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Abstract. The TeachScheme! Project aims to reform three aspects of introductory pro-
gramming courses in secondary schools. First, we use a design method that asks stu-
dents to develop programs in a stepwise fashion such that each step produces a well-
specified intermediate product. Second, we use an entire series of sublanguages, not
just one. Each element of the series introduce students to specific linguistic mechanisms
and thus represents a cognitive development stage in the learning process. The third
reform element is the use of a program development environment that was specifically
developed for beginners. This paper presents the project’s premises, the details of its
innovations, and a preliminary experience report.

1 Programming for Everyone

A good course on programming belongs in the core of every secondary school’s core cur-
riculum. Good courses on programming introduce students to the systematic design of
programs based on word problems. A student who learns to design programs systemati-
cally also learns (and practices) critical reading, analytic thinking, concise writing, problem
solving, and fact checking, all of which are generally useful skills.

Programming also has two major motivational advantages over similar school subjects.
First, programming is creative. With programs, students create artifacts that do something,
unlike the solutions to mathematical exercises or English essays. Second, programming is
an activity with an extremely fast feedback loop, which is a key factor in active learning, a
style of learning that appeals to a majority of learners [6, 21].

Unfortunately, secondary schools fail to exploit programming on a large scale. For an
indication of how few students in US high schools engage in programming, consider the
following table from the Educational Testing Service’s Advanced Placement (AP) Year-
book [20]:

Discipline Male Female Total
2001 2002 2001 2002 2001 2002

Calc AB, BC 100,766 107,767 84,138 91,542 184,904 199,309
Stat 20,842 24,961 20,767 24,863 41,609 49,824
Comp Sci A, AB 19,891 20,094 3,531 3,365 23,422 23,459
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Eight times as many students take the mathematics test as take the CS test; even statistics
is more than twice as popular as computer science. Considering that every one of the stu-
dents in mathematics should also succeed in a programming course, these statistics say
that conventional secondary school courses on programming are failures.

After studying existing curricula and observing existing AP programming courses, we
have come to believe that the key problem is a prevailing but outdated view of program-
ming as a vocational activity. Secondary school educators and administrator simply don’t
understand the power of programming and its potential role in the core of the curricu-
lum. This attitude strongly affects the content of the courses.5 First, secondary schools
often let the grammar of currently fashionable, vocational programming languages dic-
tate their curriculum rather than sound principles of design and problem solving. Second,
schools employ program development technology that is intended—and works best—for
professional programmers. Unfortunately, industry does not build products with novices
in mind. Instead it sells so-called educational editions of Integrated Development Envi-
ronments (IDEs), which are just inexpensive versions of the professional products. Third,
investing energy into the study of complex grammars and programming environments
distracts teachers and students from the true nature of programming. Instead of systematic
design, students are often exposed to a tinker-until-it-works6 philosophy, which does not
teach any of the desirable skills mentioned above.

Our TeachScheme! project, an initiative that we started in 1996, aims to move program-
ming courses into the core of secondary school curricula. To achieve this goal, we have
worked on three specific innovations:

1. First, we have designed and implemented a series of sublanguages with a matching
introductory curriculum. Each element of the series represents a cognitive stage in the
learning process.

2. Second, we have also developed a matching IDE. The environment assists students with
the design of programs and helps them understand language concepts.

3. Third, we have created a program design method for beginning students and their
teachers. Students who follow the design method produce several well-specified inter-
mediate products in addition to the final program. A teacher can use the intermediate
products to help a student overcome problems during the design or to discover logi-
cal mistakes in the final product. Furthermore, a teacher can use the design method to
justify grading standards that evaluate structural or aesthetic aspects of the final prod-
uct in an absolute manner, something that is nearly impossible with any other design
method.

The project is now in its eighth year. We have trained over 200 teachers (starting from three
in the first year) and college colleagues in the use of the program design method and its
supportive tools. An independent evaluator is in the process of evaluating the program
formally, but our first informal evaluations are already highly positive.

5 Indeed, in many places “introduction to computer science” is a course on application software and
doesn’t teach any programming.

6 Papert [16, page 173] dubbed this form of learning “bricolage” and praised it as a good basis for
learning. Naturally, we accept that some amount of tinkering is necessary in all learning, but we
disagree with the idea that tinkering should be the dominant factor in learning how to design
programs.
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In the next four sections, we describe our premises and the primary improvements over
the existing computing and programming curricula. In the sixth section, we present a pre-
liminary evaluation report. In the seventh section, we discuss related work. The final sec-
tion summarizes our experiences and presents some plans for the future.

2 The Central Role of Mistakes

To understand how beginners work with programming languages and programming en-
vironments, we started our project with comprehensive observation sessions in our own
lab (at Rice University) and in local high schools (Houston). These observations quickly
showed that all beginners have problems with the notational conventions of all program-
ming languages (C++, Pascal, and Scheme) and programming environments.

Here is a scenario that we repeatedly observed during the first two weeks of AP courses.
One of the first problems that a teacher poses to students is to write a program that deter-
mines the total cost of some order from the number of ordered pieces and their price. A
student’s C++ program then contains the following fragment:

price per piece * number of pieces = total cost;

Naturally, the compiler flags the left-hand side of this assignment statement and explains
that an assignment statement expects an lhs value. Unfortunately, this explanation is com-
pletely obscure for the student, because she simply doesn’t know about “lhs values” or
pointer arithmetic at this point in the course. Eventually some helpful classmate suggests to
swap the two sides of the “equation”, and the student then happily compiles her program—
without understanding why.

In general, we found that above all, beginners make mistakes. Their programs contain
syntax (compile time) errors, safety (run time) errors, and logical errors (mismatches with
specifications). When the feedback for errors is obscure, beginners get easily frustrated.
Hence, it is critical that an introductory course on programming must use methods and
tools that help students recognize and overcome errors.

Based on this insight, we identified distinct phases in the learning process and speci-
fied what students should know and what they need not know in these phases. Then we
used this specification to design7 a sublanguage for each phase, a supportive program-
ming environment, and a program design method. In each case, we paid special attention
to providing help in error cases for both students and teachers. The following three sections
present these three elements in a sequential order.

3 The Programming Language

The explicit staging of the learning process has deep implications for the programming
language that is used. After all, a programming language shapes a student’s idea of pro-
gramming in a concrete manner. To accommodate the staging, we chose to design and
implement a series of sublanguages of Scheme [15] for our reformed course.

7 In reality, we went through several feedback cycles, i.e., we co-designed the specification of learn-
ing phases and the sublanguages.
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PHASE GOALS CHARACTERISTICS

beginners atomic values numbers, booleans, strings, . . .
functions on atomic values primitive functions (+, not , . . . )
conditionals function application
structural values function definition (define )
functions on structural values predicates (number? , symbol? , . . . )
functions on unions of classes conditionals (cond )
functions on recursive unions of classes structure definition,
writing automated tests structure creation and selection

computational model: algebra

intermed. abstracting over recurring patterns lexical definitions (local )
functions as first-class objects anonymous functions (lambda )
generative recursion: why, how
recursion with accumulators: why, how

computational model: algebra

advanced changing the value of variables: why, how assignment statements (set! )
mutating structures: why, how structure mutators

computational model: modified algebra

Fig. 1. The series of sublanguages

Figure 1 summarizes the three programming subsets of Scheme in our curriculum.8 Let
us consider each phase in turn:

beginners The goal for beginning students is to learn how to use built-in functions and
how to design functions on their own. Hence, the first sublanguage is a purely func-
tional language over numbers, strings, booleans, and (programmer-defined) structures.
The entire sublanguage consists of four expression forms (function application, vari-
ables, cond itional expressions, and literal values) and two definition forms (function
definitions and structure definitions).

intermediate The second sublanguage introduces a construct for structuring programs
(local definitions) and another for abstracting over common patterns (first-class func-
tions). Students recognize the need for both because the first sublanguage forces them
to write many similar programs.

advanced The goal for advanced students is to master the notoriously difficult notion of
state in programs [13]. In object-oriented languages, state is best implemented through
assignments to field variables. In procedural languages such as Pascal or functional
languages such as Scheme, this corresponds to the mutation of records or structures.

We start with the purely functional subset of Scheme so that the programming course
is easily integrated with an algebra course. A functional language is conceptually just a
generalization of algebra. Specifically, the chosen language is based on prefix notation, and
its functions work on many different kinds of values, not just numbers.

8 Due to additional observations, we currently work with five sublanguages.
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(define (convert-f-c f)
(* 5/9 (- f 32)))

(define-struct person (prefix first last))

(define (greet a-pers)
(string-append

"Dear "
(person-prefix a-pers) " "
(person-last a-pers) ":"))

What (and why) is the value of:

(convert-f-c 32)
= (* 5/9 (- f 32))
= (* 5/9 0)
= 0

What (and why) is the value of:

(greet (make-person "Ms" "Kathi" "Fisler"))
= (string-append

"Dear "
(person-prefix (make-person ...)) " "
(person-last (make-person ...)) ":")

= (string-append
"Dear "
"Ms" " "
(person-last (make-person ...)) ":")

= ...
= "Dear Ms Fisler:"

Fig. 2. The computational model of Scheme

Consider the example in figure 2. Both columns depict programs that our students tend
to write after a few lessons. The program on the left converts Fahrenheit into Celsius tem-
peratures; the one on the right computes the opening line of a letter. In other words, the
left one is a function that students know from ordinary pre-algebra courses, while the one
on the right is a similar function but works on personnel records and strings. The bottom
half of each column shows how to evaluate a specific function application. The evaluation
on the left again follows the familiar pattern of pre-algebra. The one on the right is a small
generalization of the algebraic substitution rules to structures (records) and strings.

Since students have usually taken an algebra course before the programming course,
they already know how to evaluate numeric expressions. From there, they can easily ac-
quire the additional machinery that explains what happens when a program, i.e., a func-
tion, is applied to input values and especially when a program goes wrong. That is, stu-
dents already know how “the hardware” works. As a result, teachers can spend more time
on teaching design and problem-solving principles and less on the physical principles of
computation. Conversely, the programming course reinforces the algebra skills that they
already have.9

Concerning the programming mechanics, teaching a small enforced subset of any lan-
guage, not just Scheme, has two advantages. First, the language dictates what students
are and are not allowed to use. Hence, teachers can focus on the development of problem
solving and program design skills. In particular, they no longer have to get into (usually

9 To our surprise, some teachers have used the first part of our programming course to make their
pre-algebra courses more accessible.
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niggling) discussions about whether particular lingusitic constructs are permissible at a cer-
tain level (such as using for as well as while ). Later, as constructs are added, a discussion
of the trade-offs and the reasons for using advanced constructs is natural.

Second, the representation of a student’s understanding of programming via a specific
sublanguage enables the implementors to report errors in an knowledge-appropriate man-
ner. Consider the specific example of a student who misplaces a parenthesis in a function
application and writes

... empty?(a-list) ...

instead of

... (empty? a-list) ...

The implementation of the beginner language can explain that empty? is a function and
must occur to the right of a left parenthesis. In contrast, an implementation of full Scheme
would print an error message concerning higher-order functions that a beginner can’t pos-
sibly know.

4 The Program Development Environment

A programming language needs a program development environment (PDE). Roughly
speaking, a PDE helps programmers with common tasks. Modern commercial PDEs, also
known as integrated development environments (IDE), edit, compile, link, and run pro-
grams. Many come with a plethora of other tools for tasks ranging from project manage-
ment to test coverage analysis.

Our above-mentioned classroom observations revealed, however, that these IDEs are
often obstacles rather than helpful tools. Their complex control panels and large tool suites
just confuse beginners. To write even the simplest program, a novice sometimes has to cre-
ate or copy a project, supply the proper paths to libraries, and arrange a package and class
hierarchy. After a few interactions the monitor is often cluttered with a heap of windows
and control panels. The learning editions of these PDEs don’t improve this situation either,
because they are often just cousins of their commercial editions. In short, like programming
languages, commercial IDEs are intended for professional programmers and not tailored to
the introductory curriculum and plain beginners.

DrScheme is our response to these observations. Its design takes into account our class-
room observations and the structure of our curriculum. We have reported on the imple-
mentation of DrScheme elsewhere [9]. Here we focus on the use of DrScheme with our
curriculum.

Figure 3 displays a screenshot of DrScheme. The basic PDE consists of just three panes:
a toolbar with a small number of carefully selected buttons; an editor; and an interactive
evaluator for the chosen sublanguage at the bottom. The evaluator is an extremely powerful
calculator. In general, it determines the value of any valid Scheme expression. In particu-
lar, students can evaluate ordinary arithmetic expressions (line 1); they can explore how
primitives work (lines 2 and 3); and they can apply their own functions to values (line 4).
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Fig. 3. DrScheme

Students define their own functions and structures in the editor. DrScheme’s editor sup-
ports Scheme’s syntax in a number of ways. Most importantly, it highlights complete ex-
pressions in grey as the student types. This minimizes confusion with parentheses and, in
our experience, eliminates any discussions about syntax in less than a week.

DrScheme toolbar displays at most five buttons:

Execute evaluates the definitions in the editor and makes them available in the evaluator;
Break empowers programmers to stop any run-away program;
Save shows up when the program in the editor is modified;
Check Syntax analyzes the syntax and the scope of the program in the editor (see below);
Step allows students to step through the algebraic evaluation of an expression.

Besides the editor and the evaluator, the algebraic stepper is the most important tool
that beginners use. The algebraic stepper displays the sequence of evaluation steps shown
in figure 2 for expressions such as

(greet (make-person "Ms" "Kathi" "Fisler"))

Using the stepper, a teacher can easily explain the computations that take place when a
program is applied to input values.
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Equally important, students can study the evaluation of an expression both without
much help from another person, and without resorting to arcane terminology such as
stacks, registers and so forth. They only need to understand the syntax of the sublanguage
and the idea of substituting equals for equals. The stepper is particularly important when
new constructs are introduced, e.g., structures, or when a construct’s cognitive scope is
extended, e.g., functions are defined in a recursive manner.

Like other PDEs, DrScheme also comes with a syntax coloring tool. The tool paints
keywords, library functions, identifiers, and constants in different colors. In contrast to
an ordinary syntax coloring tool, DrScheme’s syntax analysis also understands the lexical
scope of the program. When a programmer mouses over a function parameter, for example,
DrScheme overlays arrows from the parameter to all its bound occurrences in the function’s
body. Furthermore, a programmer can also use the syntax checker to rename variables con-
sistently. That is, if a programmer used x as a parameter for many functions and then
wishes to rename the x in one particular function to something more meaningful such as
cost , the syntax checker renames that one x without affecting any others automatically—
in contrast to conventional search-and-replace tools.

The final component of DrScheme is the test suite manager. Working with examples and
testing are key elements of our program design method. The testing tool (currently in a sep-
arate window) provides an explicit space for writing down sample function calls and their
expected values. When a student clicks on Execute, DrScheme compares the actual values
with the expected values; mismatches indicate logical errors in the student’s reasoning.

We have also developed a coverage analysis tool. When both pieces of the test suite
manager are fully integrated, the environment will evaluate all test suites every time a
student clicks “Execute” and will then highlight those portions of the program in red that
the current test suite doesn’t cover.

5 The Program Design Method

Like the programming language and the programming environment, the program design
method in an introductory course must accommodate beginners and must grow with them.
This suggests three concrete goals. First, since beginners make mistakes, the method must
help students recognize design flaws and avoid them. Second, the design method must
help teachers evaluate their students’ reasoning process through intermediate results, not
just the final product. This is necessary for grading students’ work with objective criteria
and for helping them throughout the process. Last, but not least, the method must instill
good habits that scale to large projects. After all, the first program design method sets the
tone for many students’ further learning and, what they don’t practice properly at this
stage, they may never practice properly later.

Given these goals, it is natural to teach programming as a prescriptive process. We have
formulated the process as a collection of program design recipes. Each design recipe con-
sists of five to seven steps. Each step produces a well-defined intermediate product. Hence,
when a student requests help from a teacher, the teacher can ask how many steps are com-
pleted and can ask to see the products of these steps. After a while the students recognize
that they can follow the appropriate design recipe on their own. Similarly, grading a pro-
gram is no longer a process of guessing how many points to subtract for some incorrect
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PHASE PRODUCT STEPS

problem and data
analysis

data definitions name the program; read the problem state-
ment; determine the classes of data that the
program consumes and produces

goal formulation purpose statement; con-
tracts; function header(s)

formulate a concise statement of what the pro-
gram is to compute; specify which classes of
data the program consumes and which one
it produces (this may involve the parameters
from the function header)

examples examples of data; examples
of the function’s behavior

use the data definitions to create typical ex-
amples of data; use the purpose statement
to create examples of what the function pro-
duces, given some concrete inputs

organization function template(s) use the data definitions to organize the func-
tion without regard to its purpose

programming complete function(s) fill the holes in the template, using the pur-
pose statement, the data structure of the data
definition, and the examples

testing test suite & coverage look for mistakes using the examples from
step 2; mistakes can show up in the examples,
the program, and/or both

Fig. 4. The generic program design recipe

statement in a program. Instead a teacher can inspect the process that produced the pro-
gram and grade a student’s reasoning. In short, shifting the focus from the final product
(the program) to the process (of designing a program systematically) has many advantages
for both teachers and students.

Figure 4 describes the generic design recipe. Each specific design recipe covers a par-
ticular kind of data definition, i.e., the rigorous description of a class of values. The course
starts with simple data definitions and quickly proceeds to recursive and mutually related
definitions. The shape of the data definition induces a specific shape for a function that
processes this kind of data, as specified in steps 4 and 5 of the generic design recipe. Let us
illustrate the use of the design recipe with two examples.

Example 1 Recall the function greet from figure 3. Here is a problem statement that might
produce this function:

Problem 1: Design the function greet , which formulates the opening line for a
letter. The function consumes personnel records, which contain preferred prefixes,
first and last names. It produces the greeting as a string.

The problem is for students who have just encountered structured data and need to practice
working with structures and recognizing when structures are needed.

As the problem says, we need to represent information about people. The information
consists of a fixed number of components. This implies that a structured form of data is
most appropriate, yielding this data definition:
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(define-struct person (prefix first last))
;; A PERSON is a structure:
;; --- (make-person String String String)

The definition consists of one line of Scheme and two lines of comments. It introduces a
structure definition and a method for using the structure.

The problem is easy to condense into a purpose statement with a contract:

;; greet : PERSON -> STRING
;; to produce a letter greeting from a-pers
(define (greet a-pers) ...)

The first line is the contract. It specifies the name of the function and the classes of data
that the function consumes and produces. The second line is the purpose statement, which
refers to the parameter of the function header in the third line.

Our data definitions are formulated in such a way that it is easy to make examples. For
Person , a sample structure is constructed by applying the constructor make-person to
three strings. From the structure definition, we know that they have a prefix, a first name,
and a last name. So here are some examples:

(make-person "Ms" "Kathi" "Fisler")

(make-person "Mr" "John" "Clements")

The recipe now calls for the construction of examples for greet from these examples:

(greet (make-person "Ms" "Kathi" "Fisler"))
;; should evaluate to
"Dear Ms Fisler:"

(greet (make-person "Mr" "John" "Clements"))
;; should evaluate to
"Dear Mr Clements:"

Each example consists of a complete function call and the expected value. For this example,
we make up expected values because the problem statement doesn’t specify the precise
nature of the greeting. At this point, a teacher can also explain how examples can help to
make vague specifications more precise before we waste too much energy on the program
proper.

After these preliminary steps, it is time to organize the known facts. We have dubbed
the outcome of this step a function template, because these organizations can often be reused
across functions with the same domain. Roughly speaking, the template is a translation of
the data definition for the inputs into a program fragment. Since the functions (at this stage)
can only produce information from the information that they consume, basing the structure
of the program on the structure of the input data definition is natural. Students can then
just re-combine the pieces, possibly adding in some constants, to get the final function.

Figure 5 displays some basic hints on how to proceed at this point. Given that the data
definition of our running example involves structures and given the hints in the table, the
template for a function that consumes a Person structure is this:
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STRUCTURE OF
DATA DEFINITION

STRUCTURE OF TEMPLATE ADVICE FOR PROGRAM

atomic values domain knowledge

N intervals
N enumerations cond with N branches deal with each branch separately

structures with M
fields

M selector expressions “combine” (+, cons , . . . ) the values

union of L classes cond with L clauses deal with each branch separately

self-referential
union of K classes

recursive function definition, using a
cond with K branches

deal with non-recursive cases first;
for the recursive cases, rewrite the
purpose statement for the recursive
function call(s)

Fig. 5. The first five methods for constructing templates and programs from data definitions

;; greet : PERSON -> STRING
;; to produce a letter greeting from a-pers
(define (greet a-pers)

... (person-prefix a-pers) ...

... (person-first a-pers) ...

... (person-last a-pers) ...)

Since a person structure has three fields, we added three expressions. Each expression
extracts one field value from a-pers , the parameter that represents the Person structure
to which the program will be applied.

Now, and only now, are students allowed to program in the narrow sense of the word.
The advice of the design recipe is that they must consider what each expression in the
function template represents. In our running example, the selector expressions combined
with some constants is almost everything the programmer needs; as a matter of fact, one of
the selector expressions (that for the first name) is superfluous. To finish the definition, the
students just need to append all these strings to obtain the full function definition. Figures 3
shows the final result (without comments and tests).

Example 2 At first glance, using a design recipe to design such simple functions like greet
appears to be overkill. And indeed, using design recipes for such functions is more about
instilling good habits and preparing students for the design of complex programs than
programming per se. The use of the recipes pays off by the time students encounter self-
referential data definitions. This typically happens after four to eight weeks, even if they
have no prior programming experience. At that point students recognize the value of the de-
sign recipes and how they enhance their abilities.

Consider the following problem:

Problem 2: Design the function is-mary-invited? , which determines whether
"Mary" is on a list of invitees. The function consumes a list of invitees and produces
true or false .
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Let us assume that the data definition for lists of invitees is given:

;; A LIST-OF-INVITEES is one of:
;; --- empty
;; --- (cons String List-of-invitees)

The definition says that a LIST-OF-INVITEES is either empty or cons tructed from a
STRINGand another LIST .

In DrScheme’s sublanguages, empty is a constant like 0 or "hello world" or true .
The function cons is built-in. It is a structure constructor like make-person above. The
two field selector functions for a cons structure are first and rest ; i.e., (first loi)
extracts the string and (rest loi) extracts the list that went into the cons truction of
loi .

Still, the definition is self-referential and this is unusual. It is therefore best that we first
consider some examples to ensure that the definition makes sense. Fortunately, there is at
least one such list, because empty is a list according to the first clause in the data definition.
From this it follows that (cons "Mary" empty) and (cons "Bob" empty) are lists.
Both are cons tructed from the strings "Mary" and "Bob" , respectively, and empty , which
we know is a LIST-OF-INVITEES . Conversely, if we look at a value such as

(cons "Bob" (cons "Mary" (cons "Jon" empty)))

we can determine from the data definition that this is a LIST-OF-INVITEES .
Following the design recipe, we next write a concise purpose statement for the program:

;; is-mary-invited? : LIST-OF-INVITEES -> BOOLEAN
;; to determine whether "Mary" is on the list of invitees
(define (is-mary-invited? invitees) ...)

Again, this step is just a reformulation of the problem statement, but it ensures that students
understand what the function is supposed to compute.

The four examples of LIST-OF-INVITEES also make up a natural set of examples for
the behavior of is-mary-invited? . Due to a lack of space, we show only the last one:

(is-mary-invited? (cons "Bob" (cons "Mary" (cons "Jon" empty))))
;; should evaluate to
true

Note how a visual inspection reveals for each example whether "Mary" is on the list.
As we move from the preliminaries to the construction of the template, the design recipe

helps a lot. The data definition involves three distinct elements: a union of two classes, a
structure in one of the clauses, and a self-reference in the second clause. The hints in figure 5
suggest that the function template therefore consists of a conditional expression with two
clauses; two selection expressions in the second clause; and a self-reference in the second
clause for the rest expression:

;; is-mary-invited? : LIST-OF-INVITEES -> BOOLEAN
;; to determine whether "Mary" is on the list invitees
(define (is-mary-invited? invitees)
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Question: How many clauses are in the data definition? How many cond clauses do we need in the
function? (See row 3 in figure 5)

(define (is-mary-invited? invitees)
(cond

[(empty? invitees) ...]
[(cons? invitees) ...]))

Question: Is empty a constant or a structure? Is (cons String L) a constant or a structure?
How many selector expressions do we need in each clause? (See row 2 in figure 5)

(define (is-mary-invited? invitees)
(cond

[(empty? invitees) ...]
[(cons? invitees)

... (first invitees) ...

... (rest invitees) ...]))

Fig. 6. Developing the template for is-mary-invited?

(cond
[(empty? invitees) ...]
[(cons? invitees)

... (first invitees) ...

... (is-mary-invited? (rest invitees)) ...]))

The first two steps of this template design are displayed in figure 6. The figure shows how
a combination of the hints in figure 5 helps students construct the program organization
step by step from the data definition.

Filling the gaps in the template to obtain the full function follows a similar series of
steps. First we deal with the clauses that don’t involve recursive function calls. The exam-
ples show that the function should produce false for this case. Second we deal with the
recursive clauses. To do that, remember that a student should write down the meaning of
each expression. For the first and rest expressions, this is easy:

... (first invitees) ... ;; extracts the first person

... (rest invitees) ... ;; extracts the rest of the invitees

The trick according to figure 5 is to use the purpose statement for the recursive call and to
reformulate it as a sentence:

(is-mary-invited? (rest invitees))
;; determines whether "Mary" is in the rest of the list

Now a teacher can convince a student that this expression should compute the correct an-
swer for all-but-one element in invitees . The missing element is (first invitees) ,
and for this, the function can simply compare it to "Mary" , which refines the template as
follows:
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(string=? (first invitees) "Mary") ;; is first equal to "Mary"
(is -mary-invited? (rest invitees))
;; determines whether "Mary" is in the rest of the list

If one or the other of these two expressions is true , "Mary" is on invitees and the result
of (is-mary-invited? invitees) should be true .

The full definition of is-mary-invited? is just a reorganization of these thoughts:

;; is-mary-invited? : LIST-OF-INVITEES -> BOOLEAN
;; to determine whether "Mary" is on the list invitees
(define (is-mary-invited? invitees)

(cond
[(empty? invitees) false]
[(cons? invitees)

(or (string=? (first invitees) "Mary")
(is-mary-invited? (rest invitees)))]))

With a little practice, students can now routinely design functions for values of arbitrary
size, i.e., for data definitions that involve self-references.

As a matter of fact, the design recipe scales naturally to the design of complex systems
of functions for systems of mutually referential data definitions. This in turn empowers
students to design programs for deep and interesting problems after just a minimum of
introduction to the language, the environment, and the design recipes.

In addition to the structural design recipes, the curriculum for an introductory college
course would also cover design recipes for abstraction over common patterns; for genera-
tive (as opposed to structural) recursion; for context-sensitive recursive functions (accumu-
lator style); and for functions that can change the state of the world. As students learn more
and different ways to design programs, the curriculum can also discuss alternative designs,
trade-offs among designs, and global design strategies such as iterative refinement. We re-
fer the interested reader to our book [7].

6 Preliminary Evaluation Results

Over the past few years, we have trained over 200 teachers in the use of the program design
method and the software. The training sessions take place during the summer with work-
shops of 10 to 40 teachers at several sites in the US. We also train a select group of teachers
as master teachers, who enrich the workshops by providing the viewpoint of teachers who
have previously attended the workshops and have taught with the new curriculum in high
schools.

The project has been continuously evaluated by two independent consultants: Leslie
Miller (Houston), for the first three years, and Roger Blumberg (Providence), for the past
two years. Their evaluation efforts focus on two aspects of the project: the training of the
teachers and the effect of the curriculum on the students of those teachers who are allowed
to implement the curriculum.

The results from the workshop evaluations are outstanding. Approximately 98% of the
participants complete the workshops successfully. Of those, 90% believe that the work-
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shops fundamentally alters their view of the introductory course on computing and pro-
gramming. Many state that the workshop has also renewed their enthusiasm for teaching
because the design recipes clarify how such a course can improve students’ general prob-
lem solving skills. Furthermore, by providing a rigorous curriculum, our course helps the
teachers justify that computing is not just a peripheral vocational subject but deserves to
be a core component in the school curriculum.

The preliminary results of the student evaluations are equally encouraging. Students
seem to cope well with Scheme’s parenthetical syntax, which is a common objection from
outsiders. Much more important, however, student questionnaires suggested that female
students prefer our course to a traditional course by a factor of four to one (4:1). In a con-
trolled experiment, a trained teacher taught a conventional AP curriculum and the Scheme
curriculum to the same three classes of students. Together the three classes consisted of over
70 students. While a majority of students preferred our approach to programming, the four-
to-one preference for TeachScheme! among females was stunning. Our second evaluator is
now investigating this aspect of the project in more depth.

The curriculum has also been noticed by third parties. CORD [5], a non-profit organi-
zation that develops practice-oriented curricula for others, adopted our curriculum for the
introductory course of the national “Academy of Information Technology” project. By 2005,
some 300 schools will offer an “academy” program as a school-within-a-school. The state
of Tennessee, USA, has adapted our material for its manufacturing technology curricu-
lum [19]. Students now learn to proceed in vocational manufacturing technology courses
along the lines of the investigators’ design recipes.

7 Related Work

Our work has three components: the program design method, a series of sublanguages,
and support software. Here we compare our efforts to some other obvious counterparts in
the literature.

At first glance, the course is a close cousin to Abelson and Sussman’s Structure and
Interpretation of Computer Programs (SICP) [1]. Both approaches use Scheme; both courses
teach more than the syntax of the currently fashionable programming language (Pascal,
C/C++, Java, or some flavor of Basic). These superficial similarities are, however, deceiv-
ing. TeachScheme! is not just a version of SICP for secondary schools. While the latter uses
Scheme as a sketchpad to introduce students to a broad spectrum of topics from computer
science, the emphasis of the TeachScheme! project is the systematic design of programs.
The TeachScheme! project also differs from SICP in that it comes with a full-fledged suite
of tailor-made tools. For a more detailed comparison, we refer the reader to a companion
paper [8].

Still, Scheme and functional programming in general are a deep inspiration for the
TeachScheme! project’s program design method. Books such as SICP and Bird and Wadler’s
Introduction to Functional Programming [4] have advocated a datatype-driven programming
style. The idea of programming by numbers [10] also comes close to our principles for deriv-
ing program outlines from data definitions (figure 5) but the approach is far less compre-
hensive than ours.
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Outside of computing, Poyla’s [17] work on mathematical problem solving was an ad-
ditional inspiration. While Polya does not spell out the ideas of data-driven programming,
his step-wise approach to problems is similar to that of our general design recipe (figure 4).

With respect to software tools, DrScheme was the first PDE developed specifically for
beginners. From the technical side, DrScheme inherits several ideas from the Emacs edi-
tor [11, 18], but DrScheme is an attempt to tame Emacs for beginners. The idea of introduc-
ing a hierarchy of sublanguages—one of most critical elements of taming—is a rediscovery,
originally due to Holt et al. [14]. They faced the challenge of teaching PL/1 to beginners; in
response, they defined a series of sublanguages, called SP/k, that introduce the concepts of
imperative programming in a gradual manner. Unlike DrScheme, SP/k didn’t come with
a complete program development environment, nor did the language implementation dis-
tinguish the various sublanguage [14, page 307]; in particular, the SP/k compiler did thus
not tune error messages to the knowledge level of a learner.

In the meantime, the Java community has recognized the value of special environments
for novices. The BlueJ PDE [3] and DrJava10 [2] environments for Java beginners attempt to
eliminate as many syntactic obstacles from a Java introductory course as possible. Using
BlueJ or DrJava, students can invoked methods directly, without writing a main function;
in BlueJ, they can also design programs using a diagrammatic approach. Still, neither BlueJ
nor DrJava come even close to DrScheme. They miss several of DrScheme’s major fea-
tures including the algebraic stepper,11 the test suite manager, and the restriction of Java
to a (or several) subset(s) teachable in a secondary school course. We believe that if PDEs
wish to deal with beginners in an appropriate way such restrictions are necessary to help
students overcome the horrendous error messages that currently drive people away from
programming. To inject this idea, our team is in the process of developing ProfessorJ, a Java
environment in the true image of DrScheme [12].

8 Context

Programming courses at secondary schools are in serious need of reform. The approaches
of the past have produced unacceptable results. Too few students take courses on program-
ming and computing; too few of those enrolled take away a sense of how programming
can help them solve problems; and in the US, the existing courses and curricula clearly
deter many from experimenting with the subject in college. Writing another old-fashioned
curriculum for the next fashionable programming language simply won’t improve this sit-
uation. We need to take a look at all aspects of these courses.

The TeachScheme! project is such a reform effort. In this paper, we have shown how it
tackles three sources of persistent problems with high school level courses. First, it uses a
well-specified process to teach program design and problem solving in a systematic man-
ner. Second, it uses a series of carefully tailored sublanguages to represent what beginners
know at each stage in the curriculum. Third, the PDE uses these sublanguages to provide
feedback that is appropriate to a student’s knowledge level. We believe that all three inno-

10 Paul Graunke, a PhD student of Felleisen and Krishnamurthi, designed and implemented the first
release of DrJava, which is why it was named using the TeachScheme! project conventions.

11 Like every IDE, BlueJ has an command-oriented symbolic stepper.
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vations are major improvements over existing practices, and deserve serious consideration
from future course developers.

In the future, we will focus our efforts on the creation of a bridge between this first
course and the traditional follow-up curriculum. If students get seriously interested in pro-
gramming after such a first course, they need to study concepts that help them with first in-
dustry experiences in internships and co-op jobs. Furthermore, while our course introduces
and uses the notion of classes, it does not teach class-based programming in the spirit of
currently fashionable languages, such as C# or Java. To bridge the gap between our course
and conventional CS 2 courses, and to show students that our design method applies in
an object-oriented world, we intend to adapt the design method for such languages and to
create a PDE that introduces students to these topics in a graceful manner.
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