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 1997 Cambridge University Press 1FUNCTIONAL PEARLSThree Algorithms on Braun TreesCHRIS OKASAKIySchool of Computer Science, Carnegie Mellon University5000 Forbes Avenue, Pittsburgh, Pennsylvania, USA 15213(e-mail: cokasaki@cs.cmu.edu)1 IntroductionAmong the many 
avors of balanced binary trees, Braun trees (Braun & Rem,1983) are perhaps the most circumscribed. For any given node of a Braun tree,the left subtree is either exactly the same size as the right subtree, or one elementlarger. Braun trees always have minimum height, and the shape of each Brauntree is completely determined by its size. In return for this rigor, algorithms thatmanipulate Braun trees are often exceptionally simple and elegant, and need notmaintain any explicit balance information.Braun trees have been used to implement both 
exible arrays (Braun & Rem,1983; Hoogerwoord, 1992; Paulson, 1996) and priority queues (Paulson, 1996; Bird,1996). Most operations involving a single element (e.g. adding, removing, inspectingor updating an element) take O(logn) time since the trees are balanced. We considerthree algorithmically interesting operations that manipulate entire trees. First, wegive an O(log2 n) algorithm for calculating the size of a tree. Second, we show howto create a tree containing n copies of some element x in O(logn) time. Finally, wedescribe an order-preserving algorithm for converting a list to a tree in O(n) time.This last operation is not nearly as straightforward as it sounds!NotationA tree is either empty, written hi, or a triple hx; s; ti, where x is an element and sand t are trees. The subtrees s and t must satisfy the balance conditionjtj+ 1 � jsj � jtjWe abbreviate the leaf hx; hi; hii as hxi.y This research was sponsored by the Advanced Research Projects Agency CSTO underthe title \The Fox Project: Advanced Languages for Systems Software", ARPA OrderNo. C533, issued by ESC/ENS under Contract No. F19628-95-C-0050.



2 Chris Okasaki2 Calculating the size of a treeIt is trivial to calculate the size of a tree in O(n) time by counting every nodeindividually. size hi = 0size hx; s; ti = 1 + size s + size tHowever, this fails to take advantage of the fact that, once we know the size of onesubtree, there are only two possibilities for the size of the other subtree. If jtj = mthen either jsj = m or jsj = m + 1. Let us de�ne a function di� s m that returns 0if jsj = m and 1 if jsj = m + 1. Then, size can be rewrittensize hi = 0size hx; s; ti = letm = size t in 1 + 2 �m + di� s mThe base cases for di� are trivial.di� hi 0 = 0di� hxi 0 = 1The remaining cases use the easily veri�ed fact that, if jhx; s; tij = m, then jsj =d(m � 1)=2e and jtj = b(m � 1)=2c. Now, suppose that jhx; s; tij is either m orm + 1. If m is odd, then the size of the right subtree is �xed, since b(m � 1)=2c =(m� 1)=2 = b(m+ 1� 1)=2c. On the other hand, the size of the left subtree mightbe either d(m�1)=2e = (m�1)=2 or d(m+1�1)=2e = (m+1)=2. We can determinewhich by recursing on the left subtree.di� hx; s; ti (2 � k + 1) = di� s kIf m is even, the situation is reversed | the size of the left subtree is �xed and werecurse on the right subtree.di� hx; s; ti (2 � k + 2) = di� t kThe complete algorithm issize hi = 0size hx; s; ti = letm = size t in 1 + 2 �m+ di� s mdi� hi 0 = 0di� hxi 0 = 1di� hx; s; ti (2 � k + 1) = di� s kdi� hx; s; ti (2 � k + 2) = di� t kThe running time of size is dominated by the calls to di�, one for each left subtreealong the right spine. Each call to di� runs in O(logn) time, for a total of O(log2 n).3 Creating a tree by copyingSuppose we want a function copy x n that creates a tree containing n copies of x.Of course, we can easily do this in O(n) time withcopy x 0 = hicopy x n = hx; copy x d(n � 1)=2e; copy x b(n � 1)=2ci



Functional pearls 3However, this function will frequently call copy multiple times on the same argu-ments. In particular, whenever n is odd, the two recursive calls will be identical.Our next version of copy takes advantage of this fact.copy x 0 = hicopy x (2 �m + 1) = let t = copy x m in hx; t; ticopy x (2 �m + 2) = hx; copy x (m + 1); copy x miExercise: Show that this version of copy runs inO(�b (log2 n)) = O(�log2 n) = O(nlog2 �) = O(n0:69:::)time, where � is the golden mean, (1 +p5)=2. 2We can do still better by realizing that copy x (m+1) and copy x m produce verysimilar results. The former is the result of adding a single x to the latter. Writingthe cons function on trees x� t, we getcopy x 0 = hicopy x (2 �m+ 1) = hx; t; ticopy x (2 �m+ 2) = hx; x� t; tiwhere t = copy x mwhere x� hi = hxix� hy; s; ti = hx; y � t; siis the standard algorithm for adding an element to a Braun tree. Note that thisfunction swaps the subtrees s and t. This behavior is a distinguishing feature ofBraun trees. It is used to maintain the balance condition sincejtj+ 1 � jsj � jtj) jsj+ 1 � jtj+ 1 � jsjThis version of copy runs in O(log2 n) time. The analysis is identical to that of size.For our �nal version of copy, we delve deeper into the structure of Braun trees.Note that if jhx1; s1; t1ij = jhx2; s2; t2ij+ 1, then either js1j = jt1j = js2j = jt2j+ 1or js1j � 1 = jt1j = js2j = jt2j. In either case, we can create trees of both size n andsize n + 1 given only trees of sizes b(n � 1)=2c and b(n � 1)=2c + 1. Applying thisidea recursively yieldscopy x n = snd (copy2 x n)copy2 x 0 = (hxi; hi)copy2 x (2 �m + 1) = (hx; s; ti; hx; t; ti)copy2 x (2 �m + 2) = (hx; s; si; hx; s; ti)where (s; t) = copy2 x mwhere copy2 x n returns a pair of trees of sizes n+ 1 and n respectively. This runsin only O(logn) time.



4 Chris Okasaki0��� @@@1��� AAA 2��� AAA3��� CCC 5��� CCC 4��� CCC 6��� CCC7 11 9 13 8 12 10 14Fig. 1. A Braun tree of size 15, with each node labeled by its index.4 Converting a list to a treeThe previous algorithms have applied to Braun trees representing either 
exiblearrays or priority queues. This last algorithm applies only to 
exible arrays. SeeBird (1996) for a similar treatment of priority queues.Given a list, we want to create a 
exible array containing the same elements in thesame order. Figure 1 illustrates the order of elements in a Braun tree representingan array. This order is de�ned recursively. Element 0 of hx; s; ti is x. The left subtrees contains the odd elements, while the right subtree t contains the (positive) evenelements. Thus, for example, the indexing function s ! i can be writtenhx; s; ti ! 0 = xhx; s; ti ! (2 � i + 1) = s ! ihx; s; ti ! (2 � i + 2) = t ! iNow, a simple but ine�cient way to convert a list to an array is to insert theelements one at a time into an initially empty array.makeArray xs = foldr (�) hi xsUnfortunately, this takes O(n logn) time.A second approach exploits the fact that the left subtree contains the odd ele-ments and the right subtree contains the even elements.makeArray [ ] = himakeArray (x : xs) = hx;makeArray odds;makeArray evensiwhere (odds; evens) = unravel xsunravel [ ] = ([ ]; [ ])unravel (x : xs) = (x : evens; odds)where (odds; evens) = unravel xsBut this also takes O(n logn) time.This last approach works top down. Let us instead try to work bottom up. First,consider the relationship between adjacent rows. For example, here are the thirdand fourth rows from Figure 1.



Functional pearls 53 5 4 6���� ���� ���� ����CCCC CCCC CCCC CCCC7 9 8 1011 13 12 14A pattern emerges as we rearrange the nodes from the third row in numerical order.We draw the subtrees slightly askew to emphasize our point.3 4 5 6��� ��� ��� ���CCCC CCCC CCCC CCCC7 8 9 1011 12 13 14From this picture, we see that the �rst half of each row become the left children ofthe previous row, and the second half of each row become the right children of theprevious row. We begin to code this idea as an algorithm by partitioning the inputlist into rows.rows k [ ] = [ ]rows k xs = (k; take k xs) : rows (2 � k) (drop k xs)For example,rows 1 [0::14] = [(1; [0]); (2; [1;2]); (4; [3;4;5; 6]); (8; [7; 8; 9;10; 11; 12; 13; 14])]Note that we explicitly store the size of each row. This size may be inaccurate forthe last row if it is not full.Next, we process the rows bottom up. At each step, we combine a row with a listof its subtrees. build (k; xs) ts = zipWith3 makeNode xs ts1 ts2where (ts1; ts2) = split k (ts++repeat hi)makeNode x s t = hx; s; tiWe �rst split the list of subtrees into left children and right children, and then zipthese lists with xs to make a list of trees. We use the in�nite list repeat hi to �ll inhi for any missing children. Note that we are not committing to lazy evaluation byusing an in�nite list | we could easily replace it with a �nite list of length 2k.Finally, we fold build across the list of rows, and extract the head of the result.makeArray = head � foldr build [hi] � rows 1The singleton list [hi] guarantees that head will �nd a tree even if xs is empty. The



6 Chris Okasakicomplete algorithm isrows k [ ] = [ ]rows k xs = (k; take k xs) : rows (2 � k) (drop k xs)build (k; xs) ts = zipWith3 makeNode xs ts1 ts2where (ts1; ts2) = split k (ts++repeat hi)makeNode x s t = hx; s; timakeArray = head � foldr build [hi] � rows 1Each call to rows or build takes O(k) time, so the entire program runs in O(n) time.Exercise: Invert this program to obtain a function that lists the elements of aBraun tree in O(n) time. 2 ReferencesBird, R. S. (1996) Functional algorithm design. Science of Computer Programming 26(1{3):15{31.Braun, W. and Rem, M. (1983) A logarithmic implementation of 
exible arrays. Memo-randum MR83/4. Eindhoven University of Technology.Hoogerwoord, R. R. (1992) A logarithmic implementation of 
exible arrays. Conferenceon Mathematics of Program Construction pp. 191{207.Paulson, L. C. (1996) ML for the Working Programmer, 2nd edition. Cambridge UniversityPress.


