
Implementing Type-Based Deforestation

by Marie-Christine (Kirsten) Chevalier

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University
of California at Berkeley, in partial satisfaction of the requirements for the degree of Master
of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor A. Aiken
Research Advisor

(Date)

* * * * * * *

Professor R. Fateman
Second Reader

(Date)

2

Contents

1 Introduction to Deforestation 5
1.1 What Is Deforestation? . 5
1.2 Previous Work On Deforestation . 7

1.2.1 Deforestation in Other Languages . 7
1.2.2 Wadler’s Algorithm . 8
1.2.3 Shortcut Deforestation . 9
1.2.4 Warm Fusion . 11
1.2.5 Vanish Combinators . 12
1.2.6 Destroy/Unfoldr . 13

2 The Type Inference Algorithm for Deforestation 15
2.1 Inlining and Deforestation . 15
2.2 List Abstraction . 15
2.3 Type-Based Inlining . 16
2.4 Worker/Wrapper Splitting . 18
2.5 The Type Inference Algorithm . 19
2.6 Type-Based Deforestation . 20

2.6.1 Abstracting Over Multiple Lists . 21
2.6.2 Polymorphically Recursive Worker Definitions 21

2.7 Related Work . 22

3 Implementing the Type Inference Algorithm 23
3.1 GHC and External Core . 23
3.2 Implementation Details . 25

3.2.1 Specializing Polymorphic Functions 26
3.2.2 List Abstraction . 26
3.2.3 Applying the Shortcut . 29
3.2.4 Eliminating Inefficient Workers . 30

4 Experimental Results 33
4.1 The Nofib Suite . 33
4.2 Experimental Methods . 33
4.3 Results . 34
4.4 Comparison with GHC . 35
4.5 Deforestation Can Make Performance Worse 36
4.6 Measuring Lists Allocated . 38

3

4 CONTENTS

5 Conclusions and Future Work 41
5.1 Type-Based Deforestation Is Effective . 41
5.2 Future Work . 41

5.2.1 Integration with GHC . 41
5.2.2 Arbitrary Data Structures . 41
5.2.3 Programmer Annotations . 42

Chapter 1

Introduction to Deforestation

Deforestation is a program transformation to eliminate trees. It is usually applied to lazy
functional languages, where it is important to efficiently compile common programming id-
ioms that, if compiled näively, allocate excessive amounts of space at runtime. In this report,
we discuss some of the previous approaches to deforestation, followed by the type inference
algorithm for deforestation, which is our focus. After outlining the algorithm, we discuss
our implementation of it in the Glasgow Haskell Compiler and the experimental results. We
found that type-based deforestation decreases the amount of memory allocated by a signifi-
cant percentage of benchmark programs. We conclude that type-based deforestation can be
effective when applied to real Haskell programs.

1.1 What Is Deforestation?

In functional languages, and particularly in lazy functional languages, programmers often
structure their programs as collections of many small functions that communicate with each
other by means of intermediate data structures. The advantages of this style of programming
have been touted by advocates of lazy functional languages: elegance, improved program
understandability and maintainability resulting from modularity, and separation of control
flow from essential computation [Hug89]. On the latter point, consider writing a function
that constructs a list of numbers from 1 to n. In a strict language, this would have to be
done using a loop or recursion that checks whether the upper limit n has been reached, and
increments the index variable on each iteration, as in this Haskell function:

intsTo n = intsFromTo 1 n

where intsFromTo m n =

(if (m == n) then

[]

else

(m:(intsFromTo (m+1) n)))

The essential computation (consing m on to the front of the list) is intermingled with control
flow code (the if statement and the recursive call to intsFromTo. In contrast, the following
equivalent Haskell function is more typical of the lazy language approach:

intsTo n = take n ints

5

6 CHAPTER 1. INTRODUCTION TO DEFORESTATION

where ints n = n:(ints (n+1))

Here, the control flow, encapsulated in the call to (take n), is separated from the basic
computation, performed by the auxiliary function ints. This definition of intsTo is more
concise and easier to understand than the first one, and these differences are even more
noticeable on a larger scale. However, the second definition constructs an intermediate data
structure: the list ints. Of course, the entire infinite list is not constructed, but as each
element of the list is demanded by the call to take, a new list cell is constructed and its
contents are copied into the result list, the list that is returned as the result of the call to
intsTo. Allocating memory for these list cells takes time and resources, particularly since
they need to be garbage collected later. The first definition only creates one list: the list it
returns as its result.
For a slightly more complicated example, consider writing a function to return the sum of
the squares of the numbers between m and n. A straightforward recursive definition is as
follows:

sos m n =

if (m == n) then

0

else

(square m) + (sos (m+1) n)

A more typical Haskell definition:

sos m n = sum (map square [1..n])

(The Haskell syntax [m..n] is syntactic sugar for a call to the function enumFromTo with
arguments m and n, which constructs the list of integers from m to n.) This definition is more
concise and easier to understand, as it uses existing higher-order functions (map, and foldr,
which is used in the definition of sum and which we will examine more closely later). However,
it creates two intermediate lists: [1..n] and (map square [1..n]), which is strange for
a function that solves a problem having nothing to do with lists on the surface. Actually,
laziness means that neither list is constructed explicitly all at once – each cell is created when
it is demanded by sum or map, then freed – but again, the extra work necessary to allocate
and garbage-collect these structures still makes a significant difference in performance. In
fact, the first definition doesn’t execute in constant space either, because of the recursive
call to sos in non-tail position, but it is easy to see how to write a tail-recursive equivalent,
whereas this doesn’t apply to the second definition, since it contains no explicit recursion.
We would like the compiler to automatically transform definitions like the second definition
of sos into a form closer to the form of the first definition above. An omniscient compiler
could optimize either of these definitions even further by replacing the recursive computation
with the non-recursive formula for the sum of the squares between m and n. However, this
goes beyond the scope of the kinds of optimizations most compilers attempt to do, so we
settle for a definition that, while not optimal, allocates less memory than the original does.
Deforestation, a program transformation to eliminate trees, can achieve this goal of automat-
ically transforming modular code into monolithic code. As originally stated, deforestation
can be applied to eliminating arbitrary data structures defined by Haskell-style algebraic
datatype declarations, but most work on deforestation has concentrated on eliminating lists,
and list deforestation will be the focus of this report.

1.2. PREVIOUS WORK ON DEFORESTATION 7

1.2 Previous Work On Deforestation

Deforestation was originally described by Wadler in [Wad90], in which he coined the term
“deforestation” for a program transformation to eliminate trees. As originally presented,
deforestation extended on Wadler’s “listlessness transformer”, [Wad85], a more limited de-
forestation algorithm that handled functions that manipulate lists rather than arbitrary
trees. This work in turn can be traced back to the more general program transformation
framework described in [BD77]. Most work on deforestation has been done in the context of
pure, lazy functional languages (usually, Haskell), with a few exceptions.

1.2.1 Deforestation in Other Languages

There are two notable techniques, both of which predate most of the work on deforestation
per se, that are similar to deforestation but apply to strict and impure languages. The first
concerns the efficient compilation of operations on arrays, the principal aggregate datatype
in APL. [GW78] and [BT84] describe how compositions of operators drawn from a limited
subset of APL’s array-transforming operators can be transformed into a single operator,
avoiding multiple traversals of the same array. This work was more restricted than defor-
estation: it could only handle compositions of a few built-in functions, and each of these
functions had to both consume and produce an array (unlike deforestation, in which functions
may consume a list but produce a value of a different type, and vice versa). Nevertheless,
it was practical (exhibited by the fact that it was implemented in working APL compilers),
and it is likely that most array expressions in APL were simple enough to be optimized by
even this restricted algorithm.

A somewhat more general technique is that of series expressions, which Waters discusses
mainly in the context of Lisp, though a prototype version was also implemented for Pascal
[Wat89]. A major advantage of this approach over all the other deforestation methods we
consider here is predictability: the compiler guarantees that all compositions of functions
operating on the “series” datatype (analogous to the list type) will be deforested as long
as certain constraints are satisfied, and warns the user about series expressions that cannot
be optimized. This is accomplished by adding the series as a new datatype, isomorphic
to but distinct from lists (except that they are evaluated lazily), and providing a set of
useful operations for series (similar to the usual higher-order list functions provided by
Haskell). Making series a distinct type allows a fairly simple, dataflow-based algorithm for
deforestation to be employed. It seems advantageous for the user to receive feedback from the
compiler about which expressions are and are not deforested, but on the other hand, creating
a new type that must be used wherever the programmer wishes deforestation to occur has
disadvantages. First, deforestation can never be performed unless the programmer writes
her program in the specific style required for deforestation. Second, series must be coerced
into lists whenever the programmer wishes to use existing list operations on them, and this
may entail some inefficiency. Writing programs in the style required for deforestation does
not seem to be a very large burden; the restrictions it places on program form are similar
to those imposed by other deforestation techniques, though here they are expressed in a
somewhat different way. Essentially, series must be consumed and produced in a uniform
way, and series arguments to functions may not be used more than once. These are analogous
to Wadler’s restrictions (see Section 1.2.2), but notably, Waters lifts the restriction that an

8 CHAPTER 1. INTRODUCTION TO DEFORESTATION

expression which is to be deforested must consist of compositions of functions that do not
themselves create intermediate data structures. This work has been implemented as a library
for Common Lisp [Ste90], and has been used in developing practical applications in Lisp.
It is interesting to contrast these two techniques with the work on deforestation in Haskell.
Both techniques are more limited, but have greater practical use to their credit – only
recently has deforestation been implemented in a usable and practical way in a Haskell
compiler [PJTH01]. They must impose certain restrictions due to their target languages,
APL and Lisp, being impure – the APL work is limited to compositions of operators drawn
from a set of non-side-effecting functions, and the Lisp work uses a special type to ensure the
correct deforestation of side-effecting expressions. In addition, both approaches are limited
to linear data structures rather than general trees. However, both approaches seem to be
well-suited to handle the most common programming idioms in their respective languages,
and are similar to shortcut deforestation for Haskell (see Section 1.2.3) in that the simplicity
of their implementations relies on programmers’ use of a predefined set of combinators.

1.2.2 Wadler’s Algorithm

Wadler’s algorithm attempts to handle programs like the modular definition of sos given
above that consist of compositions of several functions that consume or produce lists (ac-
tually, the algorithm applies to general tree-shaped data structures, but to simplify the
presentation we will restrict it to lists here). More specifically, these functions must be in
treeless form, and fortunately, the functions sum, map, and enumFromTo can all be defined in
this form.
Treeless form can be defined for a simple language consisting of variable references, data
constructor applications, function applications, and case-expressions as follows: A term is
treeless if:

• Every argument of a function application and every scrutinee of a case-expression is
a variable.

• All variables are linear – that is, used only once in the function where they are defined.

The first restriction ensures that the definition creates no intermediate data structures (func-
tion or constructor applications, which create data structures, may only appear as the result
of the function – such an expression being examined by case or passed to another func-
tion implies creating a data structure that is not part of the result). The second restriction
ensures that inlining functions, an essential step of the deforestation algorithm, will not
duplicate work.
Wadler’s algorithm can transform any composition of treeless functions to a single, treeless
function. The algorithm consists of a number of transformation rules, but the most important
one is the case-elimination rule, as follows:

case (c t_1 ... t_k) of

(c_1 v_1..v_n) -> e_1

[...]

(c_n v_1..v_n) -> e_n

===>

1.2. PREVIOUS WORK ON DEFORESTATION 9

e_i[t_1/v_1, ... , t_k/v_n]

where c = c_i

In words, this rule takes a case-expression where the scrutinee is an explicit application of a
data constructor to some arguments. The case-expression has several alternatives, each cor-
responding to a particular data constructor in the type that c constructs. In this situation,
we already know which data constructor constructs the scrutinee of the case-expression, so
we can eliminate the case and replace it with the body of the relevant alternative, substitut-
ing the constructor arguments for the variables introduced by the case-pattern. This rule
performs deforestation: it eliminates an application of a constructor (c), which previously
created an intermediate data structure.

The other transformation rules all attempt to get the program into a form where this rule
can be applied. For example, another rule performs inlining, or replacing a function call with
the function’s body, with the function’s arguments substituted for the formal parameters.
This illustrates the need for the linearity requirement as part of the definition of treeless
form: under call-by-name evaluation, inlining a function that uses one of its arguments
more than once will duplicate work if the expression passed in for said argument is used
more than once. Inlining is necessary in order to bring function definitions together with
their arguments: for example, without inlining, we wouldn’t be able to deforest the sum-
of-squares program, (sum (map square (enumFromTo [1..n]))). There are no explicit
case-expressions in the program as is, but if the definitions of sum, map, and enumFromTo

are inlined, then opportunities to apply the case-elimination rule will appear.

Wadler’s algorithm has not been widely used in practice, due partly to its restrictiveness. For
example, the definition of treeless form given above excludes the definition of enumFromTo,
because it creates an intermediate “tree” – (m+1)! It is possible to modify the definition so
that certain data types, such as integers, are not considered “trees” and so can be created by
treeless functions, but this only complicates things more. Moreover, there are compositions
of functions we wish to deforest where the functions cannot or are not expressed in treeless
form (Wadler’s algorithm doesn’t attempt to convert function definitions that are not in
treeless form, but could be rewritten in treeless form, into treeless form). Also, it is difficult to
implement the algorithm in a way that guarantees termination. However, Wadler’s algorithm
has served as inspiration for further research on deforestation.

1.2.3 Shortcut Deforestation

Whereas Wadler’s algorithm attempts to eliminate any list structures that are examined by
case-expressions, it is possible to simplify the approach by observing that many functions
that consume lists are defined in terms of the function foldr. Figure 1.1 illustrates the
behavior of foldr.

In this example, the application of foldr to the function (+), the starting value 0, and the
list [3, 4, 5] replaces all the cons ((:)) constructors in the list with the function (+), and
all the nil ([]) constructors with the value 0. Evaluating the resulting expression gives 3 +
4 + 5 = 12. In general, foldr consumes a list and produces an expression of type β, given
a function argument of type α− > β− > β, a nil value of type β, and a list of type [α].

The shortcut rule [GLP93] is inspired by this observation about foldr. On first glance, it
seems easy to deforest applications of foldr. Since the first two arguments of foldr, k and

10 CHAPTER 1. INTRODUCTION TO DEFORESTATION

:

:

:3

4

5

3

4

5
[]

=>

+

+

+

0

Figure 1.1: (foldr (+) 0 [3, 4, 5])

z, replace (:) and [] in the list expression, if we see an application (foldr k z e), we can
just replace every occurrence of (:) in e with k and every occurrence of [] with z. Indeed,
this works in simple cases (in the following example, the constant list is written using explicit
(:)s and []s rather than Haskell’s syntactic sugar for lists):

foldr (+) 0 (1:(2:(3:[])))

==>

(1 + (2 + (3 + 0)))

==>

6

which eliminates the intermediate list [1,2,3]. However, consider another example (++ is
the function which appends two lists):

foldr (+) 0 ([1,2] ++ [3,4])

==> (inlining (++) and simplifying)

foldr (+) 0

(let append xs ys =

case xs of

[] -> ys

(x:xs’) -> x:(append xs’ ys) in

append [1,2] [3,4])

==>

let append xs ys =

case xs of

[] -> ys

(x:xs’) -> x + (append xs’ ys)

This code is not even type-correct, since it returns a list value in the [] case alternative,
but an integer in the other alternative. The problem is that (++) constructs its result

1.2. PREVIOUS WORK ON DEFORESTATION 11

partially from list constructors in its second argument list, ys, and not just from explicit list
constructors. Consequently, in order to create a sound rule for deforestation using foldr,
we must introduce some extra syntactic complications.
Any list-producing function that constructs its result using only explicit list constructors can
be written in terms of “abstract constructors” – for example, the recursive definition of map:

map f xs =

case xs of

[] -> []

(y:ys) -> (f y):(map f ys)

can be written with two extra arguments, c and n, as:

map c n f xs =

case xs of

[] -> n

(y:ys) -> (c (f y) (map c n f ys))

The type of this version of map is forall a b c . (c -> b -> b) -> b -> (a -> b) ->

[a] -> b. Thus, it can construct a value of any type, depending on the types of the c and
n it is applied to.
To complete the picture, we define a function build, which takes a “generalized list pro-
ducer” like the second definition of map given above, and applies it to (:) and [], in effect
transforming a generalized list producer back into a regular list producer:

build g = g (:) []

Now we can finally define the shortcut rule:

foldr k z (build g) = g k z

The list eliminated is the list constructed by (build g): the result of the foldr is now
constructed directly by g, without the intermediate list resulting from the application of
build.
Though the shortcut rule is simple, its practical effectiveness depends on other transforma-
tions, such as inlining the bodies of functions that use foldr and build in order to bring
foldrs and builds together. Moreover, it depends on programmers’ willingness to define
their list-producing functions using build, which is likely to be low, since build serves no
purpose except to help out the deforestation algorithm by pointing out which list construc-
tors construct the result list. The shortcut rule has been effective when commonly used
library functions are defined in terms of foldr and build; [PJTH01] describes the imple-
mentation of the shortcut rule that is currently used in the Glasgow Haskell Compiler, based
on rewrite rules. However, it is unlikely that shortcut deforestation by itself could ever be
effective for deforestating compositions of user-defined functions.

1.2.4 Warm Fusion

In [LS95], Launchbury and Sheard present a method for automatically transforming arbitrary
recursive definitions into foldr/build form, a technique they call “warm fusion” (“fusion” is

12 CHAPTER 1. INTRODUCTION TO DEFORESTATION

another name for deforestation). Like Wadler’s algorithm, warm fusion is applicable to
arbitrary data types (since versions of foldr and build can be expressed for any algebraic
datatype), but we concentrate on list fusion here. The algorithm for warm fusion consists
of two stages. In the first stage, function definitions are rewritten using foldr and build.
Given a definition of a list-producing function f, this rewriting is easy to do:

f = \ l -> body -- where body is some expression containing l

==>

f = \ l -> build (\ c n ->

foldr c n body[(foldr (:) [] l)/l])

First of all, the entire function body is changed into a generalized list producer, which is easy
to do: the existing function body is a list, so we just apply (foldr c n), where c and n are
the arguments that replace the list constructors, to the list. We apply build to the resulting
expression so that the function definition still returns a list-valued expression. Finally, in the
original body of the function, we substitute (foldr (:) [] l) for any occurrences of the
list argument l. ((foldr (:) []) is equivalent to the identity function on lists.) The hope
is that when we apply the next stage of warm fusion, the foldrs and builds we introduced
here will meet with other foldrs and builds and cancel by the shortcut rule.
In addition, certain list-consuming functions are also automatically rewritten in terms of
foldr. This only works for functions in which the outermost case expression deconstructs
some list-valued argument. Since many functions that consume lists are expressed in terms of
pattern-matching, with one case for the empty list and another case for a list consisting of an
element consed onto a list, the method is widely applicable. More precisely, it applies to some
definitions which recurse uniformly over their list arguments. Essentially, the outermost case
is replaced with an application of foldr whose first two arguments correspond to the (:)

and [] alternatives of the case. For example, the recursive definition of map is transformed
as follows:

map = \x . \f.

case x of

[] -> []

(y:ys) -> (f y):(map ys f)

==>

map = \x. \f. foldr ((\ x1 x2 f -> (f x1):x2) f) [] x

Now that list-consuming functions are expressed in terms of foldr and list-producing func-
tions are expressed in terms of build and foldr, fusion can proceed. In particular, com-
positions of functions that are defined in terms of foldr can be fused together into single
functions, and using a system of rewrite rules, foldrs are brought together with builds and
the shortcut rule is applied.
Warm fusion is quite complicated and expensive to implement, and is not widely used in
real compilers.

1.2.5 Vanish Combinators

In [Voi02], Voigtlander presents an approach to deforestation which extends the shortcut
rule to deforest certain combinations of list functions, essentially by treating these functions

1.2. PREVIOUS WORK ON DEFORESTATION 13

as additional constructors for the list datatype. Since this method is closely related to the
type inference algorithm, we will defer discussion of it until Chapter 2.

1.2.6 Destroy/Unfoldr

There are some list functions that cannot be expressed in terms of foldr and build. Among
these, of course, are functions that do not express patterns of regular recursion over lists.
But there are other such functions as well. For example, consider the function zip, which
takes two lists [x1,..,xn] and [y1,..,yn] and returns the list [(x1,y1),..,(xn,yn)]:

zip xs ys =

case xs of

[] -> []

(z:zs) -> case ys of

[] -> []

(z’:zs’) -> (z,z’):(zip zs zs’)

We would like to deforest expressions where zip is the list consumer, such as (zip [1..n]

(map square [1..n])). However, zip cannot be defined in terms of foldr, since it does
not express a pattern of recursion over a single list. On the other hand, it can be expressed
in terms of two functions called destroy and unfoldr [Sve02].
The function unfoldr constructs lists in a way analogous to the way in which foldr consumes
lists. It takes a function f and a starting value b, and computes each successive element
of the result list by applying f to the previous list element. f actually returns a value of
type Maybe: either it returns (Just (a,b’)), signifying that a should be consed on to the
result of recursively calling unfoldr on b’, or Nothing, signifying the end of the list. The
definition follows:

unfoldr f b =

case f b of

Nothing -> []

Just (a,b’) -> (a:(unfoldr f b’))

For example, the enumFromTo function can be defined this way:

enumFromTo m n =

unfoldr (\ x -> (if (x < n) then

Just (x,x+1)

else

Nothing)) m

The function destroy, like foldr, consumes lists in a regular fashion. It takes a function
argument g and a list argument xs, but the function g cannot examine xs directly. It can
only do so via a helper function that is supplied to it:

destroy g xs = g listpsi xs

where listpsi [] = Nothing

listpsi (x:xs) = Just (x,xs)

14 CHAPTER 1. INTRODUCTION TO DEFORESTATION

For example, sum can be defined this way:

sum xs = destroy sumDU xs

where sumDU listpsi xs =

case (listpsi xs) of

Nothing -> 0

Just (x1,xs1) -> x + (sumDU listpsi xs1)

Certain functions, such as zip, can be defined in terms of destroy/unfoldr but not in terms
of foldr/build. Other functions can be defined in terms of either. There is a fusion rule for
destroy/unfoldr analogous to the shortcut rule:

destroy g (unfoldr psi e) ==> g psi e

Much as the shortcut rule eliminates the intermediate list constructed by build, this rule
eliminates the intermediate list constructed by unfoldr.
Like shortcut deforestation, this approach has the problem that programmers may not write
their functions in terms of destroy and unfoldr, to an even greater extent, since foldr is a
commonly used function, but destroy and unfoldr are little-known. Moreover, it is unclear
how to combine the foldr/build rule with the destroy/unfoldr rule, since some functions can
be defined either way, and it is unclear how to choose which one. This approach may be
effective if library functions are defined in terms of destroy and unfoldr, but we still lack an
effective approach for deforesting compositions of user-defined functions. The type inference
algorithm for deforestation is effective for deforesting compositions of user-defined functions.

Chapter 2

The Type Inference Algorithm for
Deforestation

2.1 Inlining and Deforestation

All of the deforestation algorithms discussed in the previous chapter require some amount
of inlining to be effective. However, inlining is a “black art”; when implemented in a prac-
tical compiler, many subtle heuristics are involved in determining whether to inline a given
function (see for example [PJM99]). If inlining is performed indiscriminately, the size of
the resulting program can blow up exponentially, resulting in worse performance. Moreover,
inlining certain expressions indiscriminately can result in work duplication, so the compiler
must be careful to conservatively determine which expressions may be used more than once.
For the purposes of – for example – shortcut deforestation, we would like a method for in-
lining which inlines exactly those functions which need to be inlined in order for foldrs to
meet builds. The type inference algorithm for deforestation addressed this issue, and was
originally motivated by the problem of inlining. Inlining is integrated with the deforestation
algorithm itself, and both make use of the same type information.

2.2 List Abstraction

The algorithm that follows was originally presented by Chitil in [Chi99]. It is based on
the observation that many list-consuming functions are already defined in terms of foldr,
so it is less important to derive foldr forms for list consumers than build forms for list
producers. The basic idea is to replace the list constructors in a function definition (assuming
the function produces a single list) with variables c and n, and turn the definition into an
abstraction over c and n, then applying build to it so it still produces a list. However, this
cannot be done indiscriminately, since the function may not construct its result by using
explicit list constructors (if it does not, then we cannot transform it into a generalized list
producer without performing other transformations first), and not all list constructors in
the function necessarily contribute to the result. Type inference can determine whether it is
possible to transform the function into a generalized list producer, and which constructors
should be abstracted over if so.

We will illustrate the list abstraction algorithm with an example. Consider the following

15

16CHAPTER 2. THE TYPE INFERENCE ALGORITHM FOR DEFORESTATION

definition of map, written with explicit type annotations on all variables:

map :: forall a b . (a -> b) -> [a] -> [b]

map @a @b (f::(a -> b)) (xs::[a]) =

case (xs::[a]) of

([]::[a]) -> []

((y::a):(ys::[a])) -> (f y):(map @a @b f ys)

We replace every list type with a new type variable, and every list constructor with a new
term variable:

map :: forall a b . (a -> b) -> t1 -> t2

map @a @b (f::(a -> b)) (xs::t3) =

case (xs::t4) of

([]::t5) -> n

((y::a):(ys::t6)) -> (c (f y) (map @a @b f ys))

Performing type inference on this expression reveals that although t1 is really the same
as [a] due to the case expression, t2 is unconstrained, and hence this definition can be
turned into a generalized list producer. Moreover, n and c have types t2 and b -> t2 ->

t2, respectively. (The details of type inference are explained later.) So we can construct the
following definition of map:

map :: forall a b t . (b -> t -> t) -> t -> (a -> b) -> [a] -> t

map @a @b @t (c::(b -> t -> t)) (n::t) (f::(a -> b)) (xs::[a]) =

case (xs::[a]) of

([]::[a]) -> n

((y::a)::(ys::[a])) -> (c (f y) (map @a @b @t c n f ys))

We can apply build so that it has the same type as before:

map :: forall a b . (a -> b) -> [a] -> [b]

map @a @b (f::(a -> b)) (xs::[a]) =

build (\ @t (c::(b -> t -> t)) (n::t) ->

case (xs::[a]) of

([]::[a]) -> n

((y::a)::(ys::[a])) -> (c (f y) (map @a @b @t c n f ys))

This is the basic idea of list abstraction. More complicated cases are addressed later in this
chapter.

2.3 Type-Based Inlining

In some cases, a function constructs a list by calling another function. This prevents list ab-
straction, as described above, from occurring. For example, consider the following function,
which constructs the list of squares from 1 to n:

squares n = map square (enumFromTo 1 n)

2.3. TYPE-BASED INLINING 17

It is obvious that list abstraction fails in this case, because type inference determines that the
body of squares has type [Int], based on the type of map in the global type environment.
We need to inline the bodies of map and enumFromTo in order to perform list abstraction on
the body of mapsquares. We accomplish this by replacing list types with new type variables
in the types of map and enumFromTo in the type environment. In order to do this properly,
we must use versions of map and enumFromTo that are specialized to type Int (the reason
for this is explained in the section on the type inference algorithm). So we perform list
abstraction on the following definition of squares, with the following bindings in the type
environment:

mapInt :: (Int -> Int) -> t1 -> t2

enumFromTo :: Int -> Int -> t3

squares :: Int -> t4

squares (n::Int) = mapInt square (enumFromTo 1 n)

Type inference determines that t4 is unconstrained (and equivalent to t2, the result type of
mapInt. However, we can’t just construct the list-abstracted definition of squares as is. The
fact that the type of mapInt given by the type environment contains a free type variable, t2,
that was not unified with a list type, tells us that mapInt needs to be inlined. (Note that
enumFromTo does not need to be inlined, for its result type t3 was unified with a list type
because its result is passed to mapInt, which takes a list.) A future inlining pass will inline
the body of mapInt here, giving (after simplification):

squares n = (let mapInt xs =

case xs of

[] -> []

(y:ys) -> (square y):(mapInt ys) in

mapInt (enumFromTo 1 n))

When list abstraction is applied to this definition, it will successfully create a generalized
list producer. Moreover, we have avoided inlining the body of enumFromTo, since doing so is
not necessary to abstract over the lists in the definition of squares.

The original type-based deforestation algorithm, as presented in [Chi99], is as follows:

• Find all expressions of the form (foldr k z p).

• Apply list abstraction, as detailed above, to p in each such expression, giving an ex-
pression on the form (foldr k z (build (c n -> ...)))

• Apply the shortcut rule in each such case.

This algorithm works, but may still increase the size of the program to an undesirable
level. We would hardly want the benefits of deforestation to be cancelled out by worsened
performance due to increased program size. Instead of inlining the entire body of each
function that type inference determines is necessary to inline, we can use the approach
described in the next section.

18CHAPTER 2. THE TYPE INFERENCE ALGORITHM FOR DEFORESTATION

2.4 Worker/Wrapper Splitting

Instead of inlining the entire body of a function, we can split this function into a worker and
a wrapper, where the wrapper is much smaller than the worker. Only the wrapper needs
to be inlined, so the size of the program will not increase appreciably. This approach is
described in [Chi00].
Consider the definition of squares from above. Just as before, type inference will determine
that mapInt needs to be inlined. We construct a worker and wrapper for mapInt as follows.
First, we do list abstraction on the body of mapInt, resulting in the following definition (with
the bindings for the newly introduced type and term variables omitted):

mapInt :: (Int -> Int) -> [Int] -> t

mapInt f xs =

case xs of

[] -> n

(y:ys) -> c (f y) (mapInt f ys)

In order to create the worker/wrapper split, the body of mapInt must be non-recursive. We
transform it as follows:

mapInt :: (Int -> Int) -> [Int] -> t

mapInt f xs = go xs

where go xs =

case xs of

[] -> n

(y:ys) -> c (f y) (go ys)

Finally, we construct the worker, consisting of this function with λ-bindings for t, c, and n,
and a wrapper which applies the worker to [Int], (:), and []:

mapInt :: (Int -> Int) -> [Int] -> [Int]

mapInt f xs = mapIntW @[Int] ((:) Int) ([] Int) f xs

mapIntW :: forall t . (Int -> t -> t) -> t -> (Int -> Int) -> [Int] -> t

mapIntW @t c n f xs = go xs

where go xs =

case xs of

[] -> n

(y:ys) -> c (f y) (go ys)

When processing the body of squares, we only inline mapInt, not mapIntW:

squares (n::Int) = (mapIntW @[Int] ((:) Int) ([] Int)) square (enumFromTo 1 n)

It is easy to see the result of performing list abstraction on this definition.
The method for worker/wrapper splitting given above cannot construct worker/wrapper
definitions that are polymorphically recursive in their constructor arguments – that is, where
arguments other than the original c and n are passed to the recursive call of the worker.
Some definitions have list-abstracted versions that have this property, although relatively

2.5. THE TYPE INFERENCE ALGORITHM 19

few of them do. Another method for worker/wrapper splitting which can handle this case is
discussed later.

Note that worker/wrapper splitting makes it unnecessary to replace type variables in the
type environment, as we discussed in the previous section. We can just inline all wrappers
unconditionally, since they are small and unlikely to lead to code blowup. It is possible to
combine the worker/wrapper splitting and type-based inlining approaches, and in fact our
implementation does this. To simplify the presentation for now, we will assume that after
worker/wrapper splitting, wrappers are inlined everywhere (even across module boundaries).

2.5 The Type Inference Algorithm

Here we discuss the type inference algorithm that is the core of type-based deforestation, as
originally presented in [Chi99]. Our examples are presented in Haskell syntax, but keep in
mind that the underlying language is actually the second-order lambda-calculus with explicit
type annotations, extended with let (for introducing mutually recursive groups of function
definitions) and case (for pattern-matching on algebraic datatypes). Type inference for the
second-order λ-calculus is undecidable, but here we have explicit type annotations, which
make it possible to perform type inference as needed for deforestation. This is reasonable,
since in a compiler we would be performing the type-based deforestation algorithm on code
that had been augmented with explicit type annotations in the process of desugaring from
Haskell to a λ-calculus-based intermediate language. The type inference algorithm is based
on Algorithm M, for the Hindley-Milner type system [LY98], and in fact is so similar to
Algorithm M that we will not repeat it here (see [Chi99] for details). The key step is that
before type inference, list types and constructors will have been replaced with new type and
term variables.

Given a type environment Γ, an expression e, and a type τ , M returns a principal typing
for (Γ, e, τ) – that is, a type substitution mapping some of the type variables in e and τ to
other types. Essentially, a typing σ for (Γ, e, τ) is a principal typing if all other typings for
(Γ, e, τ) are substitution instances of σ. That is, σ is the “most general” possible typing, in
that it avoids putting any unnecessary constraints on type variables occurring in e and τ . In
an expression where list types and constructors have been replaced with new type variables,
σ will map some of these variables to [Int], signifying that they really must be list types
(i.e., because the corresponding values are deconstructed by a case statement or passed to a
function expecting a list). Some type variables may only be mapped to other type variables –
these are the type variables that can be abstracted over. Furthermore, constructor variables
whose types (after applying the substitution σ) are of the form a -> t -> t (for variables
that replaced (:)) or t (for variables that replaced [], where t is a variable introduced by
list abstraction, are variables that can be abstracted over. If the result of applying σ to the
type of the expression τ (in which list types have been replaced by type variables) is a type
whose result is a type variable that was introduced by list abstraction, then list abstraction
is successful and a worker/wrapper definition for e can be constructed.

20CHAPTER 2. THE TYPE INFERENCE ALGORITHM FOR DEFORESTATION

2.6 Type-Based Deforestation

Now all the pieces to present the complete type-based deforestation algorithm (as presented
in [Chi00]) are in place. The algorithm takes a collection of function definitions as input (for
now, consider these to be Haskell definitions; we will be more concrete when we discuss the
implementation), and returns a new collection of function definitions, with hope one where
deforestation has occurred in some instances.

1. For each top-level definition (v,ty,e) where ty is either [a], for some a, or a function
type whose result is [a], for some a:

(a) Replace every list type with a fresh type variable, and every occurrence of a list
constructor (:) or [] with a fresh term variable (this is detailed below). This
gives a new expression e’.

(b) Perform the type inference algorithm on (Γ,e’,ty). (A global type environment
Γ, containing types for all top-level definitions and any library functions used, is
assumed to have been constructed at the beginning.) This gives a substitution σ.

(c) Apply σ to ty. If the result type ty’ contains type variables, we know that it’s
worthwhile to worker/wrapper split this definition.

(d) Reinsert any type variables t such that σ(t) = [a] for any a with the original types
for which they were replaced. Reinsert any constructor variables c or n whose
types after applying σ result in a list type with the original list constructors for
which they were replaced. This gives a new expression e’’ (This is described in
more detail below.)

(e) e′′ may now contain different constructor variables whose types after applying σ

are the same. Set a “canonical” constructor variable for each type and replace each
constructor variable with the canonical constructor variable of its type (detailed
below). This gives a new expression e’’’

(f) Does ty’ contain type variables in its result? If so:

i. Construct a new type t’’ = (forall t1 ... tn . ty’), where t1..tn

are all the free type variables in ty’.

ii. Construct the worker definition by wrapping e’’’ with type and term variable
bindings for all the free type variables in ty’ and all the constructor variables
remaining in e’’’, giving a new expression e’’’’.

iii. Generate a fresh name for the worker (here we call it vW). Return a pair of
a wrapper and worker definition, where the wrapper definition is:
(v, ty, (vW @ t1 ... @ tk c1 n1 ... cn nn))

where t1..tk are the types for which all the new type variables were replaced
and c1 n1 ...cn nn are the constructors for which all the new constructor
variables were replaced. And the worker definition is:
(vW, t’’, e’’’’).

i. If not, return the original definition (v,ty,e).

2. Now we have a collection of definitions that include workers and wrappers, as well as
some of the original definitions. (Assume there is a way to tell whether a function
name represents a worker, a wrapper, or neither.) Inline wrappers everywhere.

2.6. TYPE-BASED DEFORESTATION 21

3. Perform β-reduction where necessary.

4. The previous two steps may be repeated some number of times, as inlining wrappers
provides new opportunities for worker/wrapper splitting.

5. Find all expressions of the form (foldr k z e). Perform list abstraction on e, just as
presented above, except that we only try to abstract a single list, and no worker/wrapper
splitting is done (list abstraction simply returns what would be the worker definition
otherwise). If it succeeds, we have an expression of the form (c n -> ...). Return
the expression (c n -> ...) k z. (We are eliding type arguments here.)

6. Perform β-reduction where necessary.

7. Repeat the previous steps some number of times, since applying the shortcut rule may
expose other opportunities to apply the shortcut rule.

.

2.6.1 Abstracting Over Multiple Lists

Note that worker/wrapper splitting can produce a worker such that multiple lists are ab-
stracted. For example, when worker/wrapper splitting the definition of unzip, which has
the type (forall a b . [(a,b)] -> ([a],[b])), a worker can be derived whose type is
(forall a b t1 t2 . (a -> t1 -> t1) -> t1 -> (b -> t2 -> t2) -> t2 -> [(a,b)]

-> (t1,t2)). We only attempt to abstract over multiple lists when doing worker/wrapper
splitting. When we invoke the list abstraction algorithm during the deforestation stage, we
only construct an abstraction when the result type has a single type variable as its result.
So although our worker definition of unzip is such that either list can be removed, at any
particular instance where unzip is called, only one list will be removed.

2.6.2 Polymorphically Recursive Worker Definitions

A slight modification of the worker/wrapper splitting algorithm given above is necessary
to construct polymorphically recursive workers. In essence, we construct the most general
possible worker type (the type obtained by replacing all list types in the type of the definition
with type variables), and construct the wrapper body assuming the worker has this type.
We replace any recursive calls to the function with this wrapper body and perform type
inference, iterating to a fixed point of the result type. If the resulting type contains type
variables, we construct the worker definition. (For more details, see [Chi00].) This is the
method used in our implementation. It can occasionally achieve some staggering results, such
as changing the quadratic time definition of reverse given above to a linear time definition.
Chitil warns that since this can depend on the code being in a particular form, this method
may be unpredictable by the programmer, since a small change to the code can suddenly
turn a linear algorithm into a quadratic one if the code is changed to be in a form that
our algorithm cannot deforest. Nevertheless, our implementation does this, since it cannot
possibly make the performance of a particular function worse.

22CHAPTER 2. THE TYPE INFERENCE ALGORITHM FOR DEFORESTATION

2.7 Related Work

The technique of Voigtlander [Voi02] seems quite amenable to being combined with type-
based deforestation. Rather than attempting to deforest all list-producing functions, this
approach focuses on three common ones, this list append function (++), reverse, and map.
For each of these functions, a so-called vanish combinator is defined, analogously to the
build function – for example, vanish(++) for the append function. This combinator is ap-
plied to an expression which has had all occurrences of (++) abstracted out. Rules analogous
to the shortcut rule are applied, and applications of these functions are fused together. Type
inference could derive these special forms automatically, by treating these list functions as
additional list constructors; it would be straightforward to extend the algorithm to do this.
It is unclear whether this would be desirable. In the cases of the (++), reverse, and map

functions, type-based deforestation can derive worker/wrapper forms without any additional
modifications. The only possible gain would be if vanish combinators were defined for func-
tions which cannot be deforested by the shortcut rule, such as zip. Further study would be
necessary to determine the feasibility of combining these two methods for deforestation.

Chapter 3

Implementing the Type Inference
Algorithm

3.1 GHC and External Core

Our implementation of type-based deforestation depends on a feature of the Glasgow Haskell
Compiler (GHC) which allows code in Core, the intermediate language used by GHC, to
be written to files and read back in by GHC or other tools. Core, a typed intermediate
language based on the second-order typed λ-calculus, is used in the middle end of GHC, which
encapsulates most of the transformations and optimizations performed by GHC [PJS98].
External Core, the language on which our implementation operates, is a version of Core
that has been modified to make it more suitable for exchange with external programs. The
abstract syntax of External Core is given in Figure 3.1 as a Haskell datatype declaration,
based on [Tol01].
A module consists of a name, a list of definitions for user-defined types (Haskell data and
newtype declarations), and a list of binding groups, each of which consists of either a single
non-recursive definition or a possibly mutually recursive group of definitions. We omit the
syntax for Tdef as it is irrelevant.
The types Var, Dcon, Tvar, Tcon, and Mname are all synonyms for String. Uses of vari-
ables, data constructors, and type constructors (Var, Dcon, and Tcon) are always qualified
(paired with a module name); λ-bound and let-bound variables have the module name "".
The Lit type includes integer, rational, character, and string literals. Type application is
distinguished from term application syntactically (which it must be, since a type is distinct
from a term), but type abstractions and term abstractions are both represented by the Lam
constructor. All variables bound by Lam, Let, and Case expressions are annotated with their
types (or kinds, in the case of type variables; we omit the syntax for Kind here). Let binds
a mutually recursive group of definitions. A Case statement binds the scrutinee expression
to a new name which may be used in the alternatives; case alternatives can pattern-match
on either data constructor applications, literals, or “anything” (Adefault). A Note form
attaches some compiler-inserted annotation to an expression; an External form represents
a foreign function call, whose type must be provided. A type is either a type variable, a type
constructor, a type application, or a forall type.
Our implementation reads in External Core files, transforms them, and writes the results
to new External Core files that will then be compiled to executable form by GHC. GHC

23

24CHAPTER 3. IMPLEMENTING THE TYPE INFERENCE ALGORITHM

data Module = (Module Mname [Tdef] [Vdefg])

data Exp

= Var (Qual Var)

| Dcon (Qual Dcon)

| Lit Lit

| App Exp Exp

| Appt Exp Ty

| Lam Bind Exp

| Let Vdefg Exp

| Case Exp Vbind [Alt] -- the list must be non-empty

| Coerce Ty Exp

| Note String Exp

| External String Ty

data Ty

= Tvar Tvar

| Tcon Tcon

| Tapp Ty Ty

| Tforall Tbind Ty

data Vdefg

= Nonrec Vdef

| Rec [Vdef]

type Qual a = (Mname, a)

newtype Vdef = Vdef (Qual Var,Ty,Exp)

data Bind

= Vb Vbind

| Tb Tbind

type Vbind = (Var,Ty)

type Tbind = (Tvar,Kind)

data Alt

= Acon (Qual Dcon) [Tbind] [Vbind] Exp

| Alit Lit Exp

| Adefault Exp

Figure 3.1: The syntax of External Core

3.2. IMPLEMENTATION DETAILS 25

generates External Core after performing all Core simplifications and optimizations; we turn
on most of GHC’s optimizations, since this gives us code in a more useful form (for example,
some inlining is already done and type classes are mostly specialized away). However, we are
sure to turn off GHC’s deforestation when compiling code to be read in by our implemen-
tation, since we would like to find out whether our implementation performs deforestation
in all the cases that GHC does. We chose to take this approach rather than implementing
type-based deforestation as a transformation pass in GHC in order to avoid making modifi-
cations to GHC. Sadly, in the end, we have probably made more modifications to GHC than
we would have made otherwise, since we found and fixed many bugs related to the External
Core facility.

3.2 Implementation Details

We list each major phase of the implementation here, and give more details on some of them
in sections to follow.

1. Get the command-line arguments, consisting of a list of filenames containing External
Core code.

2. Read in the files and parse their contents, resulting in a list of Core ASTs (which we
will refer to from now on as “the program”). In addition, read in Core versions of
certain library modules which contain code that might be amenable to deforestation
(including the List and Enum modules, among others).

3. Perform dead code elimination, in order to remove any unused library code (this is
only necessary to improve the performance of the implementation).

4. Read in the type environment for all the modules in GHC’s base package, since the
type inference phase will need to know the types of every variable mentioned in the
program. The type environment is stored as an external file; alternatively, we could
parse in all library files every time we run deforestation, but this would be very slow.

5. Build a call graph for the program, which will be used later by the heuristics that
determine which functions to worker/wrapper split.

6. Specialize any polymorphically typed functions that produce lists. (see Section 3.2.1)

7. Perform list abstraction, which creates worker and wrapper definitions for as many
functions as possible (this phase includes inlining any wrappers that are determined
necessary to inline). (see Section 3.2.2)

8. Apply the shortcut rule wherever possible. (see Section 3.2.3)

9. Perform dead code elimination, to get rid of any definitions that might have been
inlined everywhere they were used.

10. Specialize any worker applications to the types and terms to which they are applied,
if possible. (see Section 3.2.4)

26CHAPTER 3. IMPLEMENTING THE TYPE INFERENCE ALGORITHM

11. Perform the static argument transformation. (see Section 3.2.4)

12. At this point, we may have created worker/wrapper definitions for some library func-
tions. To avoid duplicating code already provided by libraries that hasn’t been changed
by the transformation, we rename any functions present in the library modules that
were not originally defined in these modules, and write these modules to new modules
that have different names.

13. Write out each transformed module to a file.

3.2.1 Specializing Polymorphic Functions

For reasons discussed in Section 3.2.2, having to do with the combination of worker/wrapper
splitting and type-based inlining that we use, it is desirable to make specialized copies of all
type applications of polymorphic functions that produce lists. For example, if the program
contains the following expression:

map @ Int @ Int square [1,2,3]

[...]

map :: forall a b . (a -> b) -> [a] -> [b]

map a b (f::(a -> b)) (xs::[a]) = \ @ a @ b f xs -> ...

we will create a copy of map that is specialized to the type arguments Int, Int and replace
this application of map with a call to the specialized copy:

map_spec1 square [1,2,3]

[...]

map_spec1 :: (Int -> Int) -> [Int] -> [Int]

map_spec1 (f::(Int -> Int)) (xs::[Int]) = \ f xs -> ...

In addition, if a function is applied more than once to the same combination of type argu-
ments, we will call the same specialized copy in each case, in order to avoid creating multiple
identical specialized definitions.

3.2.2 List Abstraction

List abstraction consists of the following steps:

1. Perform worker/wrapper splitting on the program.

2. Some definitions may require certain other functions to have worker/wrapper defini-
tions in order to be worker/wrapper split. If the previous pass of worker/wrapper
splitting, discovered any of these, we inline the wrappers of those that have already
been worker/wrapper split.

3. Perform β-reduction where necessary.

We repeat these steps some fixed number of times, since worker/wrapper splitting some
definitions may enable more definitions to be worker/wrapper split.

3.2. IMPLEMENTATION DETAILS 27

Worker/Wrapper Splitting Combined With Type-Based Inlining

In [Chi00], the deforestation algorithm presented only performs worker/wrapper splitting
during the list abstraction stage, and in the following stage inlines all wrappers everywhere.
However, Chitil does suggest that this might be combined with the type-based inlining orig-
inally described in [Chi99], so that wrappers of functions are only inlined within definitions
where the type of the definition depends on the type of the function. We implemented
this combined approach, because we found that when wrappers are inlined everywhere, the
performance of the resulting program can actually become worse (incongruously enough,
since the worker/wrapper scheme was originally devised in order to avoid the inefficiency
introduced by aggressive inlining). This can happen when the result of a function that has
a worker/wrapper pair is not actually consumed by foldr. The resulting program will con-
tain expressions like (mapW @ Int @ Int @ [Int] @ [Int] ((:) @ Int) ([] @ Int) f

xs), in which mapW has additional (useless) arguments that the original definition of map
does not have. In practice, this can make the performance of the resulting program quite
poor, possibly overshadowing any gains from deforestation. In Section 3.2.4, we discuss the
ways in which we originally attempted to address the problem of inefficient workers, but
selectively inlining wrappers supersedes these approaches. (However, they remain present in
the implementation, for redundancy’s sake.)
Now we can explain why the specialization pass mentioned in Section 3.2.1 is necessary. A
subtle detail of the list replacement phase of worker/wrapper splitting is that we cannot
replace a list type [a], where a is a free type variable, with a new type variable. To explain
why, we give an example:

foo =

let (l1::[Int]) = map square [1,2]

(l2::[Char]) = map toUpper [’a’,’b’]

in

map :: forall a . b . (a -> b) -> [a] -> [b]

When we do list replacement on the type of map in the type environment, we assign the type
forall a b. (a -> b) -> t1 -> t2 to map, where t1 and t2 are free type variables. We
also replace list types in foo, giving us:

foo =

let (l1::t3) = map square [1,2]

(l2::t4) = map toUpper [’a’,’b’]

in

map :: forall a . b . (a -> b) -> t1 -> t2

In effect, map is being used polymorphically, but replacing [a] with a single type variable has
made map no longer polymorphic – map now returns something of type t2, a type which has
no relationship to the type of the function argument, (a -> b). Type inference will unify t3

and t4 with t2, implying that l1 and l2 have the same type, and if list abstraction succeeds,
that l1 and l2 can be built using the same constructor variables. This is clearly unsound.
Thus, list replacement will not replace list types containing free type variables, which means

28CHAPTER 3. IMPLEMENTING THE TYPE INFERENCE ALGORITHM

that worker/wrapper splitting will never succeed on functions that build their results by
calling polymorphic list-producing functions. We solve this problem by specializing these
polymorphic functions, as described in Section 3.2.1.

To summarize the worker/wrapper splitting algorithm we use:

1. For each definition in the program, try to perform worker/wrapper splitting as de-
scribed in Section 2.6. In addition, during the list replacement phase, we determine
the set of free names used in the definition body e, and for each name n in this set, we
look up its type t in the global environment; if t exists, we replace all list types in it
with type variables, and extend the global environment with (n,t).

2. If abstraction fails, we return the original definition d. If it succeeds, we must determine
whether or not the resulting, abstracted type t depends on type variables that are free
in some type in the global environment. We look up the type of each free variable v

in e and check whether it contains any free variables that were unified with variables
contained in t. If so, we add v to a global environment1 mapping d onto a list of
wrappers that should be inlined in d. If the resulting list of wrappers is non-empty, we
return the original definition; otherwise, we return the worker/wrapper pair.

3. For each definition d in the program, look up the list of wrappers l that should be
inlined in d. Of course, not all the variable names in this list may actually have
wrapper definitions, so we check whether all the names are actually wrapper names
(this can be done using a global data structure). If so, we inline them. If not, we
return d unchanged. The reason why we only inline the wrappers for d if all of them
are wrappers is that it may not be possible to construct worker/wrapper pairs for all
the definitions named in l; if it’s not, we run the risk of inefficiency resulting from
workers not involved in deforestation, as explained above.

4. Perform β-reduction where necessary.

Consumer Worker/Wrapper Splitting

At this point, the astute reader might be wondering how the shortcut rule can ever be
performed on an expression like (sum (someListProducer)). Even if (someListProducer)
is worker/wrapper split and the wrapper is inlined, the expression takes the form (sum

(someListProducerW @ [a] ((:) a) ([] a))). sum is defined in terms of foldr, but
that’s not apparent here – the shortcut rule only applies in cases where foldr is literally
applied to an expression that be list-abstracted. We could address this issue by inlining the
definitions of all functions that contain foldr, and our implementation originally did this, but
as one might expect, this sometimes made the performance of the resulting program worse,
since not every instance of foldr consumes an expression that can be list-abstracted. Instead,
we adopt a variation on the worker/wrapper scheme for list consumers, which was outlined in
[Chi00]. Worker/wrapper splitting for list consumers is simpler than the analogous method
for list producers, as it requires no type-based analysis. We illustrate it with an example:

1that is, “global” as in “contained in the state of the monad in which the entire deforestation algorithm

runs

3.2. IMPLEMENTATION DETAILS 29

sum :: [Int] -> Int

sum (xs::Int) = foldr (+) 0 xs

==>

sum :: [Int] -> Int

sum (xs::[Int]) =

sumW @ [Int]

(\ @ t (v_cons::(Int -> t -> t)) (v_nil::t) ->

foldr @ Int @ t v_cons v_nil xs)

sumW :: (forall t . (Int -> t -> t) -> t -> t) -> Int

sumW (xs::(forall t . (Int -> t -> t) -> t -> t)) = xs @ Int (+) 0

For any definition that applies (foldr @ a @ t k z), for some k and z, to one of its list
arguments (l::[a]), where l is not used in any other way, we replace the foldr application
with (l @ t k z), and change the type of l in its λ-binding to forall t . (a -> t ->

t) -> t -> t, in order to make the worker body. Now, instead of taking a list argument,
the worker takes a generalized list producer. Note that this is an example of higher-order
polymorphism, which is not supported in the Haskell standard, but which is allowed in GHC
Core. The wrapper body applies the worker to [a] and passes in a generalized list producer
which simply applies (foldr @ a @ t c n) to the wrapper’s list argument, where t, c,
and n are the arguments passed to the generalized list producer. Effectively, the foldr is
brought outside the function body, where it can be inlined as part of the wrapper. Applying
the shortcut rule can then proceed as follows:

(sum someListProducer)

==> (after worker/wrapper splitting of {\tt sum} and inlining)

(sumW @ [Int] (\ @ t (v_cons::(Int -> t -> t)) (v_nil::t) ->

foldr @ Int @ t v_cons v_nil someListProducer))

==> (after worker/wrapper splitting of {\tt someListProducer} and inlining)

(sumW @ [Int] (\ @ t (v_cons::(Int -> t -> t)) (v_nil::t) ->

foldr @ Int @ t v_cons v_nil (someListProducerW @ [Int] ((:)

[Int]) ([] Int)))))

==> (after applying the shortcut rule)

(sumW @ [Int] (\ @ t (v_cons::(Int -> t -> t)) (v_nil::t) ->

(someListProducerW @ Int t v_cons v_nil)))

sumW just applies its argument to (+) and 0, so in this modified expression, someListProducer
produces its sum directly rather than constructing an intermediate list and summing it up.
For functions that both consume and produce a list, such as map, a worker/wrapper pair can
be constructed that combines consumer and producer worker/wrapper splitting: just per-
form consumer worker/wrapper splitting first, and then perform producer worker/wrapper
splitting on the resulting worker.

3.2.3 Applying the Shortcut

After all worker/wrapper splitting has concluded, we perform shortcut deforestation as de-
scribed in Section 2.6. The only other detail is that in some cases where list abstraction

30CHAPTER 3. IMPLEMENTING THE TYPE INFERENCE ALGORITHM

fails on an expression, it may designate a list of wrappers to be inlined in that expression, so
when abstraction fails, we inline those wrappers as in Section 3.2.2 and return the resulting
expression, in the hopes that some future iteration of deforestation may be able to perform
the shortcut on it.

3.2.4 Eliminating Inefficient Workers

A major problem with worker/wrapper splitting is that workers whose results are not con-
sumed by foldr at some particular instance where wrapper inlining was performed are less
efficient than their original definitions, as they take extra arguments (and must pass these
arguments to any recursive calls they make), and they call polymorphic functions to con-
struct their results rather than data constructors whose types are statically apparent. This
is less of an issue in our current implementation, since wrappers are inlined only on demand.
It is still somewhat of an issue, since every wrapper is defined in terms of its worker, so
even when wrappers are not inlined, calling the wrapper means applying the worker to some
constructor arguments. It is possible to inline each worker in the body of its wrapper, but a
more general solution is to use specialization.

Specialization

After deforestation, we search for applications of workers to “constant” type and constructor
arguments – that is, any arguments that don’t contain free type or term variables. We replace
these applications with calls to specialized copies of the workers, such as in the following
example:

mapW @ Int @ Int @ [Int] ((:) Int) ([] Int) square [1,2]

mapW :: forall a b t . (b -> t -> t) -> t -> (a -> b) -> [a] -> t

mapW @ a @ b @ t (c::(b -> t -> t)) (n::t) (f::a -> b) (xs::[a]) =

case xs of

[] -> n

(y:ys) -> c (f y) (mapW @ a @ b @ t c n ys)

===>

mapW_spec1 square [1,2]

mapW_spec1 :: (Int -> Int) -> [Int] -> Int

mapW_spec1 (f::Int -> Int) (xs::[Int]) =

case xs of

[] -> []

(y:ys) -> (f y):(mapW_spec1 f xs)

mapW spec1 looks a lot like the original definition of map, except that it has been specialized
to type Int for its first two type arguments.
Specialization can potentially lead to code blowup if workers are applied in many different
ways (we attempt to use the same specialized copies to replace applications of the same
worker to the same arguments, but this sometimes fails, for example when arguments are
only equal modulo α-renaming), but in practice this does not seem to be a problem.

3.2. IMPLEMENTATION DETAILS 31

The Static Argument Transformation

Most worker definitions derived by our algorithm only call themselves recursively on the same
constructor arguments are passed (if at all) – for example, this is true of the worker definition
of map given above. It is unnecessary to pass these extra arguments through each recursive
call. Instead, as [Chi00] suggests, we can perform the static argument transformation:

fW @ t c n xs =

... (fW @ t c n xs) ...

==>

fW @ t c n xs =

let fW’ xs =

.... (fW’ xs)

in fW’ xs

As formulated in [Chi99], the worker/wrapper splitting does this already, but the polymorphi-
cally recursive worker/wrapper splitting algorithm detailed in [Chi00], which we implement,
does not, so we must perform the static argument transformation on all worker definitions
as a postprocessing step.

32CHAPTER 3. IMPLEMENTING THE TYPE INFERENCE ALGORITHM

Chapter 4

Experimental Results

4.1 The Nofib Suite

We tested our implementation on programs from the nofib suite, a benchmark suite for
Haskell [Par93]. The suite is divided into three categories: “imaginary”, containing toy
programs such as programs to solve the n-queens problem and compute Fibonacci numbers
(contrary to the name of the suite); “spectral”, containing medium-sized programs such as
a constraint solver and various scientific simulations; and “real”, consisting of real appli-
cations contributed by users, such as a strictness analyzer and an implementation of the
“grep” search-and-replace program. We included nine “imaginary” programs, 55 “spectral”
programs, and 25 “real” programs in our tests. The programs range from 12 to 10,000 lines
in size, and each consists of anywhere from one to 32 modules.

4.2 Experimental Methods

For each benchmark, we produced three executable programs, compiled in each of the fol-
lowing ways:

1. No deforestation (compiled with ghc -frules-off to disable GHC’s deforestation)

2. GHC’s deforestation turned on (compiled with normal GHC)

3. Compile the program to External Core, run type-based deforestation on it, compile
the reuslt with ghc -frules-off

We compiled all the programs with GHC’s profiling turned on, so that we could measure the
amount of heap memory allocated by each program. When we speak of programs getting
“better” or “worse” in the coming sections, we are always referring to allocation, rather than
time. We have not yet collected data on the effect type-based deforestation has on running
time, as we found that GHC’s time profiling was not as reliable as its allocation profiling.
We always ran GHC with the -O1 option to enable most optimizations, since when optimiza-
tion is on, GHC does many transformations such as resolving type class overloading that
put the program into a more convenient form for deforestation.
We made one change to GHC, having to do with list comprehensions. List comprehensions
are a feature of Haskell that can either be desugared using foldr and build [GLP93], or

33

34 CHAPTER 4. EXPERIMENTAL RESULTS

in a more efficient manner. Normally, GHC only uses the foldr/build desugaring when
deforestation is enabled. We changed GHC to use this desugaring unconditionally, since it
is important that we run our deforestation on non-deforested code, in order to make sure we
catch all the opportunities for deforestation that GHC exploits.
In addition, we changed a few library functions, such as map and filter, to be defined in
terms of foldr, since in theory, if deforestation is effective, then these functions should be
written this way.

4.3 Results

Figure 4.1: Type-based deforestation compared to no deforestation

Figure 4.1 shows the results of compiling the nofib suite using type-based deforestation,
compared to no deforestation. For each n, bar n shows the number of benchmarks where
the amount of memory allocated decreased by anywhere between n and n - 5 percent.
As we would expect, the mode of the improvements is zero. As Peyton Jones, Tolmach
and Hoare commented in [PJTH01], “Compiler optimisations are like therapeutic drugs.
Some, like antibiotics, are effective on many programs... Others are targeted at specific
’diseases’, on which they tend to be devastatingly effective, but have no effect at all on most
other programs.” However, there is a significant class of programs on which deforestation ıis
devastatingly effective, as we see from the graph.
The benchmark program which improves the most is parstof, in the spectral category of
the nofib suite. Deforestation decreases the amount of memory allocated by this program,
a parser for a simple language, by 93%. This result was also achieved by GHC’s built-
in deforestation, as documented in [PJTH01] (though the current version of GHC doesn’t
achieve this result) – the outer loop of the program parses a sample input 40 times, and
deforestation transforms it so that the text is only parsed once. A real program would not
be written this way, so this result is somewhat of an artifact of the style in which some
benchmarks are written. The next-best improvers are integrate (which, as one might

4.4. COMPARISON WITH GHC 35

guess, performs numerical integration), in the imaginary category, and cryptarithm1, in
the spectral category, a program that solves a particular instance of the “crypto-arithmetic”
puzzle – in this case, finding a solution to the equation
thirty + 5 * twelve = ninety

where each letter represents a digit between 0 and 9. Both of these programs perform “bulk”
operations on lists, in the words of [PJTH01]; for example, cryptarithm1’s main body
consists of applying filter to a list of permutations of the digits from 0 to 9. The body of
the function that computes permutations is defined in terms of several list comprehensions,
which are desugared using foldr/build. Deforestation is well-suited for programs such as
this one, that consist a simple “pipeline” where a list is passed to and returned by each
“pipeline stage” (in this case, the stages are enumFromTo, which constructs the list [0..9];
permutations, a user-defined function which computes the permutations of this list; and
filter, which selects those permutations which are solutions of the equation).
The benchmark program whose allocation is worsened the most by deforestation is integer,
in the spectral category, whose allocation is increased by 15%. The program is meant to
test the performance of Haskell’s built-in integer operation, and its main function looks like
this:

intbench op astart astep alim bstart bstep blim =

seqlist ([a ‘op‘ b

| a <- [fromInteger astart,

fromInteger astart + fromInteger astep ..

fromInteger alim]

, b <- [fromInteger bstart,

fromInteger astart + fromInteger bstep ..

fromInteger blim]])

The seqlist function takes a list of elements and forces each one to be evaluated, using
Haskell’s seq primitive, so the intbench function constructs a list of integer expressions
and forces each one to be evaluated. Thus, there is no real opportunity for deforestation
here, since the entire list will always be demanded. However, since the list comprehension
that is the argument to seqlist is desugared into an expression involving foldr, shortcut
deforestation will be performed, but the net effect is only to create inefficient workers. The
second-worse program, whose allocation is worsened by 7% (compared to no deforestation
– it improves by 12% compared to GHC’s deforestation, curiously), is sphere, a raytracing
program, also in the spectral category. This program has some auxiliary list functions that
are defined in terms of list comprehensions that are not responsible for a significant amount
of allocation, and converting these to worker/wrapper form results in inefficient workers that
increase the overall amount of allocation, as in integer.

4.4 Comparison with GHC

Figure 4.2 is analogous to Figure 4.1, except the baseline is now compiled with GHC’s
deforestation turned on.
It is clear that many of the positive results obtained above are solely due to type-based
deforestation reproducing the same results that GHC achieves; however, there is still a

36 CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.2: Type-based deforestation compared to GHC’s shortcut deforestation

significant class of programs that type-based deforestation improves appreciably. Note that
several programs now perform worse with type-based deforestation than without – this is
not due to type-based deforestation changing the program in a way that makes it perform
worse, but because type-based deforestation fails to reproduce the improvements that GHC
makes in these cases.
The best improvers compared with GHC are the same as the best improvers listed in Sec-
tion 4.3. The program whose allocation is worsened the most is integer, as in Section 4.3
The second-worst is infer, an implementation of Hindley-Milner type inference, in the real
category, whose allocation is worsened by -12% (ironically enough). This result is due to
a few frequently called functions being consumer worker/wrapper split (see Section 3.2.2);
the resulting code contains extra, unnecessary calls to foldr which are not eliminated by
specialization.

4.5 Deforestation Can Make Performance Worse

In the process of testing and refining our implementation, we encountered many programs
that were apparently made worse by type-based deforestation. In most of these cases, we
were able to adapt the implementation so that these programs were no longer made worse,
and whatever benefits it achieved on other programs were preserved. However, we would
expect to encounter the phenomena enumerated below if we tested the implementation on a
wider range of programs.

Inefficient Workers

A worker/wrapper definition of a given function is inherently less efficient than the original
function, since the new function takes extra arguments, constructs its results using unknown
functions rather than literal list constructors (possibly defeating other optimizations), and
must pass the constructor arguments to any recursive calls it makes. If the static argument

4.5. DEFORESTATION CAN MAKE PERFORMANCE WORSE 37

transformation is performed, as it is in our implementation, the last problem is averted, ex-
cept when we create polymorphically recursive worker definitions. But in general, whenever
we create a worker/wrapper pair and inline the wrapper, it is possible that the result of the
call to the worker will not be consumed by a foldr, and so we have effectively de-optimized
the function under consideration, leading to an increase in allocation that may cancel out
any decrease achieved by deforestation at other call sites. In an early implementation of our
system that inlined wrappers everywhere rather than doing so in a type-directed way, this
was a major problem. It is much less of a problem now that we inlined wrappers only where
necessary, but it is still somewhat of an issue.

Work Duplication

Consider the following expression:

let (x::[Int]) = map someExpensiveFunction [1..n] in

... x ... x ...

List abstraction creates a worker/wrapper definition for x:

let (x::[Int]) = xW @ [Int] ((:) Int) ([] Int)

(xW :: forall t . (Int -> t -> t) -> t -> t) =

\ c n -> mapW @ t c n someExpensiveFunction [1..n] in

... (xW @ [Int] ((:) Int) ([] Int)) ... (xW @ [Int] ((:) Int) ([] Int)) ...

In the original program, x is only computed once, due to the call-by-need semantics of
Haskell: x is computed the first time it is used, and then the closure that represents it is
overwritten with its value, which is used the second time. But in the transformed program,
x has become a function rather than a constant value, so x is computed more than once,
calling someExpensiveFunction twice as often as before.

We encountered cases like this in the nofib suite, and attempted to address the problem in
two ways. Initially, we avoided worker/wrapper splitting definitions of type [a] (rather than
a function type) if the definition’s right-hand side was determined to do “interesting” work
(our heuristic for “interestingness” was that it called functions defined outside the enclosing
module). Though this prevented many of the programs that previously were made worse
by deforestation from getting worse, it also prevented some of the programs that previously
improved from improving. We found that a better solution was to compute an approximation
the number of times that a let-bound definition of a constant list, like x above, was used in
its body, and avoid worker-wrapper splitting it if it was used more than once. This method
is not foolproof, because in general computing the number of times x will really be used is
undecidable – however, taking a first-order approximation (counting the number of times x
literally appears in the body) seems to be adequate. Usually, though, it seems to prevent
programs from getting much worse while not negating the benefits achieved by deforesting
other programs. It is an inherent limitation of shortcut deforestation that only lists which
are used once can be eliminated, so it is natural to avoid trying to deforest lists that are
used multiple times.

38 CHAPTER 4. EXPERIMENTAL RESULTS

Mutually Recursive Functions

Consider the following code (simplified from actual code generated by GHC for the mandel2
benchmark in the nofib suite):

a = f b

b = g a

a and b compute an infinite list – each one calls the other to generate some portion of the
list, and then applies some function to it. We can see that even if f is defined in terms of
foldr, we cannot apply the shortcut rule in the body of a. We cannot eliminate an infinite
list. However, worker/wrapper splitting may derive worker definitions for these functions:

aW = \ @ t c n -> f (bW @ t c n)

bW = \ @ t c n -> g (aW @ t c n)

This makes performance much worse, since two extra term arguments are now passed to
each recursive call of a or b. In addition, these worker instances cannot be specialized, since
attempting to create specialized versions of bW or aW would lead to an infinite regress. Our
implementation constructs a call graph for the program and avoids worker/wrapper splitting
any functions that are involved in a cycle of length 2. Obviously, this does not handle the
case where more than 2 functions construct a list in a mutually recursive way, but this avoids
worsening performance in the common case.

Interaction With Other Optimizations

When working with compiler optimizations, it is a given that one optimization may prevent
another from being applied, resulting in worse performance than if only one optimization had
been applied rather than several. It is possible that type-based deforestation may prevent
other optimizations that GHC would have applied, leading to overall worse performance,
or that optimizations GHC performed before generating External Core might transform a
program into a form unsuitable for deforestation. It would be desirable to carefully study
the effect the interaction between deforestation and other optimizations, but we leave this as
future work. In the meantime, we note that deforestation might result in better performance
if it were integrated as a transformation pass in GHC rather than running as an external
pass: in our system, GHC applies its transformations a number of times, then we perform
deforestation, then GHC does its transformations again; if deforestation were interleaved
with other transformations, better results might be achieved.

4.6 Measuring Lists Allocated

Besides measuring the total amount of memory a program allocated with and without allo-
cation, it is also desirable to measure the amount of memory it allocates that is part of a list
data structure. If deforestation achieves a 0% improvement on a given program P, we would
like to know whether that is because deforestation is missing some opportunities present in
P, or because P just doesn’t allocate many lists.
We modified GHC’s profiling system to output the total amount of memory allocated in
lists as well as the total allocation. Figure 4.3 plots, for each of the nofib programs, the

4.6. MEASURING LISTS ALLOCATED 39

percent improvement achieved by type-based deforestation versus the percentage of its total
allocation that is part of some list data structure versus (compared to no deforestation).

Figure 4.3: Improvement Achieved by Deforestation Versus Percentage of Memory Allocated
For Lists

Clearly, there is a large group of programs where 10% of total allocation or less consists
of lists, and deforestation achieves no effect. We cannot hope to achieve better results on
these programs. However, there are also many programs where more than 40% of allocation
consists of lists, but deforestation achieves no effect. This does not necessarily imply that
our implementation misses opportunities for deforestation in these cases. Some lists, after
all, may be inherently necessary for the program’s computation. Explaining the reasons for
these results would require either closer examination of the programs for which deforestation’s
improvement is not proportional to the amount of lists allocated, a static or dynamic analysis
to determine which lists are “truly intermediate”, or both.

40 CHAPTER 4. EXPERIMENTAL RESULTS

Chapter 5

Conclusions and Future Work

5.1 Type-Based Deforestation Is Effective

We have shown that type-based deforestation achieves significant improvements in the amount
of memory allocated by real programs; moreover, that it generally achieves equal or greater
improvements than those achieved by GHC’s built-in deforestation. There is further work to
be done in examining the programs that GHC’s deforestation improves more than type-based
deforestation does, and in studying the relationship between total amount of lists allocated
and the potential improvement achieved by deforestation, but our work has made it clear
that the type-inference-based algorithm for deforestation is useful in practice.

5.2 Future Work

5.2.1 Integration with GHC

It would be desirable to incorporate our implementation as a transformation pass in GHC.
This would simplify the implementation greatly, reducing the amount of time required to
run experiments (the implementation repeats work such as parsing and building a type
environment that would have already been done if it were a pass in GHC). Also, it might
increase the potential improvements achieved by deforestation, because deforestation would
be performed multiple times in concert with other optimizations that might create more
deforestation opportunities. The only way to find out whether this is the case would be to
integrate type-based deforestation with GHC.

5.2.2 Arbitrary Data Structures

It is not difficult to imagine how the type inference algorithm might be extended to remove
arbitrary data structures, and not just lists. Shortcut deforestation can potentially eliminate
values of any datatype for which a fold operation can be defined (it is trivial to generalize
the build operation to other types): for example, warm fusion is defined in a way that makes
it applicable to arbitrary types [LS95]. It would not be hard to extend our implementation
of type-based deforestation to remove arbitrary data structures, but problems might occur
in practice, since programmers may be less likely to define functions that produce types
other than lists in terms of a fold operation. A potential application for this generalized

41

42 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

form of deforestation is the style of generic programming in Haskell described in [LPJ03].
This paper describes a library that provides generic traversal functions for arbitrary user-
defined datatypes, for example, combinators to allow a function defined on a certain algebraic
datatype that does something interesting only to values with one particular constructor to
be applied without writing out the cases for each constructor (what is known as the “visitor
pattern” in object-oriented programming). These traversals depend crucially on a “generic
fold” operator, so it is possible that there might be many opportunities for deforestation in
these generic programs, which consume data structures using functions that are ultimately
defined in terms of fold.

5.2.3 Programmer Annotations

The basic concern of type-based deforestation is to infer which functions construct lists
that are “virtual” – that only exist because of the particular way in which the programmer
chose to express the algorithm, and are not essential to the computation being performed.
But programmers presumably have some knowledge about which if their functions have
this property. Why not allow them to express this knowledge by means of “virtuality”
annotations on functions? These annotations could be used in the compiler to suggest
places to try to apply deforestation, avoiding the work of trying to derive worker/wrapper
forms for functions that produce lists that are not, in fact, virtual. Also, they could be used
to provide useful feedback to the programmer. As the situation stands, a small change in
the program can make a big difference in its performance – a change that is trivial from
the programmer’s point of view may prevent deforestation from occurring. The programmer
cannot predict when this will happen, without detailed knowledge of the compiler. With
virtuality annotations, however, the compiler could report back to the user when uses of
“virtual” functions cannot be deforested. This would result in a more efficient optimization
process and better predictability for the programmer.

Bibliography

[BT84] Timothy Budd and Joseph M. Treat, “Extensions to Grid Selector Compo-
sition and Compilation in APL”, Information Processing Letters, Vol 19(3):
117-123, (Oct 1984).

[BD77] Rod M. Burstall and John Darlington, “A transformation system for develop-
ing recursive programs”, Journal of the ACM, 24(1):44–67, January 1977.

[Chi99] Olaf Chitil, “Type Inference Builds a Short Cut to Deforestation”, Proceedings
of the International Conference on Functional Programming, 1999.

[Chi00] Olaf Chitil, “Type-Inference Based Deforestation of Functional Programs”,
Ph.D thesis, Aachen University of Technology, 2000.

[GLP93] Andrew Gill, John Launchbury, and Simon Peyton Jones, “A Short Cut to
Deforestation”, Proceedings of the Conference on Functional Programming
Languages and Computer Architecture (FPCA ’93), pp. 223-232, 1993.

[GW78] Leo J. Guibas and Douglas K. Wyatt, “Compilation and Delayed Evaluation
in APL”, Proceedings of the ACM Symposium on Principles of Programming
Languages (POPL ’78), pp. 1-8, 1978.

[Hug89] John Hughes, “Why Functional Programming Matters”, Computer Journal,
pp. 98-107, 1989.

[LPJ03] Ralf Lämmel and Simon Peyton Jones, “Scrap your boilerplate: a practical
design pattern for generic programming”, Proceedings of the ACM Workshop
on Types in Language Design and Implementation (TLDI ’03), pp. 26-37,
2003.

[LS95] John Launchbury and Tim Sheard, “Warm Fusion: Deriving Build-Catas from
Recursive Definitions”, Proceedings of the Conference on Functional Program-
ming Languages and Computer Architecture (FPCA ’95), pp. 314-322, 1995.

[LY98] Oukseh Lee and Kangkeun Yi, “Proofs about a folklore let-polymorphic type
inference algorithm”, ACM Transactions on Programming Languages and Sys-
tems, 20(4):707-723, July 1998.

[Par93] Will Partain, “The nofib Benchmark Suite of Haskell Programs”, Functional
Programming, Glasgow 1992, J Launchbury & PM Sansom, eds., Workshops
in Computing, Springer Verlag, 1993.

43

44 BIBLIOGRAPHY

[PJM99] Simon Peyton Jones and Simon Marlow, “Secrets of the Glasgow Haskell Com-
piler inliner”, Proceedings of the Workshop on Implementing Declarative Lan-
guages, 1999.

[PJS98] Simon Peyton Jones and André Santos, “A transformation-based optimiser
for Haskell”, Science of Computer Programming 32(1-3), pp3-47, September
1998.

[PJTH01] Simon Peyton Jones, Andrew Tolmach, and Tony Hoare, “Playing by the
rules: rewriting as a practical optimisation technique in GHC”, Proceedings
of the ACM/SIGPLAN Haskell Workshop, 2001.

[Ste90] Guy Steele, Common Lisp: The Language, 2nd edition, Digital Press 1990.

[Sve02] Josef Svenningsson, “Shortcut Fusion for Accumulating Parameters & Zip-
like Functions”, Proceedings of the International Conference on Functional
Programming, 2002.

[Tol01] Andrew Tolmach and the GHC Team, “An External Representation for the
GHC Core Language” (draft), available at http://www.haskell.org/ghc/

docs/papers/core.ps.gz

[Voi02] Janis Voigtlander, “Concatenate, Reverse and Map Vanish For Free”, Pro-
ceedings of the International Conference on Functional Programming, 2002.

[Wad85] Philip Wadler, “Listlessness is better than laziness II: Composing listless func-
tions”, Proceedings of the Workshop on Programs as Data Objects, Copen-
hagen, October 1985. LNCS 217, Springer-Verlag, 1985.

[Wad90] Philip Wadler, “Deforestation: transforming programs to eliminate trees”,
Theoretical Computer Science, v. 73, pp. 231-248, 1990.

[Wat89] Richard Waters, “Optimization of Series Expressions: Part II: Overview of the
Theory and Implementation”, MIT AI Lab Memo No. 1083, December 1989

