notation for sequences of steps:

St1 =⇒ St2 =⇒ · · · =⇒ Stn

Similarly, we will mix multi-step and single-step transitions in sequences, with the
obvious meaning. We write C1 ◦C2 for the result of appending computations C1 and
C2. This only makes sense if the final state of C1 is the same as the start state of
C2. The ◦ operator is associative (see Exercise 6.12).
Recall that a complete computation was defined as a sequence of transitions

from an initial state to a final state. The latter is characterized by the program
done , and empty environment stack, and a value stack containing exactly one value,
namely the result of the computation.

〈(·; η), F & done , ·〉 ∗
=⇒ 〈·, done, (·,W )〉

run
η + F ∗

=⇒=⇒ W

The representation of the abstract machine and the computation judgments
present no particular difficulties. We begin with the syntax.

instruction : type. %name instruction I.
program : type. %name program P.
envstack : type. %name envstack Ns.
state : type. %name state St.

% Instructions
ev : exp’ -> instruction.
add1 : instruction.
branch : instruction.
mkpair : instruction.
getfst : instruction.
getsnd : instruction.
apply : instruction.
bind : instruction.

% Programs
done : program.
& : instruction -> program -> program.
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%infix right 10 &.

% Environment stacks
emptys : envstack.
; : envstack -> env -> envstack.
%infix left 10 ;.

% States
st : envstack -> program -> env -> state.

The computation rules are also a straightforward transcription of the rules above.
The judgment St

∗
=⇒ St ′ is represented by a type St => St’ where => is a type

family indexed by two states and written in infix notation. We show only three
example rules.

=> : state -> state -> type. %name => R.
%infix none 10 =>.
%mode => +St -St’.

c_z : st (Ns ; N) (ev z’ & P) S => st Ns P (S , z*).

c_app : st (Ns ; N) (ev (app’ F1 F2) & P) S
=> st (Ns ; N ; N) (ev F1 & ev F2 & apply & P) S.

c_apply : st Ns (apply & P) (S , clo N’ (lam’ F1’) , W2)
=> st (Ns ; (N’ , W2)) (ev F1’ & P) S.

The multi-step transition is defined by the transcription of its two inference
rules. We write ~ in infix notation rather than step since it leads to a concise and
readable notation for sequences of computation steps.

=>* : state -> state -> type. %name =>* C.
%infix none 10 =>*.
% no mode---this is not operational.

id : St =>* St.

~ : St => St’
-> St’ =>* St’’
-> St =>* St’’.

%infix right 10 ~.

Complete computations appeal directly to the multi-step computation judgment.
We write ceval K F W for η + F ∗

=⇒=⇒W .
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ceval : env -> exp’ -> val -> type.
% no mode---this is not operational

run : st (emptys ; N) (ev F & done) (empty)
=>* st (emptys) (done) (empty , W)

-> ceval N F W.

While this representation is declaratively adequate it has a serious operational defect
when used for evaluation, that is, when η and F are given andW is to be determined.
The declaration for step (written as ~) solves the innermost subgoal first, that is

we reduce the goal of finding a computation C′′ :: St ∗
=⇒ St ′′ to finding a state St ′

and computation of C′ :: St ′ ∗
=⇒ St ′′ and only then a single transition R :: St =⇒

St ′. This leads to non-termination, since the interpreter is trying to work its way
backwards through the space of possible computation sequences. Instead, we can
get linear, backtracking-free behavior if we first find the single step R :: St =⇒ St ′
and then the remainder of the computation C′ :: St ′ ∗

=⇒ St ′′. Since there is exactly
one rule for any instruction I and id will apply only when the program P is done ,
finding a computation now becomes a deterministic process. Executable versions
of the last two judgments are given below. They differ from the one above only in
the order of the recursive calls and it is a simple matter to relate the two versions
formally.

>=>* : state -> state -> type.
%infix none 10 >=>*.
%mode >=>* +St -St’.

id< : St >=>* St.
<=< : St >=>* St’’

<- St => St’
<- St’ >=>* St’’.

%infix left 10 <=<.

>ceval : env -> exp’ -> val -> type.
%mode >ceval +N +F -W.

>run : >ceval N F W
<- st (emptys ; N) (ev F & done) (empty)
>=>* st (emptys) (done) (empty , W).

This example clearly illustrates that Elf should be thought of a uniform language in
which one can express specifications (such as the computations above) and imple-
mentations (the operational versions below), but that many specifications will not
be executable. This is generally the situation in logic programming languages.
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In the informal development it is clear (and not usually separately formulated
as a lemma) that computation sequences can be concatenated if the final state of
the first computation matches the initial state of the second computation. In the
formalization of the proofs below, we will need to explicitly implement a type family
that appends computation sequences. It cannot be formulated as a function, since
such a function would have to be recursive and is thus not definable in LF.

append : st Ns P S =>* st Ns’ P’ S’
-> st Ns’ P’ S’ =>* st Ns’’ P’’ S’’
-> st Ns P S =>* st Ns’’ P’’ S’’
-> type.

%mode append +C +C’ -C’’.

The defining clauses are left as Exercise 6.12.
We now return to the task of proving the correctness of the abstract machine.

The first lemma states the fundamental motivating property for this model of com-
putation.

Lemma 6.16 Let η be an environment, F an expression, and W a value such that
η + F ↪→W . Then, for any environment stack Ξ, program P and stack S,

〈(Ξ; η), F &P, S〉 ∗
=⇒ 〈Ξ, P, (S,W )〉

Proof: By induction on the structure of D :: η + F ↪→ W . We will construct a
deduction of C :: 〈(Ξ; η), F &P, S〉 ∗

=⇒ 〈Ξ, P, (S,W )〉. The proof is straightforward
and we show only two typical cases. The implementation in Elf takes the form of a
higher-level judgment subcomp that relates evaluations to computation sequences.

subcomp : feval N F W
-> st (Ns ; N) (ev F & P) S =>* st Ns P (S , W)
-> type.

%mode +{N:env} +{F:exp’} +{W:val} +{Ns:envstack} +{P:program} +{S:env}
+{D:feval N F W} -{C:st (Ns ; N) (ev F & P) S =>* st Ns P (S , W)}
subcomp D C.

Note that the mode declaration here is in the “full” form in order to express that the
implicitly quantified variables Ns, P, and S are input arguments rather than output
arguments. The system would have inferred the latter from the simpler declaration
%mode subcomp +D -C.

Case: D ends in an application of the rule fev z.

D = fev z.
η + z ↪→ z∗
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Then the single-step transition

〈(Ξ; η), z&P, S〉 ∗
=⇒ 〈Ξ, P, (S, z∗)〉

satisfies the requirements of the lemma. The clause corresponding to this case:

sc_z : subcomp (fev_z) (c_z ~ id).

Case: D ends in an application of the fev app rule.

D =
D1

η + F1 ↪→ {η′;ΛF ′1}
D2

η + F2 ↪→W2
D3

η′,W2 + F ′1 ↪→W
fev app

η + F1 F2 ↪→W

Then

〈(Ξ; η), F1 F2&P, S〉
=⇒ 〈(Ξ; η; η), F1&F2& apply &P, S〉 By rule c app
∗
=⇒ 〈(Ξ; η), F2& apply &P, (S, {η′;ΛF ′1})〉 By ind. hyp. on D1
∗
=⇒ 〈Ξ, apply &P, (S, {η′;ΛF ′1},W2)〉 By ind. hyp. on D2
=⇒ 〈(Ξ; (η′,W2)), F ′1&P, S〉 By rule c apply
∗
=⇒ 〈Ξ, P, (S,W )〉 By ind. hyp. on D3.

The implementation of this case requires the append family defined above.
Note how an appeal to the induction hypothesis is represented as a recursive
call.

sc_app : subcomp (fev_app D3 D2 D1) C
<- subcomp D1 C1
<- subcomp D2 C2
<- subcomp D3 C3
<- append (c_app ~ C1) C2 C’
<- append C’ (c_apply ~ C3) C.

The first direction of Theorem 6.19 is a special case of this lemma. The other
direction is more intricate. The basic problem is to extract a tree-structured evalua-
tion from a linear computation. We must then show that this extraction will always
succeed for complete computations. Note that it is obviously not possible to ex-
tract evaluations from arbitrary incomplete sequences of transitions of the abstract
machine.
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In order to write computation sequences more concisely, we introduce some
notation. Let R :: St =⇒ St ′ and C :: St ′ ∗

=⇒ St ′′. Then we write

R ∼ C :: St =⇒ St ′′

for the computation which begins with R and then proceeds with C. Such a com-
putation exists by the step inference rule. This corresponds directly to the notation
in the Elf implementation.
For the proof of the central lemma of this section, we will need a new form

of induction often referred to as complete induction. During a proof by complete
induction we assume the induction hypothesis not only for the immediate premisses
of the last inference rule, but for all proper subderivations. Intuitively, this is
justified, since all proper subderivations are “smaller” than the given derivation.
For a more formal discussion of the complete induction principle for derivations see
Section 6.4. The judgment C < C′ (C is a proper subcomputation of C′) is defined
by the following inference rules.

sub imm
C < R ∼ C

C < C′
sub med

C < R ∼ C′

It is easy to see that the proper subcomputation relation is transitive.

Lemma 6.17 If C1 < C2 and C2 < C3 then C1 < C3.

Proof: By a simple induction (see Exercise 6.12).

The implementation of this ordering and the proof of transitivity are immediate.

< : (st Ns1 P1 S1) =>* (st Ns P S)
-> (st Ns2 P2 S2) =>* (st Ns P S)
-> type.

%infix none 8 <.
sub_imm : C < R ~ C.

sub_med : C < C’
-> C < R ~ C’.

The representation of the proof of transitivity is left to Exercise 6.12.
We are now prepared for the lemma that a complete computation with an appro-

priate initial state can be translated into an evaluation followed by another complete
computation.

Lemma 6.18 If

C :: 〈(Ξ, η), F &P, S〉 ∗
=⇒ 〈·, done, (·,W ′)〉
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there exists a value W , an evaluation

D :: η + F ↪→W,

and a computation

C′ :: 〈Ξ, P, (S,W )〉 ∗
=⇒ 〈·, done, (·,W ′)〉

such that C′ < C.

Proof: By complete induction on the C. We only show a few cases; the others
similar. We use the abbreviation final = 〈·, done, (·,W ′)〉. The representing type
family spl is indexed by three deductions: C, C′, and D. We do not explicitly
represent the derivation which shows that C′ < C since the Twelf system can check
this automatically using a %reduces declaration, placed after all rules for spl.

spl : (st (Ns ; N) (ev F & P) S) =>* (st emptys done (empty , W’))
-> feval N F W
-> (st Ns P (S , W)) =>* (st emptys done (empty , W’))
-> type.

%mode spl +C -D -C’.
... clauses for spl ...
%reduces C’ < C (spl C _ C’).
%terminates C (spl C _ _).

Now back to the proof.

Case: C begins with c z, that is, C = c z ∼ C1. Then W = z∗,

D = fev z,
K + z ↪→ z∗

and C′ = C1. Furthermore, C′ = C1 < c z ∼ C1 by rule sub imm. The
representation in Elf:

spl_z : spl (c_z ~ C1) (fev_z) C1.

Case: C begins with c app. Then C = c app ∼ C1 where

C1 :: 〈(Ξ; η; η), F1&F2& apply &P, S〉
∗
=⇒ final .

By induction hypothesis on C1 there exists a W1, an evaluation

D1 :: η + F1 ↪→W1

and a computation

C2 :: 〈(Ξ; η), F2& apply &P, (S,W1)〉
∗
=⇒ final
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such that C2 < C1. We can thus apply the induction hypothesis to C2 to obtain
a W2, an evaluation

D2 :: η + F2 ↪→W2
and a computation

C3 :: 〈Ξ, apply &P, (S,W1,W2)〉
∗
=⇒ final

such that C3 < C2. By inversion, C3 = c apply ∼ C′3 andW1 = {η′;ΛF ′1} where

C′3 :: 〈(Ξ; (η′,W2)), F ′1&P, S〉
∗
=⇒ final .

Then C′3 < C3 and by induction hypothesis on C′3 there is a value W3, an
evaluation

D3 :: η′,W2 + F ′1 ↪→W3
and a compuation

C4 :: 〈Ξ, P, (S,W3)〉
∗
=⇒ final .

Now we letW =W3 and we construct D :: η + F1 F2 ↪→W3 by an application
of the rule fev app to the premisses D1, D2, and D3. Furthermore we let C′ =
C4 and conclude by some elementary reasoning concerning the subcomputation
relation that C′ < C.
The representation of this subcase of this case requires three explicit appeals
to the transitivity of the subcomputation ordering. In order to make this at
all intelligible, we use the name C2<C1 (one identifier) for the derivation that
C2 < C1 and similarly for other such derivations.

spl_app : spl (c_app ~ C1)
(fev_app D3 D2 D1) C4
<- spl C1 D1 C2
<- spl C2 D2 (c_apply ~ C3’)
<- spl C3’ D3 C4.

Now we have all the essential lemmas to prove the main theorem.

Theorem 6.19 η + F ↪→W is derivable iff η + F ∗
=⇒=⇒ W is derivable.

Proof: By definition, η + F ∗
=⇒=⇒ W iff there is a computation

C :: 〈(·; η), F & done , ·〉 ∗
=⇒ 〈·, done, (·,W )〉.

One direction follows immediately from Lemma 6.16: if η + F ↪→W then

〈(Ξ; η), F &P, S〉 ∗
=⇒ 〈Ξ, P, (S,W )〉

for any Ξ, P , and S and in particular for Ξ = ·, P = done and S = ·. The
implementation of this direction in Elf:
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cev_complete : feval N F W -> ceval N F W -> type.
%mode cev_complete +D -C.
cevc : cev_complete D (run C) <- subcomp D C.
%terminates [] (cev_complete D _).

For the other direction, assume there is a deduction C of the form shown above.
By Lemma 6.18 we know that there exist a W ′, an evaluation

D′ :: η + F ↪→W ′

and a computation

C′ :: 〈·, done, (·,W ′)〉 ∗
=⇒ 〈·, done, (·,W )〉

such that C′ < C. Since there is no transition rule for the program done , C′ must
be id and W = W ′. Thus D = D′ fulfills the requirements of the theorem. This is
implemented as follows.

cls_sound : ceval N F W -> feval N F W -> type.
%mode cls_sound +C -D.
clss : cls_sound (run C) D <- spl C D (id).
%terminates [] (cls_sound C _).

6.4 Complete Induction over Computations

Here we briefly justify the principle of complete induction used in the proof of
Lemma 6.18. We repeat the definition of proper subcomputations and also define
a general subcomputation judgment which will be useful in the proof.

C < C′ C is a proper subcomputation of C′, and
C ≤ C′ C is a subcomputation of C′.

These judgments are defined via the following inference rules.

sub imm
C < R ∼ C

C < C′
sub med

C < R ∼ C′

C < C′
leq sub

C ≤ C′
leq eq

C ≤ C

We only need one simple lemma regarding the subcomputation judgment.
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Lemma 6.20 If C ≤ C′ is derivable, then C < R ∼ C′ is derivable.

Proof: By analyzing the two possibilities for the deduction of the premiss and
constructing an immediate deduction for the conclusion in each case.

We call a property P of computations complete if it satisfies:

For every C, the assumption that P holds for all C′ < C implies that P
holds for C.

Theorem 6.21 (Principle of Complete Induction over Computations) If a property
P of computations is complete, then P holds for all computations.

Proof: We assume that P is complete and then prove by ordinary structural in-
duction that for every C and for every C′ ≤ C, P holds of C.

Case: C = id . By inversion, there is no C′ such that C′ < id . Thus P holds for all
C′ < id . Since P is complete, this implies that P holds for id .

Case: C = R ∼ C1. The induction hypothesis states that for every C′1 ≤ C1, P
holds of C′1. We have to show that for every C2 ≤ R ∼ C1, property P holds
of C2. By inversion, there are two subcases, depending on the evidence for
C2 ≤ R ∼ C1.

Subcase: C2 = R ∼ C1. The induction hypothesis and Lemma 6.20 yield
that for every C′1 < R ∼ C1, P holds of C1. Since P is complete, P must
thus hold for R ∼ C1 = C2.

Subcase: C2 < R ∼ C1. Then by inversion either C1 = C2 or C1 < C2. In
either case C2 ≤ C1 by one inference. Now we can apply the induction
hypothesis to conclude that P holds of C2.

6.5 A Continuation Machine

The natural semantics for Mini-ML presented in Chapter 2 is called a big-step
semantics, since its only judgment relates an expression to its final value—a “big
step”. There are a variety of properties of a programming language which are
difficult or impossible to express as properties of a big-step semantics. One of the
central ones is that “well-typed programs do not go wrong”. Type preservation,
as proved in Section 2.6, does not capture this property, since it presumes that we
are already given a complete evaluation of an expression e to a final value v and
then relates the types of e and v. This means that despite the type preservation
theorem, it is possible that an attempt to find a value of an expression e leads to an
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intermediate expression such as fst z which is ill-typed and to which no evaluation
rule applies. Furthermore, a big-step semantics does not easily permit an analysis
of non-terminating computations.
An alternative style of language description is a small-step semantics. The main

judgment in a small-step operational semantics relates the state of an abstract
machine (which includes the expression to be evaluated) to an immediate successor
state. These small steps are chained together until a value is reached. This level of
description is usually more complicated than a natural semantics, since the current
state must embody enough information to determine the next and all remaining
computation steps up to the final answer. It is also committed to the order in
which subexpressions are evaluated and thus somewhat less abstract than a natural,
big-step semantics.
In this section we construct a machine directly from the original natural seman-

tics of Mini-ML in Section 2.3 (and not from the environment-based semantics in
Section 6.1). This illustrates the general technique of continuations to sequential-
ize computations. Another application of the technique at the level of expressions
(rather than computations) is given in Section ??.
Our goal now is define a small-step semantics. For this, we isolate an expression

e to be evaluated, and a continuation K which contains enough information to carry
out the rest of the evaluation necessary to compute the overall value. For example,
to evaluate a pair 〈e1, e2〉 we first compute the value of e1, remembering that the
next task will be the evaluation of e2, after which the two values have to be paired.
This also shows the need for intermediate instructions, such as “evaluate the second
element of a pair” or “combine two values into a pair”. One particular kind of
instruction, written as ev e, triggers the first step in the computation based on the
structure of e.
Because we always fully evaluate one expression before moving on to the next,

the continuation has the form of a stack. Because the result of evaluating the current
expression must be communicated to the continuation, each item on the stack is a
function from values to instructions. Finally, when we have computed a value, we
return it by applying the first item on the continuation stack. Thus the following
structure emerges, to be supplement by further auxiliary instructions as necessary.

Instructions i ::= ev e | return v | . . .
Continuations K ::= init | K; λx. i
Machine States S ::= K 8 i | answer v

Here, init is the initial continuation, indicating that nothing further remains to
be done. The machine state answer v represents the final value of a computation
sequence. Based on the general consideration, we have the following transitions of
the abstract machine.

S =⇒ S′ S goes to S′ in one computation step
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st init
init 8 return v =⇒ answer v

st return
K; λx. i 8 return v =⇒ K 8 [v/x]i

Further rules arise from considering each expression constructor in turn, possibly
adding new special-purpose intermediate instructions. We will write the rules in the
form label :: S =⇒ S′ as a more concise alternative to the format used above. The
meaning, however, remains the same: each rules is an axiom defining the transition
judgment. First, the constructors:

st z :: K 8 ev z =⇒ K 8 return z
st s :: K 8 ev (s e) =⇒ K; λx. return (s x) 8 e

Second, the corresponding destructor:

st case :: K 8 ev (case e1 of z⇒ e2 | s x⇒ e3)
=⇒ K; λx1. case1 x1 of z⇒ e2 | s x⇒ e3 8 ev e1

st case1 z :: K 8 case1 z of z⇒ e2 | s x⇒ e3 =⇒ K 8 ev e2
st case1 s :: K 8 case1 s v1 of z⇒ e2 | s x⇒ e3 =⇒ K 8 ev [v′1/x]e3

We can see that the case construct requires a new instruction of the form
case1 v1 of z⇒ e2 | s x⇒ e3. This is distinct from case e1 of z⇒ e2 | s x⇒ e3
in that the case subject is known to be a value. Without an explicit new construct,
computation could get into an infinite loop since every value is also an expression
which evaluates to itself. It should now be clear how pairs and projections are
computed; the new instructions are 〈v1, e2〉1, fst1, and snd1.
st pair :: K 8 ev 〈e1, e2〉 =⇒ K; λx1. 〈x1, e2〉1 8 ev e1
st pair1 :: K 8 〈v1, e2〉1 =⇒ K; λx1. return 〈v1, x2〉 8 ev e2
st fst :: K 8 ev (fst e) =⇒ K; λx. fst1 x 8 ev e
st fst1 :: K 8 fst1 〈v1, v2〉 =⇒ K 8 return v1
st snd :: K 8 ev (snd e) =⇒ K; λx. snd1 x 8 ev e
st snd1 :: K 8 snd1 〈v1, v2〉 =⇒ K 8 return v2

Neither functions, nor definitions or recursion introduce any essentially new
ideas. We add two new forms of instructions, app1 and app2, for the intermediate
forms while evaluating applications.

st lam :: K 8 ev (lam x. e) =⇒ K 8 return lamx. e
st app :: K 8 ev (e1 e2) =⇒ K; λx1. app1 x1 e2 8 ev e1
st app1 :: K 8 app1 v1 e2 =⇒ K; λx2. app2 v1 x2 8 ev e2
st app2 :: K 8 app2 (lam x. e

′
1) v2 =⇒ K 8 ev ([v2/x]e′1)

st letv :: K 8 letval x = e1 in e2 =⇒ K; λx1. [x1/x]e2 8 ev e1
st letn :: K 8 letname u = e1 in e2 =⇒ K 8 ev ([e1/x]e2)
st fix :: K 8 fix u. e =⇒ K 8 ev ([fix u. e/u]e)
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The complete set of instructions as extracted from the transitions above:

Instructions i ::= ev e | return v
| case1 v1 of z⇒ e2 | s x⇒ e3 Natural numbers
| 〈v1, e2〉1 | fst1 v | snd1 v Pairs
| app1 v1 e2 | app2 v1 v2 Functions

The implementation of instructions, continuations, and machine states in Elf uses
infix operations to make continuations and states more readable.

% Machine Instructions
inst : type. %name inst I.

ev : exp -> inst.
return : exp -> inst.

case1 : exp -> exp -> (exp -> exp) -> inst.
pair1 : exp -> exp -> inst.
fst1 : exp -> inst.
snd1 : exp -> inst.
app1 : exp -> exp -> inst.
app2 : exp -> exp -> inst.

% Continuations
cont : type. %name cont K.

init : cont.
; : cont -> (exp -> inst) -> cont.
%infix left 8 ;.

% Continuation Machine States
state : type. %name state S.

# : cont -> inst -> state.
answer : exp -> state.
%infix none 7 #.

The following declarations constitute a direct translation of the transition rules
above.

=> : state -> state -> type. %name => C.
%infix none 6 =>.
%mode => +S -S’.
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% Natural Numbers
st_z : K # (ev z) => K # (return z).
st_s : K # (ev (s E’)) => (K ; [x’] return (s x’)) # (ev E’).
st_case : K # (ev (case E1 E2 E3)) => (K ; [x1] case1 x1 E2 E3) # (ev E1).
st_case1_z : K # (case1 (z) E2 E3) => K # (ev E2).
st_case1_s : K # (case1 (s V1’) E2 E3) => K # (ev (E3 V1’)).

% Pairs
st_pair : K # (ev (pair E1 E2)) => (K ; [x1] pair1 x1 E2) # (ev E1).
st_pair1 : K # (pair1 V1 E2) => (K ; [x2] return (pair V1 x2)) # (ev E2).
st_fst : K # (ev (fst E’)) => (K ; [x’] fst1 x’) # (ev E’).
st_fst1 : K # (fst1 (pair V1 V2)) => K # (return V1).
st_snd : K # (ev (snd E’)) => (K ; [x’] snd1 x’) # (ev E’).
st_snd1 : K # (snd1 (pair V1 V2)) => K # (return V2).

% Functions
st_lam : K # (ev (lam E’)) => K # (return (lam E’)).
st_app : K # (ev (app E1 E2)) => (K ; [x1] app1 x1 E2) # (ev E1).
st_app1 : K # (app1 V1 E2) => (K ; [x2] app2 V1 x2) # (ev E2).
st_app2 : K # (app2 (lam E1’) V2) => K # (ev (E1’ V2)).

% Definitions
st_letv : K # (ev (letv E1 E2)) => (K ; [x1] ev (E2 x1)) # (ev E1).
st_letn : K # (ev (letn E1 E2)) => K # (ev (E2 E1)).

% Recursion
st_fix : K # (ev (fix E’)) => K # (ev (E’ (fix E’))).

% Return Instructions
st_return : (K ; [x] I x) # (return V) => K # (I V).
st_init : (init) # (return V) => (answer V).

Multi-step computation sequences could be represented as lists of single step
transitions. However, we would like to use dependent types to guarantee that, in
a valid computation sequence, the result state of one transition matches the start
state of the next transition. This is difficult to accomplish using a generic type of
lists; instead we introduce specific instances of this type which are structurally just
like lists, but have strong internal validity conditions.

S
∗
=⇒ S′ S goes to S′ in zero or more steps
e
c
↪→ v e evaluates to v using the continuation machine
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stop
S

∗
=⇒ S

S =⇒ S′ S′
∗
=⇒ S′′

step
S

∗
=⇒ S′′

init 8 ev e ∗
=⇒ answer v

cev
e
c
↪→ v

We would like the implementation to be operational, that is, queries of the
form ?- ceval !e" V. should compute the value V of a given e. This means the
S =⇒ S′ should be the first subgoal and hence the second argument of the step
rule. In addition, we employ a visual trick to display computation sequences in a
readable format by representing the step rule as a left associative infix operator.

=>* : state -> state -> type. %name =>* C*.
%infix none 5 =>*.
%mode =>* +S -S’.

stop : S =>* S.
<< : S =>* S’’

<- S => S’
<- S’ =>* S’’.

%infix left 5 <<.
% Because of evaluation order, computation sequences are displayed
% in reverse, using "<<" as a left-associative infix operator.

ceval : exp -> exp -> type. %name ceval CE.
%mode ceval +E -V.

cev : ceval E V
<- (init) # (ev E) =>* (answer V).

We then get a reasonable display of the sequence of computation steps which
must be read from right to left.

?- C* : init # (ev (app (lam [x] x) z)) =>* answer V.
Solving...
V = z.
C* =
stop << st_init << st_z << st_app2 << st_return << st_z << st_app1

<< st_return << st_lam << st_app.

The overall task now is to prove that e ↪→ v if and only if e
c
↪→ v. In one

direction we have to find a translation from tree-structured derivations D :: e ↪→ v
to sequential computations C :: init 8 ev e ∗

=⇒ answer v. In the other direction
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we have to find a way to chop a sequential computation into pieces which can be
reassembled into a tree-structured derivation.
We start with the easier of the two proofs. We assume that e ↪→ v and try to show

that e
c
↪→ v. This immediately reduces to showing that init 8 ev e ∗

=⇒ answer v.
This does not follow directly by induction, since subcomputations will neither start
from the initial computation nor return the final answer. If we generalize the claim
to state that for all continuations K we have that K 8 ev e ∗

=⇒ K 8 return v,
then it follows directly by induction, using some simple lemmas regarding the con-
catenation of computation sequences (see Exercise 6.17).
We can avoid explicit concatenation of computation sequences and obtain a more

direct proof (and more efficient program) if we introduce an accumulator argument.
This argument contains the remainder of the computation, starting from the state
K 8 return v. To the front of this given computation we add the computation
from K 8 ev e ∗

=⇒ K 8 return v, passing the resulting computation as the next
value of the accumulator argument. Translating this intuition to a logical statement
requires explicitly universally quantifying over the accumulator argument.

Lemma 6.22 For any closed expression e, value v and derivation D :: e ↪→ v, if
C′ :: K 8 return v ∗

=⇒ answer w for any K and w, then C :: K 8 ev e ∗
=⇒

answer w.

Proof: The proof proceeds by induction on the structure of D. Since the accumu-
lator argument must already hold the remainder of the overall computation upon
appeal to the induction hypothesis, we apply the induction hypothesis on the im-
mediate subderivations of D in right-to-left order.
The proof is implemented by a type family

ccp : eval E V
-> K # (return V) =>* (answer W)
-> K # (ev E) =>* (answer W)
-> type.

%mode ccp +D +C’ -C.

Operationally, the first argument is the induction argument, the second argument
the accumlator, and the last the output argument.
We only show a couple of cases in the proof; the others follow in a similar

manner.

Case:
D = ev lam

lam x. e1 ↪→ lam x. e1

C′ :: K 8 return lam x. e1
∗
=⇒ answer w Assumption

C ::K 8 ev(lam x. e1) =⇒ answer w By st lam followed by C′
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In this case we have added a step st lam to a computation; in the implemen-
tation, this will be an application of the step rule for the S

∗
=⇒ S′ judgment,

which is written as << in infix notation. Recall that the reversal of the evalu-
ation order means that computations (visually) proceed from right to left.

ccp_lam : ccp (ev_lam) C’ (C’ << st_lam).

Case:

D =
D1

e1 ↪→ lam x. e′1
D2

e2 ↪→ v2
D3

[v2/x]e′1 ↪→ v
ev app

e1 e2 ↪→ v

C′ :: K 8 return v ∗
=⇒ answer w Assumption

C3 ::K 8 ev ([v2/x]e′1)
∗
=⇒ answer w By ind. hyp. on D3 and C′

C′2 ::K; λx2. app2 (lam x. e′1) x2 8 return v2
∗
=⇒ answer w

By st return and st app2 followed by C3
C2 ::K; λx2. app2 (lam x. e′1) x2 8 ev e2

∗
=⇒ answer w

By ind. hyp. on D2 and C′2
C′1 ::K; λx1. app1 x1 e2 8 return lam x. e′1

∗
=⇒ answer w

By st return and st app1 followed by C2.
C1 ::K; λx1. app1 x1 e2 8 ev e1

∗
=⇒ answer w By ind. hyp. on D1 and C′1

C ::K 8 ev (e1 e2)
∗
=⇒ answer w By st app followed by C1.

The implementation threads the accumulator argument, adding steps con-
cerned with application as in the proof above.

ccp_app : ccp (ev_app D3 D2 D1) C’ (C1 << st_app)
<- ccp D3 C’ C3
<- ccp D2 (C3 << st_app2 << st_return) C2
<- ccp D1 (C2 << st_app1 << st_return) C1.

From this, the completeness of the abstract machine follows directly.

Theorem 6.23 (Completeness of the Continuation Machine) For any closed ex-

pression e and value v, if e ↪→ v then e c
↪→ v.

Proof: We use Lemma 6.22 with K = init, w = v, and C′ the computation with
st init as the only step, to conclude that there is a computation C :: init 8 ev e ∗

=⇒
answer v. Therefore, by rule cev, e

c
↪→ v.

The implementation is straightforward, using ccp, the implementation of the
main lemma above.
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cpm_complete : eval E V -> ceval E V -> type.
%mode cpm_complete +D -C.
cpmcp : cpm_complete D (cev C)

<- ccp D (stop << st_init) C.

Now we turn our attention to the soundness of the continuation machine: when-
ever it produces a value v then the natural semantics can also produce the value v
from the same expression. This is more difficult to prove than completeness. The
reason is that in the completeness proof, every subderivation of D :: e ↪→ v can
inductively be translated to a sequence of computation steps, but not every se-
quence of computation steps corresponds to an evaluation. For example, the partial
computation

K 8 ev (e1 e2)
∗
=⇒ K; λx1. app1 x1 e2 8 ev e1

represents only a fragment of an evaluation. In order to translate a computation
sequence we must ensure that it is sufficiently long. A simple way to accomplish this
is to require that the given computation goes all the way to a final answer. Thus, we
have a stateK 8 ev e at the beginning of a computation sequence C to a final answer
w, there must be some initial segment of C′ which corresponds to an evaluation of e
to a value v, while the remaining computation goes from K 8 return v to the final
answer w. This can then be proved by induction.

Lemma 6.24 For any continuation K, closed expression e and value w, if C ::
K 8 ev e ∗

=⇒ answer w then there is a value v a derivation D :: e ↪→ v, and a
subcomputation C′ of C of the form K 8 return v ∗

=⇒ answer w.

Proof: By complete induction on the structure of C. Here complete induction, as
opposed to a simple structural induction, means that we can apply the induction
hypothesis to any subderivation of C, not just to the immediate subderivations.
It should be intuitively clear that this is a valid induction principle (see also Sec-
tion 6.4).
In the implementation we have chosen not to represent the evidence for the

assertion that C′ is a subderivation of C. This can be added, either directly to the
implementation or as a higher-level judgment (see Exercise ??). This information
is not required to execute the proof on specific computation sequences, although it
is critical for seeing that it always terminates.

csd : K # (ev E) =>* (answer W)
-> eval E V
-> K # (return V) =>* (answer W)
-> type.

%mode csd +C -D -C’.
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We only show a few typical cases; the others follow similarly.

Case: The first step of C is st lam followed by C1 :: K 8 return lam x. e ∗
=⇒

answer w.

In this case we let D = ev lam and C′ = C1. The implementation (where step
is written as << in infix notation):

csd_lam : csd (C’ << st_lam) (ev_lam) C’.

Case: The first step of C is st app followed by C1 :: K; λx1. app1 x1 e2 8 ev e1
∗
=⇒

answer w, where e = e1 e2.

D1 :: e1 ↪→ v1 for some v1 and
C′1 ::K; λx1. app1 x1 e2 8 return v1

∗
=⇒ answer w By ind. hyp. on C1

C′′1 ::K 8 app1 v1 e2
∗
=⇒ answer w By inversion on C′1

C2 ::K; λx2. app2 v1 x2 8 ev e2
∗
=⇒ answer w By inversion on C′′1

D2 :: e2 ↪→ v2 form some v2 and
C′2 ::K; λx2. app2 v1 x2 8 return v2

∗
=⇒ answer w By ind. hyp. on C2

C′′2 ::K 8 app2 v1 v2
∗
=⇒ answer w By inversion on C′2

v1 = lam x. e′1 and

C3 ::K 8 ev ([v2/x]e′1)
∗
=⇒ answer w By inversion on C′′2

D3 :: [v2/x]e′1 ↪→ v for some v and
C′ :: K 8 return v ∗

=⇒ answer w By ind. hyp on C3
D :: e1 e2 ↪→ v By rule ev app from D1, D2, and D3.

The evaluation D and computation sequence C′ now satisfy the requirements
of the lemma. The appeals to the induction hypothesis are all legal, since
C > C1 > C′′1 > C2 > C′2 > C′′2 > C3 > C′, where > is the subcomputation
judgment. Each of the subcomputation judgments in this chain follows either
immediately, or by induction hypothesis.

The implementation:

csd_app : csd (C1 << st_app) (ev_app D3 D2 D1) C’
<- csd C1 D1 (C2 << st_app1 << st_return)
<- csd C2 D2 (C3 << st_app2 << st_return)
<- csd C3 D3 C’.

Once again, the main theorem follows directly from the lemma.
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Theorem 6.25 (Soundness of the Continuation Machine) For any closed expres-

sion e and value v, if e
c
↪→ v then e ↪→ v.

Proof: By inversion, C :: init 8 ev e ∗
=⇒ answer v. By Lemma 6.24 there is a

derivation D :: e ↪→ v′ and C′ :: init 8 return v′ ∗
=⇒ answer v for some v′. By

inversion on C′ we see that v = v′ and therefore D satisfies the requirements of the
theorem.

cpm_sound : ceval E V -> eval E V -> type.
%mode cpm_sound +C -D.

cpmsd : cpm_sound (cev C) D
<- csd C D (stop << st_init).

%terminates {} (cpm_sound C D).

6.6 Type Preservation and Progress

So far we have concentrated on operational aspects of the translation from a big-step
to a small-step semantics; now we turn to issues of typing. The first property is type
preservation—a reprise of the same property for the big-step semantics. But the
reformulation of the semantics also allows us to express new language properties,
still at a high level of abstraction. One of the most important ones is progress. It
states that in any valid abstract machine state we can have one of two situations:
either we have already computed the final answer of the program, or we can make
progress by taking a further step.
Type preservation and progress together express that well-typed programs can-

not go wrong, a phrase coined by Milner [Mil78]. In our setting, “going wrong”
corresponds to reaching a machine state in which no further transition rules appli-
cable. Note that type preservation for the big-step semantics does not express this,
since it only talks about completed evaluations, not about intermediate states. Of
course, even in the small-step semantics an expression can fail to have a value, but
from the progress theorem we know that this is only due to non-termination.
We begin by giving the typing rules for the continuation-passing machine. One

complication as compared to the typing rules for expressions is that certain machine
states only make sense when components of instructions are values. For example,
the instruction app2 v1 v2 requires both arguments to be values. If this restriction
is not enforced, the progress theorem clearly fails, because there is no transition for
a state K 8 app2 ((lam x. x) (lam y. y)) z even though the arguments to app2
are correctly typed. This introduces a further complication: since continuations
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are composed of functions from values to instructions, we need to record that the
argument of the continuation is indeed a function. For this we introduce a new
context Υ, which is either empty or contains a simple hypothesis x Value. The
value judgment is appropriately generalized so that x Value # x Value.

Υ ::= · | x Value Continuation argument

Υ;∆ # i : τ Instruction i has type τ in context ∆.
# K : τ ⇒ σ Continuation K maps values of type τ to answers of type σ
# S : σ State S has type σ

Typing for continuations keeps track of two types: the type of the value that
will be passed to it, and the type of the final answer it produces. States on the
other hand record only the type of final answer it may produce. The judgments for
continuations and state do not depend on a context because they never contain free
variables.

∆ # e : τ
vi ev

Υ;∆ # ev e : τ

∆ # v : τ Υ # v Value
vi return

Υ;∆ # return v : τ

∆ # v1 : nat ∆ # e2 : τ ∆, x:nat # e2 : τ Υ # v1 Value
vi case1

Υ;∆ # (case1 v1 of z⇒ e2 | s x⇒ e3) : τ

∆ # v1 : τ1 ∆ # e2 : τ2 Υ # v1 Value
vi pair1

Υ;∆ # 〈v1, e2〉1 : τ1 × τ2

∆ # v′ : τ1 × τ2 Υ # v′ Value
vi fst1

Υ;∆ # fst1 v
′ : τ1

∆ # v′ : τ1 × τ2 Υ # v′ Value
vi snd1

Υ;∆ # snd1 v
′ : τ2

∆ # v1 : τ2 → τ1 ∆ # e2 : τ2 Υ # v1 Value
vi app1

Υ;∆ # app1 v1 e2 : τ1

∆ # v1 : τ2 → τ1 ∆ # v2 : τ2 Υ # v1 Value Υ # v2 Value
vi app2

Υ;∆ # app2 v1 v2 : τ1

In the typing rules for continuations, we have to make sure that the parts of the
continuation are composed properly: the value returned by the last instruction of a
continuation matches the type accepted by the remaining continuation. The initial
continuation just returns its argument as the final answer and therefore has type
τ ⇒ τ .
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vk init
# init : τ ⇒ τ

xValue; ·, x:τ # i : τ ′ # K : τ ′ ⇒ σ
vk ;

# K; λx. i : τ ⇒ σ

For a state we verify that the type of the instruction to be executed matches
the one expected by the continuation, and assign the type of the final answer to the
state.

·; · # i : τ # K : τ ⇒ σ
vs 8

# (K 8 i) : σ

· # v : σ · # v Value
vs answer

# answer v : σ

The typing judgments for instructions, continuations, and states admit more
states as valid than can be reached from an initial state of the form init 8 ev e (see
Exercise 6.19). However, they are accurate enough to permit proof of preservation
and progress and is therefore appropriate for our purposes.
The implementation of the judgments in the logical framework is straightfor-

ward. The fact that we need at most one value variable is not explicitly represented.
Instead, we use the usual techniques for parametric and hypothetical judgments by
assuming value x for a new parameter x. The declarations below can be executed
in Elf in order to check the validity of instructions, continuations and states and
infer their most general types.

%%% Instructions
valid : inst -> tp -> type. %name valid VL.
%mode valid +I *T.

% Evaluation and return
vi_ev : valid (ev E) T

<- of E T.
vi_return : valid (return V) T

<- of V T
<- value V.

% Natural Numbers
vi_case1 : valid (case1 V1 E2 E3) T

<- of V1 nat
<- of E2 T
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<- ({x:exp} of x nat -> of (E3 x) T)
<- value V1.

% Pairs
vi_pair1 : valid (pair1 V1 E2) (cross T1 T2)

<- of V1 T1
<- of E2 T2
<- value V1.

vi_fst1 : valid (fst1 V’) T1
<- of V’ (cross T1 T2)
<- value V’.

vi_snd1 : valid (snd1 V’) T2
<- of V’ (cross T1 T2)
<- value V’.

% Functions
vi_app1 : valid (app1 V1 E2) T1

<- of V1 (arrow T2 T1)
<- of E2 T2
<- value V1.

vi_app2 : valid (app2 V1 V2) T1
<- of V1 (arrow T2 T1)
<- of V2 T2
<- value V1
<- value V2.

%%% Continuations
validk : cont -> tp -> tp -> type. %name validk VK.
%mode validk +K *T *S.

vk_init : validk (init) T T.
vk_; : validk (K ; [x] I x) T S

<- ({x:exp} value x -> of x T -> valid (I x) T’)
<- validk K T’ S.

%%% States
valids : state -> tp -> type. %name valids VS.

vs_# : valids (K # I) S
<- valid I T
<- validk K T S.

vs_answer : valids (answer V) S
<- of V S
<- value V.

With this preparation, we can now prove preservation and progress. The proofs
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are quite straightforward, but somewhat tedious.

Theorem 6.26 (One-Step Type Preservation) If # S : σ and S =⇒ S′ then # S′ :
σ.

Proof: By cases on the derivation of C :: S =⇒ S′, applying several levels of
inversion to the given typing derivation for S. The implementation is via a type
family

vps : valids S T -> S => S’ -> valids S’ T -> type.
%mode vps +VS +C -VS’.

that relates the three derivation involved in the theorem. We show only a few
representative cases; the full implementation can be found in the on-line course
material.

Case: C is st app:

K 8 ev (e1 e2) =⇒ K; λx1. app1 x1 e2 8 ev e1.

# K 8 ev (e1 e2) : σ Assumption
# K : τ ⇒ σ and
·; · # ev (e1 e2) : τ for some τ By inversion
· # e1 e2 : τ By inversion
· # e1 : τ2 → τ and
· # e2 : τ2 for some τ2 By inversion
x1Value; x1 : τ2 → τ # app1 x1 e2 : τ By rule (vi app1)
# (K; λx1. app1 x1 e2) : (τ2 → τ)⇒ σ By rule (vk ;)
# (K; λx1. app1 x1 e2) 8 ev e1 : σ By rule (vs 8)

The inversion steps are represented by expanding the structure of the first
argument, obtaining access to the subderivations VK of # K : τ → σ, P2 of
· # e2 : τ2, and P1 of · # e1 : τ2 → τ . The needed derivation for S′ is readily
constructed from these variables.

vps_app : vps (vs_# VK (vi_ev (tp_app P2 P1))) (st_app)
(vs_# (vk_; VK ([x1] [q1:value x1]

[p1:of x1 (arrow T2 T1)]
vi_app1 q1 P2 p1))

(vi_ev P1)).

Case: C is st app1:

K 8 app1 v1 e2 =⇒ K; λx2. app2 v1 x2 8 ev e2.
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# K 8 app1 v1 e2 : σ Assumption
# K : τ ⇒ σ and
·; · # app1 v1 e2 : τ for some τ By inversion
· # v1 : τ2 → τ and
· # e2 : τ2 form some τ2 and
· # v1 Value By inversion
x2Value; x2 : τ2 ## app2 v1 x2 : τ By rule (vi app2)
# (K; λx2. app1 v1 e2) : τ2 ⇒ σ By rule (vk ;)
# (K; λx1. app2 v1 x2) 8 ev e2 : σ By rule vs cpm

In the representation we decompose the first argument as before. This now
gives as also Q1 which is the derivation of v1 Value.

vps_app1 : vps (vs_# VK (vi_app1 Q1 P2 P1)) (st_app1)
(vs_# (vk_; VK ([x2] [q2:value x2] [p2:of x2 T2]

vi_app2 q2 Q1 p2 P1))
(vi_ev P2)).

Case: C is st app2:

K 8 app2 (lam x. e′1) v2 =⇒ K 8 ev ([v2/x]e′1).

# (K 8 app2 (lam x. e′1) v2) : σ Assumption
# K : τ1 ⇒ σ and
·; · # app2 (lam x. e′1) v2) : τ1 for some τ1 By inversion
· # (lam x. e′1) : τ2 → τ1 and
· # v2 : τ2 for some τ2 and
· # (lam x. e′1) Value and
· # v2 Value By inversion
x:τ2 # e′1 : τ1 By inversion
· # [v2/x]e′1 : τ1 By substitution property (2.4)
·; · # ev ([v2/x]e′1) : τ1 By rule (vi ev)
# K 8 ev ([v2/x]e′1) : σ By rule (vs cpm)

By applying inversion as above we obtained

P ′1 :: (x:τ2 # e
′
1 : τ1)

which is represented by the variable

P1’ : {x:exp} of x T2 -> of (E1’ x) T1.
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The appeal to the substitution principle is implemented by applying this func-
tion to the representation of v2 and the typing derivation P2 :: (· # v2 : τ2).
Note that we do not need the derivation Q2 which is evidence that v2 is a
value.

vps_app2 : vps (vs_# VK (vi_app2 Q2 (val_lam) P2 (tp_lam P1’)))
(st_app2) (vs_# VK (vi_ev (P1’ V2 P2))).

The multi-step type preservation theorem is a direct consequence of the one-step
preservation.

Theorem 6.27 (Multi-Step Type Preservation) If # S : σ and S
∗
=⇒ S′ then

# S′ : σ

Proof: By straightforward induction on the structure of the derivation C∗ :: (S ∗
=⇒

S′). We only show the implementation.

vps* : valids S T -> S =>* S’ -> valids S’ T -> type.
%mode vps* +VS +C* -VS’.

vps*_stop : vps* VS (stop) VS.
vps*_<< : vps* VS (C2* << C1) VS2

<- vps VS C1 VS1
<- vps* VS1 C2* VS2.

Finally, we come to the progress theorem: we can make a transition from every
state that is not a final state. Recall that the only final states are of the form
answer v.

Theorem 6.28 (Progress) If # (K 8 i) : σ then there is a state S′ such that
K 8 i =⇒ S′.

Proof: We know by inversion that

# K : τ ⇒ σ and
# i : τ for some τ .

We apply case analysis on i. In each case we can either directly make a transition,
or we need to apply several inversions on an available typing or value derivation
until each subcase can be seen to be impossible or a transition rule applies. For a
return instruction, we also need to distinguish cases on the shape of K. We show
only a few cases.
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Case: i = ev (e1 e2). Then st app applies.

Case: i = app1 v1 e2. Then st app1 applies.

Case: i = app2 v1 v2. Then

· # v1 Value and
· # v2 Value and
· # v1 : τ2 → τ and
· # v2 : τ2 By inversion

Now we distinguish subcases on · # v2 Value

Subcase: v1 = z. This is impossible, since there is no rule to conclude
· # z : τ2 → τ .

Subcase: v1 = s v′1. This is impossible, since there is no rule to conclude
· # s v′1 : τ2 → τ .

Subcase: v1 = 〈v′1, v′′1 〉. This is impossible, since there is not rule to conclude
· # 〈v′1, v′′1 〉 : τ2 → τ

Subcase: v1 = lamx. e′1. Then st app2 applies.

The implementation is very similar to progress, except that we don’t need to con-
struct the resulting typing derivation. Note that impossible cases are not repre-
sented. Also, for simplicity of implementation, we distinguish the cases on the
typing derivation rather than the instruction, which is possible since the typing
judgment is syntax-directed. We show only the three cases from above.

pgs : valids S T -> S => S’ -> type.
%mode pgs +VS -C.

pgs_app : pgs (vs_# VK (vi_ev (tp_app P2 P1))) (st_app).

pgs_app1 : pgs (vs_# VK (vi_app1 Q1 P2 P1)) (st_app1).

pgs_app2 : pgs (vs_# VK (vi_app2 Q2 (val_lam) P2 (tp_lam P1’)))
(st_app2).

Note that some applications of inversion may be redundant for the sake of unifor-
mity. For example, we could have replaced the last clause by

pgs_app2’ : pgs (vs_# VK (vi_app2 Q2 (val_lam) P2 P1))
(st_app2).
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Nonetheless, the inversion on the value derivation is necessary, and

pgs_app2’’ : pgs (vs_# VK (vi_app2 Q2 Q1 P2 P1))
(st_app2).

would be incorrect as a proof case because it is not apparent from the first argument
that st app2 indeed applies.

6.7 Contextual Semantics

[ This section discusses a contextual semantics as an alternative small-
step machine to the CPM machine. This still has to be revised from an
older version. ]

6.8 Exercises

Exercise 6.1 If we replace the rule ev app in the natural semantics of Mini-ML
(see Section 2.3) by

e1 ↪→ lam x. e′1 e2 ↪→ v2

u
x ↪→ v2
...

e′1 ↪→ v
ev app′x,u

e1 e2 ↪→ v

in order to avoid explicitly substituting v2 for x, something goes wrong. What
is it? Can you suggest a way to fix the problem which still employs hypothetical
judgments?
(Note: We assume that the third premiss of the modified rule is parametric in x

and hypothetical in u which is discharged as indicated. This implies that we assume
that x is not already free in any other hypothesis and that all labels for hypotheses
are distinct—so this is not the problem you are asked to detect.)

Exercise 6.2 Define the judgment W RealVal which restricts closures W to Λ-
abstractions. Prove that · + F ↪→ W then W RealVal and represent this proof in
Elf.

Exercise 6.3 In this exercise we try to eliminate some of the non-determinism in
compilation.

1. Define a judgment F std which should be derivable if the de Bruijn expression
F is in the standard form in which the ↑ operator is not applied to applications
or abstractions.
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2. Rewrite the translation from ordinary expressions e such that only standard
forms can be related to any expression e.

3. Prove the property in item 2.

4. Implement the judgments in items 1, 2, and the proof in item 3.

Exercise 6.4 Restrict yourself to the fragment of the language with variables, ab-
straction, and application, that is,

F ::= 1 | F↑ | ΛF | F1 F2

1. Define a judgment F Closed that is derivable iff the de Bruijn expression F is
closed, that is, has no free variables at the object level.

2. Define a judgment for conversion of de Bruijn expressions F to standard form
(as in Exercise 6.3, item 1) in a way that preserves meaning (as given by its
interpretation as an ordinary expression e).

3. Prove that, under appropriate assumptions, this conversion results in a de
Bruijn expression in standard form equivalent to the original expression.

4. Implement the judgments and correctness proofs in Elf.

Exercise 6.5 Restrict yourself to the same fragment as in Exercise 6.4 and define
the operation of substitution as a judgment subst F1 F2 F . It should be a conse-
quence of your definition that if ΛF1 represents lam x. e1, F2 represents e2, and
subst F1 F2 F is derivable then F should represent [e2/x]e1. Furthermore, such an
F should always exist if F1 and F2 are as indicated. With appropriate assumptions
about free variables or indices (see Exercise 6.4) prove these properties, thereby
establishing the correctness of your implementation of substitution.

Exercise 6.6 Write out the informal proof of Theorem 6.7.

Exercise 6.7 Prove Theorem 6.8 by appropriately generalizing Lemma 6.2.

Exercise 6.8 Standard ML [MTH90] and many other formulations do not con-
tain a letname construct. Disregarding problems of polymorphic typing for the
moment, it is quite simple to simulate letname with let val operationally using
so-called thunks. The idea is that we can prohibit the evaluation of an arbitrary
expression by wrapping it in a vacuous lam-abstraction. Evaluation can be forced
by applying the function to some irrelevant value (we write z, most presentations
use a unit element). That is, instead of

l = letname x = e1 in e2
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we write
l′ = let val x′ = lam y. e1 in [x′ z/x]e2

where y is a new variable not free in e1.

1. Show a counterexample to the conjecture “If l is closed, l ↪→ v, and l′ ↪→ v′
then v = v′ (modulo renaming of bound variables)”.

2. Show a counterexample to the conjecture “# l : τ iff # l′ : τ”.

3. Define an appropriate congruence e ∼= e′ such that l ∼= l′ and if e ∼= e′, e ↪→ v
and e′ ↪→ v′ then v ∼= v′.

4. Prove the properties in item 3.

5. Prove that if the values v and v′ are natural numbers, then v ∼= v′ iff v = v′.

We need a property such as the last one to make sure that the congruence we define
does not identify all expressions. It is a special case of a so-called observational
equivalence (see ??).

Exercise 6.9 The rules for evaluation in Section 6.2 have the drawback that look-
ing up a variable in an environment and evaluation are mutually recursive, since
the environment contains unevaluated expressions. Such expressions may be added
to the environment during evaluation of a letname or fix construct. In the defi-
nition of Standard ML [MTH90] this problem is avoided by disallowing let name
(see Exercise 6.8) and by syntactically restricting occurrences of the fix construct.
When translated into our setting, this restriction states that all occurrences of fix-
point expressions must be of the form fix x. lam y. e. Then we can dispense with
the environment constructor + and instead introduce a constructor ∗ that builds a
recursive environment. More precisely, we have

Environments η ::= · | η,W | η ∗ F

The evaluation rules fev 1+, fev ↑+, and fev fix on page 161 are replaced by

fev fix∗
K + fix′ F ↪→ {K ∗ F ;F}

fev 1∗
K ∗ F + 1 ↪→ {K ∗ F ;F}

K + F ↪→W
fev ↑∗

K ∗ F ′ + F↑ ↪→W
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1. Implement this modified evaluation judgment in Elf.

2. Prove that under the restriction that all occurrences of fix′ in de Bruijn ex-
pressions have the form fix′ ΛF for some F , the two sets of rules define an
equivalent operational semantics. Take care to give a precise definition of the
notion of equivalence you are considering and explain why it is appropriate.

3. Represent the equivalence proof in Elf.

4. Exhibit a counterexample which shows that some restriction on fixpoint ex-
pressions (as, for example, the one given above) is necessary in order to pre-
serve equivalence.

5. Under the syntactic restriction from above we can also formulate a semantics
which requires no new constructor for environments by forming closures over
fixpoint expressions. Then we need to add another rule for application of
an expression which evaluates to a closure over a fixpoint expression. Write
out the rules and prove its equivalence to either the system above or the
original evaluation judgment for de Bruijn expressions (under the appropriate
restriction).

Exercise 6.10 Show how the effect of the bind instruction can be simulated in the
CLS machine using the other instructions. Sketch the correctness proof for this
simulation.

Exercise 6.11 Complete the presentation of the CLS machine by adding recursion.
In particular

1. Complete the computation rules on page 173.

2. Add appropriate cases to the proofs of Lemmas 6.16, and 6.18.

Exercise 6.12 Prove the following carefully.

1. The concatenation operation “◦” on computations is associative.

2. The subcomputation relation “<” is transitive (Lemma 6.17).

Show the implementation of your proofs as type families in Elf.

Exercise 6.13 The machine instructions from Section 6.3 can simply quote ex-
pressions in de Bruijn form and consider them as instructions. As a next step in
the (abstract) compilation process, we can convert the expressions to lower-level
code which simulates the effect of instructions on the environment and value stacks
in smaller steps.

1. Design an appropriate language of operations.
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2. Specify and implement a compiler from expressions to code.

3. Prove the correctness of this step of compilation.

4. Implement your correctness proof in Elf.

Exercise 6.14 Types play an important role in compilation, which is not reflected
in the some of the development of this chapter. Ideally, we would like to take
advantage of type information as much as possible in order to produce more compact
and more efficient code. This is most easily achieved if the type information is
embedded directly in expressions (see Section ??), but at the very least, we would
expect that types can be assigned to intermediate expressions in the compiler.

1. Define typing judgments for de Bruijn expressions, environments, and values
for the language of Section 6.2. You may assume that values are always closed.

2. Prove type preservation for your typing judgment and the operational seman-
tics for de Bruijn expressions.

3. Prove type preservation under compilation, that is, well-typed Mini-ML ex-
pressions are mapped to well-typed de Bruijn expressions under the translation
of Section 6.2.

4. What is the converse of type preservation under compilation. Does your typing
judgment satisfy it?

5. Implement the judgments above in Elf.

6. Implement the proofs above in Elf.

Exercise 6.15 As in Exercise 6.14:

1. Define a typing judgment for evaluation contexts. It should only hold for valid
evaluation contexts.

2. Prove that splitting a well-typed expression which is not a value always suc-
ceeds and produces a unique context and redex.

3. Prove that splitting a well-typed expression results in a valid evaluation con-
text and valid redex.

4. Prove the correctness of contextual evaluation with respect to the natural
semantics for Mini-ML.

5. Implement the judgments above in Elf. Evaluation contexts should be rep-
resented as functions from expressions to expressions satisfying an additional
judgment.
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6. Implement the proofs above in Elf.

Exercise 6.16 Show that the purely expression-based natural semantics of Sec-
tion 2.3 is equivalent to the one based on a separation between expressions and
values in Section 6.5. Implement your proof, including all necessary lemmas, in Elf.

Exercise 6.17 Carry out the alternative proof of completeness of the continuation
machine sketched on page 189. Implement the proof and all necessary lemmas in
Elf.

Exercise 6.18 Do the equivalence proof in Lemma 6.22 and the alternative in Ex-
ercise 6.17 define the same relation between derivations? If so, exhibit the bijection
in the form of a higher-level judgment relating the Elf implementations. Be careful
to write out necessary lemmas regarding concatenation. You may restrict yourself
to functional abstraction, application, and the necessary computation rules.

Exercise 6.19 Not every valid state of the CPM machine (according to the typing
judgments in Section 6.6) can be reached by a computation starting from some
initial state of the form init 8 ev e where · + e : τ .

1. Exhibit a valid, but unreachable state.

2. Modify the validity judgments so that every valid machine state can in fact
be reached from some initial state.

3. Prove this property.

4. Implement your proof in Elf.
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[Sch00] Carsten Schürmann. Automating the Meta Theory of Deductive Sys-
tems. PhD thesis, Department of Computer Science, Carnegie Mellon
University, August 2000. Available as Technical Report CMU-CS-00-
146.

[SH84] Peter Schroeder-Heister. A natural extension of natural deduction. The
Journal of Symbolic Logic, 49(4):1284–1300, December 1984.

[Twe98] Twelf home page. Available at http://www.cs.cmu.edu/~twelf, 1998.


