
JFP 19 (Supplement): 1–301, August 2009. c© 2009 Cambridge University Press

doi:10.1017/S0956796809990074 Printed in the United Kingdom

1

Revised6 Report on the Algorithmic Language
Scheme

Abstract

Programming languages should be designed not by piling feature on top of feature, but by
removing the weaknesses and restrictions that make additional features appear necessary.
Scheme demonstrates that a very small number of rules for forming expressions, with no
restrictions on how they are composed, suffice to form a practical and efficient programming
language that is flexible enough to support most of the major programming paradigms in use
today.

Scheme was one of the first programming languages to incorporate first-class procedures
as in the lambda calculus, thereby proving the usefulness of static scope rules and block
structure in a dynamically typed language. Scheme was the first major dialect of Lisp
to distinguish procedures from lambda expressions and symbols, to use a single lexical
environment for all variables, and to evaluate the operator position of a procedure call in the
same way as an operand position. By relying entirely on procedure calls to express iteration,
Scheme emphasized the fact that tail-recursive procedure calls are essentially gotos that pass
arguments. Scheme was the first widely used programming language to embrace first-class
escape procedures, from which all previously known sequential control structures can be
synthesized. A subsequent version of Scheme introduced the concept of exact and inexact
number objects, an extension of Common Lisp’s generic arithmetic. More recently, Scheme
became the first programming language to support hygienic macros, which permit the syntax
of a block-structured language to be extended in a consistent and reliable manner.

Revised6 Report on the Algorithmic Language
Scheme

MICHAEL SPERBER

DeinProgramm
(e-mail: sperber@deinprogramm.de)

R. KENT DYBVIG

Indiana University
(e-mail: dyb@cs.indiana.edu)

MATTHEW FLATT

University of Utah
(e-mail: mflatt@cs.utah.edu)

ANTON VAN STRAATEN

AppSolutions
(e-mail: anton@appsolutions.com)

ROBBY FINDLER

Northwestern University

(e-mail: robby@eecs.northwestern.edu)

JACOB MATTHEWS

Google Inc.

(e-mail: jacobm@google.com)

(Authors, formal semantics)

RICHARD KELSEY, WILLIAM CLINGER, JONATHAN REES

(Editors, Revised 5 Report on the Algorithmic Language Scheme)

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 8RU, UK

www.cambridge.org

This work is in the public domain.
This compilation of the work is edited by Michael Sperber,
R. Kent Dybvig, Matthew Flatt and Anton van Straaten and
first published by Cambridge University Press 2009,
c© Cambridge University Press 2009

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-19399-3
ISSN 0956-7968

Revised6 Scheme 5

A Supplement to the Journal of Functional Programming

Contents

Preface 9

Part 1: Language

Description of the language 15

1 Overview of Scheme 15

1.1 Basic types 16

1.2 Expressions 17

1.3 Variables and binding 17

1.4 Definitions 18

1.5 Forms 18

1.6 Procedures 19

1.7 Procedure calls and syntactic keywords 19

1.8 Assignment 20

1.9 Derived forms and macros 20

1.10 Syntactic data and datum values 21

1.11 Continuations 22

1.12 Libraries 23

1.13 Top-level programs 23

2 Requirement levels 24

3 Numbers 24

3.1 Numerical tower 24

3.2 Exactness 25

3.3 Fixnums and flonums 25

3.4 Implementation requirements 26

3.5 Infinities and NaNs 27

3.6 Distinguished -0.0 27

4 Lexical syntax and datum syntax 27

4.1 Notation 28

4.2 Lexical syntax 28

4.3 Datum syntax 37

5 Semantic concepts 39

5.1 Programs and libraries 39

5.2 Variables, keywords, and regions 40

5.3 Exceptional situations 41

5.4 Argument checking 41

5.5 Syntax violations 42

5.6 Safety 42

5.7 Boolean values 43

5.8 Multiple return values 43

5.9 Unspecified behavior 43

5.10 Storage model 44

5.11 Proper tail recursion 44

5.12 Dynamic extent and the dynamic environment 44

6 M. Sperber et al.

6 Entry format 45

6.1 Syntax entries 45

6.2 Procedure entries 46

6.3 Implementation responsibilities 47

6.4 Other kinds of entries 48

6.5 Equivalent entries 48

6.6 Evaluation examples 48

6.7 Naming conventions 49

7 Libraries 49

7.1 Library form 49

7.2 Import and export levels 54

7.3 Examples 56

8 Top-level programs 58

8.1 Top-level program syntax 58

8.2 Top-level program semantics 59

9 Primitive syntax 59

9.1 Primitive expression types 59

9.2 Macros 61

10 Expansion process 62

11 Base library 64

11.1 Base types 65

11.2 Definitions 65

11.3 Bodies 67

11.4 Expressions 67

11.5 Equivalence predicates 77

11.6 Procedure predicate 81

11.7 Arithmetic 81

11.8 Booleans 97

11.9 Pairs and lists 98

11.10 Symbols 102

11.11 Characters 103

11.12 Strings 104

11.13 Vectors 106

11.14 Errors and violations 108

11.15 Control features 109

11.16 Iteration 113

11.17 Quasiquotation 114

11.18 Binding constructs for syntactic keywords 116

11.19 Macro transformers 119

11.20 Tail calls and tail contexts 122

Appendices 125

A Formal semantics 125

A.1 Background 125

A.2 Grammar 126

A.3 Quote 132

Revised6 Scheme 7

A.4 Multiple values 132

A.5 Exceptions 133

A.6 Arithmetic and basic forms 135

A.7 Lists 137

A.8 Eqv 138

A.9 Procedures and application 139

A.10 Call/cc and dynamic wind 142

A.11 Letrec 143

A.12 Underspecification 145

B Sample definitions for derived forms 146

C Additional material 152

D Example 152

E Language changes 155

Part 2: Standard Libraries

1 Unicode 159

1.1 Characters 159

1.2 Strings 161

2 Bytevectors 163

2.1 Endianness 164

2.2 General operations 164

2.3 Operations on bytes and octets 166

2.4 Operations on integers of arbitrary size 167

2.5 Operations on 16-bit integers 168

2.6 Operations on 32-bit integers 169

2.7 Operations on 64-bit integers 170

2.8 Operations on IEEE-754 representations 171

2.9 Operations on strings 172

3 List utilities 173

4 Sorting 179

5 Control structures 180

6 Records 184

6.1 Mutability and equivalence of records 185

6.2 Syntactic layer 186

6.3 Procedural layer 193

6.4 Inspection 200

7 Exceptions and conditions 201

7.1 Exceptions 202

7.2 Conditions 204

7.3 Standard condition types 209

8 I/O 212

8.1 Condition types 212

8.2 Port I/O 215

8.3 Simple I/O 234

9 File system 236

8 M. Sperber et al.

10 Command-line access and exit values 237

11 Arithmetic 237

11.1 Bitwise operations 237

11.2 Fixnums 237

11.3 Flonums 243

11.4 Exact bitwise arithmetic 248

12 syntax-case 252

12.1 Hygiene 252

12.2 Syntax objects 254

12.3 Transformers 254

12.4 Parsing input and producing output 255

12.5 Identifier predicates 259

12.6 Syntax-object and datum conversions 262

12.7 Generating lists of temporaries 264

12.8 Derived forms and procedures 265

12.9 Syntax violations 268

13 Hashtables 268

13.1 Constructors 269

13.2 Procedures 270

13.3 Inspection 271

13.4 Hash functions 271

14 Enumerations 272

15 Composite library 276

16 eval 276

17 Mutable pairs 277

18 Mutable strings 278

19 R5RS compatibility 278

Part 3: Non-Normative Appendices

A Standard-conformant mode 283

B Optional case insensitivity 283

C Use of square brackets 284

D Scripts 285

D.1 Script interpreter 285

D.2 Syntax 285

D.3 Platform considerations 286

E Source code representation 287

F Use of library versions 288

G Unique library names 288

References 289

Alphabetic index of definitions of concepts, keywords, and procedures 292

Revised6 Scheme 9

PREFACE

This document contains the three parts comprising “R6RS”, the sixth revision of a

series of reports describing the programming language Scheme. These parts are the

Revised6 Report on the Algorithmic Language Scheme describing the language itself,

the Revised6 Report on the Algorithmic Language Scheme — Libraries — describing

the standard libraries, and Revised6 Report on the Algorithmic Language Scheme —

Non-Normative Appendices — with additional recommendations. A fourth report,

not included in this document, gives some historical background and rationales for

many aspects of the language and its libraries (Sperber et al., 2007b). The historical

background is summarized below.

These reports were originally published in 2007 on the www.r6rs.org web site,

and were subsequently ratified by the Scheme community. Since then, a number

of errors and inconsistencies have been found: these have been corrected for this

document. Details on these corrections can be found on www.r6rs.org.
The individuals listed on the title page are not the sole authors of the text of

the reports. Over the years, the following individuals were involved in discussions

contributing to the design of the Scheme language, and were listed as authors of

prior reports: Hal Abelson, Norman Adams, David Bartley, Gary Brooks, Daniel

Friedman, Robert Halstead, Chris Hanson, Christopher Haynes, Eugene Kohlbecker,

Don Oxley, Kent Pitman, Guillermo Rozas, Guy L. Steele Jr., Gerald Jay Sussman,

and Mitchell Wand.

In order to highlight recent contributions, they are not listed as authors of

this revision of the report. However, their contribution and service is gratefully

acknowledged.

We intend this report to belong to the entire Scheme community, and so we grant

permission to copy it in whole or in part without fee. In particular, we encourage

implementors of Scheme to use this report as a starting point for manuals and other

documentation, modifying it as necessary.

Historical background

The first description of Scheme was written by Gerald Jay Sussman and Guy

Lewis Steele Jr. in 1975 (Sussman & Jr., 1975). A revised report by Steele and

Sussman (Steele Jr. & Sussman, 1978) appeared in 1978 and described the evolution

of the language as its MIT implementation was upgraded to support an innovative

compiler (Steele Jr., 1978). Three distinct projects began in 1981 and 1982 to use

variants of Scheme for courses at MIT, Yale, and Indiana University (Rees & IV,

1982; MIT Department of Electrical Engineering and Computer Science, 1984;

Fessenden et al., 1983). An introductory computer science textbook using Scheme

was published in 1984 (Abelson et al., 1996). A number of textbooks describing and

using Scheme have been published since (Dybvig, 2003).

As Scheme became more widespread, local dialects began to diverge until students

and researchers occasionally found it difficult to understand code written at other

10 M. Sperber et al.

sites. Fifteen representatives of the major implementations of Scheme therefore

met in October 1984 to work toward a better and more widely accepted standard

for Scheme. Participating in this workshop were Hal Abelson, Norman Adams,

David Bartley, Gary Brooks, William Clinger, Daniel Friedman, Robert Halstead,

Chris Hanson, Christopher Haynes, Eugene Kohlbecker, Don Oxley, Jonathan Rees,

Guillermo Rozas, Gerald Jay Sussman, and Mitchell Wand. Their report (Clinger,

1985), edited by Will Clinger, was published at MIT and Indiana University in

the summer of 1985. Further revision took place in the spring of 1986 (Clinger

& Rees, 1986) (edited by Jonathan Rees and Will Clinger), and in the spring of

1988 (Clinger & Rees, 1991b) (also edited by Will Clinger and Jonathan Rees).

Another revision published in 1998, edited by Richard Kelsey, Will Clinger and

Jonathan Rees, reflected further revisions agreed upon in a meeting at Xerox PARC

in June 1992 (Kelsey et al., 1998).

Attendees of the Scheme Workshop in Pittsburgh in October 2002 formed a

Strategy Committee to discuss a process for producing new revisions of the report.

The strategy committee drafted a charter for Scheme standardization. This charter,

together with a process for selecting editorial committees for producing new revisions

of the report, was confirmed by the attendees of the Scheme Workshop in Boston in

November 2003. Subsequently, a Steering Committee according to the charter was

selected, consisting of Alan Bawden, Guy L. Steele Jr., and Mitch Wand. An editorial

committee charged with producing a new revision of the report was also formed at

the end of 2003, consisting of Will Clinger, R. Kent Dybvig, Marc Feeley, Matthew

Flatt, Richard Kelsey, Manuel Serrano, and Mike Sperber, with Marc Feeley acting

as Editor-in-Chief. Richard Kelsey resigned from the committee in April 2005, and

was replaced by Anton van Straaten. Marc Feeley and Manuel Serrano resigned

from the committee in January 2006. Subsequently, the charter was revised to reduce

the size of the editorial committee to five and to replace the office of Editor-in-Chief

by a Chair and a Project Editor (Scheme Charter, 2006). R. Kent Dybvig served

as Chair, and Mike Sperber served as Project Editor. Will Clinger resigned from

the committee in May 2007. Parts of the report were posted as Scheme Requests

for Implementation (SRFIs, see http://srfi.schemers.org/) and discussed by

the community before being revised and finalized for the report (Flatt & Feeley,

2005; Clinger et al., 2005; Clinger & Sperber, 2005; Flatt & Dybvig, 2005; Dybvig,

2006). Jacob Matthews and Robby Findler wrote the operational semantics for the

language core, based on an earlier semantics for the language of the “Revised5

Report” (Matthews & Findler, 2007).

Acknowledgements

Many people contributed significant help to this revision of the report. Specifically,

we thank Aziz Ghuloum and André van Tonder for contributing reference imple-

mentations of the library system. We thank Alan Bawden, John Cowan, Sebastian

Egner, Aubrey Jaffer, Shiro Kawai, Bradley Lucier, and André van Tonder for

contributing insights on language design. Marc Feeley, Martin Gasbichler, Aubrey

Jaffer, Lars T Hansen, Richard Kelsey, Olin Shivers, and André van Tonder wrote

Revised6 Scheme 11

SRFIs that served as direct input to the report. Casey Klein found and fixed sev-

eral bugs in the formal semantics. Marcus Crestani, David Frese, Aziz Ghuloum,

Arthur A. Gleckler, Eric Knauel, Jonathan Rees, and André van Tonder thoroughly

proofread early versions of the report.

We would also like to thank the following people for their help in creating this re-

port: Lauri Alanko, Eli Barzilay, Alan Bawden, Brian C. Barnes, Per Bothner, Trent

Buck, Thomas Bushnell, Taylor Campbell, Ludovic Courtès, Pascal Costanza, John

Cowan, Ray Dillinger, Jed Davis, J.A. “Biep” Durieux, Carl Eastlund, Sebastian

Egner, Tom Emerson, Marc Feeley, Matthias Felleisen, Andy Freeman, Ken Frieden-

bach, Martin Gasbichler, Arthur A. Gleckler, Aziz Ghuloum, Dave Gurnell, Lars T

Hansen, Ben Harris, Sven Hartrumpf, Dave Herman, Nils M. Holm, Stanislav Ievlev,

James Jackson, Aubrey Jaffer, Shiro Kawai, Alexander Kjeldaas, Eric Knauel, Mi-

chael Lenaghan, Felix Klock, Donovan Kolbly, Marcin Kowalczyk, Thomas Lord,

Bradley Lucier, Paulo J. Matos, Dan Muresan, Ryan Newton, Jason Orendorff, Erich

Rast, Jeff Read, Jonathan Rees, Jorgen Schäfer, Paul Schlie, Manuel Serrano, Olin

Shivers, Jonathan Shapiro, Jens Axel Søgaard, Jay Sulzberger, Pinku Surana, Mikael

Tillenius, Sam Tobin-Hochstadt, David Van Horn, André van Tonder, Reinder Ver-

linde, Alan Watson, Andrew Wilcox, Jon Wilson, Lynn Winebarger, Keith Wright,

and Chongkai Zhu.

Thanks are due as well to the following people for their help in creating the

previous revisions of this report: Alan Bawden, Michael Blair, George Carrette,

Andy Cromarty, Pavel Curtis, Jeff Dalton, Olivier Danvy, Ken Dickey, Bruce Duba,

Marc Feeley, Andy Freeman, Richard Gabriel, Yekta Gürsel, Ken Haase, Robert

Hieb, Paul Hudak, Morry Katz, Chris Lindblad, Mark Meyer, Jim Miller, Jim

Philbin, John Ramsdell, Mike Shaff, Jonathan Shapiro, Julie Sussman, Perry Wagle,

Daniel Weise, Henry Wu, and Ozan Yigit.

We thank Carol Fessenden, Daniel Friedman, and Christopher Haynes for per-

mission to use text from the Scheme 311 version 4 reference manual. We thank Texas

Instruments, Inc. for permission to use text from the TI Scheme Language Reference

Manual (Texas Instruments, 1985). We gladly acknowledge the influence of manu-

als for MIT Scheme (MIT Department of Electrical Engineering and Computer

Science, 1984), T (Rees et al., 1984), Scheme 84 (Friedman et al., 1985), Common

Lisp (Steele Jr., 1990), Chez Scheme (Dybvig, 2005), PLT Scheme (Flatt, 2006), and

Algol 60 (Backus et al., 1963).

We also thank Betty Dexter for the extreme effort she put into setting this report

in TEX, and Donald Knuth for designing the program that caused her troubles.

The Artificial Intelligence Laboratory of the Massachusetts Institute of Techno-

logy, the Computer Science Department of Indiana University, the Computer and

Information Sciences Department of the University of Oregon, and the NEC Re-

search Institute supported the preparation of this report. Support for the MIT work

was provided in part by the Advanced Research Projects Agency of the Department

of Defense under Office of Naval Research contract N00014-80-C-0505. Support for

the Indiana University work was provided by NSF grants NCS 83-04567 and NCS

83-03325.

Revised6 Scheme 13

PART ONE

Language

Abstract
This part gives a defining description of the programming language Scheme. Scheme is
a statically scoped and properly tail-recursive dialect of the Lisp programming language
invented by Guy Lewis Steele Jr. and Gerald Jay Sussman. It was designed to have an
exceptionally clear and simple semantics and few different ways to form expressions. A wide
variety of programming paradigms, including functional, imperative, and message passing
styles, find convenient expression in Scheme.

References to other parts of the document are identified by designations such as “library
section” or “library chapter”.

Guiding principles

To help guide the standardization effort, the editors have adopted a set of prin-

ciples, presented below. Like the Scheme language defined in Revised5 Report on the

Algorithmic Language Scheme (Kelsey et al., 1998), the language described in this

report is intended to:

• allow programmers to read each other’s code, and allow development of

portable programs that can be executed in any conforming implementation of

Scheme;

• derive its power from simplicity, a small number of generally useful core

syntactic forms and procedures, and no unnecessary restrictions on how they

are composed;

• allow programs to define new procedures and new hygienic syntactic forms;

• support the representation of program source code as data;

• make procedure calls powerful enough to express any form of sequential

control, and allow programs to perform non-local control operations without

the use of global program transformations;

• allow interesting, purely functional programs to run indefinitely without ter-

minating or running out of memory on finite-memory machines;

• allow educators to use the language to teach programming effectively, at

various levels and with a variety of pedagogical approaches; and

• allow researchers to use the language to explore the design, implementation,

and semantics of programming languages.

In addition, this report is intended to:

• allow programmers to create and distribute substantial programs and libraries,

e.g., implementations of Scheme Requests for Implementation, that run without

modification in a variety of Scheme implementations;

14 M. Sperber et al.

• support procedural, syntactic, and data abstraction more fully by allowing

programs to define hygiene-bending and hygiene-breaking syntactic abstrac-

tions and new unique datatypes along with procedures and hygienic macros

in any scope;

• allow programmers to rely on a level of automatic run-time type and bounds

checking sufficient to ensure type safety; and

• allow implementations to generate efficient code, without requiring program-

mers to use implementation-specific operators or declarations.

While it was possible to write portable programs in Scheme as described in

Revised5 Report on the Algorithmic Language Scheme, and indeed portable Scheme

programs were written prior to this report, many Scheme programs were not, primar-

ily because of the lack of substantial standardized libraries and the proliferation of

implementation-specific language additions.

In general, Scheme should include building blocks that allow a wide variety

of libraries to be written, include commonly used user-level features to enhance

portability and readability of library and application code, and exclude features that

are less commonly used and easily implemented in separate libraries.

The language described in this report is intended to also be backward compatible

with programs written in Scheme as described in Revised5 Report on the Algorithmic

Language Scheme to the extent possible without compromising the above principles

and future viability of the language. With respect to future viability, the editors have

operated under the assumption that many more Scheme programs will be written

in the future than exist in the present, so the future programs are those with which

we should be most concerned.

Revised6 Scheme 15

DESCRIPTION OF THE LANGUAGE

1 Overview of Scheme

This chapter gives an overview of Scheme’s semantics. The purpose of this overview

is to explain enough about the basic concepts of the language to facilitate under-

standing of the subsequent chapters of the report, which are organized as a reference

manual. Consequently, this overview is not a complete introduction to the language,

nor is it precise in all respects or normative in any way.

Following Algol, Scheme is a statically scoped programming language. Each use

of a variable is associated with a lexically apparent binding of that variable.

Scheme has latent as opposed to manifest types (Waite & Goos, 1984). Types

are associated with objects (also called values) rather than with variables. (Some

authors refer to languages with latent types as untyped, weakly typed or dynamically

typed languages.) Other languages with latent types are Python, Ruby, Smalltalk,

and other dialects of Lisp. Languages with manifest types (sometimes referred to as

strongly typed or statically typed languages) include Algol 60, C, C#, Java, Haskell,

and ML.

All objects created in the course of a Scheme computation, including procedures

and continuations, have unlimited extent. No Scheme object is ever destroyed. The

reason that implementations of Scheme do not (usually!) run out of storage is that

they are permitted to reclaim the storage occupied by an object if they can prove

that the object cannot possibly matter to any future computation. Other languages

in which most objects have unlimited extent include C#, Java, Haskell, most Lisp

dialects, ML, Python, Ruby, and Smalltalk.

Implementations of Scheme must be properly tail-recursive. This allows the execu-

tion of an iterative computation in constant space, even if the iterative computation is

described by a syntactically recursive procedure. Thus with a properly tail-recursive

implementation, iteration can be expressed using the ordinary procedure-call mech-

anics, so that special iteration constructs are useful only as syntactic sugar.

Scheme was one of the first languages to support procedures as objects in their

own right. Procedures can be created dynamically, stored in data structures, returned

as results of procedures, and so on. Other languages with these properties include

Common Lisp, Haskell, ML, Ruby, and Smalltalk.

One distinguishing feature of Scheme is that continuations, which in most other

languages only operate behind the scenes, also have “first-class” status. First-class

continuations are useful for implementing a wide variety of advanced control con-

structs, including non-local exits, backtracking, and coroutines.

In Scheme, the argument expressions of a procedure call are evaluated before the

procedure gains control, whether the procedure needs the result of the evaluation or

not. C, C#, Common Lisp, Python, Ruby, and Smalltalk are other languages that

always evaluate argument expressions before invoking a procedure. This is distinct

from the lazy-evaluation semantics of Haskell, or the call-by-name semantics of

16 M. Sperber et al.

Algol 60, where an argument expression is not evaluated unless its value is needed

by the procedure.

Scheme’s model of arithmetic provides a rich set of numerical types and operations

on them. Furthermore, it distinguishes exact and inexact number objects: Essentially,

an exact number object corresponds to a number exactly, and an inexact number

object is the result of a computation that involved rounding or other errors.

1.1 Basic types

Scheme programs manipulate objects, which are also referred to as values. Scheme

objects are organized into sets of values called types. This section gives an overview

of the fundamentally important types of the Scheme language. More types are

described in later chapters.

Note: As Scheme is latently typed, the use of the term type in this report differs

from the use of the term in the context of other languages, particularly those with

manifest typing.

Booleans A boolean is a truth value, and can be either true or false. In Scheme, the

object for “false” is written #f. The object for “true” is written #t. In most places

where a truth value is expected, however, any object different from #f counts as

true.

Numbers Scheme supports a rich variety of numerical data types, including objects

representing integers of arbitrary precision, rational numbers, complex numbers,

and inexact numbers of various kinds. Chapter 3 gives an overview of the structure

of Scheme’s numerical tower.

Characters Scheme characters mostly correspond to textual characters. More pre-

cisely, they are isomorphic to the scalar values of the Unicode standard.

Strings Strings are finite sequences of characters with fixed length and thus represent

arbitrary Unicode texts.

Symbols A symbol is an object representing a string, the symbol’s name. Unlike

strings, two symbols whose names are spelled the same way are never distinguishable.

Symbols are useful for many applications; for instance, they may be used the way

enumerated values are used in other languages.

Pairs and lists A pair is a data structure with two components. The most common

use of pairs is to represent (singly linked) lists, where the first component (the “car”)

represents the first element of the list, and the second component (the “cdr”) the

rest of the list. Scheme also has a distinguished empty list, which is the last cdr in a

chain of pairs that form a list.

Revised6 Scheme 17

Vectors Vectors, like lists, are linear data structures representing finite sequences of

arbitrary objects. Whereas the elements of a list are accessed sequentially through

the chain of pairs representing it, the elements of a vector are addressed by integer

indices. Thus, vectors are more appropriate than lists for random access to elements.

Procedures Procedures are values in Scheme.

1.2 Expressions

The most important elements of Scheme code are expressions. Expressions can be

evaluated, producing a value. (Actually, any number of values—see section 5.8.) The

most fundamental expressions are literal expressions:

#t =⇒ #t
23 =⇒ 23

This notation means that the expression #t evaluates to #t, that is, the value for

“true”, and that the expression 23 evaluates to a number object representing the

number 23.

Compound expressions are formed by placing parentheses around their subexpres-

sions. The first subexpression identifies an operation; the remaining subexpressions

are operands to the operation:

(+ 23 42) =⇒ 65
(+ 14 (* 23 42)) =⇒ 980

In the first of these examples, + is the name of the built-in operation for addition,

and 23 and 42 are the operands. The expression (+ 23 42) reads as “the sum of 23

and 42”. Compound expressions can be nested—the second example reads as “the

sum of 14 and the product of 23 and 42”.

As these examples indicate, compound expressions in Scheme are always written

using the same prefix notation. As a consequence, the parentheses are needed

to indicate structure. Consequently, “superfluous” parentheses, which are often

permissible in mathematical notation and also in many programming languages, are

not allowed in Scheme.

As in many other languages, whitespace (including line endings) is not significant

when it separates subexpressions of an expression, and can be used to indicate

structure.

1.3 Variables and binding

Scheme allows identifiers to stand for locations containing values. These identifiers

are called variables. In many cases, specifically when the location’s value is never

modified after its creation, it is useful to think of the variable as standing for the

value directly.

(let ((x 23)
(y 42))

(+ x y)) =⇒ 65

18 M. Sperber et al.

In this case, the expression starting with let is a binding construct. The paren-

thesized structure following the let lists variables alongside expressions: the variable

x alongside 23, and the variable y alongside 42. The let expression binds x to 23,

and y to 42. These bindings are available in the body of the let expression, (+ x
y), and only there.

1.4 Definitions

The variables bound by a let expression are local, because their bindings are visible

only in the let’s body. Scheme also allows creating top-level bindings for identifiers

as follows:

(define x 23)
(define y 42)
(+ x y) =⇒ 65

(These are actually “top-level” in the body of a top-level program or library; see

section 1.12 below.)

The first two parenthesized structures are definitions; they create top-level bindings,

binding x to 23 and y to 42. Definitions are not expressions, and cannot appear in

all places where an expression can occur. Moreover, a definition has no value.

Bindings follow the lexical structure of the program: When several bindings with

the same name exist, a variable refers to the binding that is closest to it, starting

with its occurrence in the program and going from inside to outside, and referring

to a top-level binding if no local binding can be found along the way:

(define x 23)
(define y 42)
(let ((y 43))
(+ x y)) =⇒ 66

(let ((y 43))
(let ((y 44))
(+ x y))) =⇒ 67

1.5 Forms

While definitions are not expressions, compound expressions and definitions exhibit

similar syntactic structure:

(define x 23)
(* x 2)

While the first line contains a definition, and the second an expression, this distinction

depends on the bindings for define and *. At the purely syntactical level, both are

forms , and form is the general name for a syntactic part of a Scheme program. In

particular, 23 is a subform of the form (define x 23).

Revised6 Scheme 19

1.6 Procedures

Definitions can also be used to define procedures:

(define (f x)
(+ x 42))

(f 23) =⇒ 65

A procedure is, slightly simplified, an abstraction of an expression over objects. In

the example, the first definition defines a procedure called f. (Note the parentheses

around f x, which indicate that this is a procedure definition.) The expression (f
23) is a procedure call, meaning, roughly, “evaluate (+ x 42) (the body of the

procedure) with x bound to 23”.

As procedures are objects, they can be passed to other procedures:

(define (f x)
(+ x 42))

(define (g p x)
(p x))

(g f 23) =⇒ 65

In this example, the body of g is evaluated with p bound to f and x bound to 23,

which is equivalent to (f 23), which evaluates to 65.

In fact, many predefined operations of Scheme are provided not by syntax, but by

variables whose values are procedures. The + operation, for example, which receives

special syntactic treatment in many other languages, is just a regular identifier in

Scheme, bound to a procedure that adds number objects. The same holds for * and

many others:

(define (h op x y)
(op x y))

(h + 23 42) =⇒ 65
(h * 23 42) =⇒ 966

Procedure definitions are not the only way to create procedures. A lambda
expression creates a new procedure as an object, with no need to specify a name:

((lambda (x) (+ x 42)) 23) =⇒ 65

The entire expression in this example is a procedure call; (lambda (x) (+ x
42)), evaluates to a procedure that takes a single number object and adds 42 to it.

1.7 Procedure calls and syntactic keywords

Whereas (+ 23 42), (f 23), and ((lambda (x) (+ x 42)) 23) are all examples

of procedure calls, lambda and let expressions are not. This is because let, even

20 M. Sperber et al.

though it is an identifier, is not a variable, but is instead a syntactic keyword . A form

that has a syntactic keyword as its first subexpression obeys special rules determined

by the keyword. The define identifier in a definition is also a syntactic keyword.

Hence, definitions are also not procedure calls.

The rules for the lambda keyword specify that the first subform is a list of

parameters, and the remaining subforms are the body of the procedure. In let
expressions, the first subform is a list of binding specifications, and the remaining

subforms constitute a body of expressions.

Procedure calls can generally be distinguished from these special forms by looking

for a syntactic keyword in the first position of an form: if the first position does not

contain a syntactic keyword, the expression is a procedure call. (So-called identifier

macros allow creating other kinds of special forms, but are comparatively rare.) The

set of syntactic keywords of Scheme is fairly small, which usually makes this task

fairly simple. It is possible, however, to create new bindings for syntactic keywords;

see section 1.9 below.

1.8 Assignment

Scheme variables bound by definitions or let or lambda expressions are not ac-

tually bound directly to the objects specified in the respective bindings, but to

locations containing these objects. The contents of these locations can subsequently

be modified destructively via assignment:

(let ((x 23))
(set! x 42)
x) =⇒ 42

In this case, the body of the let expression consists of two expressions which

are evaluated sequentially, with the value of the final expression becoming the value

of the entire let expression. The expression (set! x 42) is an assignment, saying

“replace the object in the location referenced by x with 42”. Thus, the previous value

of x, 23, is replaced by 42.

1.9 Derived forms and macros

Many of the special forms specified in this report can be translated into more basic

special forms. For example, a let expression can be translated into a procedure call

and a lambda expression. The following two expressions are equivalent:

(let ((x 23)
(y 42))

(+ x y)) =⇒ 65

((lambda (x y) (+ x y)) 23 42) =⇒ 65

Special forms like let expressions are called derived forms because their semantics

can be derived from that of other kinds of forms by a syntactic transformation.

Revised6 Scheme 21

Some procedure definitions are also derived forms. The following two definitions are

equivalent:

(define (f x)
(+ x 42))

(define f
(lambda (x)
(+ x 42)))

In Scheme, it is possible for a program to create its own derived forms by binding

syntactic keywords to macros:

(define-syntax def
(syntax-rules ()
((def f (p ...) body)
(define (f p ...)

body))))

(def f (x)
(+ x 42))

The define-syntax construct specifies that a parenthesized structure matching

the pattern (def f (p ...) body), where f, p, and body are pattern variables,

is translated to (define (f p ...) body). Thus, the def form appearing in the

example gets translated to:

(define (f x)
(+ x 42))

The ability to create new syntactic keywords makes Scheme extremely flexible and

expressive, allowing many of the features built into other languages to be derived

forms in Scheme.

1.10 Syntactic data and datum values

A subset of the Scheme objects is called datum values . These include booleans,

number objects, characters, symbols, and strings as well as lists and vectors whose

elements are data. Each datum value may be represented in textual form as a syntactic

datum , which can be written out and read back in without loss of information. A

datum value may be represented by several different syntactic data. Moreover, each

datum value can be trivially translated to a literal expression in a program by

prepending a ’ to a corresponding syntactic datum:

’23 =⇒ 23
’#t =⇒ #t
’foo =⇒ foo
’(1 2 3) =⇒ (1 2 3)
’#(1 2 3) =⇒ #(1 2 3)

22 M. Sperber et al.

The ’ shown in the previous examples is not needed for representations of number

objects or booleans. The syntactic datum foo represents a symbol with name “foo”,

and ’foo is a literal expression with that symbol as its value. (1 2 3) is a syntactic

datum that represents a list with elements 1, 2, and 3, and ’(1 2 3) is a literal

expression with this list as its value. Likewise, #(1 2 3) is a syntactic datum that

represents a vector with elements 1, 2 and 3, and ’#(1 2 3) is the corresponding

literal.

The syntactic data are a superset of the Scheme forms. Thus, data can be used

to represent Scheme forms as data objects. In particular, symbols can be used to

represent identifiers.

’(+ 23 42) =⇒ (+ 23 42)
’(define (f x) (+ x 42)) =⇒ (define (f x) (+ x 42))

This facilitates writing programs that operate on Scheme source code, in particular

interpreters and program transformers.

1.11 Continuations

Whenever a Scheme expression is evaluated there is a continuation wanting the

result of the expression. The continuation represents an entire (default) future for

the computation. For example, informally the continuation of 3 in the expression

(+ 1 3)

adds 1 to it. Normally these ubiquitous continuations are hidden behind the scenes

and programmers do not think much about them. On rare occasions, however, a pro-

grammer may need to deal with continuations explicitly. The call-with-current-
continuation procedure (see section 11.15) allows Scheme programmers to do that

by creating a procedure that reinstates the current continuation. The call-with-
current-continuation procedure accepts a procedure, calls it immediately with

an argument that is an escape procedure. This escape procedure can then be called

with an argument that becomes the result of the call to call-with-current-
continuation. That is, the escape procedure abandons its own continuation, and

reinstates the continuation of the call to call-with-current-continuation.
In the following example, an escape procedure representing the continuation that

adds 1 to its argument is bound to escape, and then called with 3 as an argument.

The continuation of the call to escape is abandoned, and instead the 3 is passed to

the continuation that adds 1:

(+ 1 (call-with-current-continuation
(lambda (escape)
(+ 2 (escape 3))))) =⇒ 4

An escape procedure has unlimited extent: It can be called after the continuation

it captured has been invoked, and it can be called multiple times. This makes

call-with-current-continuation significantly more powerful than typical non-

local control constructs such as exceptions in other languages.

Revised6 Scheme 23

1.12 Libraries

Scheme code can be organized in components called libraries . Each library contains

definitions and expressions. It can import definitions from other libraries and export

definitions to other libraries.

The following library called (hello) exports a definition called hello-world,
and imports the base library (see chapter 11) and the simple I/O library (see library

section 8.3). The hello-world export is a procedure that displays Hello World on

a separate line:

(library (hello)
(export hello-world)
(import (rnrs base)

(rnrs io simple))
(define (hello-world)
(display "Hello World")
(newline)))

1.13 Top-level programs

A Scheme program is invoked via a top-level program . Like a library, a top-level

program contains imports, definitions and expressions, and specifies an entry point

for execution. Thus a top-level program defines, via the transitive closure of the

libraries it imports, a Scheme program.

The following top-level program obtains the first argument from the command

line via the command-line procedure from the (rnrs programs (6)) library (see

library chapter 10). It then opens the file using open-file-input-port (see library

section 8.2), yielding a port, i.e. a connection to the file as a data source, and calls

the get-bytes-all procedure to obtain the contents of the file as binary data. It

then uses put-bytes to output the contents of the file to standard output:

#!r6rs
(import (rnrs base)

(rnrs io ports)
(rnrs programs))

(let ((p (standard-output-port)))
(put-bytevector p

(call-with-port
(open-file-input-port
(cadr (command-line)))

get-bytevector-all))
(close-port p))

24 M. Sperber et al.

2 Requirement levels

The key words “must”, “must not”, “should”, “should not”, “recommended”, “may”,

and “optional” in this report are to be interpreted as described in RFC 2119

(Bradner, 1997). Specifically:

must This word means that a statement is an absolute requirement of the specifica-

tion.

must not This phrase means that a statement is an absolute prohibition of the

specification.

should This word, or the adjective “recommended”, means that valid reasons may

exist in particular circumstances to ignore a statement, but that the implications

must be understood and weighed before choosing a different course.

should not This phrase, or the phrase “not recommended”, means that valid reas-

ons may exist in particular circumstances when the behavior of a statement is

acceptable, but that the implications should be understood and weighed before

choosing the course described by the statement.

may This word, or the adjective “optional”, means that an item is truly optional.

In particular, this report occasionally uses “should” to designate circumstances

that are outside the specification of this report, but cannot be practically detected

by an implementation; see section 5.4. In such circumstances, a particular imple-

mentation may allow the programmer to ignore the recommendation of the report

and even exhibit reasonable behavior. However, as the report does not specify the

behavior, these programs may be unportable, that is, their execution might produce

different results on different implementations.

Moreover, this report occasionally uses the phrase “not required” to note the

absence of an absolute requirement.

3 Numbers

This chapter describes Scheme’s model for numbers. It is important to distinguish

between the mathematical numbers, the Scheme objects that attempt to model them,

the machine representations used to implement the numbers, and notations used to

write numbers. In this report, the term number refers to a mathematical number,

and the term number object refers to a Scheme object representing a number. This

report uses the types complex, real, rational, and integer to refer to both mathematical

numbers and number objects. The fixnum and flonum types refer to special subsets

of the number objects, as determined by common machine representations.

3.1 Numerical tower

Numbers may be arranged into a tower of subsets in which each level is a subset of

the level above it:

number

complex

Revised6 Scheme 25

real

rational

integer

For example, 5 is an integer. Therefore 5 is also a rational, a real, and a complex.

The same is true of the number objects that model 5.

Number objects are organized as a corresponding tower of subtypes defined by the

predicates number?, complex?, real?, rational?, and integer?; see section 11.7.7.

Integer number objects are also called integer objects .

There is no simple relationship between the subset that contains a number and

its representation inside a computer. For example, the integer 5 may have several

representations. Scheme’s numerical operations treat number objects as abstract data,

as independent of their representation as possible. Although an implementation of

Scheme may use many different representations for numbers, this should not be

apparent to a casual programmer writing simple programs.

3.2 Exactness

It is useful to distinguish between number objects that are known to correspond to a

number exactly, and those number objects whose computation involved rounding or

other errors. For example, index operations into data structures may need to know

the index exactly, as may some operations on polynomial coefficients in a symbolic

algebra system. On the other hand, the results of measurements are inherently

inexact, and irrational numbers may be approximated by rational and therefore

inexact approximations. In order to catch uses of numbers known only inexactly

where exact numbers are required, Scheme explicitly distinguishes exact from inexact

number objects. This distinction is orthogonal to the dimension of type.

A number object is exact if it is the value of an exact numerical literal or was

derived from exact number objects using only exact operations. Exact number

objects correspond to mathematical numbers in the obvious way.

Conversely, a number object is inexact if it is the value of an inexact numerical

literal, or was derived from inexact number objects, or was derived using inexact

operations. Thus inexactness is contagious.

Exact arithmetic is reliable in the following sense: If exact number objects are

passed to any of the arithmetic procedures described in section 11.7.1, and an exact

number object is returned, then the result is mathematically correct. This is generally

not true of computations involving inexact number objects because approximate

methods such as floating-point arithmetic may be used, but it is the duty of each

implementation to make the result as close as practical to the mathematically ideal

result.

3.3 Fixnums and flonums

A fixnum is an exact integer object that lies within a certain implementation-

dependent subrange of the exact integer objects. (Library section 11.2 describes a

26 M. Sperber et al.

library for computing with fixnums.) Likewise, every implementation must designate

a subset of its inexact real number objects as flonums, and to convert certain external

representations into flonums. (Library section 11.3 describes a library for computing

with flonums.) Note that this does not imply that an implementation must use

floating-point representations.

3.4 Implementation requirements

Implementations of Scheme must support number objects for the entire tower of

subtypes given in section 3.1. Moreover, implementations must support exact integer

objects and exact rational number objects of practically unlimited size and precision,

and to implement certain procedures (listed in 11.7.1) so they always return exact

results when given exact arguments. (“Practically unlimited” means that the size

and precision of these numbers should only be limited by the size of the available

memory.)

Implementations may support only a limited range of inexact number objects of

any type, subject to the requirements of this section. For example, an implementation

may limit the range of the inexact real number objects (and therefore the range of

inexact integer and rational number objects) to the dynamic range of the flonum

format. Furthermore the gaps between the inexact integer objects and rationals are

likely to be very large in such an implementation as the limits of this range are

approached.

An implementation may use floating point and other approximate representa-

tion strategies for inexact numbers. This report recommends, but does not require,

that the IEEE floating-point standards be followed by implementations that use

floating-point representations, and that implementations using other representa-

tions should match or exceed the precision achievable using these floating-point

standards (IEEE754, 1985).

In particular, implementations that use floating-point representations must follow

these rules: A floating-point result must be represented with at least as much

precision as is used to express any of the inexact arguments to that operation.

Potentially inexact operations such as sqrt, when applied to exact arguments,

should produce exact answers whenever possible (for example the square root of

an exact 4 ought to be an exact 2). However, this is not required. If, on the other

hand, an exact number object is operated upon so as to produce an inexact result

(as by sqrt), and if the result is represented in floating point, then the most precise

floating-point format available must be used; but if the result is represented in some

other way then the representation must have at least as much precision as the most

precise floating-point format available.

It is the programmer’s responsibility to avoid using inexact number objects with

magnitude or significand too large to be represented in the implementation.

Revised6 Scheme 27

3.5 Infinities and NaNs

Some Scheme implementations, specifically those that follow the IEEE floating-point

standards, distinguish special number objects called positive infinity, negative infinity,

and NaN.

Positive infinity is regarded as an inexact real (but not rational) number object

that represents an indeterminate number greater than the numbers represented by

all rational number objects. Negative infinity is regarded as an inexact real (but

not rational) number object that represents an indeterminate number less than the

numbers represented by all rational numbers.

A NaN is regarded as an inexact real (but not rational) number object so

indeterminate that it might represent any real number, including positive or negative

infinity, and might even be greater than positive infinity or less than negative infinity.

3.6 Distinguished -0.0

Some Scheme implementations, specifically those that follow the IEEE floating-point

standards, distinguish between number objects for 0.0 and −0.0, i.e., positive and

negative inexact zero. This report will sometimes specify the behavior of certain

arithmetic operations on these number objects. These specifications are marked with

“if −0.0 is distinguished” or “implementations that distinguish −0.0”.

4 Lexical syntax and datum syntax

The syntax of Scheme code is organized in three levels:

1. the lexical syntax that describes how a program text is split into a sequence

of lexemes,

2. the datum syntax, formulated in terms of the lexical syntax, that structures the

lexeme sequence as a sequence of syntactic data, where a syntactic datum is a

recursively structured entity,

3. the program syntax formulated in terms of the read syntax, imposing further

structure and assigning meaning to syntactic data.

Syntactic data (also called external representations) double as a notation for ob-

jects, and Scheme’s (rnrs io ports (6)) library (library section 8.2) provides the

get-datum and put-datum procedures for reading and writing syntactic data, con-

verting between their textual representation and the corresponding objects. Each

syntactic datum represents a corresponding datum value. A syntactic datum can

be used in a program to obtain the corresponding datum value using quote (see

section 11.4.1).

Scheme source code consists of syntactic data and (non-significant) comments.

Syntactic data in Scheme source code are called forms . (A form nested inside another

form is called a subform.) Consequently, Scheme’s syntax has the property that any

sequence of characters that is a form is also a syntactic datum representing some

object. This can lead to confusion, since it may not be obvious out of context

28 M. Sperber et al.

whether a given sequence of characters is intended to be a representation of objects

or the text of a program. It is also a source of power, since it facilitates writing

programs such as interpreters or compilers that treat programs as objects (or vice

versa).

A datum value may have several different external representations. For example,

both “#e28.000” and “#x1c” are syntactic data representing the exact integer object

28, and the syntactic data “(8 13)”, “(08 13)”, “(8 . (13 . ()))” all represent

a list containing the exact integer objects 8 and 13. Syntactic data that represent

equal objects (in the sense of equal?; see section 11.5) are always equivalent as

forms of a program.

Because of the close correspondence between syntactic data and datum values,

this report sometimes uses the term datum for either a syntactic datum or a datum

value when the exact meaning is apparent from the context.

An implementation must not extend the lexical or datum syntax in any way, with

one exception: it need not treat the syntax #!〈identifier〉, for any 〈identifier〉 (see

section 4.2.4) that is not r6rs, as a syntax violation, and it may use specific #!-
prefixed identifiers as flags indicating that subsequent input contains extensions to

the standard lexical or datum syntax. The syntax #!r6rs may be used to signify that

the input afterward is written with the lexical syntax and datum syntax described

by this report. #!r6rs is otherwise treated as a comment; see section 4.2.3.

4.1 Notation

The formal syntax for Scheme is written in an extended BNF. Non-terminals are

written using angle brackets. Case is insignificant for non-terminal names.

All spaces in the grammar are for legibility. 〈Empty〉 stands for the empty string.

The following extensions to BNF are used to make the description more concise:

〈thing〉* means zero or more occurrences of 〈thing〉, and 〈thing〉+ means at least

one 〈thing〉.
Some non-terminal names refer to the Unicode scalar values of the same name:

〈character tabulation〉 (U+0009), 〈linefeed〉 (U+000A), 〈line tabulation〉 (U+000B),

〈form feed〉 (U+000C), 〈carriage return〉 (U+000D), 〈space〉 (U+0020), 〈next line〉
(U+0085), 〈line separator〉 (U+2028), and 〈paragraph separator〉 (U+2029).

4.2 Lexical syntax

The lexical syntax determines how a character sequence is split into a sequence of

lexemes, omitting non-significant portions such as comments and whitespace. The

character sequence is assumed to be text according to the Unicode standard (Unicode

Consortium, 2007). Some of the lexemes, such as identifiers, representations of

number objects, strings etc., of the lexical syntax are syntactic data in the datum

syntax, and thus represent objects. Besides the formal account of the syntax, this

section also describes what datum values are represented by these syntactic data.

The lexical syntax, in the description of comments, contains a forward reference to

Revised6 Scheme 29

〈datum〉, which is described as part of the datum syntax. Being comments, however,

these 〈datum〉s do not play a significant role in the syntax.

Case is significant except in representations of booleans, number objects, and in

hexadecimal numbers specifying Unicode scalar values. For example, #x1A and #X1a
are equivalent. The identifier Foo is, however, distinct from the identifier FOO.

4.2.1 Formal account

〈Interlexeme space〉 may occur on either side of any lexeme, but not within a lexeme.

〈Identifier〉s, ., 〈number〉s, 〈character〉s, and 〈boolean〉s, must be terminated by a

〈delimiter〉 or by the end of the input.

The following two characters are reserved for future extensions to the language:

{ }

〈lexeme〉 −→ 〈identifier〉 |〈 boolean〉 |〈 number〉
| 〈character〉 |〈 string〉
| (|) | [|] | #(| #vu8(| ’ | ` | , | ,@ | .

| #’ | #` | #, | #,@
〈delimiter〉 −→ (|) | [|] | " | ; | #

| 〈whitespace〉
〈whitespace〉 −→ 〈character tabulation〉

| 〈linefeed〉 |〈 line tabulation〉 |〈 form feed〉
| 〈carriage return〉 |〈 next line〉
| 〈any character whose category is Zs, Zl, or Zp〉

〈line ending〉 −→ 〈linefeed〉 |〈 carriage return〉
| 〈carriage return〉 〈linefeed〉 |〈 next line〉
| 〈carriage return〉 〈next line〉 |〈 line separator〉

〈comment〉 −→ ; 〈all subsequent characters up to a

〈line ending〉 or 〈paragraph separator〉〉
| 〈nested comment〉
| #; 〈interlexeme space〉 〈datum〉
| #!r6rs

〈nested comment〉 −→ #| 〈comment text〉
〈comment cont〉* |#

〈comment text〉 −→ 〈character sequence not containing

#| or |#〉
〈comment cont〉 −→ 〈nested comment〉 〈comment text〉
〈atmosphere〉 −→ 〈whitespace〉 |〈 comment〉
〈interlexeme space〉 −→ 〈atmosphere〉*

〈identifier〉 −→ 〈initial〉 〈subsequent〉*
| 〈peculiar identifier〉

〈initial〉 −→ 〈constituent〉 |〈 special initial〉
| 〈inline hex escape〉

〈letter〉 −→ a | b | c | ... | z

30 M. Sperber et al.

| A | B | C | ... | Z
〈constituent〉 −→ 〈letter〉

| 〈any character whose Unicode scalar value is greater than

127, and whose category is Lu, Ll, Lt, Lm, Lo, Mn,

Nl, No, Pd, Pc, Po, Sc, Sm, Sk, So, or Co〉
〈special initial〉 −→ ! | $ | % | & | * | / | : | < | =

| > | ? | ^ | _ | ~
〈subsequent〉 −→ 〈initial〉 |〈 digit〉

| 〈any character whose category is Nd, Mc, or Me〉
| 〈special subsequent〉

〈digit〉 −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
〈hex digit〉 −→ 〈digit〉

| a | A | b | B | c | C | d | D | e | E | f | F
〈special subsequent〉 −→ + | - | . | @
〈inline hex escape〉 −→ \x〈hex scalar value〉;
〈hex scalar value〉 −→ 〈hex digit〉+

〈peculiar identifier〉 −→ + | - | ... | -> 〈subsequent〉*
〈boolean〉 −→ #t | #T | #f | #F
〈character〉 −→ #\〈any character〉

| #\〈character name〉
| #\x〈hex scalar value〉

〈character name〉 −→ nul | alarm | backspace | tab
| linefeed | newline | vtab | page | return
| esc | space | delete

〈string〉 −→ " 〈string element〉* "
〈string element〉 −→ 〈any character other than " or \〉

| \a | \b | \t | \n | \v | \f | \r
| \" | \\
| \〈intraline whitespace〉*〈line ending〉

〈intraline whitespace〉*
| 〈inline hex escape〉

〈intraline whitespace〉 −→ 〈character tabulation〉
| 〈any character whose category is Zs〉

A 〈hex scalar value〉 represents a Unicode scalar value between 0 and #x10FFFF,

excluding the range [#xD800,#xDFFF].

The rules for 〈num R〉, 〈complex R〉, 〈real R〉, 〈ureal R〉, 〈uinteger R〉, and 〈prefix R〉
below should be replicated for R = 2, 8, 10, and 16. There are no rules for 〈decimal 2〉,
〈decimal 8〉, and 〈decimal 16〉, which means that number representations containing

decimal points or exponents must be in decimal radix.

In the following rules, case is insignificant.

〈number〉 −→ 〈num 2〉 |〈 num 8〉
| 〈num 10〉 |〈 num 16〉

〈num R〉 −→ 〈prefix R〉 〈complex R〉
〈complex R〉 −→ 〈real R〉 |〈 real R〉 @ 〈real R〉

Revised6 Scheme 31

| 〈real R〉 + 〈ureal R〉 i | 〈real R〉 - 〈ureal R〉 i
| 〈real R〉 + 〈naninf〉 i | 〈real R〉 - 〈naninf〉 i
| 〈real R〉 + i | 〈real R〉 - i
| + 〈ureal R〉 i | - 〈ureal R〉 i
| + 〈naninf〉 i | - 〈naninf〉 i
| + i | - i

〈real R〉 −→ 〈sign〉 〈ureal R〉
| + 〈naninf〉 | - 〈naninf〉

〈naninf〉 −→ nan.0 | inf.0
〈ureal R〉 −→ 〈uinteger R〉

| 〈uinteger R〉 / 〈uinteger R〉
| 〈decimal R〉 〈mantissa width〉

〈decimal 10〉 −→ 〈uinteger 10〉 〈suffix〉
| . 〈digit 10〉+ 〈suffix〉
| 〈digit 10〉+ . 〈digit 10〉* 〈suffix〉

〈uinteger R〉 −→ 〈digit R〉+

〈prefix R〉 −→ 〈radix R〉 〈exactness〉
| 〈exactness〉 〈radix R〉

〈suffix〉 −→ 〈empty〉
| 〈exponent marker〉 〈sign〉 〈digit 10〉+

〈exponent marker〉 −→ e | s | f
| d | l

〈mantissa width〉 −→ 〈empty〉
| | 〈digit 10〉+

〈sign〉 −→ 〈empty〉 | + | -
〈exactness〉 −→ 〈empty〉

| #i | #e
〈radix 2〉 −→ #b
〈radix 8〉 −→ #o
〈radix 10〉 −→ 〈empty〉 | #d
〈radix 16〉 −→ #x
〈digit 2〉 −→ 0 | 1
〈digit 8〉 −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
〈digit 10〉 −→ 〈digit〉
〈digit 16〉 −→ 〈hex digit〉

4.2.2 Line endings

Line endings are significant in Scheme in single-line comments (see section 4.2.3) and

within string literals. In Scheme source code, any of the line endings in 〈line ending〉
marks the end of a line. Moreover, the two-character line endings 〈carriage return〉
〈linefeed〉 and 〈carriage return〉 〈next line〉 each count as a single line ending.

32 M. Sperber et al.

In a string literal, a 〈line ending〉 not preceded by a \ stands for a linefeed

character, which is the standard line-ending character of Scheme.

4.2.3 Whitespace and comments

Whitespace characters are spaces, linefeeds, carriage returns, character tabulations,

form feeds, line tabulations, and any other character whose category is Zs, Zl, or Zp.

Whitespace is used for improved readability and as necessary to separate lexemes

from each other. Whitespace may occur between any two lexemes, but not within a

lexeme. Whitespace may also occur inside a string, where it is significant.

The lexical syntax includes several comment forms. In all cases, comments are

invisible to Scheme, except that they act as delimiters, so, for example, a comment

cannot appear in the middle of an identifier or representation of a number object.

A semicolon (;) indicates the start of a line comment. The comment continues to

the end of the line on which the semicolon appears.

Another way to indicate a comment is to prefix a 〈datum〉 (cf. section 4.3.1) with

#;, possibly with 〈interlexeme space〉 before the 〈datum〉. The comment consists

of the comment prefix #; and the 〈datum〉 together. This notation is useful for

“commenting out” sections of code.

Block comments may be indicated with properly nested #| and |# pairs.

#|
The FACT procedure computes the factorial
of a non-negative integer.

|#
(define fact
(lambda (n)
;; base case
(if (= n 0)

#;(= n 1)
1 ; identity of *
(* n (fact (- n 1))))))

The lexeme #!r6rs, which signifies that the program text that follows is written

with the lexical and datum syntax described in this report, is also otherwise treated

as a comment.

4.2.4 Identifiers

Most identifiers allowed by other programming languages are also acceptable to

Scheme. In general, a sequence of letters, digits, and “extended alphabetic characters”

is an identifier when it begins with a character that cannot begin a representation

of a number object. In addition, +, -, and ... are identifiers, as is a sequence of

letters, digits, and extended alphabetic characters that begins with the two-character

sequence ->. Here are some examples of identifiers:

Revised6 Scheme 33

lambda q soup
list->vector + V17a
<= a34kTMNs ->-
the-word-recursion-has-many-meanings

Extended alphabetic characters may be used within identifiers as if they were

letters. The following are extended alphabetic characters:

! $ % & * + - . / : < = > ? @ ^ _ ~

Moreover, all characters whose Unicode scalar values are greater than 127 and

whose Unicode category is Lu, Ll, Lt, Lm, Lo, Mn, Mc, Me, Nd, Nl, No, Pd, Pc, Po,

Sc, Sm, Sk, So, or Co can be used within identifiers. In addition, any character can be

used within an identifier when specified via an 〈inline hex escape〉. For example, the

identifier H\x65;llo is the same as the identifier Hello, and the identifier \x3BB; is

the same as the identifier λ.

Any identifier may be used as a variable or as a syntactic keyword (see sections 5.2

and 9.2) in a Scheme program. Any identifier may also be used as a syntactic datum,

in which case it represents a symbol (see section 11.10).

4.2.5 Booleans

The standard boolean objects for true and false have external representations #t
and #f.

4.2.6 Characters

Characters are represented using the notation #\〈character〉 or #\〈character name〉
or #\x〈hex scalar value〉.

For example:

#\a lower case letter a

#\A upper case letter A

#\(left parenthesis

#\ space character

#\nul U+0000

#\alarm U+0007

#\backspace U+0008

#\tab U+0009

#\linefeed U+000A

#\newline U+000A

#\vtab U+000B

#\page U+000C

#\return U+000D

#\esc U+001B

#\space U+0020

preferred way to write a space

34 M. Sperber et al.

#\delete U+007F

#\xFF U+00FF

#\x03BB U+03BB

#\x00006587 U+6587

#\λ U+03BB

#\x0001z &lexical exception

#\λx &lexical exception

#\alarmx &lexical exception

#\alarm x U+0007

followed by x
#\Alarm &lexical exception

#\alert &lexical exception

#\xA U+000A

#\xFF U+00FF

#\xff U+00FF

#\x ff U+0078

followed by another datum, ff
#\x(ff) U+0078

followed by another datum,

a parenthesized ff
#\(x) &lexical exception

#\(x &lexical exception

#\((x) U+0028

followed by another datum,

parenthesized x
#\x00110000 &lexical exception

out of range

#\x000000001 U+0001

#\xD800 &lexical exception

in excluded range

(The notation &lexical exception means that the line in question is a lexical

syntax violation.)

Case is significant in #\〈character〉, and in #\〈character name〉, but not in the

〈hex scalar value〉 part of #\x〈hex scalar value〉. A 〈character〉 must be followed

by a 〈delimiter〉 or by the end of the input. This rule resolves various ambiguous

cases involving named characters, requiring, for example, the sequence of characters

“#\space” to be interpreted as the space character rather than as the character

“#\s” followed by the identifier “pace”.

Note: The #\newline notation is retained for backward compatibility. Its use is

deprecated; #\linefeed should be used instead.

Revised6 Scheme 35

4.2.7 Strings

String are represented by sequences of characters enclosed within doublequotes (").
Within a string literal, various escape sequences represent characters other than

themselves. Escape sequences always start with a backslash (\):

• \a : alarm, U+0007
• \b : backspace, U+0008
• \t : character tabulation, U+0009
• \n : linefeed, U+000A
• \v : line tabulation, U+000B
• \f : formfeed, U+000C
• \r : return, U+000D
• \" : doublequote, U+0022
• \\ : backslash, U+005C
• \〈intraline whitespace〉〈line ending〉

〈intraline whitespace〉 : nothing
• \x〈hex scalar value〉; : specified character (note the terminating semi-colon).

These escape sequences are case-sensitive, except that the alphabetic digits of a

〈hex scalar value〉 can be uppercase or lowercase.

Any other character in a string after a backslash is a syntax violation. Except for

a line ending, any character outside of an escape sequence and not a doublequote

stands for itself in the string literal. For example the single-character string literal

"λ" (doublequote, a lower case lambda, doublequote) represents the same string as

"\x03bb;". A line ending that does not follow a backslash stands for a linefeed

character.

Examples:

"abc" U+0061, U+0062, U+0063

"\x41;bc" "Abc" ; U+0041, U+0062, U+0063

"\x41; bc" "A bc"
U+0041, U+0020, U+0062, U+0063

"\x41bc;" U+41BC

"\x41" &lexical exception

"\x;" &lexical exception

"\x41bx;" &lexical exception

"\x00000041;" "A" ; U+0041

"\x0010FFFF;" U+10FFFF

"\x00110000;" &lexical exception

out of range

"\x000000001;" U+0001

"\xD800;" &lexical exception

in excluded range

"A
bc" U+0041, U+000A, U+0062, U+0063

if no space occurs after the A

36 M. Sperber et al.

4.2.8 Numbers

The syntax of external representations for number objects is described formally

by the 〈number〉 rule in the formal grammar. Case is not significant in external

representations of number objects.

A representation of a number object may be written in binary, octal, decimal,

or hexadecimal by the use of a radix prefix. The radix prefixes are #b (binary), #o
(octal), #d (decimal), and #x (hexadecimal). With no radix prefix, a representation

of a number object is assumed to be expressed in decimal.

A representation of a number object may be specified to be either exact or inexact

by a prefix. The prefixes are #e for exact, and #i for inexact. An exactness prefix

may appear before or after any radix prefix that is used. If the representation of

a number object has no exactness prefix, the constant is inexact if it contains a

decimal point, an exponent, or a nonempty mantissa width; otherwise it is exact.

In systems with inexact number objects of varying precisions, it may be useful

to specify the precision of a constant. For this purpose, representations of number

objects may be written with an exponent marker that indicates the desired precision

of the inexact representation. The letters s, f, d, and l specify the use of short , single,

double, and long precision, respectively. (When fewer than four internal inexact

representations exist, the four size specifications are mapped onto those available.

For example, an implementation with two internal representations may map short

and single together and long and double together.) In addition, the exponent marker

e specifies the default precision for the implementation. The default precision has

at least as much precision as double, but implementations may wish to allow this

default to be set by the user.

3.1415926535898F0
Round to single, perhaps 3.141593

0.6L0
Extend to long, perhaps .600000000000000

A representation of a number object with nonempty mantissa width, x|p, rep-

resents the best binary floating-point approximation of x using a p-bit significand.

For example, 1.1|53 is a representation of the best approximation of 1.1 in IEEE

double precision. If x is an external representation of an inexact real number object

that contains no vertical bar, then its numerical value should be computed as though

it had a mantissa width of 53 or more.

Implementations that use binary floating-point representations of real number

objects should represent x|p using a p-bit significand if practical, or by a greater

precision if a p-bit significand is not practical, or by the largest available precision

if p or more bits of significand are not practical within the implementation.

Note: The precision of a significand should not be confused with the number of bits

used to represent the significand. In the IEEE floating-point standards, for example,

the significand’s most significant bit is implicit in single and double precision but is

explicit in extended precision. Whether that bit is implicit or explicit does not affect

the mathematical precision. In implementations that use binary floating point, the

default precision can be calculated by calling the following procedure:

Revised6 Scheme 37

(define (precision)
(do ((n 0 (+ n 1))

(x 1.0 (/ x 2.0)))
((= 1.0 (+ 1.0 x)) n)))

Note: When the underlying floating-point representation is IEEE double precision,

the |p suffix should not always be omitted: Denormalized floating-point numbers

have diminished precision, and therefore their external representations should carry

a |p suffix with the actual width of the significand.

The literals +inf.0 and -inf.0 represent positive and negative infinity, respect-

ively. The +nan.0 literal represents the NaN that is the result of (/ 0.0 0.0), and

may represent other NaNs as well. The -nan.0 literal also represents a NaN.

If x is an external representation of an inexact real number object and contains

no vertical bar and no exponent marker other than e, the inexact real number object

it represents is a flonum (see library section 11.3). Some or all of the other external

representations of inexact real number objects may also represent flonums, but that

is not required by this report.

4.3 Datum syntax

The datum syntax describes the syntax of syntactic data in terms of a sequence of

〈lexeme〉s, as defined in the lexical syntax.

Syntactic data include the lexeme data described in the previous section as well

as the following constructs for forming compound data:

• pairs and lists, enclosed by () or [] (see section 4.3.2)

• vectors (see section 4.3.3)

• bytevectors (see section 4.3.4)

4.3.1 Formal account

The following grammar describes the syntax of syntactic data in terms of various

kinds of lexemes defined in the grammar in section 4.2:

〈datum〉 −→ 〈lexeme datum〉
| 〈compound datum〉

〈lexeme datum〉 −→ 〈boolean〉 |〈 number〉
| 〈character〉 |〈 string〉 |〈 symbol〉

〈symbol〉 −→ 〈identifier〉
〈compound datum〉 −→ 〈list〉 |〈 vector〉 |〈 bytevector〉
〈list〉 −→ (〈datum〉*) | [〈datum〉*]

| (〈datum〉+ . 〈datum〉) | [〈datum〉+ . 〈datum〉]
| 〈abbreviation〉

〈abbreviation〉 −→ 〈abbrev prefix〉 〈datum〉
〈abbrev prefix〉 −→ ’ | ` | , | ,@

38 M. Sperber et al.

| #’ | #` | #, | #,@
〈vector〉 −→ #(〈datum〉*)
〈bytevector〉 −→ #vu8(〈u8〉*)
〈u8〉 −→ 〈any 〈number〉 representing an exact

integer in {0, . . . , 255}〉

4.3.2 Pairs and lists

List and pair data, representing pairs and lists of values (see section 11.9) are

represented using parentheses or brackets. Matching pairs of brackets that occur in

the rules of 〈list〉 are equivalent to matching pairs of parentheses.

The most general notation for Scheme pairs as syntactic data is the “dotted”

notation (〈datum1〉 . 〈datum2〉) where 〈datum1〉 is the representation of the value

of the car field and 〈datum2〉 is the representation of the value of the cdr field. For

example (4 . 5) is a pair whose car is 4 and whose cdr is 5.

A more streamlined notation can be used for lists: the elements of the list are

simply enclosed in parentheses and separated by spaces. The empty list is represented

by () . For example,

(a b c d e)

and

(a . (b . (c . (d . (e . ())))))

are equivalent notations for a list of symbols.

The general rule is that, if a dot is followed by an open parenthesis, the dot,

open parenthesis, and matching closing parenthesis can be omitted in the external

representation.

The sequence of characters “(4 . 5)” is the external representation of a pair, not

an expression that evaluates to a pair. Similarly, the sequence of characters “(+ 2
6)” is not an external representation of the integer 8, even though it is an expression

(in the language of the (rnrs base (6)) library) evaluating to the integer 8; rather,

it is a syntactic datum representing a three-element list, the elements of which are

the symbol + and the integers 2 and 6.

4.3.3 Vectors

Vector data, representing vectors of objects (see section 11.13), are represented using

the notation #(〈datum〉 . . .). For example, a vector of length 3 containing the

number object for zero in element 0, the list (2 2 2 2) in element 1, and the string

"Anna" in element 2 can be represented as follows:

#(0 (2 2 2 2) "Anna")

This is the external representation of a vector, not an expression that evaluates to

a vector.

Revised6 Scheme 39

4.3.4 Bytevectors

Bytevector data, representing bytevectors (see library chapter 2), are represented

using the notation #vu8(〈u8〉 . . .), where the 〈u8〉s represent the octets of the

bytevector. For example, a bytevector of length 3 containing the octets 2, 24, and

123 can be represented as follows:

#vu8(2 24 123)

This is the external representation of a bytevector, and also an expression that

evaluates to a bytevector.

4.3.5 Abbreviations

’〈datum〉
`〈datum〉
,〈datum〉
,@〈datum〉
#’〈datum〉
#`〈datum〉
#,〈datum〉
#,@〈datum〉

Each of these is an abbreviation:

’〈datum〉 for (quote 〈datum〉),
`〈datum〉 for (quasiquote 〈datum〉),
,〈datum〉 for (unquote 〈datum〉),
,@〈datum〉 for (unquote-splicing 〈datum〉),
#’〈datum〉 for (syntax 〈datum〉),
#`〈datum〉 for (quasisyntax 〈datum〉),
#,〈datum〉 for (unsyntax 〈datum〉), and

#,@〈datum〉 for (unsyntax-splicing 〈datum〉).

5 Semantic concepts

5.1 Programs and libraries

A Scheme program consists of a top-level program together with a set of libraries, each

of which defines a part of the program connected to the others through explicitly

specified exports and imports. A library consists of a set of export and import

specifications and a body, which consists of definitions, and expressions. A top-level

program is similar to a library, but has no export specifications. Chapters 7 and 8

describe the syntax and semantics of libraries and top-level programs, respectively.

Chapter 11 describes a base library that defines many of the constructs traditionally

associated with Scheme. A separate report (Sperber et al., 2007a) describes the

various standard libraries provided by a Scheme system.

The division between the base library and the other standard libraries is based on

40 M. Sperber et al.

use, not on construction. In particular, some facilities that are typically implemented

as “primitives” by a compiler or the run-time system rather than in terms of other

standard procedures or syntactic forms are not part of the base library, but are

defined in separate libraries. Examples include the fixnums and flonums libraries,

the exceptions and conditions libraries, and the libraries for records.

5.2 Variables, keywords, and regions

Within the body of a library or top-level program, an identifier may name a kind

of syntax, or it may name a location where a value can be stored. An identifier that

names a kind of syntax is called a keyword, or syntactic keyword, and is said to be

bound to that kind of syntax (or, in the case of a syntactic abstraction, a transformer

that translates the syntax into more primitive forms; see section 9.2). An identifier

that names a location is called a variable and is said to be bound to that location. At

each point within a top-level program or a library, a specific, fixed set of identifiers

is bound. The set of these identifiers, the set of visible bindings , is known as the

environment in effect at that point.

Certain forms are used to create syntactic abstractions and to bind keywords

to transformers for those new syntactic abstractions, while other forms create new

locations and bind variables to those locations. Collectively, these forms are called

binding constructs. Some binding constructs take the form of definitions , while others

are expressions. With the exception of exported library bindings, a binding created

by a definition is visible only within the body in which the definition appears, e.g.,

the body of a library, top-level program, or lambda expression. Exported library

bindings are also visible within the bodies of the libraries and top-level programs

that import them (see chapter 7).

Expressions that bind variables include the lambda, let, let*, letrec, letrec*,
let-values, and let*-values forms from the base library (see sections 11.4.2,

11.4.6). Of these, lambda is the most fundamental. Variable definitions appearing

within the body of such an expression, or within the bodies of a library or top-level

program, are treated as a set of letrec* bindings. In addition, for library bodies,

the variables exported from the library can be referenced by importing libraries and

top-level programs.

Expressions that bind keywords include the let-syntax and letrec-syntax
forms (see section 11.18). A define form (see section 11.2.1) is a definition that

creates a variable binding (see section 11.2), and a define-syntax form is a

definition that creates a keyword binding (see section 11.2.2).

Scheme is a statically scoped language with block structure. To each place in a

top-level program or library body where an identifier is bound there corresponds a

region of code within which the binding is visible. The region is determined by the

particular binding construct that establishes the binding; if the binding is established

by a lambda expression, for example, then its region is the entire lambda expression.

Every mention of an identifier refers to the binding of the identifier that establishes

the innermost of the regions containing the use. If a use of an identifier appears

in a place where none of the surrounding expressions contains a binding for the

Revised6 Scheme 41

identifier, the use may refer to a binding established by a definition or import at

the top of the enclosing library or top-level program (see chapter 7). If there is no

binding for the identifier, it is said to be unbound.

5.3 Exceptional situations

A variety of exceptional situations are distinguished in this report, among them

violations of syntax, violations of a procedure’s specification, violations of im-

plementation restrictions, and exceptional situations in the environment. When an

exceptional situation is detected by the implementation, an exception is raised , which

means that a special procedure called the current exception handler is called. A pro-

gram can also raise an exception, and override the current exception handler; see

library section 7.1.

When an exception is raised, an object is provided that describes the nature of

the exceptional situation. The report uses the condition system described in library

section 7.2 to describe exceptional situations, classifying them by condition types.

Some exceptional situations allow continuing the program if the exception handler

takes appropriate action. The corresponding exceptions are called continuable. For

most of the exceptional situations described in this report, portable programs cannot

rely upon the exception being continuable at the place where the situation was

detected. For those exceptions, the exception handler that is invoked by the exception

should not return. In some cases, however, continuing is permissible, and the handler

may return. See library section 7.1.

Implementations must raise an exception when they are unable to continue correct

execution of a correct program due to some implementation restriction. For example,

an implementation that does not support infinities must raise an exception with

condition type &implementation-restriction when it evaluates an expression

whose result would be an infinity.

Some possible implementation restrictions such as the lack of representations

for NaNs and infinities (see section 11.7.2) are anticipated by this report, and

implementations typically must raise an exception of the appropriate condition type

if they encounter such a situation.

This report uses the phrase “an exception is raised” synonymously with “an

exception must be raised”. This report uses the phrase “an exception with condition

type t” to indicate that the object provided with the exception is a condition object

of the specified type. The phrase “a continuable exception is raised” indicates an

exceptional situation that permits the exception handler to return.

5.4 Argument checking

Many procedures specified in this report or as part of a standard library restrict

the arguments they accept. Typically, a procedure accepts only specific numbers

and types of arguments. Many syntactic forms similarly restrict the values to which

one or more of their subforms can evaluate. These restrictions imply responsibilities

for both the programmer and the implementation. Specifically, the programmer is

42 M. Sperber et al.

responsible for ensuring that the values indeed adhere to the restrictions described

in the specification. The implementation must check that the restrictions in the

specification are indeed met, to the extent that it is reasonable, possible, and necessary

to allow the specified operation to complete successfully. The implementation’s

responsibilities are specified in more detail in chapter 6 and throughout the report.

Note that it is not always possible for an implementation to completely check the

restrictions set forth in a specification. For example, if an operation is specified to

accept a procedure with specific properties, checking of these properties is undecid-

able in general. Similarly, some operations accept both lists and procedures that are

called by these operations. Since lists can be mutated by the procedures through the

(rnrs mutable-pairs (6)) library (see library chapter 17), an argument that is a

list when the operation starts may become a non-list during the execution of the

operation. Also, the procedure might escape to a different continuation, preventing

the operation from performing more checks. Requiring the operation to check that

the argument is a list after each call to such a procedure would be impractical.

Furthermore, some operations that accept lists only need to traverse these lists

partially to perform their function; requiring the implementation to traverse the

remainder of the list to verify that all specified restrictions have been met might

violate reasonable performance assumptions. For these reasons, the programmer’s

obligations may exceed the checking obligations of the implementation.

When an implementation detects a violation of a restriction for an argument, it

must raise an exception with condition type &assertion in a way consistent with

the safety of execution as described in section 5.6.

5.5 Syntax violations

The subforms of a special form usually need to obey certain syntactic restrictions.

As forms may be subject to macro expansion, which may not terminate, the question

of whether they obey the specified restrictions is undecidable in general.

When macro expansion terminates, however, implementations must detect viol-

ations of the syntax. A syntax violation is an error with respect to the syntax of

library bodies, top-level bodies, or the “syntax” entries in the specification of the base

library or the standard libraries. Moreover, attempting to assign to an immutable

variable (i.e., the variables exported by a library; see section 7.1) is also considered

a syntax violation.

If a syntax violation occurs, the implementation must raise an exception with

condition type &syntax, and execution of that top-level program or library must

not be allowed to begin.

5.6 Safety

The standard libraries whose exports are described by this document are said to be

safe libraries. Libraries and top-level programs that import only from safe libraries

are also said to be safe.

As defined by this document, the Scheme programming language is safe in the

Revised6 Scheme 43

following sense: The execution of a safe top-level program cannot go so badly wrong

as to crash or to continue to execute while behaving in ways that are inconsistent

with the semantics described in this document, unless an exception is raised.

Violations of an implementation restriction must raise an exception with condition

type &implementation-restriction, as must all violations and errors that would

otherwise threaten system integrity in ways that might result in execution that is

inconsistent with the semantics described in this document.

The above safety properties are guaranteed only for top-level programs and

libraries that are said to be safe. In particular, implementations may provide access

to unsafe libraries in ways that cannot guarantee safety.

5.7 Boolean values

Although there is a separate boolean type, any Scheme value can be used as a

boolean value for the purpose of a conditional test. In a conditional test, all values

count as true in such a test except for #f. This report uses the word “true” to refer

to any Scheme value except #f, and the word “false” to refer to #f.

5.8 Multiple return values

A Scheme expression can evaluate to an arbitrary finite number of values. These

values are passed to the expression’s continuation.

Not all continuations accept any number of values. For example, a continuation

that accepts the argument to a procedure call is guaranteed to accept exactly one

value. The effect of passing some other number of values to such a continuation

is unspecified. The call-with-values procedure described in section 11.15 makes

it possible to create continuations that accept specified numbers of return values.

If the number of return values passed to a continuation created by a call to

call-with-values is not accepted by its consumer that was passed in that call,

then an exception is raised. A more complete description of the number of values

accepted by different continuations and the consequences of passing an unexpected

number of values is given in the description of the values procedure in section 11.15.

A number of forms in the base library have sequences of expressions as subforms

that are evaluated sequentially, with the return values of all but the last expression

being discarded. The continuations discarding these values accept any number of

values.

5.9 Unspecified behavior

If an expression is said to “return unspecified values”, then the expression must

evaluate without raising an exception, but the values returned depend on the

implementation; this report explicitly does not say how many or what values should

be returned. Programmers should not rely on a specific number of return values or

the specific values themselves.

44 M. Sperber et al.

5.10 Storage model

Variables and objects such as pairs, vectors, bytevectors, strings, hashtables, and

records implicitly refer to locations or sequences of locations. A string, for example,

contains as many locations as there are characters in the string. (These locations

need not correspond to a full machine word.) A new value may be stored into one of

these locations using the string-set! procedure, but the string contains the same

locations as before.

An object fetched from a location, by a variable reference or by a procedure such

as car, vector-ref, or string-ref, is equivalent in the sense of eqv? (section 11.5)

to the object last stored in the location before the fetch.

Every location is marked to show whether it is in use. No variable or object ever

refers to a location that is not in use. Whenever this report speaks of storage being

allocated for a variable or object, what is meant is that an appropriate number of

locations are chosen from the set of locations that are not in use, and the chosen

locations are marked to indicate that they are now in use before the variable or

object is made to refer to them.

It is desirable for constants (i.e. the values of literal expressions) to reside in

read-only memory. To express this, it is convenient to imagine that every object that

refers to locations is associated with a flag telling whether that object is mutable

or immutable. Literal constants, the strings returned by symbol->string, records

with no mutable fields, and other values explicitly designated as immutable are

immutable objects, while all objects created by the other procedures listed in this

report are mutable. An attempt to store a new value into a location referred to by

an immutable object should raise an exception with condition type &assertion.

5.11 Proper tail recursion

Implementations of Scheme must be properly tail-recursive. Procedure calls that

occur in certain syntactic contexts called tail contexts are tail calls . A Scheme

implementation is properly tail-recursive if it supports an unbounded number of

active tail calls. A call is active if the called procedure may still return. Note that this

includes regular returns as well as returns through continuations captured earlier

by call-with-current-continuation that are later invoked. In the absence of

captured continuations, calls could return at most once and the active calls would

be those that had not yet returned. A formal definition of proper tail recursion can

be found in Clinger’s paper (Clinger, 1998). The rules for identifying tail calls in

constructs from the (rnrs base (6)) library are described in section 11.20.

5.12 Dynamic extent and the dynamic environment

For a procedure call, the time between when it is initiated and when it returns is called

its dynamic extent. In Scheme, call-with-current-continuation (section 11.15)

allows reentering a dynamic extent after its procedure call has returned. Thus, the

dynamic extent of a call may not be a single, connected time period.

Some operations described in the report acquire information in addition to

Revised6 Scheme 45

their explicit arguments from the dynamic environment. For example, call-with-
current-continuation accesses an implicit context established by dynamic-wind
(section 11.15), and the raise procedure (library section 7.1) accesses the current

exception handler. The operations that modify the dynamic environment do so

dynamically, for the dynamic extent of a call to a procedure like dynamic-wind or

with-exception-handler. When such a call returns, the previous dynamic environ-

ment is restored. The dynamic environment can be thought of as part of the dynamic

extent of a call. Consequently, it is captured by call-with-current-continuation,
and restored by invoking the escape procedure it creates.

6 Entry format

The chapters that describe bindings in the base library and the standard libraries

are organized into entries. Each entry describes one language feature or a group

of related features, where a feature is either a syntactic construct or a built-in

procedure. An entry begins with one or more header lines of the form

template category

The category defines the kind of binding described by the entry, typically either

“syntax” or “procedure”. An entry may specify various restrictions on subforms or

arguments. For background on this, see section 5.4.

6.1 Syntax entries

If category is “syntax”, the entry describes a special syntactic construct, and the

template gives the syntax of the forms of the construct. The template is written in a

notation similar to a right-hand side of the BNF rules in chapter 4, and describes the

set of forms equivalent to the forms matching the template as syntactic data. Some

“syntax” entries carry a suffix (expand), specifying that the syntactic keyword of the

construct is exported with level 1. Otherwise, the syntactic keyword is exported with

level 0; see section 7.2.

Components of the form described by a template are designated by syntactic vari-

ables, which are written using angle brackets, for example, 〈expression〉, 〈variable〉.
Case is insignificant in syntactic variables. Syntactic variables stand for other forms,

or sequences of them. A syntactic variable may refer to a non-terminal in the gram-

mar for syntactic data (see section 4.3.1), in which case only forms matching that

non-terminal are permissible in that position. For example, 〈identifier〉 stands for a

form which must be an identifier. Also, 〈expression〉 stands for any form which is

a syntactically valid expression. Other non-terminals that are used in templates are

defined as part of the specification.

The notation

〈thing1〉 . . .

indicates zero or more occurrences of a 〈thing〉, and

〈thing1〉 〈thing2〉 . . .

46 M. Sperber et al.

indicates one or more occurrences of a 〈thing〉.
It is the programmer’s responsibility to ensure that each component of a form

has the shape specified by a template. Descriptions of syntax may express other

restrictions on the components of a form. Typically, such a restriction is formulated

as a phrase of the form “〈x〉 must be a . . . ”. Again, these specify the programmer’s

responsibility. It is the implementation’s responsibility to check that these restrictions

are satisfied, as long as the macro transformers involved in expanding the form

terminate. If the implementation detects that a component does not meet the

restriction, an exception with condition type &syntax is raised.

6.2 Procedure entries

If category is “procedure”, then the entry describes a procedure, and the header line

gives a template for a call to the procedure. Parameter names in the template are

italicized . Thus the header line

(vector-ref vector k) procedure

indicates that the built-in procedure vector-ref takes two arguments, a vector

vector and an exact non-negative integer object k (see below). The header lines

(make-vector k) procedure

(make-vector k fill) procedure

indicate that the make-vector procedure takes either one or two arguments. The

parameter names are case-insensitive: Vector is the same as vector .

As with syntax templates, an ellipsis . . . at the end of a header line, as in

(= z1 z2 z3 . . .) procedure

indicates that the procedure takes arbitrarily many arguments of the same type as

specified for the last parameter name. In this case, = accepts two or more arguments

that must all be complex number objects.

A procedure that detects an argument that it is not specified to handle must raise

an exception with condition type &assertion. Also, the argument specifications are

exhaustive: if the number of arguments provided in a procedure call does not match

any number of arguments accepted by the procedure, an exception with condition

type &assertion must be raised.

For succinctness, the report follows the convention that if a parameter name is

also the name of a type, then the corresponding argument must be of the named

type. For example, the header line for vector-ref given above dictates that the

first argument to vector-ref must be a vector. The following naming conventions

imply type restrictions:

Revised6 Scheme 47

obj any object

z complex number object

x real number object

y real number object

q rational number object

n integer object

k exact non-negative integer object

bool boolean (#f or #t)
octet exact integer object in {0, . . . , 255}
byte exact integer object in {−128, . . . , 127}
char character (see section 11.11)

pair pair (see section 11.9)

vector vector (see section 11.13)

string string (see section 11.12)

condition condition (see library section 7.2)

bytevector bytevector (see library chapter 2)

proc procedure (see section 1.6)

Other type restrictions are expressed through parameter-naming conventions that

are described in specific chapters. For example, library chapter 11 uses a number of

special parameter variables for the various subsets of the numbers.

With the listed type restrictions, it is the programmer’s responsibility to ensure

that the corresponding argument is of the specified type. It is the implementation’s

responsibility to check for that type.

A parameter called list means that it is the programmer’s responsibility to pass

an argument that is a list (see section 11.9). It is the implementation’s responsibility

to check that the argument is appropriately structured for the operation to perform

its function, to the extent that this is possible and reasonable. The implementation

must at least check that the argument is either an empty list or a pair.

Descriptions of procedures may express other restrictions on the arguments of a

procedure. Typically, such a restriction is formulated as a phrase of the form “x

must be a . . . ” (or otherwise using the word “must”).

6.3 Implementation responsibilities

In addition to the restrictions implied by naming conventions, an entry may list

additional explicit restrictions. These explicit restrictions usually describe both the

programmer’s responsibilities, who must ensure that the subforms of a form are

appropriate, or that an appropriate argument is passed, and the implementation’s

responsibilities, which must check that subform adheres to the specified restrictions

(if macro expansion terminates), or if the argument is appropriate. A description may

explicitly list the implementation’s responsibilities for some arguments or subforms in

a paragraph labeled “Implementation responsibilities”. In this case, the responsibilities

specified for these subforms or arguments in the rest of the description are only

for the programmer. A paragraph describing implementation responsibility does not

48 M. Sperber et al.

affect the implementation’s responsibilities for checking subforms or arguments not

mentioned in the paragraph.

6.4 Other kinds of entries

If category is something other than “syntax” and “procedure”, then the entry

describes a non-procedural value, and the category describes the type of that value.

The header line

&who condition type

indicates that &who is a condition type. The header line

unquote auxiliary syntax

indicates that unquote is a syntax binding that may occur only as part of spe-

cific surrounding expressions. Any use as an independent syntactic construct or

identifier is a syntax violation. As with “syntax” entries, some “auxiliary syntax”

entries carry a suffix (expand), specifying that the syntactic keyword of the construct

is exported with level 1.

6.5 Equivalent entries

The description of an entry occasionally states that it is the same as another entry.

This means that both entries are equivalent. Specifically, it means that if both entries

have the same name and are thus exported from different libraries, the entries from

both libraries can be imported under the same name without conflict.

6.6 Evaluation examples

The symbol “=⇒” used in program examples can be read “evaluates to”. For

example,

(* 5 8) =⇒ 40

means that the expression (* 5 8) evaluates to the object 40. Or, more precisely:

the expression given by the sequence of characters “(* 5 8)” evaluates, in an

environment that imports the relevant library, to an object that may be represented

externally by the sequence of characters “40”. See section 4.3 for a discussion of

external representations of objects.

The “=⇒” symbol is also used when the evaluation of an expression causes a

violation. For example,

(integer->char #xD800) =⇒ &assertion exception

means that the evaluation of the expression (integer->char #xD800) must raise

an exception with condition type &assertion.
Moreover, the “=⇒” symbol is also used to explicitly say that the value of an

expression in unspecified. For example:

Revised6 Scheme 49

(eqv? "" "") =⇒ unspecified

Mostly, examples merely illustrate the behavior specified in the entry. In some

cases, however, they disambiguate otherwise ambiguous specifications and are thus

normative. Note that, in some cases, specifically in the case of inexact number objects,

the return value is only specified conditionally or approximately. For example:

(atan -inf.0) =⇒ -1.5707963267948965 ; approximately

6.7 Naming conventions

By convention, the names of procedures that store values into previously allocated

locations (see section 5.10) usually end in “!”.
By convention, “->” appears within the names of procedures that take an ob-

ject of one type and return an analogous object of another type. For example,

list->vector takes a list and returns a vector whose elements are the same as

those of the list.

By convention, the names of predicates—procedures that always return a boolean

value—end in “?” when the name contains any letters; otherwise, the predicate’s

name does not end with a question mark.

By convention, the components of compound names are separated by “-” In

particular, prefixes that are actual words or can be pronounced as though they were

actual words are followed by a hyphen, except when the first character following the

hyphen would be something other than a letter, in which case the hyphen is omitted.

Short, unpronounceable prefixes (“fx” and “fl”) are not followed by a hyphen.

By convention, the names of condition types start with “&”.

7 Libraries

Libraries are parts of a program that can be distributed independently. The library

system supports macro definitions within libraries, macro exports, and distinguishes

the phases in which definitions and imports are needed. This chapter defines the

notation for libraries and a semantics for library expansion and execution.

7.1 Library form

A library definition must have the following form:

(library 〈library name〉
(export 〈export spec〉 ...)
(import 〈import spec〉 ...)
〈library body〉)

A library declaration contains the following elements:

• The 〈library name〉 specifies the name of the library (possibly with version).
• The export subform specifies a list of exports, which name a subset of the

bindings defined within or imported into the library.

50 M. Sperber et al.

• The import subform specifies the imported bindings as a list of import

dependencies, where each dependency specifies:

— the imported library’s name, and, optionally, constraints on its version,

— the relevant levels, e.g., expand or run time (see section 7.2, and

— the subset of the library’s exports to make available within the importing

library, and the local names to use within the importing library for each of

the library’s exports.

• The 〈library body〉 is the library body, consisting of a sequence of definitions

followed by a sequence of expressions. The definitions may be both for local

(unexported) and exported bindings, and the expressions are initialization

expressions to be evaluated for their effects.

An identifier can be imported with the same local name from two or more

libraries or for two levels from the same library only if the binding exported by each

library is the same (i.e., the binding is defined in one library, and it arrives through

the imports only by exporting and re-exporting). Otherwise, no identifier can be

imported multiple times, defined multiple times, or both defined and imported. No

identifiers are visible within a library except for those explicitly imported into the

library or defined within the library.

A 〈library name〉 uniquely identifies a library within an implementation, and is

globally visible in the import clauses (see below) of all other libraries within an

implementation. A 〈library name〉 has the following form:

(〈identifier1〉 〈identifier2〉 ... 〈version〉)

where 〈version〉 is empty or has the following form:

(〈sub-version〉 ...)

Each 〈sub-version〉 must represent an exact nonnegative integer object. An empty

〈version〉 is equivalent to ().
An 〈export spec〉 names a set of imported and locally defined bindings to be

exported, possibly with different external names. An 〈export spec〉 must have one of

the following forms:

〈identifier〉
(rename (〈identifier1〉 〈identifier2〉) ...)

In an 〈export spec〉, an 〈identifier〉 names a single binding defined within or

imported into the library, where the external name for the export is the same as the

name of the binding within the library. A rename spec exports the binding named

by 〈identifier1〉 in each (〈identifier1〉 〈identifier2〉) pairing, using 〈identifier2〉 as the

external name.

Each 〈import spec〉 specifies a set of bindings to be imported into the library, the

levels at which they are to be available, and the local names by which they are to

be known. An 〈import spec〉 must be one of the following:

〈import set〉
(for 〈import set〉 〈import level〉 ...)

Revised6 Scheme 51

An 〈import level〉 is one of the following:

run
expand
(meta 〈level〉)

where 〈level〉 represents an exact integer object.

As an 〈import level〉, run is an abbreviation for (meta 0), and expand is an

abbreviation for (meta 1). Levels and phases are discussed in section 7.2.

An 〈import set〉 names a set of bindings from another library and possibly specifies

local names for the imported bindings. It must be one of the following:

〈library reference〉
(library 〈library reference〉)
(only 〈import set〉 〈identifier〉 ...)
(except 〈import set〉 〈identifier〉 ...)
(prefix 〈import set〉 〈identifier〉)
(rename 〈import set〉 (〈identifier1〉 〈identifier2〉) ...)

A 〈library reference〉 identifies a library by its name and optionally by its version.

It has one of the following forms:

(〈identifier1〉 〈identifier2〉 ...)
(〈identifier1〉 〈identifier2〉 ... 〈version reference〉)

A 〈library reference〉 whose first 〈identifier〉 is for, library, only, except,
prefix, or rename is permitted only within a library 〈import set〉. The 〈import set〉
(library 〈library reference〉) is otherwise equivalent to 〈library reference〉.

A 〈library reference〉 with no 〈version reference〉 (first form above) is equivalent to

a 〈library reference〉 with a 〈version reference〉 of (). A 〈version reference〉 specifies

a set of 〈version〉s that it matches. The 〈library reference〉 identifies all libraries

of the same name and whose version is matched by the 〈version reference〉. A

〈version reference〉 has the following form:

(〈sub-version reference1〉 ... 〈sub-version referencen〉)
(and 〈version reference〉 ...)
(or 〈version reference〉 ...)
(not 〈version reference〉)

A 〈version reference〉 of the first form matches a 〈version〉 with at least n ele-

ments, whose 〈sub-version reference〉s match the corresponding 〈sub-version〉s. An

and 〈version reference〉 matches a version if all 〈version references〉 following the

and match it. Correspondingly, an or 〈version reference〉 matches a version if one

of 〈version references〉 following the or matches it, and a not 〈version reference〉
matches a version if the 〈version reference〉 following it does not match it.

A 〈sub-version reference〉 has one of the following forms:

〈sub-version〉
(>= 〈sub-version〉)
(<= 〈sub-version〉)

52 M. Sperber et al.

(and 〈sub-version reference〉 ...)
(or 〈sub-version reference〉 ...)
(not 〈sub-version reference〉)

A 〈sub-version reference〉 of the first form matches a 〈sub-version〉 if it is equal to

it. A >= 〈sub-version reference〉 form matches a sub-version if it is greater or equal

to the 〈sub-version〉 following it; analogously for <=. An and 〈sub-version reference〉
matches a sub-version if all of the subsequent 〈sub-version reference〉s match it.

Correspondingly, an or 〈sub-version reference〉 matches a sub-version if one of the

subsequent 〈sub-version reference〉s matches it, and a not 〈sub-version reference〉
matches a sub-version if the subsequent 〈sub-version reference〉 does not match it.

Examples:

version reference version match?

() (1) yes

(1) (1) yes

(1) (2) no

(2 3) (2) no

(2 3) (2 3) yes

(2 3) (2 3 5) yes

(or (1 (>= 1)) (2)) (2) yes

(or (1 (>= 1)) (2)) (1 1) yes

(or (1 (>= 1)) (2)) (1 0) no

((or 1 2 3)) (1) yes

((or 1 2 3)) (2) yes

((or 1 2 3)) (3) yes

((or 1 2 3)) (4) no

When more than one library is identified by a library reference, the choice of

libraries is determined in some implementation-dependent manner.

To avoid problems such as incompatible types and replicated state, implement-

ations should prohibit the two libraries whose library names consist of the same

sequence of identifiers but whose versions do not match to co-exist in the same

program.

By default, all of an imported library’s exported bindings are made visible within

an importing library using the names given to the bindings by the imported library.

The precise set of bindings to be imported and the names of those bindings can be

adjusted with the only, except, prefix, and rename forms as described below.

• An only form produces a subset of the bindings from another 〈import set〉,
including only the listed 〈identifier〉s. The included 〈identifier〉s must be in the

original 〈import set〉.
• An except form produces a subset of the bindings from another 〈import set〉,

including all but the listed 〈identifier〉s. All of the excluded 〈identifier〉s must

be in the original 〈import set〉.
• A prefix form adds the 〈identifier〉 prefix to each name from another

〈import set〉.

Revised6 Scheme 53

• A rename form, (rename (〈identifier1〉 〈identifier2〉) ...), removes the bind-

ings for 〈identifier1〉 ... to form an intermediate 〈import set〉, then adds

the bindings back for the corresponding 〈identifier2〉 ... to form the final

〈import set〉. Each 〈identifier1〉 must be in the original 〈import set〉, each

〈identifier2〉 must not be in the intermediate 〈import set〉, and the 〈identifier2〉s
must be distinct.

It is a syntax violation if a constraint given above is not met.

The 〈library body〉 of a library form consists of forms that are classified as

definitions or expressions . Which forms belong to which class depends on the

imported libraries and the result of expansion—see chapter 10. Generally, forms

that are not definitions (see section 11.2 for definitions available through the base

library) are expressions.

A 〈library body〉 is like a 〈body〉 (see section 11.3) except that a 〈library body〉s
need not include any expressions. It must have the following form:

〈definition〉 ... 〈expression〉 ...

When begin, let-syntax, or letrec-syntax forms occur in a library body prior

to the first expression, they are spliced into the body; see section 11.4.7. Some or all

of the body, including portions wrapped in begin, let-syntax, or letrec-syntax
forms, may be specified by a syntactic abstraction (see section 9.2).

The transformer expressions and bindings are evaluated and created from left

to right, as described in chapter 10. The expressions of variable definitions are

evaluated from left to right, as if in an implicit letrec*, and the body expressions

are also evaluated from left to right after the expressions of the variable definitions.

A fresh location is created for each exported variable and initialized to the value of

its local counterpart. The effect of returning twice to the continuation of the last

body expression is unspecified.

Note: The names library, export, import, for, run, expand, meta, import,
export, only, except, prefix, rename, and, or, not, >=, and <= appearing in the

library syntax are part of the syntax and are not reserved, i.e., the same names can

be used for other purposes within the library or even exported from or imported

into a library with different meanings, without affecting their use in the library
form.

Bindings defined with a library are not visible in code outside of the library,

unless the bindings are explicitly exported from the library. An exported macro

may, however, implicitly export an otherwise unexported identifier defined within or

imported into the library. That is, it may insert a reference to that identifier into the

output code it produces.

All explicitly exported variables are immutable in both the exporting and import-

ing libraries. It is thus a syntax violation if an explicitly exported variable appears

on the left-hand side of a set! expression, either in the exporting or importing

libraries.

All implicitly exported variables are also immutable in both the exporting and

importing libraries. It is thus a syntax violation if a variable appears on the left-hand

54 M. Sperber et al.

side of a set! expression in any code produced by an exported macro outside of the

library in which the variable is defined. It is also a syntax violation if a reference to

an assigned variable appears in any code produced by an exported macro outside

of the library in which the variable is defined, where an assigned variable is one that

appears on the left-hand side of a set! expression in the exporting library.

All other variables defined within a library are mutable.

7.2 Import and export levels

Expanding a library may require run-time information from another library. For

example, if a macro transformer calls a procedure from library A, then the library

A must be instantiated before expanding any use of the macro in library B. Library

A may not be needed when library B is eventually run as part of a program, or it

may be needed for run time of library B, too. The library mechanism distinguishes

these times by phases, which are explained in this section.

Every library can be characterized by expand-time information (minimally, its im-

ported libraries, a list of the exported keywords, a list of the exported variables, and

code to evaluate the transformer expressions) and run-time information (minimally,

code to evaluate the variable definition right-hand-side expressions, and code to

evaluate the body expressions). The expand-time information must be available to

expand references to any exported binding, and the run-time information must be

available to evaluate references to any exported variable binding.

A phase is a time at which the expressions within a library are evaluated. Within

a library body, top-level expressions and the right-hand sides of define forms are

evaluated at run time, i.e., phase 0, and the right-hand sides of define-syntax forms

are evaluated at expand time, i.e., phase 1. When define-syntax, let-syntax, or

letrec-syntax forms appear within code evaluated at phase n, the right-hand sides

are evaluated at phase n + 1.

These phases are relative to the phase in which the library itself is used. An instance

of a library corresponds to an evaluation of its variable definitions and expressions

in a particular phase relative to another library—a process called instantiation. For

example, if a top-level expression in a library B refers to a variable export from

another library A, then it refers to the export from an instance of A at phase 0

(relative to the phase of B). But if a phase 1 expression within B refers to the same

binding from A, then it refers to the export from an instance of A at phase 1 (relative

to the phase of B).

A visit of a library corresponds to the evaluation of its syntax definitions in a

particular phase relative to another library—a process called visiting. For example,

if a top-level expression in a library B refers to a macro export from another library

A, then it refers to the export from a visit of A at phase 0 (relative to the phase of

B), which corresponds to the evaluation of the macro’s transformer expression at

phase 1.

A level is a lexical property of an identifier that determines in which phases it can

be referenced. The level for each identifier bound by a definition within a library is

0; that is, the identifier can be referenced only at phase 0 within the library. The level

Revised6 Scheme 55

for each imported binding is determined by the enclosing for form of the import
in the importing library, in addition to the levels of the identifier in the exporting

library. Import and export levels are combined by pairwise addition of all level

combinations. For example, references to an imported identifier exported for levels

pa and pb and imported for levels qa, qb, and qc are valid at levels pa + qa, pa + qb,

pa + qc, pb + qa, pb + qb, and pb + qc. An 〈import set〉 without an enclosing for
is equivalent to (for 〈import set〉 run), which is the same as (for 〈import set〉
(meta 0)).

The export level of an exported binding is 0 for all bindings that are defined

within the exporting library. The export levels of a reexported binding, i.e., an

export imported from another library, are the same as the effective import levels of

that binding within the reexporting library.

For the libraries defined in the library report, the export level is 0 for nearly all

bindings. The exceptions are syntax-rules, identifier-syntax, ..., and from

the (rnrs base (6)) library, which are exported with level 1, set! from the (rnrs
base (6)) library, which is exported with levels 0 and 1, and all bindings from

the composite (rnrs (6)) library (see library chapter 15), which are exported with

levels 0 and 1.

Macro expansion within a library can introduce a reference to an identifier that

is not explicitly imported into the library. In that case, the phase of the reference

must match the identifier’s level as shifted by the difference between the phase of the

source library (i.e., the library that supplied the identifier’s lexical context) and the

library that encloses the reference. For example, suppose that expanding a library

invokes a macro transformer, and the evaluation of the macro transformer refers to

an identifier that is exported from another library (so the phase-1 instance of the

library is used); suppose further that the value of the binding is a syntax object

representing an identifier with only a level-n binding; then, the identifier must be

used only at phase n + 1 in the library being expanded. This combination of levels

and phases is why negative levels on identifiers can be useful, even though libraries

exist only at non-negative phases.

If any of a library’s definitions are referenced at phase 0 in the expanded form of a

program, then an instance of the referenced library is created for phase 0 before the

program’s definitions and expressions are evaluated. This rule applies transitively: if

the expanded form of one library references at phase 0 an identifier from another

library, then before the referencing library is instantiated at phase n, the referenced

library must be instantiated at phase n. When an identifier is referenced at any

phase n greater than 0, in contrast, then the defining library is instantiated at phase

n at some unspecified time before the reference is evaluated. Similarly, when a

macro keyword is referenced at phase n during the expansion of a library, then the

defining library is visited at phase n at some unspecified time before the reference is

evaluated.

An implementation may distinguish instances/visits of a library for different

phases or to use an instance/visit at any phase as an instance/visit at any other

phase. An implementation may further expand each library form with distinct

visits of libraries in any phase and/or instances of libraries in phases above 0. An

56 M. Sperber et al.

implementation may create instances/visits of more libraries at more phases than

required to satisfy references. When an identifier appears as an expression in a

phase that is inconsistent with the identifier’s level, then an implementation may

raise an exception either at expand time or run time, or it may allow the reference.

Thus, a library whose meaning depends on whether the instances of a library are

distinguished or shared across phases or library expansions may be unportable.

7.3 Examples

Examples for various 〈import spec〉s and 〈export spec〉s:

(library (stack)
(export make push! pop! empty!)
(import (rnrs)

(rnrs mutable-pairs))

(define (make) (list ’()))
(define (push! s v) (set-car! s (cons v (car s))))
(define (pop! s) (let ([v (caar s)])

(set-car! s (cdar s))
v))

(define (empty! s) (set-car! s ’())))

(library (balloons)
(export make push pop)
(import (rnrs))

(define (make w h) (cons w h))
(define (push b amt)
(cons (- (car b) amt) (+ (cdr b) amt)))

(define (pop b) (display "Boom! ")
(display (* (car b) (cdr b)))
(newline)))

(library (party)
;; Total exports:
;; make, push, push!, make-party, pop!
(export (rename (balloon:make make)

(balloon:push push))
push!
make-party
(rename (party-pop! pop!)))

(import (rnrs)
(only (stack) make push! pop!) ; not empty!
(prefix (balloons) balloon:))

Revised6 Scheme 57

;; Creates a party as a stack of balloons,
;; starting with two balloons
(define (make-party)
(let ([s (make)]) ; from stack
(push! s (balloon:make 10 10))
(push! s (balloon:make 12 9))
s))

(define (party-pop! p)
(balloon:pop (pop! p))))

(library (main)
(export)
(import (rnrs) (party))

(define p (make-party))
(pop! p) ; displays "Boom! 108"
(push! p (push (make 5 5) 1))
(pop! p)) ; displays "Boom! 24"

Examples for macros and phases:

(library (my-helpers id-stuff)
(export find-dup)
(import (rnrs))

(define (find-dup l)
(and (pair? l)

(let loop ((rest (cdr l)))
(cond
[(null? rest) (find-dup (cdr l))]
[(bound-identifier=? (car l) (car rest))
(car rest)]
[else (loop (cdr rest))])))))

(library (my-helpers values-stuff)
(export mvlet)
(import (rnrs) (for (my-helpers id-stuff) expand))

(define-syntax mvlet
(lambda (stx)
(syntax-case stx ()
[([(id ...) expr] body0 body ...)
(not (find-dup (syntax (id ...))))
(syntax

58 M. Sperber et al.

(call-with-values
(lambda () expr)

(lambda (id ...) body0 body ...)))]))))

(library (let-div)
(export let-div)
(import (rnrs)

(my-helpers values-stuff)
(rnrs r5rs))

(define (quotient+remainder n d)
(let ([q (quotient n d)])
(values q (- n (* q d)))))

(define-syntax let-div
(syntax-rules ()
[(n d (q r) body0 body ...)
(mvlet [(q r) (quotient+remainder n d)]
body0 body ...)])))

8 Top-level programs

A top-level program specifies an entry point for defining and running a Scheme

program. A top-level program specifies a set of libraries to import and code to run.

Through the imported libraries, whether directly or through the transitive closure

of importing, a top-level program defines a complete Scheme program.

8.1 Top-level program syntax

A top-level program is a delimited piece of text, typically a file, that has the following

form:

〈import form〉 〈top-level body〉

An 〈import form〉 has the following form:

(import 〈import spec〉 . . .)

A 〈top-level body〉 has the following form:

〈top-level body form〉 . . .

A 〈top-level body form〉 is either a 〈definition〉 or an 〈expression〉.
The 〈import form〉 is identical to the import clause in libraries (see section 7.1),

and specifies a set of libraries to import. A 〈top-level body〉 is like a 〈library body〉
(see section 7.1), except that definitions and expressions may occur in any order.

Thus, the syntax specified by 〈top-level body form〉 refers to the result of macro

expansion.

Revised6 Scheme 59

When uses of begin, let-syntax, or letrec-syntax from the (rnrs base (6))
library occur in a top-level body prior to the first expression, they are spliced into

the body; see section 11.4.7. Some or all of the body, including portions wrapped

in begin, let-syntax, or letrec-syntax forms, may be specified by a syntactic

abstraction (see section 9.2).

8.2 Top-level program semantics

A top-level program is executed by treating the program similarly to a library, and

evaluating its definitions and expressions. The semantics of a top-level body may

be roughly explained by a simple translation into a library body: Each 〈expression〉
that appears before a definition in the top-level body is converted into a dummy

definition

(define 〈variable〉 (begin 〈expression〉 〈unspecified〉))

where 〈variable〉 is a fresh identifier and 〈unspecified〉 is a side-effect-free expression

returning an unspecified value. (It is generally impossible to determine which forms

are definitions and expressions without concurrently expanding the body, so the

actual translation is somewhat more complicated; see chapter 10.)

On platforms that support it, a top-level program may access its command line

by calling the command-line procedure (see library section 10).

9 Primitive syntax

After the import form within a library form or a top-level program, the forms

that constitute the body of the library or the top-level program depend on the

libraries that are imported. In particular, imported syntactic keywords determine the

available syntactic abstractions and whether each form is a definition or expression.

A few form types are always available independent of imported libraries, however,

including constant literals, variable references, procedure calls, and macro uses.

9.1 Primitive expression types

The entries in this section all describe expressions, which may occur in the place of

〈expression〉 syntactic variables. See also section 11.4.

Constant literals

〈number〉 syntax

〈boolean〉 syntax

〈character〉 syntax

〈string〉 syntax

〈bytevector〉 syntax

An expression consisting of a representation of a number object, a boolean, a

character, a string, or a bytevector, evaluates “to itself”.

60 M. Sperber et al.

145932 =⇒ 145932
#t =⇒ #t
"abc" =⇒ "abc"
#vu8(2 24 123) =⇒ #vu8(2 24 123)

As noted in section 5.10, the value of a literal expression is immutable.

Variable references

〈variable〉 syntax

An expression consisting of a variable (section 5.2) is a variable reference if it is

not a macro use (see below). The value of the variable reference is the value stored

in the location to which the variable is bound. It is a syntax violation to reference

an unbound variable.

The following example examples assumes the base library has been imported:

(define x 28)
x =⇒ 28

Procedure calls

(〈operator〉 〈operand1〉 . . .) syntax

A procedure call consists of expressions for the procedure to be called and the

arguments to be passed to it, with enclosing parentheses. A form in an expression

context is a procedure call if 〈operator〉 is not an identifier bound as a syntactic

keyword (see section 9.2 below).

When a procedure call is evaluated, the operator and operand expressions are

evaluated (in an unspecified order) and the resulting procedure is passed the resulting

arguments.

The following examples assume the (rnrs base (6)) library has been imported:

(+ 3 4) =⇒ 7
((if #f + *) 3 4) =⇒ 12

If the value of 〈operator〉 is not a procedure, an exception with condition type

&assertion is raised. Also, if 〈operator〉 does not accept as many arguments as

there are 〈operand〉s, an exception with condition type &assertion is raised.

Note: In contrast to other dialects of Lisp, the order of evaluation is unspecified,

and the operator expression and the operand expressions are always evaluated with

the same evaluation rules.

Although the order of evaluation is otherwise unspecified, the effect of any

concurrent evaluation of the operator and operand expressions is constrained to be

consistent with some sequential order of evaluation. The order of evaluation may

be chosen differently for each procedure call.

Note: In many dialects of Lisp, the form () is a legitimate expression. In Scheme,

expressions written as list/pair forms must have at least one subexpression, so () is

not a syntactically valid expression.

Revised6 Scheme 61

9.2 Macros

Libraries and top-level programs can define and use new kinds of derived expressions

and definitions called syntactic abstractions or macros. A syntactic abstraction is

created by binding a keyword to a macro transformer or, simply, transformer. The

transformer determines how a use of the macro (called a macro use) is transcribed

into a more primitive form.

Most macro uses have the form:

(〈keyword〉 〈datum〉 . . .)

where 〈keyword〉 is an identifier that uniquely determines the kind of form. This

identifier is called the syntactic keyword, or simply keyword, of the macro. The

number of 〈datum〉s and the syntax of each depends on the syntactic abstraction.

Macro uses can also take the form of improper lists, singleton identifiers, or set!
forms, where the second subform of the set! is the keyword (see section 11.19)

library section 12.3):

(〈keyword〉 〈datum〉 〈datum〉)
〈keyword〉
(set! 〈keyword〉 〈datum〉)

The define-syntax, let-syntax and letrec-syntax forms, described in sec-

tions 11.2.2 and 11.18, create bindings for keywords, associate them with macro

transformers, and control the scope within which they are visible.

The syntax-rules and identifier-syntax forms, described in section 11.19,

create transformers via a pattern language. Moreover, the syntax-case form, de-

scribed in library chapter 12, allows creating transformers via arbitrary Scheme

code.

Keywords occupy the same name space as variables. That is, within the same

scope, an identifier can be bound as a variable or keyword, or neither, but not both,

and local bindings of either kind may shadow other bindings of either kind.

Macros defined using syntax-rules and identifier-syntax are “hygienic” and

“referentially transparent” and thus preserve lexical scoping (Kohlbecker Jr., 1986;

Kohlbecker et al., 1986; Bawden & Rees, 1988; Clinger & Rees, 1991a; Dybvig

et al., 1992):

• If a macro transformer inserts a binding for an identifier (variable or keyword)

not appearing in the macro use, the identifier is in effect renamed throughout

its scope to avoid conflicts with other identifiers.

• If a macro transformer inserts a free reference to an identifier, the reference

refers to the binding that was visible where the transformer was specified,

regardless of any local bindings that may surround the use of the macro.

Macros defined using the syntax-case facility are also hygienic unless datum->
syntax (see library section 12.6) is used.

62 M. Sperber et al.

10 Expansion process

Macro uses (see section 9.2) are expanded into core forms at the start of evaluation

(before compilation or interpretation) by a syntax expander. The set of core forms is

implementation-dependent, as is the representation of these forms in the expander’s

output. If the expander encounters a syntactic abstraction, it invokes the associated

transformer to expand the syntactic abstraction, then repeats the expansion process

for the form returned by the transformer. If the expander encounters a core form, it

recursively processes its subforms that are in expression or definition context, if any,

and reconstructs the form from the expanded subforms. Information about identifier

bindings is maintained during expansion to enforce lexical scoping for variables and

keywords.

To handle definitions, the expander processes the initial forms in a 〈body〉 (see

section 11.3) or 〈library body〉 (see section 7.1) from left to right. How the expander

processes each form encountered depends upon the kind of form.

macro use The expander invokes the associated transformer to transform the macro

use, then recursively performs whichever of these actions are appropriate for the

resulting form.

define-syntax form The expander expands and evaluates the right-hand-side ex-

pression and binds the keyword to the resulting transformer.

define form The expander records the fact that the defined identifier is a variable

but defers expansion of the right-hand-side expression until after all of the

definitions have been processed.

begin form The expander splices the subforms into the list of body forms it is

processing. (See section 11.4.7.)

let-syntax or letrec-syntax form The expander splices the inner body forms

into the list of (outer) body forms it is processing, arranging for the keywords

bound by the let-syntax and letrec-syntax to be visible only in the inner

body forms.

expression, i.e., nondefinition The expander completes the expansion of the deferred

right-hand-side expressions and the current and remaining expressions in the body,

and then creates the equivalent of a letrec* form from the defined variables,

expanded right-hand-side expressions, and expanded body expressions.

For the right-hand side of the definition of a variable, expansion is deferred until

after all of the definitions have been seen. Consequently, each keyword and variable

reference within the right-hand side resolves to the local binding, if any.

A definition in the sequence of forms must not define any identifier whose binding

is used to determine the meaning of the undeferred portions of the definition or any

definition that precedes it in the sequence of forms. For example, the bodies of the

following expressions violate this restriction.

(let ()
(define define 17)
(list define))

Revised6 Scheme 63

(let-syntax ([def0 (syntax-rules ()
[(x) (define x 0)])])

(let ([z 3])
(def0 z)
(define def0 list)
(list z)))

(let ()
(define-syntax foo
(lambda (e)
(+ 1 2)))

(define + 2)
(foo))

The following do not violate the restriction.

(let ([x 5])
(define lambda list)
(lambda x x)) =⇒ (5 5)

(let-syntax ([def0 (syntax-rules ()
[(x) (define x 0)])])

(let ([z 3])
(define def0 list)
(def0 z)
(list z))) =⇒ (3)

(let ()
(define-syntax foo
(lambda (e)
(let ([+ -]) (+ 1 2))))

(define + 2)
(foo)) =⇒ -1

The implementation should treat a violation of the restriction as a syntax violation.

Note that this algorithm does not directly reprocess any form. It requires a single

left-to-right pass over the definitions followed by a single pass (in any order) over

the body expressions and deferred right-hand sides.

Example:

(lambda (x)
(define-syntax defun
(syntax-rules ()
[(x a e) (define x (lambda a e))]))

(defun even? (n) (or (= n 0) (odd? (- n 1))))
(define-syntax odd?
(syntax-rules () [(n) (not (even? n))]))

64 M. Sperber et al.

(odd? (if (odd? x) (* x x) x)))

In the example, the definition of defun is encountered first, and the keyword defun
is associated with the transformer resulting from the expansion and evaluation of

the corresponding right-hand side. A use of defun is encountered next and expands

into a define form. Expansion of the right-hand side of this define form is deferred.

The definition of odd? is next and results in the association of the keyword odd?
with the transformer resulting from expanding and evaluating the corresponding

right-hand side. A use of odd? appears next and is expanded; the resulting call to

not is recognized as an expression because not is bound as a variable. At this point,

the expander completes the expansion of the current expression (the call to not) and

the deferred right-hand side of the even? definition; the uses of odd? appearing in

these expressions are expanded using the transformer associated with the keyword

odd?. The final output is the equivalent of

(lambda (x)
(letrec* ([even?

(lambda (n)
(or (= n 0)

(not (even? (- n 1)))))])
(not (even? (if (not (even? x)) (* x x) x)))))

although the structure of the output is implementation-dependent.

Because definitions and expressions can be interleaved in a 〈top-level body〉 (see

chapter 8), the expander’s processing of a 〈top-level body〉 is somewhat more com-

plicated. It behaves as described above for a 〈body〉 or 〈library body〉 with the

following exceptions: When the expander finds a nondefinition, it defers its ex-

pansion and continues scanning for definitions. Once it reaches the end of the

set of forms, it processes the deferred right-hand-side and body expressions, then

generates the equivalent of a letrec* form from the defined variables, expanded

right-hand-side expressions, and expanded body expressions. For each body expres-

sion 〈expression〉 that appears before a variable definition in the body, a dummy

binding is created at the corresponding place within the set of letrec* bindings,

with a fresh temporary variable on the left-hand side and the equivalent of (begin
〈expression〉 〈unspecified〉), where 〈unspecified〉 is a side-effect-free expression re-

turning an unspecified value, on the right-hand side, so that left-to-right evaluation

order is preserved. The begin wrapper allows 〈expression〉 to evaluate to an arbitrary

number of values.

11 Base library

This chapter describes Scheme’s (rnrs base (6)) library, which exports many of

the procedure and syntax bindings that are traditionally associated with Scheme.

Section 11.20 defines the rules that identify tail calls and tail contexts in constructs

from the (rnrs base (6)) library.

Revised6 Scheme 65

11.1 Base types

No object satisfies more than one of the following predicates:

boolean? pair?
symbol? number?
char? string?
vector? procedure?
null?

These predicates define the base types boolean, pair, symbol, number, char (or

character), string, vector, and procedure. Moreover, the empty list is a special object

of its own type.

Note that, although there is a separate boolean type, any Scheme value can be

used as a boolean value for the purpose of a conditional test; see section 5.7.

11.2 Definitions

Definitions may appear within a 〈top-level body〉 (section 8.1), at the top of a

〈library body〉 (section 7.1), or at the top of a 〈body〉 (section 11.3).

A 〈definition〉 may be a variable definition (section 11.2.1) or keyword definition

(section 11.2.1). Macro uses that expand into definitions or groups of definitions

(packaged in a begin, let-syntax, or letrec-syntax form; see section 11.4.7) may

also appear wherever other definitions may appear.

11.2.1 Variable definitions

The define form described in this section is a 〈definition〉 used to create variable

bindings and may appear anywhere other definitions may appear.

(define 〈variable〉 〈expression〉) syntax

(define 〈variable〉) syntax

(define (〈variable〉 〈formals〉) 〈body〉) syntax

(define (〈variable〉 . 〈formal〉) 〈body〉) syntax

The first from of define binds 〈variable〉 to a new location before assigning the

value of 〈expression〉 to it.

(define add3
(lambda (x) (+ x 3)))

(add3 3) =⇒ 6
(define first car)
(first ’(1 2)) =⇒ 1

The continuation of 〈expression〉 should not be invoked more than once.

Implementation responsibilities: Implementations should detect that the continu-

ation of 〈expression〉 is invoked more than once. If the implementation detects this,

it must raise an exception with condition type &assertion.
The second form of define is equivalent to

66 M. Sperber et al.

(define 〈variable〉 〈unspecified〉)

where 〈unspecified〉 is a side-effect-free expression returning an unspecified value.

In the third form of define, 〈formals〉 must be either a sequence of zero or more

variables, or a sequence of one or more variables followed by a dot . and another

variable (as in a lambda expression, see section 11.4.2). This form is equivalent to

(define 〈variable〉
(lambda (〈formals〉) 〈body〉)).

In the fourth form of define, 〈formal〉 must be a single variable. This form is

equivalent to

(define 〈variable〉
(lambda 〈formal〉 〈body〉)).

11.2.2 Syntax definitions

The define-syntax form described in this section is a 〈definition〉 used to create

keyword bindings and may appear anywhere other definitions may appear.

(define-syntax 〈keyword〉 〈expression〉) syntax

Binds 〈keyword〉 to the value of 〈expression〉, which must evaluate, at macro-

expansion time, to a transformer. Macro transformers can be created using the

syntax-rules and identifier-syntax forms described in section 11.19. See library

section 12.3 for a more complete description of transformers.

Keyword bindings established by define-syntax are visible throughout the body

in which they appear, except where shadowed by other bindings, and nowhere else,

just like variable bindings established by define. All bindings established by a set of

definitions, whether keyword or variable definitions, are visible within the definitions

themselves.

Implementation responsibilities: The implementation should detect if the value of

〈expression〉 cannot possibly be a transformer.

Example:

(let ()
(define even?
(lambda (x)
(or (= x 0) (odd? (- x 1)))))

(define-syntax odd?
(syntax-rules ()
((odd? x) (not (even? x)))))

(even? 10)) =⇒ #t

An implication of the left-to-right processing order (section 10) is that one defin-

ition can affect whether a subsequent form is also a definition.

Example:

Revised6 Scheme 67

(let ()
(define-syntax bind-to-zero
(syntax-rules ()
((bind-to-zero id) (define id 0))))

(bind-to-zero x)
x) =⇒ 0

The behavior is unaffected by any binding for bind-to-zero that might appear

outside of the let expression.

11.3 Bodies

The 〈body〉 of a lambda, let, let*, let-values, let*-values, letrec, or letrec*
expression, or that of a definition with a body consists of zero or more definitions

followed by one or more expressions.

〈definition〉 ... 〈expression1〉 〈expression2〉 ...
Each identifier defined by a definition is local to the 〈body〉. That is, the identifier

is bound, and the region of the binding is the entire 〈body〉 (see section 5.2).

Example:

(let ((x 5))
(define foo (lambda (y) (bar x y)))
(define bar (lambda (a b) (+ (* a b) a)))
(foo (+ x 3))) =⇒ 45

When begin, let-syntax, or letrec-syntax forms occur in a body prior to the

first expression, they are spliced into the body; see section 11.4.7. Some or all of the

body, including portions wrapped in begin, let-syntax, or letrec-syntax forms,

may be specified by a macro use (see section 9.2).

An expanded 〈body〉 (see chapter 10) containing variable definitions can always be

converted into an equivalent letrec* expression. For example, the let expression

in the above example is equivalent to

(let ((x 5))
(letrec* ((foo (lambda (y) (bar x y)))

(bar (lambda (a b) (+ (* a b) a))))
(foo (+ x 3))))

11.4 Expressions

The entries in this section describe the expressions of the (rnrs base (6)) library,

which may occur in the position of the 〈expression〉 syntactic variable in addition

to the primitive expression types as described in section 9.1.

11.4.1 Quotation

(quote 〈datum〉) syntax

Syntax: 〈Datum〉 should be a syntactic datum.

68 M. Sperber et al.

Semantics: (quote 〈datum〉) evaluates to the datum value represented by 〈datum〉
(see section 4.3). This notation is used to include constants.

(quote a) =⇒ a
(quote #(a b c)) =⇒ #(a b c)
(quote (+ 1 2)) =⇒ (+ 1 2)

As noted in section 4.3.5, (quote 〈datum〉) may be abbreviated as ’〈datum〉:

’"abc" =⇒ "abc"
’145932 =⇒ 145932
’a =⇒ a
’#(a b c) =⇒ #(a b c)
’() =⇒ ()
’(+ 1 2) =⇒ (+ 1 2)
’(quote a) =⇒ (quote a)
’’a =⇒ (quote a)

As noted in section 5.10, constants are immutable.

Note: Different constants that are the value of a quote expression may share the

same locations.

11.4.2 Procedures

(lambda 〈formals〉 〈body〉) syntax

Syntax: 〈Formals〉 must be a formal parameter list as described below, and 〈body〉
must be as described in section 11.3.

Semantics: A lambda expression evaluates to a procedure. The environment in

effect when the lambda expression is evaluated is remembered as part of the pro-

cedure. When the procedure is later called with some arguments, the environment in

which the lambda expression was evaluated is extended by binding the variables in

the parameter list to fresh locations, and the resulting argument values are stored in

those locations. Then, the expressions in the body of the lambda expression (which

may contain definitions and thus represent a letrec* form, see section 11.3) are

evaluated sequentially in the extended environment. The results of the last expression

in the body are returned as the results of the procedure call.

(lambda (x) (+ x x)) =⇒ a procedure

((lambda (x) (+ x x)) 4) =⇒ 8

((lambda (x)
(define (p y)
(+ y 1))

(+ (p x) x))
5) =⇒ 11

(define reverse-subtract

Revised6 Scheme 69

(lambda (x y) (- y x)))
(reverse-subtract 7 10) =⇒ 3

(define add4
(let ((x 4))
(lambda (y) (+ x y))))

(add4 6) =⇒ 10

〈Formals〉 must have one of the following forms:

• (〈variable1〉 . . .): The procedure takes a fixed number of arguments; when

the procedure is called, the arguments are stored in the bindings of the

corresponding variables.
• 〈variable〉: The procedure takes any number of arguments; when the procedure

is called, the sequence of arguments is converted into a newly allocated list,

and the list is stored in the binding of the 〈variable〉.
• (〈variable1〉 . . . 〈variablen〉 . 〈variablen+1〉): If a period . precedes the last

variable, then the procedure takes n or more arguments, where n is the number

of parameters before the period (there must be at least one). The value stored

in the binding of the last variable is a newly allocated list of the arguments

left over after all the other arguments have been matched up against the other

parameters.

((lambda x x) 3 4 5 6) =⇒ (3 4 5 6)
((lambda (x y . z) z) 3 4 5 6) =⇒ (5 6)

Any 〈variable〉 must not appear more than once in 〈formals〉.

11.4.3 Conditionals

(if 〈test〉 〈consequent〉 〈alternate〉) syntax

(if 〈test〉 〈consequent〉) syntax

Syntax: 〈Test〉, 〈consequent〉, and 〈alternate〉 must be expressions.

Semantics: An if expression is evaluated as follows: first, 〈test〉 is evaluated.

If it yields a true value (see section 5.7), then 〈consequent〉 is evaluated and its

values are returned. Otherwise 〈alternate〉 is evaluated and its values are returned.

If 〈test〉 yields #f and no 〈alternate〉 is specified, then the result of the expression is

unspecified.

(if (> 3 2) ’yes ’no) =⇒ yes
(if (> 2 3) ’yes ’no) =⇒ no
(if (> 3 2)

(- 3 2)
(+ 3 2)) =⇒ 1

(if #f #f) =⇒ unspecified

The 〈consequent〉 and 〈alternate〉 expressions are in tail context if the if expression

itself is; see section 11.20.

70 M. Sperber et al.

11.4.4 Assignments

(set! 〈variable〉 〈expression〉) syntax

〈Expression〉 is evaluated, and the resulting value is stored in the location to which

〈variable〉 is bound. 〈Variable〉 must be bound either in some region enclosing the

set! expression or at the top level. The result of the set! expression is unspecified.

(let ((x 2))
(+ x 1)
(set! x 4)
(+ x 1)) =⇒ 5

It is a syntax violation if 〈variable〉 refers to an immutable binding.

Note: The identifier set! is exported with level 1 as well. See section 11.19.

11.4.5 Derived conditionals

(cond 〈cond clause1〉 〈cond clause2〉 . . .) syntax

=> auxiliary syntax

else auxiliary syntax

Syntax: Each 〈cond clause〉 must be of the form

(〈test〉 〈expression1〉 . . .)

where 〈test〉 is an expression. Alternatively, a 〈cond clause〉 may be of the form

(〈test〉 => 〈expression〉)

The last 〈cond clause〉 may be an “else clause”, which has the form

(else 〈expression1〉 〈expression2〉 . . .).

Semantics: A cond expression is evaluated by evaluating the 〈test〉 expressions of

successive 〈cond clause〉s in order until one of them evaluates to a true value (see

section 5.7). When a 〈test〉 evaluates to a true value, then the remaining 〈expression〉s
in its 〈cond clause〉 are evaluated in order, and the results of the last 〈expression〉
in the 〈cond clause〉 are returned as the results of the entire cond expression. If

the selected 〈cond clause〉 contains only the 〈test〉 and no 〈expression〉s, then the

value of the 〈test〉 is returned as the result. If the selected 〈cond clause〉 uses the =>
alternate form, then the 〈expression〉 is evaluated. Its value must be a procedure.

This procedure should accept one argument; it is called on the value of the 〈test〉
and the values returned by this procedure are returned by the cond expression. If all

〈test〉s evaluate to #f, and there is no else clause, then the conditional expression

returns unspecified values; if there is an else clause, then its 〈expression〉s are

evaluated, and the values of the last one are returned.

(cond ((> 3 2) ’greater)
((< 3 2) ’less)) =⇒ greater

(cond ((> 3 3) ’greater)

Revised6 Scheme 71

((< 3 3) ’less)
(else ’equal)) =⇒ equal

(cond (’(1 2 3) => cadr)
(else #f)) =⇒ 2

For a 〈cond clause〉 of one of the following forms

(〈test〉 〈expression1〉 . . .)
(else 〈expression1〉 〈expression2〉 . . .)

the last 〈expression〉 is in tail context if the cond form itself is. For a 〈cond clause〉
of the form

(〈test〉 => 〈expression〉)

the (implied) call to the procedure that results from the evaluation of 〈expression〉
is in a tail context if the cond form itself is. See section 11.20.

A sample definition of cond in terms of simpler forms is in appendix B.

(case 〈key〉 〈case clause1〉 〈case clause2〉 . . .) syntax

Syntax: 〈Key〉 must be an expression. Each 〈case clause〉 must have one of the

following forms:

((〈datum1〉 . . .) 〈expression1〉 〈expression2〉 . . .)
(else 〈expression1〉 〈expression2〉 . . .)

The second form, which specifies an “else clause”, may only appear as the last

〈case clause〉. Each 〈datum〉 is an external representation of some object. The data

represented by the 〈datum〉s need not be distinct.

Semantics: A case expression is evaluated as follows. 〈Key〉 is evaluated and its

result is compared using eqv? (see section 11.5) against the data represented by

the 〈datum〉s of each 〈case clause〉 in turn, proceeding in order from left to right

through the set of clauses. If the result of evaluating 〈key〉 is equivalent to a datum

of a 〈case clause〉, the corresponding 〈expression〉s are evaluated from left to right

and the results of the last expression in the 〈case clause〉 are returned as the results

of the case expression. Otherwise, the comparison process continues. If the result of

evaluating 〈key〉 is different from every datum in each set, then if there is an else
clause its expressions are evaluated and the results of the last are the results of the

case expression; otherwise the case expression returns unspecified values.

(case (* 2 3)
((2 3 5 7) ’prime)
((1 4 6 8 9) ’composite)) =⇒ composite

(case (car ’(c d))
((a) ’a)
((b) ’b)) =⇒ unspecified

(case (car ’(c d))
((a e i o u) ’vowel)
((w y) ’semivowel)
(else ’consonant)) =⇒ consonant

72 M. Sperber et al.

The last 〈expression〉 of a 〈case clause〉 is in tail context if the case expression

itself is; see section 11.20.

(and 〈test1〉 . . .) syntax

Syntax: The 〈test〉s must be expressions.

Semantics: If there are no 〈test〉s, #t is returned. Otherwise, the 〈test〉 expressions

are evaluated from left to right until a 〈test〉 returns #f or the last 〈test〉 is reached.

In the former case, the and expression returns #f without evaluating the remaining

expressions. In the latter case, the last expression is evaluated and its values are

returned.

(and (= 2 2) (> 2 1)) =⇒ #t
(and (= 2 2) (< 2 1)) =⇒ #f
(and 1 2 ’c ’(f g)) =⇒ (f g)
(and) =⇒ #t

The and keyword could be defined in terms of if using syntax-rules (see

section 11.19) as follows:

(define-syntax and
(syntax-rules ()
((and) #t)
((and test) test)
((and test1 test2 ...)
(if test1 (and test2 ...) #f))))

The last 〈test〉 expression is in tail context if the and expression itself is; see

section 11.20.

(or 〈test1〉 . . .) syntax

Syntax: The 〈test〉s must be expressions.

Semantics: If there are no 〈test〉s, #f is returned. Otherwise, the 〈test〉 expressions

are evaluated from left to right until a 〈test〉 returns a true value val (see section 5.7)

or the last 〈test〉 is reached. In the former case, the or expression returns val

without evaluating the remaining expressions. In the latter case, the last expression

is evaluated and its values are returned.

(or (= 2 2) (> 2 1)) =⇒ #t
(or (= 2 2) (< 2 1)) =⇒ #t
(or #f #f #f) =⇒ #f
(or ’(b c) (/ 3 0)) =⇒ (b c)

The or keyword could be defined in terms of if using syntax-rules (see

section 11.19) as follows:

(define-syntax or
(syntax-rules ()
((or) #f)

Revised6 Scheme 73

((or test) test)
((or test1 test2 ...)
(let ((x test1))

(if x x (or test2 ...))))))

The last 〈test〉 expression is in tail context if the or expression itself is; see

section 11.20.

11.4.6 Binding constructs

The binding constructs described in this section create local bindings for variables

that are visible only in a delimited region. The syntax of the constructs let, let*,
letrec, and letrec* is identical, but they differ in the regions (see section 5.2)

they establish for their variable bindings and in the order in which the values for

the bindings are computed. In a let expression, the initial values are computed

before any of the variables become bound; in a let* expression, the bindings

and evaluations are performed sequentially. In a letrec or letrec* expression,

all the bindings are in effect while their initial values are being computed, thus

allowing mutually recursive definitions. In a letrec expression, the initial values are

computed before being assigned to the variables; in a letrec*, the evaluations and

assignments are performed sequentially.

In addition, the binding constructs let-values and let*-values generalize let
and let* to allow multiple variables to be bound to the results of expressions that

evaluate to multiple values. They are analogous to let and let* in the way they

establish regions: in a let-values expression, the initial values are computed before

any of the variables become bound; in a let*-values expression, the bindings are

performed sequentially.

Sample definitions of all the binding forms of this section in terms of simpler

forms are in appendix B.

(let 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 must have the form

((〈variable1〉 〈init1〉) . . .),

where each 〈init〉 is an expression, and 〈body〉 is as described in section 11.3. Any

variable must not appear more than once in the 〈variable〉s.
Semantics: The 〈init〉s are evaluated in the current environment (in some un-

specified order), the 〈variable〉s are bound to fresh locations holding the results,

the 〈body〉 is evaluated in the extended environment, and the values of the last

expression of 〈body〉 are returned. Each binding of a 〈variable〉 has 〈body〉 as its

region.

(let ((x 2) (y 3))
(* x y)) =⇒ 6

(let ((x 2) (y 3))

74 M. Sperber et al.

(let ((x 7)
(z (+ x y)))

(* z x))) =⇒ 35

See also named let, section 11.16.

(let* 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 must have the form

((〈variable1〉 〈init1〉) . . .),

where each 〈init〉 is an expression, and 〈body〉 is as described in section 11.3.

Semantics: The let* form is similar to let, but the 〈init〉s are evaluated and

bindings created sequentially from left to right, with the region of each binding

including the bindings to its right as well as 〈body〉. Thus the second 〈init〉 is

evaluated in an environment in which the first binding is visible and initialized, and

so on.

(let ((x 2) (y 3))
(let* ((x 7)

(z (+ x y)))
(* z x))) =⇒ 70

Note: While the variables bound by a let expression must be distinct, the variables

bound by a let* expression need not be distinct.

(letrec 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 must have the form

((〈variable1〉 〈init1〉) . . .),

where each 〈init〉 is an expression, and 〈body〉 is as described in section 11.3. Any

variable must not appear more than once in the 〈variable〉s.
Semantics: The 〈variable〉s are bound to fresh locations, the 〈init〉s are evaluated

in the resulting environment (in some unspecified order), each 〈variable〉 is assigned

to the result of the corresponding 〈init〉, the 〈body〉 is evaluated in the resulting

environment, and the values of the last expression in 〈body〉 are returned. Each

binding of a 〈variable〉 has the entire letrec expression as its region, making it

possible to define mutually recursive procedures.

(letrec ((even?
(lambda (n)
(if (zero? n)

#t
(odd? (- n 1)))))

(odd?
(lambda (n)
(if (zero? n)

#f
(even? (- n 1))))))

(even? 88)) =⇒ #t

Revised6 Scheme 75

It should be possible to evaluate each 〈init〉 without assigning or referring to the

value of any 〈variable〉. In the most common uses of letrec, all the 〈init〉s are

lambda expressions and the restriction is satisfied automatically. Another restriction

is that the continuation of each 〈init〉 should not be invoked more than once.

Implementation responsibilities: Implementations must detect any references to

a 〈variable〉 during the evaluation of the 〈init〉 expressions (using one particular

evaluation order and order of evaluating the 〈init〉 expressions). If an implementation

detects such a violation of the restriction, it must raise an exception with condition

type &assertion. Implementations may or may not detect that the continuation of

each 〈init〉 is invoked more than once. However, if the implementation detects this,

it must raise an exception with condition type &assertion.

(letrec* 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 must have the form

((〈variable1〉 〈init1〉) . . .),

where each 〈init〉 is an expression, and 〈body〉 is as described in section 11.3. Any

variable must not appear more than once in the 〈variable〉s.
Semantics: The 〈variable〉s are bound to fresh locations, each 〈variable〉 is assigned

in left-to-right order to the result of evaluating the corresponding 〈init〉, the 〈body〉
is evaluated in the resulting environment, and the values of the last expression in

〈body〉 are returned. Despite the left-to-right evaluation and assignment order, each

binding of a 〈variable〉 has the entire letrec* expression as its region, making it

possible to define mutually recursive procedures.

(letrec* ((p
(lambda (x)

(+ 1 (q (- x 1)))))
(q
(lambda (y)

(if (zero? y)
0
(+ 1 (p (- y 1))))))

(x (p 5))
(y x))

y) =⇒ 5

It must be possible to evaluate each 〈init〉 without assigning or referring to the

value of the corresponding 〈variable〉 or the 〈variable〉 of any of the bindings that

follow it in 〈bindings〉. Another restriction is that the continuation of each 〈init〉
should not be invoked more than once.

Implementation responsibilities: Implementations must, during the evaluation of an

〈init〉 expression, detect references to the value of the corresponding 〈variable〉 or the

〈variable〉 of any of the bindings that follow it in 〈bindings〉. If an implementation

detects such a violation of the restriction, it must raise an exception with condition

type &assertion. Implementations may or may not detect that the continuation of

76 M. Sperber et al.

each 〈init〉 is invoked more than once. However, if the implementation detects this,

it must raise an exception with condition type &assertion.

(let-values 〈mv-bindings〉 〈body〉) syntax

Syntax: 〈Mv-bindings〉 must have the form

((〈formals1〉 〈init1〉) . . .),

where each 〈init〉 is an expression, and 〈body〉 is as described in section 11.3. Any

variable must not appear more than once in the set of 〈formals〉.
Semantics: The 〈init〉s are evaluated in the current environment (in some unspe-

cified order), and the variables occurring in the 〈formals〉 are bound to fresh locations

containing the values returned by the 〈init〉s, where the 〈formals〉 are matched to

the return values in the same way that the 〈formals〉 in a lambda expression are

matched to the arguments in a procedure call. Then, the 〈body〉 is evaluated in the

extended environment, and the values of the last expression of 〈body〉 are returned.

Each binding of a variable has 〈body〉 as its region. If the 〈formals〉 do not match,

an exception with condition type &assertion is raised.

(let-values (((a b) (values 1 2))
((c d) (values 3 4)))

(list a b c d)) =⇒ (1 2 3 4)

(let-values (((a b . c) (values 1 2 3 4)))
(list a b c)) =⇒ (1 2 (3 4))

(let ((a ’a) (b ’b) (x ’x) (y ’y))
(let-values (((a b) (values x y))

((x y) (values a b)))
(list a b x y))) =⇒ (x y a b)

(let*-values 〈mv-bindings〉 〈body〉) syntax

Syntax: 〈Mv-bindings〉 must have the form

((〈formals1〉 〈init1〉) . . .),

where each 〈init〉 is an expression, and 〈body〉 is as described in section 11.3. In each

〈formals〉, any variable must not appear more than once.

Semantics: The let*-values form is similar to let-values, but the 〈init〉s are

evaluated and bindings created sequentially from left to right, with the region of

the bindings of each 〈formals〉 including the bindings to its right as well as 〈body〉.
Thus the second 〈init〉 is evaluated in an environment in which the bindings of the

first 〈formals〉 is visible and initialized, and so on.

(let ((a ’a) (b ’b) (x ’x) (y ’y))
(let*-values (((a b) (values x y))

((x y) (values a b)))
(list a b x y))) =⇒ (x y x y)

Revised6 Scheme 77

Note: While all of the variables bound by a let-values expression must be distinct,

the variables bound by different 〈formals〉 of a let*-values expression need not

be distinct.

11.4.7 Sequencing

(begin 〈form〉 . . .) syntax

(begin 〈expression〉 〈expression〉 . . .) syntax

The 〈begin〉 keyword has two different roles, depending on its context:

• It may appear as a form in a 〈body〉 (see section 11.3), 〈library body〉 (see

section 7.1), or 〈top-level body〉 (see chapter 8), or directly nested in a begin
form that appears in a body. In this case, the begin form must have the shape

specified in the first header line. This use of begin acts as a splicing form—the

forms inside the 〈body〉 are spliced into the surrounding body, as if the begin
wrapper were not actually present.

A begin form in a 〈body〉 or 〈library body〉 must be non-empty if it appears

after the first 〈expression〉 within the body.
• It may appear as an ordinary expression and must have the shape specified in

the second header line. In this case, the 〈expression〉s are evaluated sequentially

from left to right, and the values of the last 〈expression〉 are returned. This

expression type is used to sequence side effects such as assignments or input

and output.

(define x 0)

(begin (set! x 5)
(+ x 1)) =⇒ 6

(begin (display "4 plus 1 equals ")
(display (+ 4 1))) =⇒ unspecified

and prints 4 plus 1 equals 5

11.5 Equivalence predicates

A predicate is a procedure that always returns a boolean value (#t or #f). An

equivalence predicate is the computational analogue of a mathematical equivalence

relation (it is symmetric, reflexive, and transitive). Of the equivalence predicates

described in this section, eq? is the finest or most discriminating, and equal? is the

coarsest. The eqv? predicate is slightly less discriminating than eq?.

(eqv? obj1 obj2) procedure

The eqv? procedure defines a useful equivalence relation on objects. Briefly, it

returns #t if obj1 and obj2 should normally be regarded as the same object and

#f otherwise. This relation is left slightly open to interpretation, but the following

partial specification of eqv? must hold for all implementations.

The eqv? procedure returns #t if one of the following holds:

78 M. Sperber et al.

• Obj1 and obj2 are both booleans and are the same according to the boolean=?
procedure (section 11.8).

• Obj1 and obj2 are both symbols and are the same according to the symbol=?
procedure (section 11.10).

• Obj1 and obj2 are both exact number objects and are numerically equal (see =,
section 11.7).

• Obj1 and obj2 are both inexact number objects, are numerically equal (see =,
section 11.7), and yield the same results (in the sense of eqv?) when passed as

arguments to any other procedure that can be defined as a finite composition

of Scheme’s standard arithmetic procedures.

• Obj1 and obj2 are both characters and are the same character according to the

char=? procedure (section 11.11).

• Both obj1 and obj2 are the empty list.

• Obj1 and obj2 are objects such as pairs, vectors, bytevectors (library chapter 2),

strings, records (library chapter 6), ports (library section 8.2), or hashtables

(library chapter 13) that refer to the same locations in the store (section 5.10).

• Obj1 and obj2 are record-type descriptors that are specified to be eqv? in

library section 6.3.

The eqv? procedure returns #f if one of the following holds:

• Obj1 and obj2 are of different types (section 11.1).

• Obj1 and obj2 are booleans for which the boolean=? procedure returns #f.
• Obj1 and obj2 are symbols for which the symbol=? procedure returns #f.
• One of obj1 and obj2 is an exact number object but the other is an inexact

number object.

• Obj1 and obj2 are rational number objects for which the = procedure returns

#f.
• Obj1 and obj2 yield different results (in the sense of eqv?) when passed as

arguments to any other procedure that can be defined as a finite composition

of Scheme’s standard arithmetic procedures.

• Obj1 and obj2 are characters for which the char=? procedure returns #f.
• One of obj1 and obj2 is the empty list, but the other is not.

• Obj1 and obj2 are objects such as pairs, vectors, bytevectors (library chapter 2),

strings, records (library chapter 6), ports (library section 8.2), or hashtables

(library chapter 13) that refer to distinct locations.

• Obj1 and obj2 are pairs, vectors, strings, or records, or hashtables, where the

applying the same accessor (i.e. car, cdr, vector-ref, string-ref, or record

accessors) to both yields results for which eqv? returns #f.
• Obj1 and obj2 are procedures that would behave differently (return different

values or have different side effects) for some arguments.

Note: The eqv? procedure returning #t when obj1 and obj2 are number objects does

not imply that = would also return #t when called with obj1 and obj2 as arguments.

(eqv? ’a ’a) =⇒ #t
(eqv? ’a ’b) =⇒ #f

Revised6 Scheme 79

(eqv? 2 2) =⇒ #t
(eqv? ’() ’()) =⇒ #t
(eqv? 100000000 100000000) =⇒ #t
(eqv? (cons 1 2) (cons 1 2)) =⇒ #f
(eqv? (lambda () 1)

(lambda () 2)) =⇒ #f
(eqv? #f ’nil) =⇒ #f

The following examples illustrate cases in which the above rules do not fully

specify the behavior of eqv?. All that can be said about such cases is that the value

returned by eqv? must be a boolean.

(let ((p (lambda (x) x)))
(eqv? p p)) =⇒ unspecified

(eqv? "" "") =⇒ unspecified

(eqv? ’#() ’#()) =⇒ unspecified

(eqv? (lambda (x) x)
(lambda (x) x)) =⇒ unspecified

(eqv? (lambda (x) x)
(lambda (y) y)) =⇒ unspecified

(eqv? +nan.0 +nan.0) =⇒ unspecified

The next set of examples shows the use of eqv? with procedures that have local

state. Calls to gen-counter must return a distinct procedure every time, since each

procedure has its own internal counter. Calls to gen-loser return procedures that

behave equivalently when called. However, eqv? may not detect this equivalence.

(define gen-counter
(lambda ()
(let ((n 0))
(lambda () (set! n (+ n 1)) n))))

(let ((g (gen-counter)))
(eqv? g g)) =⇒ unspecified

(eqv? (gen-counter) (gen-counter))
=⇒ #f

(define gen-loser
(lambda ()
(let ((n 0))
(lambda () (set! n (+ n 1)) 27))))

(let ((g (gen-loser)))
(eqv? g g)) =⇒ unspecified

(eqv? (gen-loser) (gen-loser))
=⇒ unspecified

(letrec ((f (lambda () (if (eqv? f g) ’both ’f)))
(g (lambda () (if (eqv? f g) ’both ’g))))

(eqv? f g)) =⇒ unspecified

80 M. Sperber et al.

(letrec ((f (lambda () (if (eqv? f g) ’f ’both)))
(g (lambda () (if (eqv? f g) ’g ’both))))

(eqv? f g)) =⇒ #f

Implementations may share structure between constants where appropriate. Fur-

thermore, a constant may be copied at any time by the implementation so as to

exist simultaneously in different sets of locations, as noted in section 11.4.1. Thus

the value of eqv? on constants is sometimes implementation-dependent.

(eqv? ’(a) ’(a)) =⇒ unspecified

(eqv? "a" "a") =⇒ unspecified

(eqv? ’(b) (cdr ’(a b))) =⇒ unspecified

(let ((x ’(a)))
(eqv? x x)) =⇒ #t

(eq? obj1 obj2) procedure

The eq? predicate is similar to eqv? except that in some cases it is capable of

discerning distinctions finer than those detectable by eqv?.
The eq? and eqv? predicates are guaranteed to have the same behavior on

symbols, booleans, the empty list, pairs, procedures, non-empty strings, bytevectors,

and vectors, and records. The behavior of eq? on number objects and characters

is implementation-dependent, but it always returns either #t or #f, and returns #t
only when eqv? would also return #t. The eq? predicate may also behave differently

from eqv? on empty vectors, empty bytevectors, and empty strings.

(eq? ’a ’a) =⇒ #t
(eq? ’(a) ’(a)) =⇒ unspecified

(eq? (list ’a) (list ’a)) =⇒ #f
(eq? "a" "a") =⇒ unspecified

(eq? "" "") =⇒ unspecified

(eq? ’() ’()) =⇒ #t
(eq? 2 2) =⇒ unspecified

(eq? #\A #\A) =⇒ unspecified

(eq? car car) =⇒ #t
(let ((n (+ 2 3)))
(eq? n n)) =⇒ unspecified

(let ((x ’(a)))
(eq? x x)) =⇒ #t

(let ((x ’#()))
(eq? x x)) =⇒ unspecified

(let ((p (lambda (x) x)))
(eq? p p)) =⇒ unspecified

(equal? obj1 obj2) procedure

The equal? predicate returns #t if and only if the (possibly infinite) unfoldings

of its arguments into regular trees are equal as ordered trees.

Revised6 Scheme 81

The equal? predicate treats pairs and vectors as nodes with outgoing edges,

uses string=? to compare strings, uses bytevector=? to compare bytevectors (see

library chapter 2), and uses eqv? to compare other nodes.

(equal? ’a ’a) =⇒ #t
(equal? ’(a) ’(a)) =⇒ #t
(equal? ’(a (b) c)

’(a (b) c)) =⇒ #t
(equal? "abc" "abc") =⇒ #t
(equal? 2 2) =⇒ #t
(equal? (make-vector 5 ’a)

(make-vector 5 ’a)) =⇒ #t
(equal? ’#vu8(1 2 3 4 5)

(u8-list->bytevector
’(1 2 3 4 5)) =⇒ #t

(equal? (lambda (x) x)
(lambda (y) y)) =⇒ unspecified

(let* ((x (list ’a))
(y (list ’a))
(z (list x y)))

(list (equal? z (list y x))
(equal? z (list x x)))) =⇒ (#t #t)

Note: The equal? procedure must always terminate, even if its arguments contain

cycles.

11.6 Procedure predicate

(procedure? obj) procedure

Returns #t if obj is a procedure, otherwise returns #f.

(procedure? car) =⇒ #t
(procedure? ’car) =⇒ #f
(procedure? (lambda (x) (* x x))) =⇒ #t
(procedure? ’(lambda (x) (* x x)))=⇒ #f

11.7 Arithmetic

The procedures described here implement arithmetic that is generic over the numer-

ical tower described in chapter 3. The generic procedures described in this section

accept both exact and inexact number objects as arguments, performing coercions

and selecting the appropriate operations as determined by the numeric subtypes of

their arguments.

Library chapter 11 describes libraries that define other numerical procedures.

82 M. Sperber et al.

11.7.1 Propagation of exactness and inexactness

The procedures listed below must return the mathematically correct exact result

provided all their arguments are exact:

+ - *
max min abs
numerator denominator gcd
lcm floor ceiling
truncate round rationalize
real-part imag-part make-rectangular

The procedures listed below must return the correct exact result provided all their

arguments are exact, and no divisors are zero:

/
div mod div-and-mod
div0 mod0 div0-and-mod0

Moreover, the procedure expt must return the correct exact result provided its

first argument is an exact real number object and its second argument is an exact

integer object.

The general rule is that the generic operations return the correct exact result when

all of their arguments are exact and the result is mathematically well-defined, but

return an inexact result when any argument is inexact. Exceptions to this rule include

sqrt, exp, log, sin, cos, tan, asin, acos, atan, expt, make-polar, magnitude, and

angle, which may (but are not required to) return inexact results even when given

exact arguments, as indicated in the specification of these procedures.

One general exception to the rule above is that an implementation may return an

exact result despite inexact arguments if that exact result would be the correct result

for all possible substitutions of exact arguments for the inexact ones. An example is

(* 1.0 0) which may return either 0 (exact) or 0.0 (inexact).

11.7.2 Representability of infinities and NaNs

The specification of the numerical operations is written as though infinities and

NaNs are representable, and specifies many operations with respect to these number

objects in ways that are consistent with the IEEE-754 standard for binary floating-

point arithmetic. An implementation of Scheme may or may not represent infinities

and NaNs; however, an implementation must raise a continuable exception with

condition type &no-infinities or &no-nans (respectively; see library section 11.3)

whenever it is unable to represent an infinity or NaN as specified. In this case, the

continuation of the exception handler is the continuation that otherwise would have

received the infinity or NaN value. This requirement also applies to conversions

between number objects and external representations, including the reading of

program source code.

Revised6 Scheme 83

11.7.3 Semantics of common operations

Some operations are the semantic basis for several arithmetic procedures. The

behavior of these operations is described in this section for later reference.

11.7.4 Integer division

Scheme’s operations for performing integer division rely on mathematical operations

div, mod, div0, and mod0, that are defined as follows:

div, mod, div0, and mod0 each accept two real numbers x1 and x2 as operands,

where x2 must be nonzero.

div returns an integer, and mod returns a real. Their results are specified by

x1 div x2 = nd

x1 mod x2 = xm

where

x1 = nd · x2 + xm
0 ! xm < |x2|

Examples:

123 div 10 = 12

123 mod 10 = 3

123 div −10 = −12

123 mod −10 = 3

−123 div 10 = −13

−123 mod 10 = 7

−123 div −10 = 13

−123 mod −10 = 7

div0 and mod0 are like div and mod, except the result of mod0 lies within a half-open

interval centered on zero. The results are specified by

x1 div0 x2 = nd

x1 mod0 x2 = xm

where:

x1 = nd · x2 + xm
−| x2

2 | ! xm < | x2

2 |
Examples:

123 div0 10 = 12

123 mod0 10 = 3

123 div0 −10 = −12

123 mod0 −10 = 3

−123 div0 10 = −12

84 M. Sperber et al.

−123 mod0 10 = −3

−123 div0 −10 = 12

−123 mod0 −10 = −3

11.7.5 Transcendental functions

In general, the transcendental functions log, sin−1 (arcsine), cos−1 (arccosine), and

tan−1 are multiply defined. The value of log z is defined to be the one whose

imaginary part lies in the range from −π (inclusive if −0.0 is distinguished, exclusive

otherwise) to π (inclusive). log 0 is undefined.

The value of log z for non-real z is defined in terms of log on real numbers as

log z = log |z| + (angle z)i

where angle z is the angle of z = a · eib specified as:

angle z = b + 2πn

with −π ! angle z ! π and angle z = b + 2πn for some integer n.

With the one-argument version of log defined this way, the values of the two-

argument-version of log, sin−1 z, cos−1 z, tan−1 z, and the two-argument version of

tan−1 are according to the following formulæ:

log z b =
log z

log b

sin−1 z = −i log(iz +
√

1 − z2)

cos−1 z = π/2 − sin−1 z

tan−1 z = (log(1 + iz) − log(1 − iz))/(2i)

tan−1 x y = angle(x + yi)

The range of tan−1 x y is as in the following table. The asterisk (*) indicates that

the entry applies to implementations that distinguish minus zero.

Revised6 Scheme 85

y condition x condition range of result r

y = 0.0 x > 0.0 0.0

∗ y = +0.0 x > 0.0 +0.0

∗ y = −0.0 x > 0.0 −0.0

y > 0.0 x > 0.0 0.0 < r < π
2

y > 0.0 x = 0.0 π
2

y > 0.0 x < 0.0 π
2 < r < π

y = 0.0 x < 0 π

∗ y = +0.0 x < 0.0 π

∗ y = −0.0 x < 0.0 −π

y < 0.0 x < 0.0 −π < r < − π
2

y < 0.0 x = 0.0 − π
2

y < 0.0 x > 0.0 − π
2 < r < 0.0

y = 0.0 x = 0.0 undefined

∗ y = +0.0 x = +0.0 +0.0

∗ y = −0.0 x = +0.0 −0.0

∗ y = +0.0 x = −0.0 π

∗ y = −0.0 x = −0.0 −π

∗ y = +0.0 x = 0 π
2

∗ y = −0.0 x = 0 − π
2

11.7.6 Numerical operations

11.7.7 Numerical type predicates

(number? obj) procedure

(complex? obj) procedure

(real? obj) procedure

(rational? obj) procedure

(integer? obj) procedure

These numerical type predicates can be applied to any kind of argument. They

return #t if the object is a number object of the named type, and #f otherwise. In

general, if a type predicate is true of a number object then all higher type predicates

are also true of that number object. Consequently, if a type predicate is false of a

number object, then all lower type predicates are also false of that number object.

If z is a complex number object, then (real? z) is true if and only if (zero?
(imag-part z)) and (exact? (imag-part z)) are both true.

If x is a real number object, then (rational? x) is true if and only if there exist

exact integer objects k1 and k2 such that (= x (/ k1 k2)) and (= (numerator x)
k1) and (= (denominator x) k2) are all true. Thus infinities and NaNs are not

rational number objects.

If q is a rational number objects, then (integer? q) is true if and only if (=
(denominator q) 1) is true. If q is not a rational number object, then (integer?
q) is #f.

86 M. Sperber et al.

(complex? 3+4i) =⇒ #t
(complex? 3) =⇒ #t
(real? 3) =⇒ #t
(real? -2.5+0.0i) =⇒ #f
(real? -2.5+0i) =⇒ #t
(real? -2.5) =⇒ #t
(real? #e1e10) =⇒ #t
(rational? 6/10) =⇒ #t
(rational? 6/3) =⇒ #t
(rational? 2) =⇒ #t
(integer? 3+0i) =⇒ #t
(integer? 3.0) =⇒ #t
(integer? 8/4) =⇒ #t

(number? +nan.0) =⇒ #t
(complex? +nan.0) =⇒ #t
(real? +nan.0) =⇒ #t
(rational? +nan.0) =⇒ #f
(complex? +inf.0) =⇒ #t
(real? -inf.0) =⇒ #t
(rational? -inf.0) =⇒ #f
(integer? -inf.0) =⇒ #f

Note: Except for number?, the behavior of these type predicates on inexact number

objects is unreliable, because any inaccuracy may affect the result.

(real-valued? obj) procedure

(rational-valued? obj) procedure

(integer-valued? obj) procedure

These numerical type predicates can be applied to any kind of argument. The

real-valued? procedure returns #t if the object is a number object and is equal in

the sense of = to some real number object, or if the object is a NaN, or a complex

number object whose real part is a NaN and whose imaginary part is zero in the

sense of zero?. The rational-valued? and integer-valued? procedures return

#t if the object is a number object and is equal in the sense of = to some object of

the named type, and otherwise they return #f.

(real-valued? +nan.0) =⇒ #t
(real-valued? +nan.0+0i) =⇒ #t
(real-valued? -inf.0) =⇒ #t
(real-valued? 3) =⇒ #t
(real-valued? -2.5+0.0i) =⇒ #t
(real-valued? -2.5+0i) =⇒ #t
(real-valued? -2.5) =⇒ #t
(real-valued? #e1e10) =⇒ #t

Revised6 Scheme 87

(rational-valued? +nan.0) =⇒ #f
(rational-valued? -inf.0) =⇒ #f
(rational-valued? 6/10) =⇒ #t
(rational-valued? 6/10+0.0i) =⇒ #t
(rational-valued? 6/10+0i) =⇒ #t
(rational-valued? 6/3) =⇒ #t

(integer-valued? 3+0i) =⇒ #t
(integer-valued? 3+0.0i) =⇒ #t
(integer-valued? 3.0) =⇒ #t
(integer-valued? 3.0+0.0i) =⇒ #t
(integer-valued? 8/4) =⇒ #t

Note: These procedures test whether a given number object can be coerced to

the specified type without loss of numerical accuracy. Specifically, the behavior of

these predicates differs from the behavior of real?, rational?, and integer? on

complex number objects whose imaginary part is inexact zero.

Note: The behavior of these type predicates on inexact number objects is unreliable,

because any inaccuracy may affect the result.

(exact? z) procedure

(inexact? z) procedure

These numerical predicates provide tests for the exactness of a quantity. For any

number object, precisely one of these predicates is true.

(exact? 5) =⇒ #t
(inexact? +inf.0) =⇒ #t

11.7.8 Generic conversions

(inexact z) procedure

(exact z) procedure

The inexact procedure returns an inexact representation of z . If inexact number

objects of the appropriate type have bounded precision, then the value returned

is an inexact number object that is nearest to the argument. If an exact argu-

ment has no reasonably close inexact equivalent, an exception with condition type

&implementation-restriction may be raised.

Note: For a real number object whose magnitude is finite but so large that it has

no reasonable finite approximation as an inexact number, a reasonably close inexact

equivalent may be +inf.0 or -inf.0. Similarly, the inexact representation of a

complex number object whose components are finite may have infinite components.

The exact procedure returns an exact representation of z . The value returned

is the exact number object that is numerically closest to the argument; in most

cases, the result of this procedure should be numerically equal to its argument. If

88 M. Sperber et al.

an inexact argument has no reasonably close exact equivalent, an exception with

condition type &implementation-restriction may be raised.

These procedures implement the natural one-to-one correspondence between exact

and inexact integer objects throughout an implementation-dependent range.

The inexact and exact procedures are idempotent.

11.7.9 Arithmetic operations

(= z1 z2 z3 . . .) procedure

(< x1 x2 x3 . . .) procedure

(> x1 x2 x3 . . .) procedure

(<= x1 x2 x3 . . .) procedure

(>= x1 x2 x3 . . .) procedure

These procedures return #t if their arguments are (respectively): equal, monoton-

ically increasing, monotonically decreasing, monotonically nondecreasing, or mono-

tonically nonincreasing, and #f otherwise.

(= +inf.0 +inf.0) =⇒ #t
(= -inf.0 +inf.0) =⇒ #f
(= -inf.0 -inf.0) =⇒ #t

For any real number object x that is neither infinite nor NaN:

(< -inf.0 x +inf.0) =⇒ #t
(> +inf.0 x -inf.0) =⇒ #t

For any number object z :

(= +nan.0 z) =⇒ #f

For any real number object x :

(< +nan.0 x) =⇒ #f
(> +nan.0 x) =⇒ #f

These predicates must be transitive.

Note: The traditional implementations of these predicates in Lisp-like languages

are not transitive.

Note: While it is possible to compare inexact number objects using these predicates,

the results may be unreliable because a small inaccuracy may affect the result; this

is especially true of = and zero? (below).

When in doubt, consult a numerical analyst.

(zero? z) procedure

(positive? x) procedure

(negative? x) procedure

(odd? n) procedure

(even? n) procedure

Revised6 Scheme 89

(finite? x) procedure

(infinite? x) procedure

(nan? x) procedure

These numerical predicates test a number object for a particular property, return-

ing #t or #f. The zero? procedure tests if the number object is = to zero, positive?
tests whether it is greater than zero, negative? tests whether it is less than zero,

odd? tests whether it is odd, even? tests whether it is even, finite? tests whether

it is not an infinity and not a NaN, infinite? tests whether it is an infinity, nan?
tests whether it is a NaN.

(zero? +0.0) =⇒ #t
(zero? -0.0) =⇒ #t
(zero? +nan.0) =⇒ #f
(positive? +inf.0) =⇒ #t
(negative? -inf.0) =⇒ #t
(positive? +nan.0) =⇒ #f
(negative? +nan.0) =⇒ #f
(finite? +inf.0) =⇒ #f
(finite? 5) =⇒ #t
(finite? 5.0) =⇒ #t
(infinite? 5.0) =⇒ #f
(infinite? +inf.0) =⇒ #t

Note: As with the predicates above, the results may be unreliable because a small

inaccuracy may affect the result.

(max x1 x2 . . .) procedure

(min x1 x2 . . .) procedure

These procedures return the maximum or minimum of their arguments.

(max 3 4) =⇒ 4
(max 3.9 4) =⇒ 4.0

For any real number object x that is not a NaN:

(max +inf.0 x) =⇒ +inf.0
(min -inf.0 x) =⇒ -inf.0

Note: If any argument is inexact, then the result is also inexact (unless the procedure

can prove that the inaccuracy is not large enough to affect the result, which is possible

only in unusual implementations). If min or max is used to compare number objects

of mixed exactness, and the numerical value of the result cannot be represented as

an inexact number object without loss of accuracy, then the procedure may raise an

exception with condition type &implementation-restriction.

(+ z1 . . .) procedure

(* z1 . . .) procedure

These procedures return the sum or product of their arguments.

90 M. Sperber et al.

(+ 3 4) =⇒ 7
(+ 3) =⇒ 3
(+) =⇒ 0
(+ +inf.0 +inf.0) =⇒ +inf.0
(+ +inf.0 -inf.0) =⇒ +nan.0

(* 4) =⇒ 4
(*) =⇒ 1
(* 5 +inf.0) =⇒ +inf.0
(* -5 +inf.0) =⇒ -inf.0
(* +inf.0 +inf.0) =⇒ +inf.0
(* +inf.0 -inf.0) =⇒ -inf.0
(* 0 +inf.0) =⇒ 0 or +nan.0
(* 0 +nan.0) =⇒ 0 or +nan.0
(* 1.0 0) =⇒ 0 or 0.0

For any real number object x that is neither infinite nor NaN:

(+ +inf.0 x) =⇒ +inf.0
(+ -inf.0 x) =⇒ -inf.0

For any real number object x :

(+ +nan.0 x) =⇒ +nan.0

For any real number object x that is not an exact 0:

(* +nan.0 x) =⇒ +nan.0

If any of these procedures are applied to mixed non-rational real and non-real

complex arguments, they either raise an exception with condition type &implemen-
tation-restriction or return an unspecified number object.

Implementations that distinguish −0.0 should adopt behavior consistent with the

following examples:

(+ 0.0 -0.0) =⇒ 0.0
(+ -0.0 0.0) =⇒ 0.0
(+ 0.0 0.0) =⇒ 0.0
(+ -0.0 -0.0) =⇒ -0.0

(- z) procedure

(- z1 z2 z3 . . .) procedure

With two or more arguments, this procedures returns the difference of its argu-

ments, associating to the left. With one argument, however, it returns the additive

inverse of its argument.

(- 3 4) =⇒ -1
(- 3 4 5) =⇒ -6
(- 3) =⇒ -3
(- +inf.0 +inf.0) =⇒ +nan.0

Revised6 Scheme 91

If this procedure is applied to mixed non-rational real and non-real complex argu-

ments, it either raises an exception with condition type &implementation-restriction
or returns an unspecified number object.

Implementations that distinguish −0.0 should adopt behavior consistent with the

following examples:

(- 0.0) =⇒ -0.0
(- -0.0) =⇒ 0.0
(- 0.0 -0.0) =⇒ 0.0
(- -0.0 0.0) =⇒ -0.0
(- 0.0 0.0) =⇒ 0.0
(- -0.0 -0.0) =⇒ 0.0

(/ z) procedure

(/ z1 z2 z3 . . .) procedure

If all of the arguments are exact, then the divisors must all be nonzero. With two

or more arguments, this procedure returns the quotient of its arguments, associating

to the left. With one argument, however, it returns the multiplicative inverse of its

argument.

(/ 3 4 5) =⇒ 3/20
(/ 3) =⇒ 1/3
(/ 0.0) =⇒ +inf.0
(/ 1.0 0) =⇒ +inf.0
(/ -1 0.0) =⇒ -inf.0
(/ +inf.0) =⇒ 0.0
(/ 0 0) =⇒ &assertion exception

(/ 3 0) =⇒ &assertion exception

(/ 0 3.5) =⇒ 0.0
(/ 0 0.0) =⇒ +nan.0
(/ 0.0 0) =⇒ +nan.0
(/ 0.0 0.0) =⇒ +nan.0

If this procedure is applied to mixed non-rational real and non-real complex

arguments, it either raises an exception with condition type &implementation-
restriction or returns an unspecified number object.

(abs x) procedure

Returns the absolute value of its argument.

(abs -7) =⇒ 7
(abs -inf.0) =⇒ +inf.0

(div-and-mod x1 x2) procedure

(div x1 x2) procedure

(mod x1 x2) procedure

92 M. Sperber et al.

(div0-and-mod0 x1 x2) procedure

(div0 x1 x2) procedure

(mod0 x1 x2) procedure

These procedures implement number-theoretic integer division and return the

results of the corresponding mathematical operations specified in section 11.7.4. If

x1 and x2 are exact, x2 must be nonzero. In the cases where the mathematical

requirements in section 11.7.4 cannot be satisfied by any number object, either

an exception is raised with condition type &implementation-restriction, or

unspecified number objects (one for div mod, div0 and mod0, two for div-and-mod
and div0-and-mod0) are returned.

(div x1 x2) =⇒ x1 div x2

(mod x1 x2) =⇒ x1 mod x2

(div-and-mod x1 x2) =⇒ x1 div x2, x1 mod x2

; two return values

(div0 x1 x2) =⇒ x1 div0 x2

(mod0 x1 x2) =⇒ x1 mod0 x2

(div0-and-mod0 x1 x2) =⇒ x1 div0 x2, x1 mod0 x2

; two return values

(gcd n1 . . .) procedure

(lcm n1 . . .) procedure

These procedures return the greatest common divisor or least common multiple

of their arguments. The result is always non-negative.

(gcd 32 -36) =⇒ 4
(gcd) =⇒ 0
(lcm 32 -36) =⇒ 288
(lcm 32.0 -36) =⇒ 288.0
(lcm) =⇒ 1

(numerator q) procedure

(denominator q) procedure

These procedures return the numerator or denominator of their argument; the

result is computed as if the argument was represented as a fraction in lowest terms.

The denominator is always positive. The denominator of 0 is defined to be 1.

(numerator (/ 6 4)) =⇒ 3
(denominator (/ 6 4)) =⇒ 2
(denominator
(inexact (/ 6 4))) =⇒ 2.0

(floor x) procedure

(ceiling x) procedure

Revised6 Scheme 93

(truncate x) procedure

(round x) procedure

These procedures return inexact integer objects for inexact arguments that are not

infinities or NaNs, and exact integer objects for exact rational arguments. For such

arguments, floor returns the largest integer object not larger than x . The ceiling
procedure returns the smallest integer object not smaller than x . The truncate
procedure returns the integer object closest to x whose absolute value is not larger

than the absolute value of x . The round procedure returns the closest integer object

to x , rounding to even when x represents a number halfway between two integers.

Note: If the argument to one of these procedures is inexact, then the result is

also inexact. If an exact value is needed, the result should be passed to the exact
procedure.

Although infinities and NaNs are not integer objects, these procedures return an

infinity when given an infinity as an argument, and a NaN when given a NaN.

(floor -4.3) =⇒ -5.0
(ceiling -4.3) =⇒ -4.0
(truncate -4.3) =⇒ -4.0
(round -4.3) =⇒ -4.0

(floor 3.5) =⇒ 3.0
(ceiling 3.5) =⇒ 4.0
(truncate 3.5) =⇒ 3.0
(round 3.5) =⇒ 4.0

(round 7/2) =⇒ 4
(round 7) =⇒ 7

(floor +inf.0) =⇒ +inf.0
(ceiling -inf.0) =⇒ -inf.0
(round +nan.0) =⇒ +nan.0

(rationalize x1 x2) procedure

The rationalize procedure returns the a number object representing the simplest

rational number differing from x1 by no more than x2. A rational number r1 is

simpler than another rational number r2 if r1 = p1/q1 and r2 = p2/q2 (in lowest

terms) and |p1| ! |p2| and |q1| ! |q2|. Thus 3/5 is simpler than 4/7. Although not

all rationals are comparable in this ordering (consider 2/7 and 3/5) any interval

contains a rational number that is simpler than every other rational number in that

interval (the simpler 2/5 lies between 2/7 and 3/5). Note that 0 = 0/1 is the simplest

rational of all.

(rationalize (exact .3) 1/10) =⇒ 1/3
(rationalize .3 1/10) =⇒ #i1/3 ; approximately

94 M. Sperber et al.

(rationalize +inf.0 3) =⇒ +inf.0
(rationalize +inf.0 +inf.0) =⇒ +nan.0
(rationalize 3 +inf.0) =⇒ 0.0

The first two examples hold only in implementations whose inexact real number

objects have sufficient precision.

(exp z) procedure

(log z) procedure

(log z1 z2) procedure

(sin z) procedure

(cos z) procedure

(tan z) procedure

(asin z) procedure

(acos z) procedure

(atan z) procedure

(atan x1 x2) procedure

These procedures compute the usual transcendental functions. The exp procedure

computes the base-e exponential of z . The log procedure with a single argument

computes the natural logarithm of z (not the base-ten logarithm); (log z1 z2)
computes the base-z2 logarithm of z1. The asin, acos, and atan procedures compute

arcsine, arccosine, and arctangent, respectively. The two-argument variant of atan
computes (angle (make-rectangular x2 x1)).

See section 11.7.5 for the underlying mathematical operations. These procedures

may return inexact results even when given exact arguments.

(exp +inf.0) =⇒ +inf.0
(exp -inf.0) =⇒ 0.0
(log +inf.0) =⇒ +inf.0
(log 0.0) =⇒ -inf.0
(log 0) =⇒ &assertion exception

(log -inf.0) =⇒ +inf.0+3.141592653589793i
; approximately

(atan -inf.0) =⇒ -1.5707963267948965 ; approximately

(atan +inf.0) =⇒ 1.5707963267948965 ; approximately

(log -1.0+0.0i) =⇒ 0.0+3.141592653589793i ; approximately

(log -1.0-0.0i) =⇒ 0.0-3.141592653589793i ; approximately

; if -0.0 is distinguished

(sqrt z) procedure

Returns the principal square root of z . For rational z , the result has either positive

real part, or zero real part and non-negative imaginary part. With log defined as in

section 11.7.5, the value of (sqrt z) could be expressed as e
log z

2 .

The sqrt procedure may return an inexact result even when given an exact

argument.

Revised6 Scheme 95

(sqrt -5) =⇒ 0.0+2.23606797749979i ; approximately

(sqrt +inf.0) =⇒ +inf.0
(sqrt -inf.0) =⇒ +inf.0i

(exact-integer-sqrt k) procedure

The exact-integer-sqrt procedure returns two non-negative exact integer ob-

jects s and r where k = s2 + r and k < (s + 1)2.

(exact-integer-sqrt 4) =⇒ 2 0
; two return values

(exact-integer-sqrt 5) =⇒ 2 1
; two return values

(expt z1 z2) procedure

Returns z1 raised to the power z2. For nonzero z1, this is ez2 log z1 . 0.0z is 1.0 if

z = 0.0, and 0.0 if (real-part z) is positive. For other cases in which the first ar-

gument is zero, either an exception is raised with condition type &implementation-
restriction, or an unspecified number object is returned.

For an exact real number object z1 and an exact integer object z2, (expt z1 z2)
must return an exact result. For all other values of z1 and z2, (expt z1 z2) may

return an inexact result, even when both z1 and z2 are exact.

(expt 5 3) =⇒ 125
(expt 5 -3) =⇒ 1/125
(expt 5 0) =⇒ 1
(expt 0 5) =⇒ 0
(expt 0 5+.0000312i) =⇒ 0.0
(expt 0 -5) =⇒ unspecified

(expt 0 -5+.0000312i) =⇒ unspecified

(expt 0 0) =⇒ 1
(expt 0.0 0.0) =⇒ 1.0

(make-rectangular x1 x2) procedure

(make-polar x3 x4) procedure

(real-part z) procedure

(imag-part z) procedure

(magnitude z) procedure

(angle z) procedure

Suppose a1, a2, a3, and a4 are real numbers, and c is a complex number such that

the following holds:

c = a1 + a2i = a3e
ia4

Then, if x1, x2, x3, and x4 are number objects representing a1, a2, a3, and

a4, respectively, (make-rectangular x1 x2) returns c, and (make-polar x3 x4)
returns c.

96 M. Sperber et al.

(make-rectangular 1.1 2.2) =⇒ 1.1+2.2i ; approximately

(make-polar 1.1 2.2) =⇒ 1.1@2.2 ; approximately

Conversely, if −π ! a4 ! π, and if z is a number object representing c, then

(real-part z) returns a1 (imag-part z) returns a2, (magnitude z) returns a3,

and (angle z) returns a4.

(real-part 1.1+2.2i) =⇒ 1.1 ; approximately

(imag-part 1.1+2.2i) =⇒ 2.2 ; approximately

(magnitude 1.1@2.2) =⇒ 1.1 ; approximately

(angle 1.1@2.2) =⇒ 2.2 ; approximately

(angle -1.0) =⇒ 3.141592653589793 ; approximately

(angle -1.0+0.0i) =⇒ 3.141592653589793 ; approximately

(angle -1.0-0.0i) =⇒ -3.141592653589793 ; approximately

; if -0.0 is distinguished

(angle +inf.0) =⇒ 0.0
(angle -inf.0) =⇒ 3.141592653589793 ; approximately

Moreover, suppose x1, x2 are such that either x1 or x2 is an infinity, then

(make-rectangular x1 x2) =⇒ z

(magnitude z) =⇒ +inf.0

The make-polar, magnitude, and angle procedures may return inexact results

even when given exact arguments.

(angle -1) =⇒ 3.141592653589793 ; approximately

11.7.10 Numerical Input and Output

(number->string z) procedure

(number->string z radix) procedure

(number->string z radix precision) procedure

Radix must be an exact integer object, either 2, 8, 10, or 16. If omitted, radix

defaults to 10. If a precision is specified, then z must be an inexact complex number

object, precision must be an exact positive integer object, and radix must be 10. The

number->string procedure takes a number object and a radix and returns as a

string an external representation of the given number object in the given radix such

that

(let ((number z) (radix radix))
(eqv? (string->number

(number->string number radix)
radix)

number))

Revised6 Scheme 97

is true. If no possible result makes this expression true, an exception with condition

type &implementation-restriction is raised.

Note: The error case can occur only when z is not a complex number object or is

a complex number object with a non-rational real or imaginary part.

If a precision is specified, then the representations of the inexact real components

of the result, unless they are infinite or NaN, specify an explicit 〈mantissa width〉 p,

and p is the least p " precision for which the above expression is true.

If z is inexact, the radix is 10, and the above expression and condition can

be satisfied by a result that contains a decimal point, then the result contains a

decimal point and is expressed using the minimum number of digits (exclusive of

exponent, trailing zeroes, and mantissa width) needed to make the above expression

and condition true (Burger & Dybvig, 1996; Clinger, 1990); otherwise the format of

the result is unspecified.

The result returned by number->string never contains an explicit radix prefix.

(string->number string) procedure

(string->number string radix) procedure

Returns a number object with maximally precise representation expressed by the

given string . Radix must be an exact integer object, either 2, 8, 10, or 16. If supplied,

radix is a default radix that may be overridden by an explicit radix prefix in string

(e.g., "#o177"). If radix is not supplied, then the default radix is 10. If string is not a

syntactically valid notation for a number object or a notation for a rational number

object with a zero denominator, then string->number returns #f.

(string->number "100") =⇒ 100
(string->number "100" 16) =⇒ 256
(string->number "1e2") =⇒ 100.0
(string->number "0/0") =⇒ #f
(string->number "+inf.0") =⇒ +inf.0
(string->number "-inf.0") =⇒ -inf.0
(string->number "+nan.0") =⇒ +nan.0

Note: The string->number procedure always returns a number object or #f; it

never raises an exception.

11.8 Booleans

The standard boolean objects for true and false have external representations #t
and #f. However, of all objects, only #f counts as false in conditional expressions.

See section 5.7.

Note: Programmers accustomed to other dialects of Lisp should be aware that

Scheme distinguishes both #f and the empty list from each other and from the

symbol nil.

(not obj) procedure

Returns #t if obj is #f, and returns #f otherwise.

98 M. Sperber et al.

(not #t) =⇒ #f
(not 3) =⇒ #f
(not (list 3)) =⇒ #f
(not #f) =⇒ #t
(not ’()) =⇒ #f
(not (list)) =⇒ #f
(not ’nil) =⇒ #f

(boolean? obj) procedure

Returns #t if obj is either #t or #f and returns #f otherwise.

(boolean? #f) =⇒ #t
(boolean? 0) =⇒ #f
(boolean? ’()) =⇒ #f

(boolean=? bool1 bool2 bool3 . . .) procedure

Returns #t if the booleans are the same.

11.9 Pairs and lists

A pair is a compound structure with two fields called the car and cdr fields (for

historical reasons). Pairs are created by the procedure cons. The car and cdr fields

are accessed by the procedures car and cdr.
Pairs are used primarily to represent lists. A list can be defined recursively as

either the empty list or a pair whose cdr is a list. More precisely, the set of lists is

defined as the smallest set X such that

• The empty list is in X .

• If list is in X , then any pair whose cdr field contains list is also in X .

The objects in the car fields of successive pairs of a list are the elements of the list.

For example, a two-element list is a pair whose car is the first element and whose

cdr is a pair whose car is the second element and whose cdr is the empty list. The

length of a list is the number of elements, which is the same as the number of pairs.

The empty list is a special object of its own type. It is not a pair. It has no

elements and its length is zero.

Note: The above definitions imply that all lists have finite length and are terminated

by the empty list.

A chain of pairs not ending in the empty list is called an improper list. Note that

an improper list is not a list. The list and dotted notations can be combined to

represent improper lists:

(a b c . d)

is equivalent to

(a . (b . (c . d)))

Revised6 Scheme 99

Whether a given pair is a list depends upon what is stored in the cdr field.

(pair? obj) procedure

Returns #t if obj is a pair, and otherwise returns #f.

(pair? ’(a . b)) =⇒ #t
(pair? ’(a b c)) =⇒ #t
(pair? ’()) =⇒ #f
(pair? ’#(a b)) =⇒ #f

(cons obj1 obj2) procedure

Returns a newly allocated pair whose car is obj1 and whose cdr is obj2. The pair

is guaranteed to be different (in the sense of eqv?) from every existing object.

(cons ’a ’()) =⇒ (a)
(cons ’(a) ’(b c d)) =⇒ ((a) b c d)
(cons "a" ’(b c)) =⇒ ("a" b c)
(cons ’a 3) =⇒ (a . 3)
(cons ’(a b) ’c) =⇒ ((a b) . c)

(car pair) procedure

Returns the contents of the car field of pair .

(car ’(a b c)) =⇒ a
(car ’((a) b c d)) =⇒ (a)
(car ’(1 . 2)) =⇒ 1
(car ’()) =⇒ &assertion exception

(cdr pair) procedure

Returns the contents of the cdr field of pair .

(cdr ’((a) b c d)) =⇒ (b c d)
(cdr ’(1 . 2)) =⇒ 2
(cdr ’()) =⇒ &assertion exception

(caar pair) procedure

(cadr pair) procedure
...

...

(cdddar pair) procedure

(cddddr pair) procedure

These procedures are compositions of car and cdr, where for example caddr
could be defined by

(define caddr (lambda (x) (car (cdr (cdr x))))).

100 M. Sperber et al.

Arbitrary compositions, up to four deep, are provided. There are twenty-eight of

these procedures in all.

(null? obj) procedure

Returns #t if obj is the empty list, #f otherwise.

(list? obj) procedure

Returns #t if obj is a list, #f otherwise. By definition, all lists are chains of pairs

that have finite length and are terminated by the empty list.

(list? ’(a b c)) =⇒ #t
(list? ’()) =⇒ #t
(list? ’(a . b)) =⇒ #f

(list obj . . .) procedure

Returns a newly allocated list of its arguments.

(list ’a (+ 3 4) ’c) =⇒ (a 7 c)
(list) =⇒ ()

(length list) procedure

Returns the length of list .

(length ’(a b c)) =⇒ 3
(length ’(a (b) (c d e))) =⇒ 3
(length ’()) =⇒ 0

(append list . . . obj) procedure

(append) procedure

Returns a possibly improper list consisting of the elements of the first list followed

by the elements of the other lists, with obj as the cdr of the final pair. An improper

list results if obj is not a list. The append procedure returns the empty list if called

with no arguments.

(append ’(x) ’(y)) =⇒ (x y)
(append ’(a) ’(b c d)) =⇒ (a b c d)
(append ’(a (b)) ’((c))) =⇒ (a (b) (c))
(append ’(a b) ’(c . d)) =⇒ (a b c . d)
(append ’() ’a) =⇒ a
(append) =⇒ ()
(append ’a) =⇒ a

If append constructs a nonempty chain of pairs, it is always newly allocated. If

no pairs are allocated, obj is returned.

(reverse list) procedure

Returns a newly allocated list consisting of the elements of list in reverse order.

Revised6 Scheme 101

(reverse ’(a b c)) =⇒ (c b a)
(reverse ’(a (b c) d (e (f)))) =⇒ ((e (f)) d (b c) a)

(list-tail list k) procedure

List should be a list of size at least k . The list-tail procedure returns the subchain

of pairs of list obtained by omitting the first k elements.

(list-tail ’(a b c d) 2) =⇒ (c d)

Implementation responsibilities: The implementation must check that list is a chain

of pairs whose length is at least k . It should not check that it is a chain of pairs

beyond this length.

(list-ref list k) procedure

List must be a list whose length is at least k + 1. The list-tail procedure returns

the k th element of list .

(list-ref ’(a b c d) 2) =⇒ c

Implementation responsibilities: The implementation must check that list is a chain

of pairs whose length is at least k + 1. It should not check that it is a list of pairs

beyond this length.

(map proc list1 list2 . . .) procedure

The lists should all have the same length. Proc should accept as many arguments

as there are lists and return a single value. Proc should not mutate any of the lists.

The map procedure applies proc element-wise to the elements of the lists and

returns a list of the results, in order. Proc is always called in the same dynamic

environment as map itself. The order in which proc is applied to the elements of the

lists is unspecified. If multiple returns occur from map, the values returned by earlier

returns are not mutated.

(map cadr ’((a b) (d e) (g h))) =⇒ (b e h)

(map (lambda (n) (expt n n))
’(1 2 3 4 5)) =⇒ (1 4 27 256 3125)

(map + ’(1 2 3) ’(4 5 6)) =⇒ (5 7 9)

(let ((count 0))
(map (lambda (ignored)

(set! count (+ count 1))
count)

’(a b))) =⇒ (1 2) or (2 1)

102 M. Sperber et al.

Implementation responsibilities: The implementation should check that the lists all

have the same length. The implementation must check the restrictions on proc to

the extent performed by applying it as described. An implementation may check

whether proc is an appropriate argument before applying it.

(for-each proc list1 list2 . . .) procedure

The lists should all have the same length. Proc should accept as many arguments

as there are lists. Proc should not mutate any of the lists.

The for-each procedure applies proc element-wise to the elements of the lists for

its side effects, in order from the first elements to the last. Proc is always called in

the same dynamic environment as for-each itself. The return values of for-each
are unspecified.

(let ((v (make-vector 5)))
(for-each (lambda (i)

(vector-set! v i (* i i)))
’(0 1 2 3 4))

v) =⇒ #(0 1 4 9 16)

(for-each (lambda (x) x) ’(1 2 3 4)) =⇒ unspecified

(for-each even? ’()) =⇒ unspecified

Implementation responsibilities: The implementation should check that the lists all

have the same length. The implementation must check the restrictions on proc to

the extent performed by applying it as described. An implementation may check

whether proc is an appropriate argument before applying it.

Note: Implementations of for-each may or may not tail-call proc on the last

elements.

11.10 Symbols

Symbols are objects whose usefulness rests on the fact that two symbols are identical

(in the sense of eq?, eqv? and equal?) if and only if their names are spelled the

same way. A symbol literal is formed using quote.

(symbol? obj) procedure

Returns #t if obj is a symbol, otherwise returns #f.

(symbol? ’foo) =⇒ #t
(symbol? (car ’(a b))) =⇒ #t
(symbol? "bar") =⇒ #f
(symbol? ’nil) =⇒ #t
(symbol? ’()) =⇒ #f
(symbol? #f) =⇒ #f

Revised6 Scheme 103

(symbol->string symbol) procedure

Returns the name of symbol as an immutable string.

(symbol->string ’flying-fish)
=⇒ "flying-fish"

(symbol->string ’Martin) =⇒ "Martin"
(symbol->string

(string->symbol "Malvina"))
=⇒ "Malvina"

(symbol=? symbol1 symbol2 symbol3 . . .) procedure

Returns #t if the symbols are the same, i.e., if their names are spelled the same.

(string->symbol string) procedure

Returns the symbol whose name is string .

(eq? ’mISSISSIppi ’mississippi)
=⇒ #f

(string->symbol "mISSISSIppi")
=⇒ the symbol with name "mISSISSIppi"

(eq? ’bitBlt (string->symbol "bitBlt"))
=⇒ #t

(eq? ’JollyWog
(string->symbol

(symbol->string ’JollyWog)))
=⇒ #t

(string=? "K. Harper, M.D."
(symbol->string
(string->symbol "K. Harper, M.D.")))

=⇒ #t

11.11 Characters

Characters are objects that represent Unicode scalar values (Unicode Consortium,

2007).

Note: Unicode defines a standard mapping between sequences of Unicode scalar

values (integers in the range 0 to #x10FFFF, excluding the range #xD800 to

#xDFFF) in the latest version of the standard and human-readable “characters”.

More precisely, Unicode distinguishes between glyphs, which are printed for humans

to read, and characters, which are abstract entities that map to glyphs (sometimes in

a way that’s sensitive to surrounding characters). Furthermore, different sequences of

scalar values sometimes correspond to the same character. The relationships among

scalar, characters, and glyphs are subtle and complex.

Despite this complexity, most things that a literate human would call a “character”

can be represented by a single Unicode scalar value (although several sequences of

104 M. Sperber et al.

Unicode scalar values may represent that same character). For example, Roman

letters, Cyrillic letters, Hebrew consonants, and most Chinese characters fall into

this category.

Unicode scalar values exclude the range #xD800 to #xDFFF, which are part

of the range of Unicode code points . However, the Unicode code points in this

range, the so-called surrogates , are an artifact of the UTF-16 encoding, and can

only appear in specific Unicode encodings, and even then only in pairs that encode

scalar values. Consequently, all characters represent code points, but the surrogate

code points do not have representations as characters.

(char? obj) procedure

Returns #t if obj is a character, otherwise returns #f.

(char->integer char) procedure

(integer->char sv) procedure

Sv must be a Unicode scalar value, i.e., a non-negative exact integer object in

[0,#xD7FF] ∪ [#xE000,#x10FFFF].

Given a character, char->integer returns its Unicode scalar value as an exact

integer object. For a Unicode scalar value sv , integer->char returns its associated

character.

(integer->char 32) =⇒ #\space
(char->integer (integer->char 5000))

=⇒ 5000
(integer->char #\xD800) =⇒ &assertion exception

(char=? char1 char2 char3 . . .) procedure

(char<? char1 char2 char3 . . .) procedure

(char>? char1 char2 char3 . . .) procedure

(char<=? char1 char2 char3 . . .) procedure

(char>=? char1 char2 char3 . . .) procedure

These procedures impose a total ordering on the set of characters according to

their Unicode scalar values.

(char<? #\z #\ß) =⇒ #t
(char<? #\z #\Z) =⇒ #f

11.12 Strings

Strings are sequences of characters.

The length of a string is the number of characters that it contains. This number

is fixed when the string is created. The valid indices of a string are the integers less

than the length of the string. The first character of a string has index 0, the second

has index 1, and so on.

Revised6 Scheme 105

(string? obj) procedure

Returns #t if obj is a string, otherwise returns #f.

(make-string k) procedure

(make-string k char) procedure

Returns a newly allocated string of length k . If char is given, then all elements of

the string are initialized to char , otherwise the contents of the string are unspecified.

(string char . . .) procedure

Returns a newly allocated string composed of the arguments.

(string-length string) procedure

Returns the number of characters in the given string as an exact integer object.

(string-ref string k) procedure

K must be a valid index of string . The string-ref procedure returns character k

of string using zero-origin indexing.

Note: Implementors should make string-ref run in constant time.

(string=? string1 string2 string3 . . .) procedure

Returns #t if the strings are the same length and contain the same characters in

the same positions. Otherwise, the string=? procedure returns #f.

(string=? "Straße" "Strasse") =⇒ #f

(string<? string1 string2 string3 . . .) procedure

(string>? string1 string2 string3 . . .) procedure

(string<=? string1 string2 string3 . . .) procedure

(string>=? string1 string2 string3 . . .) procedure

These procedures are the lexicographic extensions to strings of the corresponding

orderings on characters. For example, string<? is the lexicographic ordering on

strings induced by the ordering char<? on characters. If two strings differ in length

but are the same up to the length of the shorter string, the shorter string is considered

to be lexicographically less than the longer string.

(string<? "z" "ß") =⇒ #t
(string<? "z" "zz") =⇒ #t
(string<? "z" "Z") =⇒ #f

(substring string start end) procedure

String must be a string, and start and end must be exact integer objects satisfying

0 ! start ! end ! (string-length string).

The substring procedure returns a newly allocated string formed from the char-

acters of string beginning with index start (inclusive) and ending with index end

(exclusive).

106 M. Sperber et al.

(string-append string . . .) procedure

Returns a newly allocated string whose characters form the concatenation of the

given strings.

(string->list string) procedure

(list->string list) procedure

List must be a list of characters. The string->list procedure returns a newly

allocated list of the characters that make up the given string. The list->string
procedure returns a newly allocated string formed from the characters in list . The

string->list and list->string procedures are inverses so far as equal? is

concerned.

(string-for-each proc string1 string2 . . .) procedure

The strings must all have the same length. Proc should accept as many arguments

as there are strings. The string-for-each procedure applies proc element-wise to

the characters of the strings for its side effects, in order from the first characters to

the last. Proc is always called in the same dynamic environment as string-for-each
itself. The return values of string-for-each are unspecified.

Analogous to for-each.
Implementation responsibilities: The implementation must check the restrictions on

proc to the extent performed by applying it as described. An implementation may

check whether proc is an appropriate argument before applying it.

(string-copy string) procedure

Returns a newly allocated copy of the given string .

11.13 Vectors

Vectors are heterogeneous structures whose elements are indexed by integers. A

vector typically occupies less space than a list of the same length, and the average

time needed to access a randomly chosen element is typically less for the vector than

for the list.

The length of a vector is the number of elements that it contains. This number is

a non-negative integer that is fixed when the vector is created. The valid indices of a

vector are the exact non-negative integer objects less than the length of the vector.

The first element in a vector is indexed by zero, and the last element is indexed by

one less than the length of the vector.

Like list constants, vector constants must be quoted:

’#(0 (2 2 2 2) "Anna") =⇒ #(0 (2 2 2 2) "Anna")

(vector? obj) procedure

Returns #t if obj is a vector. Otherwise the procedure returns #f.

Revised6 Scheme 107

(make-vector k) procedure

(make-vector k fill) procedure

Returns a newly allocated vector of k elements. If a second argument is given,

then each element is initialized to fill . Otherwise the initial contents of each element

is unspecified.

(vector obj . . .) procedure

Returns a newly allocated vector whose elements contain the given arguments.

Analogous to list.

(vector ’a ’b ’c) =⇒ #(a b c)

(vector-length vector) procedure

Returns the number of elements in vector as an exact integer object.

(vector-ref vector k) procedure

K must be a valid index of vector . The vector-ref procedure returns the contents

of element k of vector .

(vector-ref ’#(1 1 2 3 5 8 13 21) 5) =⇒ 8

(vector-set! vector k obj) procedure

K must be a valid index of vector . The vector-set! procedure stores obj in element

k of vector , and returns unspecified values.

Passing an immutable vector to vector-set! should cause an exception with

condition type &assertion to be raised.

(let ((vec (vector 0 ’(2 2 2 2) "Anna")))
(vector-set! vec 1 ’("Sue" "Sue"))
vec) =⇒ #(0 ("Sue" "Sue") "Anna")

(vector-set! ’#(0 1 2) 1 "doe") =⇒ unspecified

; constant vector

; should raise &assertion exception

(vector->list vector) procedure

(list->vector list) procedure

The vector->list procedure returns a newly allocated list of the objects con-

tained in the elements of vector . The list->vector procedure returns a newly

created vector initialized to the elements of the list list .

(vector->list ’#(dah dah didah)) =⇒ (dah dah didah)
(list->vector ’(dididit dah)) =⇒ #(dididit dah)

108 M. Sperber et al.

(vector-fill! vector fill) procedure

Stores fill in every element of vector and returns unspecified values.

(vector-map proc vector1 vector2 . . .) procedure

The vectors must all have the same length. Proc should accept as many arguments

as there are vectors and return a single value.

The vector-map procedure applies proc element-wise to the elements of the

vectors and returns a vector of the results, in order. Proc is always called in the same

dynamic environment as vector-map itself. The order in which proc is applied to the

elements of the vectors is unspecified. If multiple returns occur from vector-map,
the return values returned by earlier returns are not mutated.

Analogous to map.
Implementation responsibilities: The implementation must check the restrictions on

proc to the extent performed by applying it as described. An implementation may

check whether proc is an appropriate argument before applying it.

(vector-for-each proc vector1 vector2 . . .) procedure

The vectors must all have the same length. Proc should accept as many arguments

as there are vectors. The vector-for-each procedure applies proc element-wise to

the elements of the vectors for its side effects, in order from the first elements to the

last. Proc is always called in the same dynamic environment as vector-for-each
itself. The return values of vector-for-each are unspecified.

Analogous to for-each.
Implementation responsibilities: The implementation must check the restrictions on

proc to the extent performed by applying it as described. An implementation may

check whether proc is an appropriate argument before applying it.

11.14 Errors and violations

(error who message irritant1 . . .) procedure

(assertion-violation who message irritant1 . . .) procedure

Who must be a string or a symbol or #f. Message must be a string. The irritants

are arbitrary objects.

These procedures raise an exception. The error procedure should be called

when an error has occurred, typically caused by something that has gone wrong

in the interaction of the program with the external world or the user. The

assertion-violation procedure should be called when an invalid call to a pro-

cedure was made, either passing an invalid number of arguments, or passing an

argument that it is not specified to handle.

The who argument should describe the procedure or operation that detected the

exception. The message argument should describe the exceptional situation. The

irritants should be the arguments to the operation that detected the operation.

The condition object provided with the exception (see library chapter 7) has the

following condition types:

Revised6 Scheme 109

• If who is not #f, the condition has condition type &who, with who as the value

of its field. In that case, who should be the name of the procedure or entity

that detected the exception. If it is #f, the condition does not have condition

type &who.
• The condition has condition type &message, with message as the value of its

field.

• The condition has condition type &irritants, and its field has as its value a

list of the irritants.

Moreover, the condition created by error has condition type &error, and the

condition created by assertion-violation has condition type &assertion.

(define (fac n)
(if (not (integer-valued? n))

(assertion-violation
’fac "non-integral argument" n))

(if (negative? n)
(assertion-violation
’fac "negative argument" n))

(letrec
((loop (lambda (n r)

(if (zero? n)
r
(loop (- n 1) (* r n))))))

(loop n 1)))

(fac 5) =⇒ 120
(fac 4.5) =⇒ &assertion exception

(fac -3) =⇒ &assertion exception

(assert 〈expression〉) syntax

An assert form is evaluated by evaluating 〈expression〉. If 〈expression〉 returns

a true value, that value is returned from the assert expression. If 〈expression〉
returns #f, an exception with condition types &assertion and &message is raised.

The message provided in the condition object is implementation-dependent.

Note: Implementations should exploit the fact that assert is syntax to provide as

much information as possible about the location of the assertion failure.

11.15 Control features

This chapter describes various primitive procedures which control the flow of pro-

gram execution in special ways.

(apply proc arg1 . . . rest-args) procedure

Rest-args must be a list. Proc should accept n arguments, where n is number of

110 M. Sperber et al.

args plus the length of rest-args . The apply procedure calls proc with the elements

of the list (append (list arg1 . . .) rest-args) as the actual arguments.

If a call to apply occurs in a tail context, the call to proc is also in a tail context.

(apply + (list 3 4)) =⇒ 7

(define compose
(lambda (f g)
(lambda args
(f (apply g args)))))

((compose sqrt *) 12 75) =⇒ 30

(call-with-current-continuation proc) procedure

(call/cc proc) procedure

Proc should accept one argument. The procedure call-with-current-continuati-
on (which is the same as the procedure call/cc) packages the current continuation

as an “escape procedure” and passes it as an argument to proc. The escape procedure

is a Scheme procedure that, if it is later called, will abandon whatever continuation

is in effect at that later time and will instead reinstate the continuation that was

in effect when the escape procedure was created. Calling the escape procedure may

cause the invocation of before and after procedures installed using dynamic-wind.
The escape procedure accepts the same number of arguments as the continuation

of the original call to call-with-current-continuation.
The escape procedure that is passed to proc has unlimited extent just like any

other procedure in Scheme. It may be stored in variables or data structures and may

be called as many times as desired.

If a call to call-with-current-continuation occurs in a tail context, the call

to proc is also in a tail context.

The following examples show only some ways in which call-with-current-
continuation is used. If all real uses were as simple as these examples, there would

be no need for a procedure with the power of call-with-current-continuation.

(call-with-current-continuation
(lambda (exit)
(for-each (lambda (x)

(if (negative? x)
(exit x)))

’(54 0 37 -3 245 19))
#t)) =⇒ -3

(define list-length
(lambda (obj)
(call-with-current-continuation
(lambda (return)

Revised6 Scheme 111

(letrec ((r
(lambda (obj)

(cond ((null? obj) 0)
((pair? obj)
(+ (r (cdr obj)) 1))

(else (return #f))))))
(r obj))))))

(list-length ’(1 2 3 4)) =⇒ 4

(list-length ’(a b . c)) =⇒ #f
(call-with-current-continuation procedure?) =⇒ #t

Note: Calling an escape procedure reenters the dynamic extent of the call to

call-with-current-continuation, and thus restores its dynamic environment;

see section 5.12.

(values obj . . .) procedure

Delivers all of its arguments to its continuation. The values procedure might be

defined as follows:

(define (values . things)
(call-with-current-continuation
(lambda (cont) (apply cont things))))

The continuations of all non-final expressions within a sequence of expressions,

such as in lambda, begin, let, let*, letrec, letrec*, let-values, let*-values,
case, and cond forms, usually take an arbitrary number of values.

Except for these and the continuations created by call-with-values, let-values,
and let*-values, continuations implicitly accepting a single value, such as the con-

tinuations of 〈operator〉 and 〈operand〉s of procedure calls or the 〈test〉 expressions in

conditionals, take exactly one value. The effect of passing an inappropriate number

of values to such a continuation is undefined.

(call-with-values producer consumer) procedure

Producer must be a procedure and should accept zero arguments. Consumer must

be a procedure and should accept as many values as producer returns. The call-
with-values procedure calls producer with no arguments and a continuation that,

when passed some values, calls the consumer procedure with those values as argu-

ments. The continuation for the call to consumer is the continuation of the call to

call-with-values.

(call-with-values (lambda () (values 4 5))
(lambda (a b) b)) =⇒ 5

(call-with-values * -) =⇒ -1

112 M. Sperber et al.

If a call to call-with-values occurs in a tail context, the call to consumer is

also in a tail context.

Implementation responsibilities: After producer returns, the implementation must

check that consumer accepts as many values as consumer has returned.

(dynamic-wind before thunk after) procedure

Before, thunk , and after must be procedures, and each should accept zero ar-

guments. These procedures may return any number of values. The dynamic-wind
procedure calls thunk without arguments, returning the results of this call. Moreover,

dynamic-wind calls before without arguments whenever the dynamic extent of the

call to thunk is entered, and after without arguments whenever the dynamic extent

of the call to thunk is exited. Thus, in the absence of calls to escape procedures

created by call-with-current-continuation, dynamic-wind calls before, thunk ,

and after , in that order.

While the calls to before and after are not considered to be within the dynamic

extent of the call to thunk , calls to the before and after procedures of any other

calls to dynamic-wind that occur within the dynamic extent of the call to thunk are

considered to be within the dynamic extent of the call to thunk .

More precisely, an escape procedure transfers control out of the dynamic extent

of a set of zero or more active dynamic-wind calls x . . . and transfer control into the

dynamic extent of a set of zero or more active dynamic-wind calls y It leaves the

dynamic extent of the most recent x and calls without arguments the corresponding

after procedure. If the after procedure returns, the escape procedure proceeds to

the next most recent x, and so on. Once each x has been handled in this manner,

the escape procedure calls without arguments the before procedure corresponding

to the least recent y. If the before procedure returns, the escape procedure reenters

the dynamic extent of the least recent y and proceeds with the next least recent y,

and so on. Once each y has been handled in this manner, control is transferred to

the continuation packaged in the escape procedure.

Implementation responsibilities: The implementation must check the restrictions

on thunk and after only if they are actually called.

(let ((path ’())
(c #f))

(let ((add (lambda (s)
(set! path (cons s path)))))

(dynamic-wind
(lambda () (add ’connect))
(lambda ()

(add (call-with-current-continuation
(lambda (c0)
(set! c c0)
’talk1))))

(lambda () (add ’disconnect)))
(if (< (length path) 4)

Revised6 Scheme 113

(c ’talk2)
(reverse path))))

=⇒ (connect talk1 disconnect connect talk2 disconnect)

(let ((n 0))
(call-with-current-continuation
(lambda (k)
(dynamic-wind

(lambda ()
(set! n (+ n 1))
(k))

(lambda ()
(set! n (+ n 2)))

(lambda ()
(set! n (+ n 4))))))

n) =⇒ 1

(let ((n 0))
(call-with-current-continuation
(lambda (k)
(dynamic-wind

values
(lambda ()
(dynamic-wind
values
(lambda ()

(set! n (+ n 1))
(k))

(lambda ()
(set! n (+ n 2))
(k))))

(lambda ()
(set! n (+ n 4))))))

n) =⇒ 7

Note: Entering a dynamic extent restores its dynamic environment; see section 5.12.

11.16 Iteration

(let 〈variable〉 〈bindings〉 〈body〉) syntax

“Named let” is a variant on the syntax of let that provides a general looping

construct and may also be used to express recursion. It has the same syntax and

semantics as ordinary let except that 〈variable〉 is bound within 〈body〉 to a

procedure whose parameters are the bound variables and whose body is 〈body〉.

114 M. Sperber et al.

Thus the execution of 〈body〉 may be repeated by invoking the procedure named by

〈variable〉.

(let loop ((numbers ’(3 -2 1 6 -5))
(nonneg ’())
(neg ’()))

(cond ((null? numbers) (list nonneg neg))
((>= (car numbers) 0)
(loop (cdr numbers)

(cons (car numbers) nonneg)
neg))

((< (car numbers) 0)
(loop (cdr numbers)

nonneg
(cons (car numbers) neg)))))

=⇒ ((6 1 3) (-5 -2))

11.17 Quasiquotation

(quasiquote 〈qq template〉) syntax

unquote auxiliary syntax

unquote-splicing auxiliary syntax

“Backquote” or “quasiquote” expressions are useful for constructing a list or

vector structure when some but not all of the desired structure is known in advance.

Syntax: 〈Qq template〉 should be as specified by the grammar at the end of this

entry.

Semantics: If no unquote or unquote-splicing forms appear within subform

〈qq template〉, the result of evaluating (quasiquote 〈qq template〉) is equivalent to

the result of evaluating (quote 〈qq template〉).
If an (unquote 〈expression〉 . . .) form appears inside a 〈qq template〉, however,

the 〈expression〉s are evaluated (“unquoted”) and their results are inserted into the

structure instead of the unquote form.

If an (unquote-splicing 〈expression〉 . . .) form appears inside a 〈qq template〉,
then the 〈expression〉s must evaluate to lists; the opening and closing parentheses of

the lists are then “stripped away” and the elements of the lists are inserted in place

of the unquote-splicing form.

Any unquote-splicing or multi-operand unquote form must appear only within

a list or vector 〈qq template〉.
As noted in section 4.3.5, (quasiquote 〈qq template〉) may be abbreviated

`〈qq template〉, (unquote 〈expression〉) may be abbreviated ,〈expression〉, and

(unquote-splicing 〈expression〉) may be abbreviated ,@〈expression〉.

`(list ,(+ 1 2) 4) =⇒ (list 3 4)
(let ((name ’a)) `(list ,name ’,name))

=⇒ (list a (quote a))

Revised6 Scheme 115

`(a ,(+ 1 2) ,@(map abs ’(4 -5 6)) b)
=⇒ (a 3 4 5 6 b)

`((foo ,(- 10 3)) ,@(cdr ’(c)) . ,(car ’(cons)))
=⇒ ((foo 7) . cons)

`#(10 5 ,(- 4) ,@(map - ’(16 9)) 8)
=⇒ #(10 5 -4 -16 -9 8)

(let ((name ’foo))
`((unquote name name name))) =⇒ (foo foo foo)

(let ((name ’(foo)))
`((unquote-splicing name name name)))

=⇒ (foo foo foo)
(let ((q ’((append x y) (sqrt 9))))
``(foo ,,@q)) =⇒ `(foo

(unquote (append x y) (sqrt 9)))
(let ((x ’(2 3))

(y ’(4 5)))
`(foo (unquote (append x y) (- 9))))

=⇒ (foo (2 3 4 5) -9)

Quasiquote forms may be nested. Substitutions are made only for unquoted

components appearing at the same nesting level as the outermost quasiquote. The

nesting level increases by one inside each successive quasiquotation, and decreases

by one inside each unquotation.

`(a `(b ,(+ 1 2) ,(foo ,(+ 1 3) d) e) f)
=⇒ (a `(b ,(+ 1 2) ,(foo 4 d) e) f)

(let ((name1 ’x)
(name2 ’y))

`(a `(b ,,name1 ,’,name2 d) e)) =⇒ (a `(b ,x ,’y d) e)

A quasiquote expression may return either fresh, mutable objects or literal

structure for any structure that is constructed at run time during the evaluation of

the expression. Portions that do not need to be rebuilt are always literal. Thus,

(let ((a 3)) `((1 2) ,a ,4 ,’five 6))

may be equivalent to either of the following expressions:

’((1 2) 3 4 five 6)
(let ((a 3))
(cons ’(1 2)

(cons a (cons 4 (cons ’five ’(6))))))

However, it is not equivalent to this expression:

(let ((a 3)) (list (list 1 2) a 4 ’five 6))

It is a syntax violation if any of the identifiers quasiquote, unquote, or unquote-
splicing appear in positions within a 〈qq template〉 otherwise than as described

above.

116 M. Sperber et al.

The following grammar for quasiquote expressions is not context-free. It is presen-

ted as a recipe for generating an infinite number of production rules. Imagine a

copy of the following rules for D = 1, 2, 3, D keeps track of the nesting depth.

〈qq template〉 −→ 〈qq template 1〉
〈qq template 0〉 −→ 〈expression〉
〈quasiquotation D〉 −→ (quasiquote 〈qq template D〉)
〈qq template D〉 −→ 〈lexeme datum〉

| 〈list qq template D〉
| 〈vector qq template D〉
| 〈unquotation D〉

〈list qq template D〉 −→ (〈qq template or splice D〉*)
| (〈qq template or splice D〉+ . 〈qq template D〉)
| 〈quasiquotation D + 1〉

〈vector qq template D〉 −→ #(〈qq template or splice D〉*)
〈unquotation D〉 −→ (unquote 〈qq template D − 1〉)
〈qq template or splice D〉 −→ 〈qq template D〉

| 〈splicing unquotation D〉
〈splicing unquotation D〉 −→

(unquote-splicing 〈qq template D − 1〉*)
| (unquote 〈qq template D − 1〉*)

In 〈quasiquotation〉s, a 〈list qq template D〉 can sometimes be confused with

either an 〈unquotation D〉 or a 〈splicing unquotation D〉. The interpretation as an

〈unquotation〉 or 〈splicing unquotation D〉 takes precedence.

11.18 Binding constructs for syntactic keywords

The let-syntax and letrec-syntax forms bind keywords. Like a begin form, a

let-syntax or letrec-syntax form may appear in a definition context, in which

case it is treated as a definition, and the forms in the body must also be definitions.

A let-syntax or letrec-syntax form may also appear in an expression context,

in which case the forms within their bodies must be expressions.

(let-syntax 〈bindings〉 〈form〉 . . .) syntax

Syntax: 〈Bindings〉 must have the form

((〈keyword〉 〈expression〉) . . .)

Each 〈keyword〉 is an identifier, and each 〈expression〉 is an expression that eval-

uates, at macro-expansion time, to a transformer . Transformers may be created by

syntax-rules or identifier-syntax (see section 11.19) or by one of the other

mechanisms described in library chapter 12. It is a syntax violation for 〈keyword〉
to appear more than once in the list of keywords being bound.

Semantics: The 〈form〉s are expanded in the syntactic environment obtained by

extending the syntactic environment of the let-syntax form with macros whose

Revised6 Scheme 117

keywords are the 〈keyword〉s, bound to the specified transformers. Each binding of

a 〈keyword〉 has the 〈form〉s as its region.

The 〈form〉s of a let-syntax form are treated, whether in definition or expression

context, as if wrapped in an implicit begin; see section 11.4.7. Thus definitions in

the result of expanding the 〈form〉s have the same region as any definition appearing

in place of the let-syntax form would have.

Implementation responsibilities: The implementation should detect if the value of

〈expression〉 cannot possibly be a transformer.

(let-syntax ((when (syntax-rules ()
((when test stmt1 stmt2 ...)
(if test

(begin stmt1
stmt2 ...))))))

(let ((if #t))
(when if (set! if ’now))
if)) =⇒ now

(let ((x ’outer))
(let-syntax ((m (syntax-rules () ((m) x))))
(let ((x ’inner))
(m)))) =⇒ outer

(let ()
(let-syntax
((def (syntax-rules ()

((def stuff ...) (define stuff ...)))))
(def foo 42))

foo) =⇒ 42

(let ()
(let-syntax ())
5) =⇒ 5

(letrec-syntax 〈bindings〉 〈form〉 . . .) syntax

Syntax: Same as for let-syntax.
Semantics: The 〈form〉s are expanded in the syntactic environment obtained by

extending the syntactic environment of the letrec-syntax form with macros whose

keywords are the 〈keyword〉s, bound to the specified transformers. Each binding

of a 〈keyword〉 has the 〈bindings〉 as well as the 〈form〉s within its region, so

the transformers can transcribe forms into uses of the macros introduced by the

letrec-syntax form.

The 〈form〉s of a letrec-syntax form are treated, whether in definition or

expression context, as if wrapped in an implicit begin; see section 11.4.7. Thus

definitions in the result of expanding the 〈form〉s have the same region as any

definition appearing in place of the letrec-syntax form would have.

118 M. Sperber et al.

Implementation responsibilities: The implementation should detect if the value of

〈expression〉 cannot possibly be a transformer.

(letrec-syntax
((my-or (syntax-rules ()

((my-or) #f)
((my-or e) e)
((my-or e1 e2 ...)
(let ((temp e1))
(if temp

temp
(my-or e2 ...)))))))

(let ((x #f)
(y 7)
(temp 8)
(let odd?)
(if even?))

(my-or x
(let temp)
(if y)
y))) =⇒ 7

The following example highlights how let-syntax and letrec-syntax differ.

(let ((f (lambda (x) (+ x 1))))
(let-syntax ((f (syntax-rules ()

((f x) x)))
(g (syntax-rules ()

((g x) (f x)))))
(list (f 1) (g 1)))) =⇒ (1 2)

(let ((f (lambda (x) (+ x 1))))
(letrec-syntax ((f (syntax-rules ()

((f x) x)))
(g (syntax-rules ()

((g x) (f x)))))
(list (f 1) (g 1)))) =⇒ (1 1)

The two expressions are identical except that the let-syntax form in the first

expression is a letrec-syntax form in the second. In the first expression, the f
occurring in g refers to the let-bound variable f, whereas in the second it refers to

the keyword f whose binding is established by the letrec-syntax form.

Revised6 Scheme 119

11.19 Macro transformers

(syntax-rules (〈literal〉 . . .) 〈syntax rule〉 . . .) syntax (expand)
auxiliary syntax (expand)

... auxiliary syntax (expand)
Syntax: Each 〈literal〉 must be an identifier. Each 〈syntax rule〉 must have the

following form:

(〈srpattern〉 〈template〉)

An 〈srpattern〉 is a restricted form of 〈pattern〉, namely, a nonempty 〈pattern〉 in

one of four parenthesized forms below whose first subform is an identifier or an

underscore . A 〈pattern〉 is an identifier, constant, or one of the following.

(〈pattern〉 ...)
(〈pattern〉 〈pattern〉 〈pattern〉)
(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...)
(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 〈pattern〉)
#(〈pattern〉 ...)
#(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...)

An 〈ellipsis〉 is the identifier “...” (three periods).

A 〈template〉 is a pattern variable, an identifier that is not a pattern variable, a

pattern datum, or one of the following.

(〈subtemplate〉 ...)
(〈subtemplate〉 〈template〉)
#(〈subtemplate〉 ...)

A 〈subtemplate〉 is a 〈template〉 followed by zero or more ellipses.

Semantics: An instance of syntax-rules evaluates, at macro-expansion time, to

a new macro transformer by specifying a sequence of hygienic rewrite rules. A use of

a macro whose keyword is associated with a transformer specified by syntax-rules
is matched against the patterns contained in the 〈syntax rule〉s, beginning with

the leftmost 〈syntax rule〉. When a match is found, the macro use is transcribed

hygienically according to the template. It is a syntax violation when no match is

found.

An identifier appearing within a 〈pattern〉 may be an underscore (), a literal

identifier listed in the list of literals (〈literal〉 . . .), or an ellipsis (...). All other

identifiers appearing within a 〈pattern〉 are pattern variables. It is a syntax violation

if an ellipsis or underscore appears in (〈literal〉 . . .).
While the first subform of 〈srpattern〉 may be an identifier, the identifier is not

involved in the matching and is not considered a pattern variable or literal identifier.

Pattern variables match arbitrary input subforms and are used to refer to elements

of the input. It is a syntax violation if the same pattern variable appears more than

once in a 〈pattern〉.

120 M. Sperber et al.

Underscores also match arbitrary input subforms but are not pattern variables

and so cannot be used to refer to those elements. Multiple underscores may appear

in a 〈pattern〉.
A literal identifier matches an input subform if and only if the input subform is an

identifier and either both its occurrence in the input expression and its occurrence

in the list of literals have the same lexical binding, or the two identifiers have the

same name and both have no lexical binding.

A subpattern followed by an ellipsis can match zero or more elements of the

input.

More formally, an input form F matches a pattern P if and only if one of the

following holds:

• P is an underscore ().

• P is a pattern variable.

• P is a literal identifier and F is an identifier such that both P and F would

refer to the same binding if both were to appear in the output of the macro

outside of any bindings inserted into the output of the macro. (If neither of

two like-named identifiers refers to any binding, i.e., both are undefined, they

are considered to refer to the same binding.)

• P is of the form (P1 . . . Pn) and F is a list of n elements that match P1

through Pn.

• P is of the form (P1 . . . Pn . Px) and F is a list or improper list of n or

more elements whose first n elements match P1 through Pn and whose nth cdr

matches Px.

• P is of the form (P1 . . . Pk Pe 〈ellipsis〉 Pm+1 . . . Pn), where 〈ellipsis〉 is the

identifier ... and F is a list of n elements whose first k elements match P1

through Pk , whose next m − k elements each match Pe, and whose remaining

n − m elements match Pm+1 through Pn.

• P is of the form (P1 . . . Pk Pe 〈ellipsis〉 Pm+1 . . . Pn . Px), where 〈ellipsis〉
is the identifier ... and F is a list or improper list of n elements whose first

k elements match P1 through Pk , whose next m − k elements each match Pe,

whose next n − m elements match Pm+1 through Pn, and whose nth and final

cdr matches Px.

• P is of the form #(P1 . . . Pn) and F is a vector of n elements that match P1

through Pn.

• P is of the form #(P1 . . . Pk Pe 〈ellipsis〉 Pm+1 . . . Pn), where 〈ellipsis〉 is

the identifier ... and F is a vector of n or more elements whose first k elements

match P1 through Pk , whose next m − k elements each match Pe, and whose

remaining n − m elements match Pm+1 through Pn.

• P is a pattern datum (any nonlist, nonvector, nonsymbol datum) and F is

equal to P in the sense of the equal? procedure.

When a macro use is transcribed according to the template of the matching

〈syntax rule〉, pattern variables that occur in the template are replaced by the

subforms they match in the input.

Revised6 Scheme 121

Pattern data and identifiers that are not pattern variables or ellipses are copied

into the output. A subtemplate followed by an ellipsis expands into zero or more

occurrences of the subtemplate. Pattern variables that occur in subpatterns followed

by one or more ellipses may occur only in subtemplates that are followed by (at least)

as many ellipses. These pattern variables are replaced in the output by the input

subforms to which they are bound, distributed as specified. If a pattern variable

is followed by more ellipses in the subtemplate than in the associated subpattern,

the input form is replicated as necessary. The subtemplate must contain at least

one pattern variable from a subpattern followed by an ellipsis, and for at least one

such pattern variable, the subtemplate must be followed by exactly as many ellipses

as the subpattern in which the pattern variable appears. (Otherwise, the expander

would not be able to determine how many times the subform should be repeated in

the output.) It is a syntax violation if the constraints of this paragraph are not met.

A template of the form (〈ellipsis〉 〈template〉) is identical to 〈template〉, except

that ellipses within the template have no special meaning. That is, any ellipses

contained within 〈template〉 are treated as ordinary identifiers. In particular, the

template (... ...) produces a single ellipsis, This allows syntactic abstractions

to expand into forms containing ellipses.

(define-syntax be-like-begin
(syntax-rules ()
((be-like-begin name)
(define-syntax name

(syntax-rules ()
((name expr (... ...))
(begin expr (... ...))))))))

(be-like-begin sequence)
(sequence 1 2 3 4) =⇒ 4

As an example for hygienic use of auxiliary identifier, if let and cond are defined

as in section 11.4.6 and appendix B then they are hygienic (as required) and the

following is not an error.

(let ((=> #f))
(cond (#t => ’ok))) =⇒ ok

The macro transformer for cond recognizes => as a local variable, and hence an

expression, and not as the identifier =>, which the macro transformer treats as a

syntactic keyword. Thus the example expands into

(let ((=> #f))
(if #t (begin => ’ok)))

instead of

(let ((=> #f))
(let ((temp #t))
(if temp (’ok temp))))

122 M. Sperber et al.

which would result in an assertion violation.

(identifier-syntax 〈template〉) syntax (expand)
(identifier-syntax syntax (expand)
(〈id1〉 〈template1〉)
((set! 〈id2〉 〈pattern〉)

〈template2〉))
set! auxiliary syntax (expand)

Syntax: The 〈id〉s must be identifiers. The 〈template〉s must be as for syntax-rules.
Semantics: When a keyword is bound to a transformer produced by the first form

of identifier-syntax, references to the keyword within the scope of the binding

are replaced by 〈template〉.

(define p (cons 4 5))
(define-syntax p.car (identifier-syntax (car p)))
p.car =⇒ 4
(set! p.car 15) =⇒ &syntax exception

The second, more general, form of identifier-syntax permits the transformer

to determine what happens when set! is used. In this case, uses of the identifier by

itself are replaced by 〈template1〉, and uses of set! with the identifier are replaced

by 〈template2〉.

(define p (cons 4 5))
(define-syntax p.car
(identifier-syntax
((car p))
((set! e) (set-car! p e))))

(set! p.car 15)
p.car =⇒ 15
p =⇒ (15 . 5)

11.20 Tail calls and tail contexts

A tail call is a procedure call that occurs in a tail context. Tail contexts are defined

inductively. Note that a tail context is always determined with respect to a particular

lambda expression.

• The last expression within the body of a lambda expression, shown as

〈tail expression〉 below, occurs in a tail context.

(lambda 〈formals〉
〈definition〉*
〈expression〉* 〈tail expression〉)

Revised6 Scheme 123

• If one of the following expressions is in a tail context, then the subexpressions

shown as 〈tail expression〉 are in a tail context. These were derived from

specifications of the syntax of the forms described in this chapter by replacing

some occurrences of 〈expression〉 with 〈tail expression〉. Only those rules that

contain tail contexts are shown here.

(if 〈expression〉 〈tail expression〉 〈tail expression〉)
(if 〈expression〉 〈tail expression〉)

(cond 〈cond clause〉+)
(cond 〈cond clause〉* (else 〈tail sequence〉))

(case 〈expression〉
〈case clause〉+)

(case 〈expression〉
〈case clause〉*
(else 〈tail sequence〉))

(and 〈expression〉* 〈tail expression〉)
(or 〈expression〉* 〈tail expression〉)

(let 〈bindings〉 〈tail body〉)
(let 〈variable〉 〈bindings〉 〈tail body〉)
(let* 〈bindings〉 〈tail body〉)
(letrec* 〈bindings〉 〈tail body〉)
(letrec 〈bindings〉 〈tail body〉)
(let-values 〈mv-bindings〉 〈tail body〉)
(let*-values 〈mv-bindings〉 〈tail body〉)

(let-syntax 〈bindings〉 〈tail body〉)
(letrec-syntax 〈bindings〉 〈tail body〉)

(begin 〈tail sequence〉)

A 〈cond clause〉 is

(〈test〉 〈tail sequence〉),

a 〈case clause〉 is

((〈datum〉*) 〈tail sequence〉),

a 〈tail body〉 is

〈definition〉* 〈tail sequence〉,

and a 〈tail sequence〉 is

〈expression〉* 〈tail expression〉.

124 M. Sperber et al.

• If a cond expression is in a tail context, and has a clause of the form

(〈expression1〉 => 〈expression2〉) then the (implied) call to the procedure that

results from the evaluation of 〈expression2〉 is in a tail context. 〈Expression2〉
itself is not in a tail context.

Certain built-in procedures must also perform tail calls. The first argument passed

to apply and to call-with-current-continuation, and the second argument

passed to call-with-values, must be called via a tail call.

In the following example the only tail call is the call to f. None of the calls to g
or h are tail calls. The reference to x is in a tail context, but it is not a call and thus

is not a tail call.

(lambda ()
(if (g)

(let ((x (h)))
x)

(and (g) (f))))

Note: Implementations may recognize that some non-tail calls, such as the call to

h above, can be evaluated as though they were tail calls. In the example above, the

let expression could be compiled as a tail call to h. (The possibility of h returning

an unexpected number of values can be ignored, because in that case the effect of

the let is explicitly unspecified and implementation-dependent.)

Revised6 Scheme 125

APPENDICES

A Formal semantics

This appendix presents a non-normative, formal, operational semantics for Scheme,

that is based on an earlier semantics (Matthews & Findler, 2007). It does not cover

the entire language. The notable missing features are the macro system, I/O, and

the numerical tower. The precise list of features included is given in section A.2.

The core of the specification is a single-step term rewriting relation that indicates

how an (abstract) machine behaves. In general, the report is not a complete spe-

cification, giving implementations freedom to behave differently, typically to allow

optimizations. This underspecification shows up in two ways in the semantics.

The first is reduction rules that reduce to special “unknown: string” states (where

the string provides a description of the unknown state). The intention is that rules

that reduce to such states can be replaced with arbitrary reduction rules. The precise

specification of how to replace those rules is given in section A.12.

The other is that the single-step relation relates one program to multiple different

programs, each corresponding to a legal transition that an abstract machine might

take. Accordingly we use the transitive closure of the single step relation →∗ to

define the semantics, S, as a function from programs (P) to sets of observable

results (R):

S : P −→ 2R

S(P) = {O(A) | P →∗ A}

where the function O turns an answer (A) from the semantics into an observable

result. Roughly, O is the identity function on simple base values, and returns a

special tag for more complex values, like procedure and pairs.

So, an implementation conforms to the semantics if, for every program P, the

implementation produces one of the results in S(P) or, if the implementation loops

forever, then there is an infinite reduction sequence starting at P, assuming that the

reduction relation → has been adjusted to replace the unknown: states.

The precise definitions of P, A, R, and O are also given in section A.2.

To help understand the semantics and how it behaves, we have implemented it

in PLT Redex. The implementation is available at the report’s website: http://www
.r6rs.org/. All of the reduction rules and the metafunctions shown in the figures

in this semantics were generated automatically from the source code.

A.1 Background

We assume the reader has a basic familiarity with context-sensitive reduction seman-

tics. Readers unfamiliar with this system may wish to consult Felleisen and Flatt’s

monograph (Felleisen & Flatt, 2003) or Wright and Felleisen (Wright & Felleisen,

1994) for a thorough introduction, including the relevant technical background, or

an introduction to PLT Redex (Matthews et al., 2004) for a somewhat lighter one.

126 M. Sperber et al.

As a rough guide, we define the operational semantics of a language via a relation

on program terms, where the relation corresponds to a single step of an abstract

machine. The relation is defined using evaluation contexts, namely terms with a

distinguished place in them, called holes , where the next step of evaluation occurs.

We say that a term e decomposes into an evaluation context E and another term e′

if e is the same as E but with the hole replaced by e′. We write E[e′] to indicate the

term obtained by replacing the hole in E with e′.

For example, assuming that we have defined a grammar containing non-terminals

for evaluation contexts (E), expressions (e), variables (x), and values (v), we would

write:

E1[((lambda (x1 · · ·) e1) v1 · · ·)] →
E1[{x1 · · · *→ v1 · · ·}e1] (#x1 = #v1)

to define the βv rewriting rule (as a part of the → single step relation). We use the

names of the non-terminals (possibly with subscripts) in a rewriting rule to restrict

the application of the rule, so it applies only when some term produced by that

grammar appears in the corresponding position in the term. If the same non-terminal

with an identical subscript appears multiple times, the rule only applies when the

corresponding terms are structurally identical (nonterminals without subscripts are

not constrained to match each other). Thus, the occurrence of E1 on both the

left-hand and right-hand side of the rule above means that the context of the

application expression does not change when using this rule. The ellipses are a

form of Kleene star, meaning that zero or more occurrences of terms matching

the pattern proceeding the ellipsis may appear in place of the the ellipsis and the

pattern preceding it. We use the notation {x1 · · · *→ v1 · · ·}e1 for capture-avoiding

substitution; in this case it means that each x1 is replaced with the corresponding

v1 in e1. Finally, we write side-conditions in parentheses beside a rule; the side-

condition in the above rule indicates that the number of x1s must be the same as

the number of v1s. Sometimes we use equality in the side-conditions; when we do it

merely means simple term equality, i.e., the two terms must have the same syntactic

shape.

Making the evaluation context E explicit in the rule allows us to define relations

that manipulate their context. As a simple example, we can add another rule that

signals a violation when a procedure is applied to the wrong number of arguments

by discarding the evaluation context on the right-hand side of a rule:

E[((lambda (x1 · · ·) e) v1 · · ·)] →
violation: wrong argument count (#x1 += #v1)

Later we take advantage of the explicit evaluation context in more sophisticated

ways.

A.2 Grammar

Figure A.2a shows the grammar for the subset of the report this semantics models.

Non-terminals are written in italics or in a calligraphic font (P A, R, and Rv) and

literals are written in a monospaced font.

Revised6 Scheme 127

P ::= (store (sf · · ·) es) | uncaught exception: v | unknown: description
A ::= (store (sf · · ·) (values v · · ·)) | uncaught exception: v

| unknown: description
R ::= (values Rv · · ·) | exception | unknown
Rv ::= pair | null | ′sym | sqv | condition

| procedure
sf ::= (x v) | (x bh) | (pp (cons v v))
es ::= ′seq | ′sqv | ′() | (begin es es · · ·)

| (begin0 es es · · ·) | (es es · · ·) | (if es es es) | (set! x es)
| x | nonproc | pproc | (lambda f es es · · ·)
| (letrec ((x es) · · ·) es es · · ·) | (letrec* ((x es) · · ·) es es · · ·)
| (dw x es es es) | (throw x es) | unspecified
| (handlers es · · · es) | (l! x es) | (reinit x)

f ::= (x · · ·) | (x x · · · dot x) | x
s ::= seq | () | sqv | sym
seq ::= (s s · · ·) | (s s · · · dot sqv) | (s s · · · dot sym)
sqv ::= n | #t | #f

p ::= (store (sf · · ·) e)
e ::= (begin e e · · ·) | (begin0 e e · · ·) | (e e · · ·) | (if e e e)

| (set! x e) | (handlers e · · · e) | x | nonproc | proc
| (dw x e e e) | unspecified | (letrec ((x e) · · ·) e e · · ·)
| (letrec* ((x e) · · ·) e e · · ·) | (l! x es) | (reinit x)

v ::= nonproc | proc
nonproc ::= pp | null | ′sym | sqv | (make-cond string)
proc ::= (lambda f e e · · ·) | pproc | (throw x e)
pproc ::= aproc | proc1 | proc2 | list | dynamic-wind

| apply | values
proc1 ::= null? | pair? | car | cdr | call/cc

| procedure? | condition? | raise*
proc2 ::= cons | consi | set-car! | set-cdr! | eqv?

| call-with-values | with-exception-handler
aproc ::= + | - | / | *
raise* ::= raise-continuable | raise

pp ::= ip | mp
ip ::= [immutable pair pointers]
mp ::= [mutable pair pointers]

sym ::= [variables except dot]
x ::= [variables except dot and keywords]
n ::= [numbers]

Fig. A.2a. Grammar for programs and observables

The P non-terminal represents possible program states. The first alternative is

a program with a store and an expression. The second alternative is an uncaught

exception, and the third is used to indicate a place where the model does not

128 M. Sperber et al.

completely specify the behavior of the primitives it models (see section A.12 for

details of those situations). The A non-terminal represents a final result of a

program. It is just like P except that expression has been reduced to some sequence

of values.

The R and Rv non-terminals specify the observable results of a program. Each R
is either a sequence of values that correspond to the values produced by the program

that terminates normally, or a tag indicating an uncaught exception was raised, or

unknown if the program encounters a situation the semantics does not cover. The Rv

non-terminal specifies what the observable results are for a particular value: a pair,

the empty list, a symbol, a self-quoting value (#t, #f, and numbers), a condition, or

a procedure.

The sf non-terminal generates individual elements of the store. The store holds

all of the mutable state of a program. It is explained in more detail along with the

rules that manipulate it.

Expressions (es) include quoted data, begin expressions, begin0 expressions1,

application expressions, if expressions, set! expressions, variables, non-procedure

values (nonproc), primitive procedures (pproc), lambda expressions, letrec and

letrec* expressions.

The last few expression forms are only generated for intermediate states (dw
for dynamic-wind, throw for continuations, unspecified for the result of the

assignment operators, handlers for exception handlers, and l! and reinit for

letrec), and should not appear in an initial program. Their use is described in the

relevant sections of this appendix.

The f non-terminal describes the formals for lambda expressions. (The dot is used

instead of a period for procedures that accept an arbitrary number of arguments, in

order to avoid meta-circular confusion in our PLT Redex model.)

The s non-terminal covers all datums, which can be either non-empty sequences

(seq), the empty sequence, self-quoting values (sqv), or symbols. Non-empty se-

quences are either just a sequence of datums, or they are terminated with a dot

followed by either a symbol or a self-quoting value. Finally the self-quoting values

are numbers and the booleans #t and #f.
The p non-terminal represents programs that have no quoted data. Most of the

reduction rules rewrite p to p, rather than P to P, since quoted data is first rewritten

into calls to the list construction functions before ordinary evaluation proceeds. In

parallel to es , e represents expressions that have no quoted expressions.

The values (v) are divided into four categories:

1 begin0 is not part of the standard, but we include it to make the rules for dynamic-wind and letrec
easier to read. Although we model it directly, it can be defined in terms of other forms we model here
that do come from the standard:

(begin0 e1 e2 · · ·) =

(call-with-values
(lambda () e1)
(lambda x
e2 · · ·
(apply values x)))

Revised6 Scheme 129

• Non-procedures (nonproc) include pair pointers (pp), the empty list (null),
symbols, self-quoting values (sqv), and conditions. Conditions represent the

report’s condition values, but here just contain a message and are otherwise

inert.

• User procedures ((lambda f e e · · ·)) include multi-arity lambda expressions

and lambda expressions with dotted parameter lists,

• Primitive procedures (pproc) include

— arithmetic procedures (aproc): +, -, /, and *,
— procedures of one argument (proc1): null?, pair?, car, cdr, call/cc,

procedure?, condition?, unspecified?, raise, and raise-continuable,
— procedures of two arguments (proc2): cons, set-car!, set-cdr!, eqv?,

and call-with-values,
— as well as list, dynamic-wind, apply, values, and with-exception-

handler.

• Finally, continuations are represented as throw expressions whose body con-

sists of the context where the continuation was grabbed.

The next three set of non-terminals in figure A.2a represent pairs (pp), which are

divided into immutable pairs (ip) and mutable pairs (mp). The final set of non-

terminals in figure A.2a, sym , x , and n represent symbols, variables, and numbers

respectively. The non-terminals ip, mp, and sym are all assumed to all be disjoint.

Additionally, the variables x are assumed not to include any keywords or primitive

operations, so any program variables whose names coincide with them must be

renamed before the semantics can give the meaning of that program.

The set of non-terminals for evaluation contexts is shown in figure A.2b. The

P non-terminal controls where evaluation happens in a program that does not

contain any quoted data. The E and F evaluation contexts are for expressions. They

are factored in that manner so that the PG , G , and H evaluation contexts can

re-use F and have fine-grained control over the context to support exceptions and

dynamic-wind. The starred and circled variants, E$, E◦, F$, and F◦ dictate where a

single value is promoted to multiple values and where multiple values are demoted

to a single value. The U context is used to manage the report’s underspecification of

the results of set!, set-car!, and set-cdr! (see section A.12 for details). Finally,

the S context is where quoted expressions can be simplified. The precise use of the

evaluation contexts is explained along with the relevant rules.

Although it is not written in the grammar figure, variable sequences bound in the

store, and in lambda, letrec, and letrec* must not contain any duplicates.

To convert the answers (A) of the semantics into observable results, we use these

130 M. Sperber et al.

P ::= (store (sf · · ·) E$)

E ::= F [(handlers proc · · · E$)] | F [(dw x e E$ e)] | F
E$::= []$ | E
E◦ ::= []◦ | E

F ::= [] | (v · · · F◦ v · · ·) | (if F◦ e e) | (set! x F◦)
| (begin F$ e e · · ·) | (begin0 F$ e e · · ·)
| (begin0 (values v · · ·) F$ e · · ·) | (begin0 unspecified F$ e · · ·)
| (call-with-values (lambda () F$ e · · ·) v) | (l! x F◦)

F$::= []$ | F
F◦ ::= []◦ | F
U ::= (v · · · [] v · · ·) | (if [] e e) | (set! x []) | (l! x [])

| (call-with-values (lambda () []) v)

PG ::= (store (sf · · ·) G)
G ::= F [(dw x e G e)] | F
H ::= F [(handlers proc · · · H)] | F

S ::= [] | (begin e e · · · S es · · ·) | (begin S es · · ·)
| (begin0 e e · · · S es · · ·) | (begin0 S es · · ·) | (e · · · S es · · ·)
| (if S es es) | (if e S es) | (if e e S) | (set! x S)
| (handlers s · · · S es · · · es) | (handlers s · · · S) | (throw x e)
| (lambda f S es · · ·) | (lambda f e e · · · S es · · ·)
| (letrec ((x e) · · · (x S) (x es) · · ·) es es · · ·)
| (letrec ((x e) · · ·) S es · · ·) | (letrec ((x e) · · ·) e e · · · S es · · ·)
| (letrec* ((x e) · · · (x S) (x es) · · ·) es es · · ·)
| (letrec* ((x e) · · ·) S es · · ·) | (letrec* ((x e) · · ·) e e · · · S es · · ·)

Fig. A.2b. Grammar for evaluation contexts

two functions:

O : A →R
O!(store (sf · · ·) (values v1 · · ·))" =

(values Ov!v1" · · ·)

O!uncaught exception: v" =

exception

O!unknown: description" =

unknown

Revised6 Scheme 131

(store (sf 1 · · ·) S 1[′sqv 1])→ [6sqv]
(store (sf 1 · · ·) S 1[sqv 1])

(store (sf 1 · · ·) S 1[′()])→ [6eseq]
(store (sf 1 · · ·) S 1[null])

(store (sf 1 · · ·) S 1[′seq1])→ [6qcons]
(store (sf 1 · · ·) ((lambda (qp) S 1[qp]) Qi!seq1")) (qp fresh)

(store (sf 1 · · ·) S 1[′seq1])→ [6qconsi]
(store (sf 1 · · ·) ((lambda (qp) S 1[qp]) Qm!seq1")) (qp fresh)

Qi : seq → e
Qi!()" = null
Qi!(s1 s2 · · ·)" = (cons Qi!s1" Qi!(s2 · · ·)")
Qi!(s1 dot sqv 1)" = (cons Qi!s1" sqv 1)
Qi!(s1 s2 s3 · · · dot sqv 1)" = (cons Qi!s1" Qi!(s2 s3 · · · dot sqv 1)")
Qi!(s1 dot sym1)" = (cons Qi!s1" ′sym1)
Qi!(s1 s2 s3 · · · dot sym1)" = (cons Qi!s1" Qi!(s2 s3 · · · dot sym1)")
Qi!sym1" = ′sym1

Qi!sqv 1" = sqv 1

Qm : seq → e
Qm!()" = null
Qm!(s1 s2 · · ·)" = (consi Qm!s1" Qm!(s2 · · ·)")
Qm!(s1 dot sqv 1)" = (consi Qm!s1" sqv 1)
Qm!(s1 s2 s3 · · · dot sqv 1)" = (consi Qm!s1" Qm!(s2 s3 · · · dot sqv 1)")
Qm!(s1 dot sym1)" = (consi Qm!s1" ′sym1)
Qm!(s1 s2 s3 · · · dot sym1)" = (consi Qm!s1" Qm!(s2 s3 · · · dot sym1)")
Qm!sym1" = ′sym1

Qm!sqv 1" = sqv 1

Fig. A.3. Quote

Ov : v → Rv

Ov!pp1" = pair
Ov!null" = null
Ov!′sym1" = ′sym1

Ov!sqv 1" = sqv 1

Ov!(make-cond string)" = condition
Ov!proc" = procedure

They eliminate the store, and replace complex values with simple tags that indicate

only the kind of value that was produced or, if no values were produced, indicates

that either an uncaught exception was raised, or that the program reached a state

that is not specified by the semantics.

132 M. Sperber et al.

A.3 Quote

The first reduction rules that apply to any program is the rules in figure A.3

that eliminate quoted expressions. The first two rules erase the quote for quoted

expressions that do not introduce any pairs. The last two rules lift quoted datums

to the top of the expression so they are evaluated only once, and turn the datums

into calls to either cons or consi, via the metafunctions Qi and Qm.

Note that the left-hand side of the [6qcons] and [6qconsi] rules are identical,

meaning that if one rule applies to a term, so does the other rule. Accordingly, a

quoted expression may be lifted out into a sequence of cons expressions, which create

mutable pairs, or into a sequence of consi expressions, which create immutable pairs

(see section A.7 for the rules on how that happens).

These rules apply before any other because of the contexts in which they, and all of

the other rules, apply. In particular, these rule applies in the S context. Figure A.2b

shows that the S context allows this reduction to apply in any subexpression of

an e, as long as all of the subexpressions to the left have no quoted expressions in

them, although expressions to the right may have quoted expressions. Accordingly,

this rule applies once for each quoted expression in the program, moving out to

the beginning of the program. The rest of the rules apply in contexts that do not

contain any quoted expressions, ensuring that these rules convert all quoted data

into lists before those rules apply.

Although the identifier qp does not have a subscript, the semantics of PLT Redex’s

“fresh” declaration takes special care to ensures that the qp on the right-hand side

of the rule is indeed the same as the one in the side-condition.

A.4 Multiple values

The basic strategy for multiple values is to add a rule that demotes (values v)

to v and another rule that promotes v to (values v). If we allowed these rules to

apply in an arbitrary evaluation context, however, we would get infinite reduction

sequences of endless alternation between promotion and demotion. So, the semantics

allows demotion only in a context expecting a single value and allows promotion

only in a context expecting multiple values. We obtain this behavior with a small

extension to the Felleisen-Hieb framework (also present in the operational model

for R5RS (Matthews & Findler, 2005)). We extend the notation so that holes have

names (written with a subscript), and the context-matching syntax may also demand

a hole of a particular name (also written with a subscript, for instance E[e]$). The

extension allows us to give different names to the holes in which multiple values are

expected and those in which single values are expected, and structure the grammar

of contexts accordingly.

To exploit this extension, we use three kinds of holes in the evaluation context

grammar in figure A.2b. The ordinary hole [] appears where the usual kinds of

evaluation can occur. The hole []$ appears in contexts that allow multiple values and

[]◦ appears in contexts that expect a single value. Accordingly, the rule [6promote]

only applies in []$ contexts, and [6demote] only applies in []◦ contexts.

Revised6 Scheme 133

P 1[v1]$→ [6promote]
P 1[(values v1)]

P 1[(values v1)]◦→ [6demote]
P 1[v1]

P 1[(call-with-values (lambda () (values v2 · · ·)) v1)]→ [6cwvd]
P 1[(v1 v2 · · ·)]

P 1[(call-with-values v1 v2)]→ [6cwvw]
P 1[(call-with-values (lambda () (v1)) v2)] (v1 += (lambda () e))

Fig. A.4. Multiple values and call-with-values

To see how the evaluation contexts are organized to ensure that promotion and

demotion occur in the right places, consider the F , F$ and F◦ evaluation contexts.

The F$ and F◦ evaluation contexts are just the same as F , except that they allow

promotion to multiple values and demotion to a single value, respectively. So, the

F evaluation context, rather than being defined in terms of itself, exploits F$ and

F◦ to dictate where promotion and demotion can occur. For example, F can be

(if F◦ e e) meaning that demotion from (values v) to v can occur in the test of

an if expression. Similarly, F can be (begin F$ e e · · ·) meaning that v can be

promoted to (values v) in the first subexpression of a begin.
In general, the promotion and demotion rules simplify the definitions of the other

rules. For instance, the rule for if does not need to consider multiple values in its

first subexpression. Similarly, the rule for begin does not need to consider the case

of a single value as its first subexpression.

The other two rules in figure A.4 handle call-with-values. The evaluation

contexts for call-with-values (in the F non-terminal) allow evaluation in the body

of a procedure that has been passed as the first argument to call-with-values, as

long as the second argument has been reduced to a value. Once evaluation inside

that procedure completes, it will produce multiple values (since it is an F$ position),

and the entire call-with-values expression reduces to an application of its second

argument to those values, via the rule [6cwvd]. Finally, in the case that the first

argument to call-with-values is a value, but is not of the form (lambda () e),
the rule [6cwvw] wraps it in a thunk to trigger evaluation.

A.5 Exceptions

The workhorses for the exception system are

(handlers proc · · · e)

expressions and the G and PG evaluation contexts (shown in figure A.2b). The

handlers expression records the active exception handlers (proc · · ·) in some ex-

pression (e). The intention is that only the nearest enclosing handlers expression

is relevant to raised exceptions, and the G and PG evaluation contexts help achieve

134 M. Sperber et al.

PG[(raise* v1)]→ [6xunee]
uncaught exception: v1

P [(handlers G[(raise* v1)])]→ [6xuneh]
uncaught exception: v1

PG1[(with-exception-handler proc1 proc2)]→ [6xwh1]
PG1[(handlers proc1 (proc2))]

P 1[(handlers proc1 · · · G1[(with-exception-handler proc2 proc3)])]→ [6xwhn]
P 1[(handlers proc1 · · · G1[(handlers proc1 · · · proc2 (proc3))])]

P 1[(handlers proc1 · · · G1[(with-exception-handler v1 v2)])]→ [6xwhne]
P 1[(handlers proc1 · · ·

G1[(raise (make-cond “with-exception-handler expects procs”))])]
(v1 +∈ proc or v2 +∈ proc)

P 1[(handlers proc1 · · · proc2 G1[(raise-continuable v1)])]→ [6xrc]
P 1[(handlers proc1 · · · proc2 G1[(handlers proc1 · · · (proc2 v1))])]

P 1[(handlers proc1 · · · proc2 G1[(raise v1)])]→ [6xr]
P 1[(handlers proc1 · · · proc2

G1[(handlers proc1 · · ·
(begin ((proc2 v1) (raise (make-cond “handler returned”))) · · ·))]

P 1[(condition? (make-cond string))]→ [6ct]
P 1[#t]

P 1[(condition? v1)]→ [6cf]
P 1[#f] (v1 += (make-cond string))

P 1[(handlers proc1 · · · (values v1 · · ·))]→ [6xdone]
P 1[(values v1 · · ·)]

PG1[(with-exception-handler v1 v2)]→ [6weherr]
PG1[(raise (make-cond “with-exception-handler expects procs”))]

(v1 +∈ proc or v2 +∈ proc)

Fig. A.5. Exceptions

that goal. They are just like their counterparts E and P , except that handlers
expressions cannot occur on the path to the hole, and the exception system rules

take advantage of that context to find the closest enclosing handler.

To see how the contexts work together with handler expressions, consider the

left-hand side of the [6xunee] rule in figure A.5. It matches expressions that have

a call to raise or raise-continuable (the non-terminal raise* matches both

exception-raising procedures) in a PG evaluation context. Since the PG context

does not contain any handlers expressions, this exception cannot be caught, so

this expression reduces to a final state indicating the uncaught exception. The

rule [6xuneh] also signals an uncaught exception, but it covers the case where a

handlers expression has exhausted all of the handlers available to it. The rule

applies to expressions that have a handlers expression (with no exception handlers)

Revised6 Scheme 135

in an arbitrary evaluation context where a call to one of the exception-raising

functions is nested in the handlers expression. The use of the G evaluation context

ensures that there are no other handler expressions between this one and the raise.

The next two rules cover call to the procedure with-exception-handler. The

[6xwh1] rule applies when there are no handler expressions. It constructs a new

one and applies v 2 as a thunk in the handler body. If there already is a handler

expression, the [6xwhn] applies. It collects the current handlers and adds the new

one into a new handlers expression and, as with the previous rule, invokes the

second argument to with-exception-handlers.
The next two rules cover exceptions that are raised in the context of a handlers

expression. If a continuable exception is raised, [6xrc] applies. It takes the most re-

cently installed handler from the nearest enclosing handlers expression and applies

it to the argument to raise-continuable, but in a context where the exception

handlers do not include that latest handler. The [6xr] rule behaves similarly, except

it raises a new exception if the handler returns. The new exception is created with

the make-cond special form.

The make-cond special form is a stand-in for the report’s conditions. It does not

evaluate its argument (note its absence from the E grammar in figure A.2b). That

argument is just a literal string describing the context in which the exception was

raised. The only operation on conditions is condition?, whose semantics are given

by the two rules [6ct] and [6cf].

Finally, the rule [6xdone] drops a handlers expression when its body is fully eval-

uated, and the rule [6weherr] raises an exception when with-exception-handler
is supplied with incorrect arguments.

A.6 Arithmetic and basic forms

This model does not include the report’s arithmetic, but does include an idealized

form in order to make experimentation with other features and writing test suites for

the model simpler. Figure A.6 shows the reduction rules for the primitive procedures

that implement addition, subtraction, multiplication, and division. They defer to

their mathematical analogues. In addition, when the subtraction or divison operator

are applied to no arguments, or when division receives a zero as a divisor, or when

any of the arithmetic operations receive a non-number, an exception is raised.

The bottom half of figure A.6 shows the rules for if, begin, and begin0. The

relevant evaluation contexts are given by the F non-terminal.

The evaluation contexts for if only allow evaluation in its test expression. Once

that is a value, the rules reduce an if expression to its consequent if the test is not

#f, and to its alternative if it is #f.
The begin evaluation contexts allow evaluation in the first subexpression of a

begin, but only if there are two or more subexpressions. In that case, once the first

expression has been fully simplified, the reduction rules drop its value. If there is

only a single subexpression, the begin itself is dropped.

Like the begin evaluation contexts, the begin0 evaluation contexts allow evalu-

ation of the first subexpression of a begin0 expression when there are two or more

136 M. Sperber et al.

P 1[(+)] → P 1[0] [6+0]

P 1[(+ n1 n2 · · ·)] → P 1[.Σ{n1, n2 · · ·}/] [6+]

P 1[(- n1)] → P 1[. − n1
/] [6u-]

P 1[(- n1 n2 n3 · · ·)] → P 1[.n1 − Σ{n2, n3 · · ·}/] [6-]

P 1[(-)] → P 1[(raise (make-cond “arity mismatch”))] [6-arity]

P 1[(*)] → P 1[1] [6*1]

P 1[(* n1 n2 · · ·)] → P 1[.Π{n1, n2 · · ·}/] [6*]

P 1[(/ n1)] → P 1[(/ 1 n1)] [6u/]

P 1[(/ n1 n2 n3 · · ·)] → P 1[.n1/Π{n2, n3 · · ·}/] [6/]
(0 +∈ {n2, n3, . . .})

P 1[(/ n1 n2 · · · 0 n3 · · ·)] → P 1[(raise (make-cond “divison by zero”))] [6/0]

P 1[(/)] → P 1[(raise (make-cond “arity mismatch”))] [6/arity]

P 1[(aproc v1 · · ·)]→ [6ae]
P 1[(raise (make-cond “arith-op applied to non-number”))]

(∃v ∈ v1 · · · s.t. v is not a number)

P 1[(if v1 e1 e2)]→ [6if3t]
P 1[e1] (v1 += #f)

P 1[(if #f e1 e2)]→ [6if3f]
P 1[e2]

P 1[(begin (values v · · ·) e1 e2 · · ·)]→ [6beginc]
P 1[(begin e1 e2 · · ·)]

P 1[(begin e1)]→ [6begind]
P 1[e1]

P 1[(begin0 (values v1 · · ·) (values v2 · · ·) e2 · · ·)]→ [6begin0n]
P 1[(begin0 (values v1 · · ·) e2 · · ·)]

P 1[(begin0 e1)]→ [6begin01]
P 1[e1]

Fig. A.6. Arithmetic and basic forms

subexpressions. The begin0 evaluation contexts also allow evaluation in the second

subexpression of a begin0 expression, as long as the first subexpression has been

fully simplified. The [6begin0n] rule for begin0 then drops a fully simplified second

subexpression. Eventually, there is only a single expression in the begin0, at which

point the [begin01] rule fires, and removes the begin0 expression.

Revised6 Scheme 137

P 1[(list v1 v2 · · ·)]→ [6listc]
P 1[(cons v1 (list v2 · · ·))]

P 1[(list)]→ [6listn]
P 1[null]

(store (sf 1 · · ·) E 1[(cons v1 v2)])→ [6cons]
(store (sf 1 · · · (mp (cons v1 v2))) E 1[mp]) (mp fresh)

(store (sf 1 · · ·) E 1[(consi v1 v2)])→ [6consi]
(store (sf 1 · · · (ip (cons v1 v2))) E 1[ip]) (ip fresh)

(store (sf 1 · · · (pp i (cons v1 v2)) sf 2 · · ·) E 1[(car pp i)])→ [6car]
(store (sf 1 · · · (pp i (cons v1 v2)) sf 2 · · ·) E 1[v1])

(store (sf 1 · · · (pp i (cons v1 v2)) sf 2 · · ·) E 1[(cdr pp i)])→ [6cdr]
(store (sf 1 · · · (pp i (cons v1 v2)) sf 2 · · ·) E 1[v2])

(store (sf 1 · · · (mp1 (cons v1 v2)) sf 2 · · ·) E 1[(set-car! mp1 v 3)])→ [6setcar]
(store (sf 1 · · · (mp1 (cons v 3 v2)) sf 2 · · ·) E 1[unspecified])

(store (sf 1 · · · (mp1 (cons v1 v2)) sf 2 · · ·) E 1[(set-cdr! mp1 v 3)])→ [6setcdr]
(store (sf 1 · · · (mp1 (cons v1 v 3)) sf 2 · · ·) E 1[unspecified])

P 1[(null? null)]→ [6null?t]
P 1[#t]

P 1[(null? v1)]→ [6null?f]
P 1[#f] (v1 += null)

P 1[(pair? pp)]→ [6pair?t]
P 1[#t]

P 1[(pair? v1)]→ [6pair?f]
P 1[#f] (v1 +∈ pp)

P 1[(car v i)]→ [6care]
P 1[(raise (make-cond “can’t take car of non-pair”))] (v i +∈ pp)

P 1[(cdr v i)]→ [6cdre]
P 1[(raise (make-cond “can’t take cdr of non-pair”))] (v i +∈ pp)

P 1[(set-car! v1 v2)]→ [6scare]
P 1[(raise (make-cond “can’t set-car! on a non-pair or an immutable pair”))] (v1 +∈ mp)

P 1[(set-cdr! v1 v2)]→ [6scdre]
P 1[(raise (make-cond “can’t set-cdr! on a non-pair or an immutable pair”))] (v1 +∈ mp)

Fig. A.7. Lists

A.7 Lists

The rules in figure A.7 handle lists. The first two rules handle list by reducing it

to a succession of calls to cons, followed by null.
The next two rules, [6cons] and [6consi], allocate new cons cells. They both move

(cons v1 v2) into the store, bound to a fresh pair pointer (see also section A.3 for

138 M. Sperber et al.

P 1[(eqv? v1 v1)]→ [6eqt]
P 1[#t] (v1 +∈ proc, v1 += (make-cond string))

P 1[(eqv? v1 v2)]→ [6eqf]
P 1[#f]

(v1 += v2, v1 +∈ proc or v2 +∈ proc, v1 += (make-cond string) or v2 += (make-cond string))

P 1[(eqv? (make-cond string1) (make-cond string2))]→ [6eqct]
P 1[#t]

P 1[(eqv? (make-cond string1) (make-cond string2))]→ [6eqcf]
P 1[#f]

Fig. A.8. Eqv

a description of “fresh”). The [6cons] uses a mp variable, to indicate the pair is

mutable, and the [6consi] uses a ip variable to indicate the pair is immutable.

The rules [6car] and [6cdr] extract the components of a pair from the store when

presented with a pair pointer (the pp can be either mp or ip, as shown in figure A.2a).

The rules [6setcar] and [6setcdr] handle assignment of mutable pairs. They

replace the contents of the appropriate location in the store with the new value, and

reduce to unspecified. See section A.12 for an explanation of how unspecified
reduces.

The next four rules handle the null? predicate and the pair? predicate, and the

final four rules raise exceptions when car, cdr, set-car! or set-cdr! receive non

pairs.

A.8 Eqv

The rules for eqv? are shown in figure A.8. The first two rules cover most of

the behavior of eqv?. The first says that when the two arguments to eqv? are

syntactically identical, then eqv? produces #t and the second says that when the

arguments are not syntactically identical, then eqv? produces #f. The structure of

v has been carefully designed so that simple term equality corresponds closely to

eqv?’s behavior. For example, pairs are represented as pointers into the store and

eqv? only compares those pointers.

The side-conditions on those first two rules ensure that they do not apply when

simple term equality does not match the behavior of eqv?. There are two situations

where it does not match: comparing two conditions and comparing two procedures.

For the first, the report does not specify eqv?’s behavior, except to say that it

must return a boolean, so the remaining two rules ([6eqct], and [6eqcf]) allow

such comparisons to return #t or #f. Comparing two procedures is covered in

section A.12.

Revised6 Scheme 139

P 1[(e1 · · · e i e i+1 · · ·)]→ [6mark]
P 1[((lambda (x) (e1 · · · x e i+1 · · ·)) e i)]

(x fresh, e i +∈ v , ∃e ∈ e1 · · · e i+1 · · · s.t. e +∈ v)

(store (sf 1 · · ·) E 1[((lambda (x1 x2 · · ·) e1 e2 · · ·) v1 v2 · · ·)])→ [6appN!]
(store (sf 1 · · · (bp v1)) E 1[({x1 *→ bp}(lambda (x2 · · ·) e1 e2 · · ·) v2 · · ·)])

(bp fresh,#x2 = #v2,V !x1, (lambda (x2 · · ·) e1 e2 · · ·)")

P 1[((lambda (x1 x2 · · ·) e1 e2 · · ·) v1 v2 · · ·)]→ [6appN]
P 1[({x1 *→ v1}(lambda (x2 · · ·) e1 e2 · · ·) v2 · · ·)]

(#x2 = #v2,¬V !x1, (lambda (x2 · · ·) e1 e2 · · ·)")

P 1[((lambda () e1 e2 · · ·))]→ [6app0]
P 1[(begin e1 e2 · · ·)]

P 1[((lambda (x1 x2 · · · dot x r) e1 e2 · · ·) v1 v2 · · · v 3 · · ·)]→ [6µapp]
P 1[((lambda (x1 x2 · · · x r) e1 e2 · · ·) v1 v2 · · · (list v 3 · · ·))]

(#x2 = #v2)

P 1[((lambda x1 e1 e2 · · ·) v1 · · ·)]→ [6µapp1]
P 1[((lambda (x1) e1 e2 · · ·) (list v1 · · ·))]

(store (sf 1 · · · (x1 v1) sf 2 · · ·) E 1[x1])→ [6var]
(store (sf 1 · · · (x1 v1) sf 2 · · ·) E 1[v1])

(store (sf 1 · · · (x1 v1) sf 2 · · ·) E 1[(set! x1 v2)])→ [6set]
(store (sf 1 · · · (x1 v2) sf 2 · · ·) E 1[unspecified])

P 1[(procedure? proc)]→ [6proct]
P 1[#t]

P 1[(procedure? nonproc)]→ [6procf]
P 1[#f]

P 1[((lambda (x1 · · ·) e1 e2 · · ·) v1 · · ·)]→ [6arity]
P 1[(raise (make-cond “arity mismatch”))] (#x1 += #v1)

P 1[((lambda (x1 x2 · · · dot x) e1 e2 · · ·) v1 · · ·)]→ [6µarity]
P 1[(raise (make-cond “arity mismatch”))] (#v1 < #x2 + 1)

P 1[(nonproc v · · ·)]→ [6appe]
P 1[(raise (make-cond “can’t call non-procedure”))]

P 1[(proc1 v1 · · ·)]→ [61arity]
P 1[(raise (make-cond “arity mismatch”))] (#v1 += 1)

P 1[(proc2 v1 · · ·)]→ [62arity]
P 1[(raise (make-cond “arity mismatch”))] (#v1 += 2)

Fig. A.9a. Procedures & application

A.9 Procedures and application

In evaluating a procedure call, the report leaves unspecified the order in which argu-

ments are evaluated. So, our reduction system allows multiple, different reductions

to occur, one for each possible order of evaluation.

140 M. Sperber et al.

V ∈ 2x×e

V !x1, (set! x2 e1)" if x1 = x2

V !x1, (set! x2 e1)" if V !x1, e1" and x1 += x2

V !x1, (begin e1 e2 e3 · · ·)" if V !x1, e1" or V !x1, (begin e2 e3 · · ·)"
V !x1, (begin e1)" if V !x1, e1"
V !x1, (e1 e2 · · ·)" if V !x1, (begin e1 e2 · · ·)"
V !x1, (if e1 e2 e3)" if V !x1, e1" or V !x1, e2" or V !x1, e3"
V !x1, (begin0 e1 e2 · · ·)" if V !x1, (begin e1 e2 · · ·)"
V !x1, (lambda (x2 · · ·) e1 e2 · · ·)" if V !x1, (begin e1 e2 · · ·)" and x1 +∈ {x2 · · ·}
V !x1, (lambda (x2 · · · dot x 3) e1 e2 · · ·)"

if V !x1, (begin e1 e2 · · ·)" and x1 +∈ {x2 · · · x 3}
V !x1, (lambda x2 e1 e2 · · ·)" if V !x1, (begin e1 e2 · · ·)" and x1 += x2

V !x1, (letrec ((x2 e1) · · ·) e2 e3 · · ·)"
if V !x1, (begin e1 · · · e2 e3 · · ·)" and x1 +∈ {x2 · · ·}

V !x1, (letrec* ((x2 e1) · · ·) e2 e3 · · ·)"
if V !x1, (begin e1 · · · e2 e3 · · ·)" and x1 +∈ {x2 · · ·}

V !x1, (l! x2 e1)" if V !x1, (set! x2 e1)"
V !x1, (reinit x2 e1)" if V !x1, (set! x2 e1)"
V !x1, (dw x2 e1 e2 e3)" if V !x1, e1" or V !x1, e2" or V !x1, e3"

Fig. A.9b. Variable-assignment relation

To capture unspecified evaluation order but allow only evaluation that is consistent

with some sequential ordering of the evaluation of an application’s subexpressions,

we use non-deterministic choice to first pick a subexpression to reduce only when

we have not already committed to reducing some other subexpression. To achieve

that effect, we limit the evaluation of application expressions to only those that have

a single expression that is not fully reduced, as shown in the non-terminal F , in

figure A.2b. To evaluate application expressions that have more than two arguments

to evaluate, the rule [6mark] picks one of the subexpressions of an application

that is not fully simplified and lifts it out in its own application, allowing it to be

evaluated. Once one of the lifted expressions is evaluated, the [6appN] substitutes

its value back into the original application.

The [6appN] rule also handles other applications whose arguments are finished

by substituting the first argument for the first formal parameter in the expression.

Its side-condition uses the relation in figure A.9b to ensure that there are no set!
expressions with the parameter x1 as a target. If there is such an assignment, the

[6appN!] rule applies (see also section A.3 for a description of “fresh”). Instead

of directly substituting the actual parameter for the formal parameter, it creates a

new location in the store, initially bound the actual parameter, and substitutes a

variable standing for that location in place of the formal parameter. The store, then,

handles any eventual assignment to the parameter. Once all of the parameters have

been substituted away, the rule [6app0] applies and evaluation of the body of the

procedure begins.

At first glance, the rule [6appN] appears superfluous, since it seems like the

rules could just reduce first by [6appN!] and then look up the variable when it is

Revised6 Scheme 141

P 1[(apply proc1 v1 · · · null)]→ [6applyf]
P 1[(proc1 v1 · · ·)]

(store (sf 1 · · · (pp1 (cons v2 v 3)) sf 2 · · ·) [6applyc]
E 1[(apply proc1 v1 · · · pp1)]) →

(store (sf 1 · · · (pp1 (cons v2 v 3)) sf 2 · · ·) E 1[(apply proc1 v1 · · · v2 v 3)])
(¬C !pp1, v 3, (sf 1 · · · (pp1 (cons v2 v 3)) sf 2 · · ·)")

(store (sf 1 · · · (pp1 (cons v2 v 3)) sf 2 · · ·) [6applyce]
E 1[(apply proc1 v1 · · · pp1)]) →

(store (sf 1 · · · (pp1 (cons v2 v 3)) sf 2 · · ·)
E 1[(raise (make-cond “apply called on circular list”))])

(C !pp1, v 3, (sf 1 · · · (pp1 (cons v2 v 3)) sf 2 · · ·)")

P 1[(apply nonproc v · · ·)]→ [6applynf]
P 1[(raise (make-cond “can’t apply non-procedure”))]

P 1[(apply proc v1 · · · v2)]→ [6applye]
P 1[(raise (make-cond “apply’s last argument non-list”))] (v2 +∈ list-v)

P 1[(apply)]→ [6apparity0]
P 1[(raise (make-cond “arity mismatch”))]

P 1[(apply v)]→ [6apparity1]
P 1[(raise (make-cond “arity mismatch”))]

C ∈ 2pp×val×(sf ···)

C !pp1, pp2, (sf 1 · · · (pp2 (cons v1 v2)) sf 2 · · ·)" if pp1 = v2

C !pp1, pp2, (sf 1 · · · (pp2 (cons v1 v2)) sf 2 · · ·)"
if C !pp1, v2, (sf 1 · · · (pp2 (cons v1 v2)) sf 2 · · ·)" and pp1 += v2

Fig. A.9c. Apply

evaluated. There are two reasons why we keep the [6appN], however. The first is

purely conventional: reducing applications via substitution is taught to us at an

early age and is commonly used in rewriting systems in the literature. The second

reason is more technical: the [6mark] rule requires that [6appN] be applied once ei
has been reduced to a value. [6appN!] would lift the value into the store and put

a variable reference into the application, leading to another use of [6mark], and

another use of [6appN!], which continues forever.

The rule [6µapp] handles a well-formed application of a function with a dotted

parameter lists. It such an application into an application of an ordinary procedure

by constructing a list of the extra arguments. Similarly, the rule [6µapp1] handles

an application of a procedure that has a single variable as its parameter list.

The rule [6var] handles variable lookup in the store and [6set] handles variable

assignment.

The next two rules [6proct] and [6procf] handle applications of procedure?, and

the remaining rules cover applications of non-procedures and arity violations.

The rules in figure A.9c cover apply. The first rule, [6applyf], covers the case

142 M. Sperber et al.

P 1[(dynamic-wind proc1 proc2 proc3)]→ [6wind]
P 1[(begin (proc1) (begin0 (dw x (proc1) (proc2) (proc3)) (proc3)))] (x fresh)

P 1[(dynamic-wind v1 v2 v 3)]→ [6winde]
P 1[(raise (make-cond “dynamic-wind expects procs”))]

(v1 +∈ proc or v2 +∈ proc or v 3 +∈ proc)

P 1[(dynamic-wind v1 · · ·)]→ [6dwarity]
P 1[(raise (make-cond “arity mismatch”))] (#v1 += 3)

P 1[(dw x e1 (values v1 · · ·) e2)]→ [6dwdone]
P 1[(values v1 · · ·)]

(store (sf 1 · · ·) E 1[(call/cc v1)])→ [6call/cc]
(store (sf 1 · · ·) E 1[(v1 (throw x E 1[x]))]) (x fresh)

(store (sf 1 · · ·) E 1[((throw x1 E 2[x1]) v1 · · ·)])→ [6throw]
(store (sf 1 · · ·) T !E 1,E 2"[(values v1 · · ·)])

T : E × E → E
T !H 1[(dw x1 e1 E 1 e2)],H 2[(dw x1 e3 E 2 e4)]" = H 2[(dw x1 e3 T !E 1,E 2" e4)]
T !E 1,E 2" = (begin S !E 1"[1] R!E 2")

(otherwise)

R : E → E
R!H 1[(dw x1 e1 E 1 e2)]" = H 1[(begin e1 (dw x1 e1 R!E 1" e2))]
R!H 1" = H 1 (otherwise)

S : E → E
S !E 1[(dw x1 e1 H 2 e2)]" = S !E 1"[(begin0 (dw x1 e1 [] e2) e2)]
S !H 1" = [] (otherwise)

Fig. A.10. Call/cc and dynamic wind

where the last argument to apply is the empty list, and simply reduces by erasing

the empty list and the apply. The second rule, [6applyc] covers a well-formed

application of apply where apply’s final argument is a pair. It reduces by extracting

the components of the pair from the store and putting them into the application of

apply. Repeated application of this rule thus extracts all of the list elements passed

to apply out of the store.

The remaining five rules cover the various violations that can occur when using

apply. The first one covers the case where apply is supplied with a cyclic list. The

next four cover applying a non-procedure, passing a non-list as the last argument,

and supplying too few arguments to apply.

A.10 Call/cc and dynamic wind

The specification of dynamic-wind uses (dw x e e e) expressions to record which

dynamic-wind thunks are active at each point in the computation. Its first argu-

ment is an identifier that is globally unique and serves to identify invocations of

Revised6 Scheme 143

dynamic-wind, in order to avoid exiting and re-entering the same dynamic context

during a continuation switch. The second, third, and fourth arguments are calls to

some before, thunk , and after procedures from a call to dynamic-wind. Evaluation

only occurs in the middle expression; the dw expression only serves to record which

before and after procedures need to be run during a continuation switch. Accord-

ingly, the reduction rule for an application of dynamic-wind reduces to a call to

the before procedure, a dw expression and a call to the after procedure, as shown in

rule [6wind] in figure A.10. The next two rules cover abuses of the dynamic-wind
procedure: calling it with non-procedures, and calling it with the wrong number of

arguments. The [6dwdone] rule erases a dw expression when its second argument

has finished evaluating.

The next two rules cover call/cc. The rule [6call/cc] creates a new continuation.

It takes the context of the call/cc expression and packages it up into a throw
expression that represents the continuation. The throw expression uses the fresh

variable x to record where the application of call/cc occurred in the context

for use in the [6throw] rule when the continuation is applied. That rule takes the

arguments of the continuation, wraps them with a call to values, and puts them

back into the place where the original call to call/cc occurred, replacing the current

context with the context returned by the T metafunction.

The T (for “trim”) metafunction accepts two D contexts and builds a context

that matches its second argument, the destination context, except that additional

calls to the before and after procedures from dw expressions in the context have

been added.

The first clause of the T metafunction exploits the H context, a context that

contains everything except dw expressions. It ensures that shared parts of the

dynamic-wind context are ignored, recurring deeper into the two expression con-

texts as long as the first dw expression in each have matching identifiers (x1). The

final rule is a catchall; it only applies when all the others fail and thus applies either

when there are no dws in the context, or when the dw expressions do not match.

It calls the two other metafunctions defined in figure A.10 and puts their results

together into a begin expression.

The R metafunction extracts all of the before procedures from its argument and

the S metafunction extracts all of the after procedures from its argument. They

each construct new contexts and exploit H to work through their arguments, one dw
at a time. In each case, the metafunctions are careful to keep the right dw context

around each of the procedures in case a continuation jump occurs during one of

their evaluations. Since R, receives the destination context, it keeps the intermediate

parts of the context in its result. In contrast S discards all of the context except

the dws, since that was the context where the call to the continuation occurred.

A.11 Letrec

Figre A.11 shows the rules that handle letrec and letrec* and the supplementary

expressions that they produce, l! and reinit. As a first approximation, both letrec
and letrec* reduce by allocating locations in the store to hold the values of the init

144 M. Sperber et al.

(store (sf 1 · · · (x1 bh) sf 2 · · ·) E 1[(l! x1 v2)])→ [6initdt]
(store (sf 1 · · · (x1 v2) sf 2 · · ·) E 1[unspecified])

(store (sf 1 · · · (x1 v1) sf 2 · · ·) E 1[(l! x1 v2)])→ [6initv]
(store (sf 1 · · · (x1 v2) sf 2 · · ·) E 1[unspecified])

(store (sf 1 · · · (x1 bh) sf 2 · · ·) E 1[(set! x1 v1)])→ [6setdt]
(store (sf 1 · · · (x1 v1) sf 2 · · ·) E 1[unspecified])

(store (sf 1 · · · (x1 bh) sf 2 · · ·) E 1[(set! x1 v1)])→ [6setdte]
(store (sf 1 · · · (x1 bh) sf 2 · · ·)

E 1[(raise (make-cond “letrec variable touched”))])

(store (sf 1 · · · (x1 bh) sf 2 · · ·) E 1[x1])→ [6dt]
(store (sf 1 · · · (x1 bh) sf 2 · · ·)

E 1[(raise (make-cond “letrec variable touched”))])

(store (sf 1 · · · (x1 #f) sf 2 · · ·) E 1[(reinit x1)])→ [6init]
(store (sf 1 · · · (x1 #t) sf 2 · · ·) E 1[′ignore])

(store (sf 1 · · · (x1 #t) sf 2 · · ·) E 1[(reinit x1)])→ [6reinit]
(store (sf 1 · · · (x1 #t) sf 2 · · ·) E 1[′ignore])

(store (sf 1 · · · (x1 #t) sf 2 · · ·) E 1[(reinit x1)])→ [6reinite]
(store (sf 1 · · · (x1 #t) sf 2 · · ·)

E 1[(raise (make-cond “reinvoked continuation of letrec init”))])

(store (sf 1 · · ·) E 1[(letrec ((x1 e1) · · ·) e2 e3 · · ·)])→ [6letrec]
(store (sf 1 · · · (lx bh) · · · (ri #f) · · ·)

E 1[((lambda (x1 · · ·) (l! lx x1) · · · {x1 *→ lx · · ·}e2 {x1 *→ lx · · ·}e3 · · ·)
(begin0 {x1 *→ lx · · ·}e1 (reinit ri)) · · ·)])

(lx · · · fresh, ri · · · fresh)

(store (sf 1 · · ·) E 1[(letrec* ((x1 e1) · · ·) e2 e3 · · ·)])→ [6letrec*]
(store (sf 1 · · · (lx bh) · · · (ri #f) · · ·)

E 1[{x1 *→ lx · · ·}(begin (begin (l! lx e1) (reinit ri)) · · · e2 e3 · · ·))])
(lx · · · fresh, ri · · · fresh)

Fig. A.11. Letrec and letrec*

expressions, initializing those locations to bh (for “black hole”), evaluating the init

expressions, and then using l! to update the locations in the store with the value

of the init expressions. They also use reinit to detect when an init expression in a

letrec is reentered via a continuation.

Before considering how letrec and letrec* use l! and reinit, first consider

how l! and reinit behave. The first two rules in figure A.11 cover l!. It behaves

very much like set!, but it initializes both ordinary variables, and variables that are

current bound to the black hole (bh).

The next two rules cover ordinary set! when applied to a variable that is

currently bound to a black hole. This situation can arise when the program assigns

to a variable before letrec initializes it, eg (letrec ((x (set! x 5))) x). The

Revised6 Scheme 145

report specifies that either an implementation should perform the assignment, as

reflected in the [6setdt] rule or it raise an exception, as reflected in the [6setdte] rule.

The [6dt] rule covers the case where a variable is referred to before the value of

a init expression is filled in, which must always raise an exception.

A reinit expression is used to detect a program that captures a continuation

in an initialization expression and returns to it, as shown in the three rules [6init],

[6reinit], and [6reinite]. The reinit form accepts an identifier that is bound in

the store to a boolean as its argument. Those are identifiers are initially #f. When

reinit is evaluated, it checks the value of the variable and, if it is still #f, it changes

it to #t. If it is already #t, then reinit either just does nothing, or it raises an

exception, in keeping with the two legal behaviors of letrec and letrec*.
The last two rules in figure A.11 put together l! and reinit. The [6letrec]

rule reduces a letrec expression to an application expression, in order to capture

the unspecified order of evaluation of the init expressions. Each init expression is

wrapped in a begin0 that records the value of the init and then uses reinit to

detect continuations that return to the init expression. Once all of the init expressions

have been evaluated, the procedure on the right-hand side of the rule is invoked,

causing the value of the init expression to be filled in the store, and evaluation

continues with the body of the original letrec expression.

The [6letrec*] rule behaves similarly, but uses a begin expression rather than an

application, since the init expressions are evaluated from left to right. Moreover,

each init expression is filled into the store as it is evaluated, so that subsequent init

expressions can refer to its value.

A.12 Underspecification

The rules in figure A.12 cover aspects of the semantics that are explicitly unspecified.

Implementations can replace the rules [6ueqv], [6uval] and with different rules that

cover the left-hand sides and, as long as they follow the informal specification,

any replacement is valid. Those three situations correspond to the case when eqv?
applied to two procedures and when multiple values are used in a single-value

context.

The remaining rules in figure A.12 cover the results from the assignment opera-

tions, set!, set-car!, and set-cdr!. An implementation does not adjust those rules,

but instead renders them useless by adjusting the rules that insert unspecified:
[6setcar], [6setcdr], [6set], and [6setd]. Those rules can be adjusted by replacing

unspecified with any number of values in those rules.

So, the remaining rules just specify the minimal behavior that we know that a value

or values must have and otherwise reduce to an unknown: state. The rule [6udemand]

drops unspecified in the U context. See figure A.2b for the precise definition of

U, but intuitively it is a context that is only a single expression layer deep that

contains expressions whose value depends on the value of their subexpressions, like

the first subexpression of a if. Following that are rules that discard unspecified in

expressions that discard the results of some of their subexpressions. The [6ubegin]

shows how begin discards its first expression when there are more expressions to

146 M. Sperber et al.

P [(eqv? proc1 proc2)]→ [6ueqv]
unknown: equivalence of procedures

P [(values v1 · · ·)]◦→ [6uval]
unknown: context expected one value, received #v1 (#v1 += 1)

P [U [unspecified]]→ [6udemand]
unknown: unspecified result

(store (sf · · ·) unspecified)→ [6udemandtl]
unknown: unspecified result

P 1[(begin unspecified e1 e2 · · ·)]→ [6ubegin]
P 1[(begin e1 e2 · · ·)]

P 1[(handlers v · · · unspecified)]→ [6uhandlers]
P 1[unspecified]

P 1[(dw x e1 unspecified e2)]→ [6udw]
P 1[unspecified]

P 1[(begin0 (values v1 · · ·) unspecified e1 · · ·)]→ [6ubegin0]
P 1[(begin0 (values v1 · · ·) e1 · · ·)]

P 1[(begin0 unspecified (values v2 · · ·) e2 · · ·)]→ [6ubegin0u]
P 1[(begin0 unspecified e2 · · ·)]

P 1[(begin0 unspecified unspecified e2 · · ·)]→ [6ubegin0uu]
P 1[(begin0 unspecified e2 · · ·)]

Fig. A.12. Explicitly unspecified behavior

evaluate. The next two rules, [6uhandlers] and [6udw] propagate unspecified to

their context, since they also return any number of values to their context. Finally,

the two begin0 rules preserve unspecified until the rule [6begin01] can return it

to its context.

B Sample definitions for derived forms

This appendix contains sample definitions for some of the keywords described in

this report in terms of simpler forms:

cond

The cond keyword (section 11.4.5) could be defined in terms of if, let and begin
using syntax-rules as follows:

(define-syntax cond
(syntax-rules (else =>)
((cond (else result1 result2 ...))
(begin result1 result2 ...))

Revised6 Scheme 147

((cond (test => result))
(let ((temp test))

(if temp (result temp))))
((cond (test => result) clause1 clause2 ...)
(let ((temp test))

(if temp
(result temp)
(cond clause1 clause2 ...))))

((cond (test)) test)
((cond (test) clause1 clause2 ...)
(let ((temp test))

(if temp
temp
(cond clause1 clause2 ...))))

((cond (test result1 result2 ...))
(if test (begin result1 result2 ...)))
((cond (test result1 result2 ...)

clause1 clause2 ...)
(if test

(begin result1 result2 ...)
(cond clause1 clause2 ...)))))

case

The case keyword (section 11.4.5) could be defined in terms of let, cond, and memv
(see library chapter 3) using syntax-rules as follows:

(define-syntax case
(syntax-rules (else)
((case expr0

((key ...) res1 res2 ...)
...
(else else-res1 else-res2 ...))

(let ((tmp expr0))
(cond
((memv tmp ’(key ...)) res1 res2 ...)
...
(else else-res1 else-res2 ...))))

((case expr0
((keya ...) res1a res2a ...)
((keyb ...) res1b res2b ...)
...)

(let ((tmp expr0))
(cond
((memv tmp ’(keya ...)) res1a res2a ...)

148 M. Sperber et al.

((memv tmp ’(keyb ...)) res1b res2b ...)
...)))))

let*

The let* keyword (section 11.4.6) could be defined in terms of let using syntax-rules
as follows:

(define-syntax let*
(syntax-rules ()
((let* () body1 body2 ...)
(let () body1 body2 ...))
((let* ((name1 expr1) (name2 expr2) ...)

body1 body2 ...)
(let ((name1 expr1))

(let* ((name2 expr2) ...)
body1 body2 ...)))))

letrec

The letrec keyword (section 11.4.6) could be defined approximately in terms of let
and set! using syntax-rules, using a helper to generate the temporary variables

needed to hold the values before the assignments are made, as follows:

(define-syntax letrec
(syntax-rules ()
((letrec () body1 body2 ...)
(let () body1 body2 ...))
((letrec ((var init) ...) body1 body2 ...)
(letrec-helper

(var ...)
()
((var init) ...)
body1 body2 ...))))

(define-syntax letrec-helper
(syntax-rules ()
((letrec-helper

()
(temp ...)
((var init) ...)
body1 body2 ...)

(let ((var <undefined>) ...)
(let ((temp init) ...)
(set! var temp)
...)

Revised6 Scheme 149

(let () body1 body2 ...)))
((letrec-helper

(x y ...)
(temp ...)
((var init) ...)
body1 body2 ...)

(letrec-helper
(y ...)
(newtemp temp ...)
((var init) ...)
body1 body2 ...))))

The syntax <undefined> represents an expression that returns something that,

when stored in a location, causes an exception with condition type &assertion
to be raised if an attempt to read from or write to the location occurs before the

assignments generated by the letrec transformation take place. (No such expression

is defined in Scheme.)

A simpler definition using syntax-case and generate-temporaries is given in

library chapter 12.

letrec*

The letrec* keyword could be defined approximately in terms of let and set!
using syntax-rules as follows:

(define-syntax letrec*
(syntax-rules ()
((letrec* ((var1 init1) ...) body1 body2 ...)
(let ((var1 <undefined>) ...)

(set! var1 init1)
...
(let () body1 body2 ...)))))

The syntax <undefined> is as in the definition of letrec above.

let-values

The following definition of let-values (section 11.4.6) using syntax-rules employs

a pair of helpers to create temporary names for the formals.

(define-syntax let-values
(syntax-rules ()
((let-values (binding ...) body1 body2 ...)
(let-values-helper1

()
(binding ...)
body1 body2 ...))))

150 M. Sperber et al.

(define-syntax let-values-helper1
;; map over the bindings
(syntax-rules ()
((let-values

((id temp) ...)
()
body1 body2 ...)

(let ((id temp) ...) body1 body2 ...))
((let-values

assocs
((formals1 expr1) (formals2 expr2) ...)
body1 body2 ...)

(let-values-helper2
formals1
()
expr1
assocs
((formals2 expr2) ...)
body1 body2 ...))))

(define-syntax let-values-helper2
;; create temporaries for the formals
(syntax-rules ()
((let-values-helper2

()
temp-formals
expr1
assocs
bindings
body1 body2 ...)

(call-with-values
(lambda () expr1)
(lambda temp-formals
(let-values-helper1
assocs
bindings
body1 body2 ...))))

((let-values-helper2
(first . rest)
(temp ...)
expr1
(assoc ...)
bindings
body1 body2 ...)

Revised6 Scheme 151

(let-values-helper2
rest
(temp ... newtemp)
expr1
(assoc ... (first newtemp))
bindings
body1 body2 ...))

((let-values-helper2
rest-formal
(temp ...)
expr1
(assoc ...)
bindings
body1 body2 ...)

(call-with-values
(lambda () expr1)
(lambda (temp newtemp)
(let-values-helper1
(assoc ... (rest-formal newtemp))
bindings
body1 body2 ...))))))

let*-values

The following macro defines let*-values in terms of let and let-values using

syntax-rules:

(define-syntax let*-values
(syntax-rules ()
((let*-values () body1 body2 ...)
(let () body1 body2 ...))
((let*-values (binding1 binding2 ...)

body1 body2 ...)
(let-values (binding1)

(let*-values (binding2 ...)
body1 body2 ...)))))

let

The let keyword could be defined in terms of lambda and letrec using syntax-
rules as follows:

(define-syntax let
(syntax-rules ()
((let ((name val) ...) body1 body2 ...)
((lambda (name ...) body1 body2 ...)

152 M. Sperber et al.

val ...))
((let tag ((name val) ...) body1 body2 ...)
((letrec ((tag (lambda (name ...)

body1 body2 ...)))
tag)

val ...))))

C Additional material

This report itself, as well as more material related to this report such as reference

implementations of some parts of Scheme and archives of mailing lists discussing

this report is at

http://www.r6rs.org/

The Schemers web site at

http://www.schemers.org/

as well as the Readscheme site at

http://library.readscheme.org/

contain extensive Scheme bibliographies, as well as papers, programs, implementa-

tions, and other material related to Scheme.

D Example

This section describes an example consisting of the (runge-kutta) library, which

provides an integrate-system procedure that integrates the system

y′
k = fk(y1, y2, . . . , yn), k = 1, . . . , n

of differential equations with the method of Runge-Kutta.

As the (runge-kutta) library makes use of the (rnrs base (6)) library, its

skeleton is as follows:

#!r6rs
(library (runge-kutta)
(export integrate-system

head tail)
(import (rnrs base))
〈library body〉)

The procedure definitions described below go in the place of 〈library body〉.
The parameter system-derivative is a function that takes a system state (a

vector of values for the state variables y1, . . . , yn) and produces a system derivative

(the values y′
1, . . . , y

′
n). The parameter initial-state provides an initial system

state, and h is an initial guess for the length of the integration step.

The value returned by integrate-system is an infinite stream of system states.

Revised6 Scheme 153

(define integrate-system
(lambda (system-derivative initial-state h)

(let ((next (runge-kutta-4 system-derivative h)))
(letrec ((states

(cons initial-state
(lambda ()

(map-streams next states)))))
states))))

The runge-kutta-4 procedure takes a function, f, that produces a system deriv-

ative from a system state. The runge-kutta-4 procedure produces a function that

takes a system state and produces a new system state.

(define runge-kutta-4
(lambda (f h)

(let ((*h (scale-vector h))
(*2 (scale-vector 2))
(*1/2 (scale-vector (/ 1 2)))
(*1/6 (scale-vector (/ 1 6))))

(lambda (y)
;; y is a system state

(let* ((k0 (*h (f y)))
(k1 (*h (f (add-vectors y (*1/2 k0)))))
(k2 (*h (f (add-vectors y (*1/2 k1)))))
(k3 (*h (f (add-vectors y k2)))))

(add-vectors y
(*1/6 (add-vectors k0

(*2 k1)
(*2 k2)
k3))))))))

(define elementwise
(lambda (f)

(lambda vectors
(generate-vector
(vector-length (car vectors))
(lambda (i)
(apply f

(map (lambda (v) (vector-ref v i))
vectors)))))))

(define generate-vector
(lambda (size proc)

(let ((ans (make-vector size)))
(letrec ((loop

(lambda (i)

154 M. Sperber et al.

(cond ((= i size) ans)
(else
(vector-set! ans i (proc i))
(loop (+ i 1)))))))

(loop 0)))))

(define add-vectors (elementwise +))

(define scale-vector
(lambda (s)

(elementwise (lambda (x) (* x s)))))

The map-streams procedure is analogous to map: it applies its first argument (a

procedure) to all the elements of its second argument (a stream).

(define map-streams
(lambda (f s)

(cons (f (head s))
(lambda () (map-streams f (tail s))))))

Infinite streams are implemented as pairs whose car holds the first element of the

stream and whose cdr holds a procedure that delivers the rest of the stream.

(define head car)
(define tail
(lambda (stream) ((cdr stream))))

The following program illustrates the use of integrate-system in integrating the

system

C
dvC
dt

= −iL − vC
R

L
diL
dt

= vC

which models a damped oscillator.

#!r6rs
(import (rnrs base)

(rnrs io simple)
(runge-kutta))

(define damped-oscillator
(lambda (R L C)

(lambda (state)
(let ((Vc (vector-ref state 0))

(Il (vector-ref state 1)))
(vector (- 0 (+ (/ Vc (* R C)) (/ Il C)))

(/ Vc L))))))

Revised6 Scheme 155

(define the-states
(integrate-system

(damped-oscillator 10000 1000 .001)
’#(1 0)
.01))

(letrec ((loop (lambda (s)
(newline)
(write (head s))
(loop (tail s)))))

(loop the-states))

(close-output-port (current-output-port))

This prints output like the following:

#(1 0)
#(0.99895054 9.994835e-6)
#(0.99780226 1.9978681e-5)
#(0.9965554 2.9950552e-5)
#(0.9952102 3.990946e-5)
#(0.99376684 4.985443e-5)
#(0.99222565 5.9784474e-5)
#(0.9905868 6.969862e-5)
#(0.9888506 7.9595884e-5)
#(0.9870173 8.94753e-5)

E Language changes

This chapter describes most of the changes that have been made to Scheme since

the “Revised5 Report” (Kelsey et al., 1998) was published:

• Scheme source code now uses the Unicode character set. Specifically, the

character set that can be used for identifiers has been greatly expanded.

• Identifiers can now start with the characters ->.
• Identifiers and symbol literals are now case-sensitive.

• Identifiers and representations of characters, booleans, number objects, and .
must be explicitly delimited.

• # is now a delimiter.

• Bytevector literal syntax has been added.

• Matched square brackets can be used synonymously with parentheses.

• The read-syntax abbreviations #’ (for syntax), #` (for quasisyntax), #,
(for unsyntax), and #,@ (for unsyntax-splicing have been added; see sec-

tion 4.3.5.)

156 M. Sperber et al.

identifier moved to

assoc lists
assv lists
assq lists
call-with-input-file io simple
call-with-output-file io simple
char-upcase unicode
char-downcase unicode
char-ci=? unicode
char-ci<? unicode
char-ci>? unicode
char-ci<=? unicode
char-ci>=? unicode
char-alphabetic? unicode
char-numeric? unicode
char-whitespace? unicode
char-upper-case? unicode
char-lower-case? unicode
close-input-port io simple
close-output-port io simple
current-input-port io simple
current-output-port io simple
display io simple
do control
eof-object? io simple
eval eval
delay r5rs
exact->inexact r5rs
force r5rs

identifier moved to

inexact->exact r5rs
member lists
memv lists
memq lists
modulo r5rs
newline io simple
null-environment r5rs
open-input-file io simple
open-output-file io simple
peek-char io simple
quotient r5rs
read io simple
read-char io simple
remainder r5rs
scheme-report-environment r5rs
set-car! mutable-pairs
set-cdr! mutable-pairs
string-ci=? unicode
string-ci<? unicode
string-ci>? unicode
string-ci<=? unicode
string-ci>=? unicode
string-set! mutable-strings
string-fill! mutable-strings
with-input-from-file io simple
with-output-to-file io simple
write io simple
write-char io simple

Fig. A.1. Identifiers moved to libraries

• # can no longer be used in place of digits in number representations.
• The external representation of number objects can now include a mantissa

width.
• Literals for NaNs and infinities were added.
• String and character literals can now use a variety of escape sequences.
• Block and datum comments have been added.
• The #!r6rs comment for marking report-compliant lexical syntax has been

added.
• Characters are now specified to correspond to Unicode scalar values.
• Many of the procedures and syntactic forms of the language are now part

of the (rnrs base (6)) library. Some procedures and syntactic forms have

been moved to other libraries; see figure A.1. In the “moved to” column, an

entry x means that the identifier has moved to (rnrs x (6)).
• The base language has the following new procedures and syntactic forms:

letrec*, let-values, let*-values, real-valued?, rational-valued?,
integer-valued?, exact, inexact, finite?, infinite?, nan?, div, mod,
div-and-mod, div0, mod0, div0-and-mod0, exact-integer-sqrt, boolean=?,
symbol=?, string-for-each, vector-map, vector-for-each, error,
assertion-violation, assert, call/cc, identifier-syntax.

• The following procedures have been removed: char-ready?, transcript-on,
transcript-off, load.

• The case-insensitive string comparisons (string-ci=?, string-ci<?, string-

Revised6 Scheme 157

ci>?, string-ci<=?, string-ci>=?) operate on the case-folded versions of

the strings rather than as the simple lexicographic ordering induced by the

corresponding character comparison procedures.

• Libraries have been added to the language.

• A number of standard libraries are described in a separate report (Sperber

et al., 2007a).

• Many situations that “were an error” now have defined or constrained beha-

vior. In particular, many are now specified in terms of the exception system.

• The full numerical tower is now required.

• The semantics for the transcendental functions has been specified more fully.

• The semantics of expt for zero bases has been refined.

• In syntax-rules forms, a may be used in place of the keyword.

• The let-syntax and letrec-syntax no longer introduce a new environment

for their bodies.

• For implementations that support NaNs or infinities, many arithmetic opera-

tions have been specified on these values consistently with IEEE 754.

• For implementations that support a distinct -0.0, the semantics of many

arithmetic operations with regard to -0.0 has been specified consistently with

IEEE 754.

• Scheme’s real number objects now have an exact zero as their imaginary part.

• The specification of quasiquote has been extended. Nested quasiquotations

work correctly now, and unquote and unquote-splicing have been extended

to several operands.

• Procedures now may or may not refer to locations. Consequently, eqv? is now

unspecified in a few cases where it was specified before.

• The mutability of the values of quasiquote structures has been specified to

some degree.

• The dynamic environment of the before and after procedures of dynamic-wind
is now specified.

• Various expressions that have only side effects are now allowed to return an

arbitrary number of values.

• The order and semantics for macro expansion has been more fully specified.

• Internal definitions are now defined in terms of letrec*.
• The old notion of program structure and Scheme’s top-level environment has

been replaced by top-level programs and libraries.

• The denotational semantics has been replaced by an operational semantics

based on an earlier semantics for the language of the “Revised5 Report” (Kel-

sey et al., 1998; Matthews & Findler, 2007).

Revised6 Scheme 159

PART TWO

Standard Libraries

Abstract
The report gives a defining description of the standard libraries of the programming language
Scheme.

This report frequently refers back to the Revised 6 Report on the Algorithmic Language
Scheme; references to the report are identified by designations such as “report section” or
“report chapter”.

1 Unicode

The procedures exported by the (rnrs unicode (6)) library provide access to

some aspects of the Unicode semantics for characters and strings: category inform-

ation, case-independent comparisons, case mappings, and normalization (Unicode

Consortium, 2007).

Some of the procedures that operate on characters or strings ignore the differ-

ence between upper case and lower case. These procedures have “-ci” (for “case

insensitive”) embedded in their names.

1.1 Characters

(char-upcase char) procedure

(char-downcase char) procedure

(char-titlecase char) procedure

(char-foldcase char) procedure

These procedures take a character argument and return a character result. If the

argument is an upper-case or title-case character, and if there is a single character

that is its lower-case form, then char-downcase returns that character. If the ar-

gument is a lower-case or title-case character, and there is a single character that

is its upper-case form, then char-upcase returns that character. If the argument

is a lower-case or upper-case character, and there is a single character that is its

title-case form, then char-titlecase returns that character. If the argument is not

a title-case character and there is no single character that is its title-case form,

then char-titlecase returns the upper-case form of the argument. Finally, if the

character has a case-folded character, then char-foldcase returns that character.

Otherwise the character returned is the same as the argument. For Turkic characters

İ (#\x130) and ı (#\x131), char-foldcase behaves as the identity function; other-

wise char-foldcase is the same as char-downcase composed with char-upcase.

(char-upcase #\i) =⇒ #\I
(char-downcase #\i) =⇒ #\i
(char-titlecase #\i) =⇒ #\I

160 M. Sperber et al.

(char-foldcase #\i) =⇒ #\i

(char-upcase #\ß) =⇒ #\ß
(char-downcase #\ß) =⇒ #\ß
(char-titlecase #\ß) =⇒ #\ß
(char-foldcase #\ß) =⇒ #\ß

(char-upcase #\Σ) =⇒ #\Σ
(char-downcase #\Σ) =⇒ #\σ
(char-titlecase #\Σ) =⇒ #\Σ
(char-foldcase #\Σ) =⇒ #\σ

(char-upcase #\ς) =⇒ #\Σ
(char-downcase #\ς) =⇒ #\ς
(char-titlecase #\ς) =⇒ #\Σ
(char-foldcase #\ς) =⇒ #\σ

Note: Note that char-titlecase does not always return a title-case character.

Note: These procedures are consistent with Unicode’s locale-independent map-

pings from scalar values to scalar values for upcase, downcase, titlecase, and case-

folding operations. These mappings can be extracted from UnicodeData.txt and

CaseFolding.txt from the Unicode Consortium, ignoring Turkic mappings in the

latter.

Note that these character-based procedures are an incomplete approximation to

case conversion, even ignoring the user’s locale. In general, case mappings require

the context of a string, both in arguments and in result. The string-upcase,
string-downcase, string-titlecase, and string-foldcase procedures (sec-

tion 1.2) perform more general case conversion.

(char-ci=? char1 char2 char3 . . .) procedure

(char-ci<? char1 char2 char3 . . .) procedure

(char-ci>? char1 char2 char3 . . .) procedure

(char-ci<=? char1 char2 char3 . . .) procedure

(char-ci>=? char1 char2 char3 . . .) procedure

These procedures are similar to char=?, etc., but operate on the case-folded

versions of the characters.

(char-ci<? #\z #\Z) =⇒ #f
(char-ci=? #\z #\Z) =⇒ #t
(char-ci=? #\ς #\σ) =⇒ #t

(char-alphabetic? char) procedure

(char-numeric? char) procedure

(char-whitespace? char) procedure

Revised6 Scheme 161

(char-upper-case? char) procedure

(char-lower-case? char) procedure

(char-title-case? char) procedure

These procedures return #t if their arguments are alphabetic, numeric, whitespace,

upper-case, lower-case, or title-case characters, respectively; otherwise they return

#f.
A character is alphabetic if it has the Unicode “Alphabetic” property. A character

is numeric if it has the Unicode “Numeric” property. A character is whitespace if

has the Unicode “White Space” property. A character is upper case if it has the

Unicode “Uppercase” property, lower case if it has the “Lowercase” property, and

title case if it is in the Lt general category.

(char-alphabetic? #\a) =⇒ #t
(char-numeric? #\1) =⇒ #t
(char-whitespace? #\space) =⇒ #t
(char-whitespace? #\x00A0) =⇒ #t
(char-upper-case? #\Σ) =⇒ #t
(char-lower-case? #\σ) =⇒ #t
(char-lower-case? #\x00AA) =⇒ #t
(char-title-case? #\I) =⇒ #f
(char-title-case? #\x01C5) =⇒ #t

(char-general-category char) procedure

Returns a symbol representing the Unicode general category of char , one of Lu,
Ll, Lt, Lm, Lo, Mn, Mc, Me, Nd, Nl, No, Ps, Pe, Pi, Pf, Pd, Pc, Po, Sc, Sm, Sk, So, Zs, Zp,
Zl, Cc, Cf, Cs, Co, or Cn.

(char-general-category #\a) =⇒ Ll
(char-general-category #\space) =⇒ Zs
(char-general-category #\x10FFFF) =⇒ Cn

1.2 Strings

(string-upcase string) procedure

(string-downcase string) procedure

(string-titlecase string) procedure

(string-foldcase string) procedure

These procedures take a string argument and return a string result. They are

defined in terms of Unicode’s locale-independent case mappings from Unicode

scalar-value sequences to scalar-value sequences. In particular, the length of the

result string can be different from the length of the input string. When the specified

result is equal in the sense of string=? to the argument, these procedures may

return the argument instead of a newly allocated string.

162 M. Sperber et al.

The string-upcase procedure converts a string to upper case; string-downcase
converts a string to lower case. The string-foldcase procedure converts the string

to its case-folded counterpart, using the full case-folding mapping, but without the

special mappings for Turkic languages. The string-titlecase procedure converts

the first cased character of each word, and downcases all other cased characters.

(string-upcase "Hi") =⇒ "HI"
(string-downcase "Hi") =⇒ "hi"
(string-foldcase "Hi") =⇒ "hi"

(string-upcase "Straße") =⇒ "STRASSE"
(string-downcase "Straße") =⇒ "straße"
(string-foldcase "Straße") =⇒ "strasse"
(string-downcase "STRASSE") =⇒ "strasse"

(string-downcase "Σ") =⇒ "σ"

; Chi Alpha Omicron Sigma:
(string-upcase "XAOΣ") =⇒ "XAOΣ"
(string-downcase "XAOΣ") =⇒ "χαoς"
(string-downcase "XAOΣΣ") =⇒ "χαoσς"
(string-downcase "XAOΣ Σ") =⇒ "χαoς σ"
(string-foldcase "XAOΣΣ") =⇒ "χαoσσ"
(string-upcase "χαoς") =⇒ "XAOΣ"
(string-upcase "χαoσ") =⇒ "XAOΣ"

(string-titlecase "kNock KNoCK")
=⇒ "Knock Knock"

(string-titlecase "who’s there?")
=⇒ "Who’s There?"

(string-titlecase "r6rs") =⇒ "R6rs"
(string-titlecase "r6rs") =⇒ "R6rs"

Note: The case mappings needed for implementing these procedures can be extrac-

ted from UnicodeData.txt, SpecialCasing.txt, WordBreakProperty.txt, and

CaseFolding.txt from the Unicode Consortium.

Since these procedures are locale-independent, they may not be appropriate for

some locales.

Note: Word breaking, as needed for the correct casing of Σ and for string-titlecase,
is specified in Unicode Standard Annex #29 (Davis, 2006).

(string-ci=? string1 string2 string3 . . .) procedure

(string-ci<? string1 string2 string3 . . .) procedure

(string-ci>? string1 string2 string3 . . .) procedure

Revised6 Scheme 163

(string-ci<=? string1 string2 string3 . . .) procedure

(string-ci>=? string1 string2 string3 . . .) procedure

These procedures are similar to string=?, etc., but operate on the case-folded

versions of the strings.

(string-ci<? "z" "Z") =⇒ #f
(string-ci=? "z" "Z") =⇒ #t
(string-ci=? "Straße" "Strasse")

=⇒ #t
(string-ci=? "Straße" "STRASSE")

=⇒ #t
(string-ci=? "XAOΣ" "χαoσ")

=⇒ #t

(string-normalize-nfd string) procedure

(string-normalize-nfkd string) procedure

(string-normalize-nfc string) procedure

(string-normalize-nfkc string) procedure

These procedures take a string argument and return a string result, which is

the input string normalized to Unicode normalization form D, KD, C, or KC,

respectively. When the specified result is equal in the sense of string=? to the

argument, these procedures may return the argument instead of a newly allocated

string.

(string-normalize-nfd "\xE9;")
=⇒ "\x65;\x301;"

(string-normalize-nfc "\xE9;")
=⇒ "\xE9;"

(string-normalize-nfd "\x65;\x301;")
=⇒ "\x65;\x301;"

(string-normalize-nfc "\x65;\x301;")
=⇒ "\xE9;"

2 Bytevectors

Many applications deal with blocks of binary data by accessing them in vari-

ous ways—extracting signed or unsigned numbers of various sizes. Therefore, the

(rnrs bytevectors (6)) library provides a single type for blocks of binary data

with multiple ways to access that data. It deals with integers and floating-point

representations in various sizes with specified endianness.

Bytevectors are objects of a disjoint type. Conceptually, a bytevector represents

a sequence of 8-bit bytes. The description of bytevectors uses the term byte for an

exact integer object in the interval {−128, . . . , 127} and the term octet for an exact

integer object in the interval {0, . . . , 255}. A byte corresponds to its two’s complement

representation as an octet.

164 M. Sperber et al.

The length of a bytevector is the number of bytes it contains. This number is

fixed. A valid index into a bytevector is an exact, non-negative integer object less

than the length of the bytevector. The first byte of a bytevector has index 0; the last

byte has an index one less than the length of the bytevector.

Generally, the access procedures come in different flavors according to the size

of the represented integer and the endianness of the representation. The procedures

also distinguish signed and unsigned representations. The signed representations all

use two’s complement.

Like string literals, literals representing bytevectors do not need to be quoted:

#vu8(12 23 123) =⇒ #vu8(12 23 123)

2.1 Endianness

Many operations described in this chapter accept an endianness argument. Endi-

anness describes the encoding of exact integer objects as several contiguous bytes

in a bytevector (Cohen, 1980). For this purpose, the binary representation of the

integer object is split into consecutive bytes. The little-endian encoding places the

least significant byte of an integer first, with the other bytes following in increasing

order of significance. The big-endian encoding places the most significant byte of an

integer first, with the other bytes following in decreasing order of significance.

This terminology also applies to IEEE-754 numbers: IEEE 754 describes how

to represent a floating-point number as an exact integer object, and endianness

describes how the bytes of such an integer are laid out in a bytevector.

Note: Little- and big-endianness are only the most common kinds of endianness.

Some architectures distinguish between the endianness at different levels of a binary

representation.

2.2 General operations

(endianness 〈endianness symbol〉) syntax

The name of 〈endianness symbol〉 must be a symbol describing an endianness.

An implementation must support at least the symbols big and little, but may

support other endianness symbols. (endianness 〈endianness symbol〉) evaluates to

the symbol named 〈endianness symbol〉. Whenever one of the procedures operating

on bytevectors accepts an endianness as an argument, that argument must be one of

these symbols. It is a syntax violation for 〈endianness symbol〉 to be anything other

than an endianness symbol supported by the implementation.

Note: Implementors should use widely accepted designations for endianness symbols

other than big and little.
Note: Only the name of 〈endianness symbol〉 is significant.

(native-endianness) procedure

Returns the endianness symbol associated implementation’s preferred endian-

Revised6 Scheme 165

ness (usually that of the underlying machine architecture). This may be any

〈endianness symbol〉, including a symbol other than big and little.

(bytevector? obj) procedure

Returns #t if obj is a bytevector, otherwise returns #f.

(make-bytevector k) procedure

(make-bytevector k fill) procedure

Returns a newly allocated bytevector of k bytes.

If the fill argument is missing, the initial contents of the returned bytevector are

unspecified.

If the fill argument is present, it must be an exact integer object in the interval

{−128, . . . 255} that specifies the initial value for the bytes of the bytevector: If fill

is positive, it is interpreted as an octet; if it is negative, it is interpreted as a byte.

(bytevector-length bytevector) procedure

Returns, as an exact integer object, the number of bytes in bytevector .

(bytevector=? bytevector1 bytevector2) procedure

Returns #t if bytevector1 and bytevector2 are equal—that is, if they have the same

length and equal bytes at all valid indices. It returns #f otherwise.

(bytevector-fill! bytevector fill) procedure

The fill argument is as in the description of the make-bytevector procedure. The

bytevector-fill! procedure stores fill in every element of bytevector and returns

unspecified values. Analogous to vector-fill!.

(bytevector-copy! source source-start procedure

target target-start k)
Source and target must be bytevectors. Source-start , target-start , and k must be

non-negative exact integer objects that satisfy

0 ! source-start ! source-start + k ! lsource
0 ! target-start ! target-start + k ! ltarget

where lsource is the length of source and ltarget is the length of target .

The bytevector-copy! procedure copies the bytes from source at indices

source-start , . . . , source-start + k − 1

to consecutive indices in target starting at target-index .

This must work even if the memory regions for the source and the target overlap,

i.e., the bytes at the target location after the copy must be equal to the bytes at the

source location before the copy.

This returns unspecified values.

(let ((b (u8-list->bytevector ’(1 2 3 4 5 6 7 8))))
(bytevector-copy! b 0 b 3 4)
(bytevector->u8-list b)) =⇒ (1 2 3 1 2 3 4 8)

166 M. Sperber et al.

(bytevector-copy bytevector) procedure

Returns a newly allocated copy of bytevector .

2.3 Operations on bytes and octets

(bytevector-u8-ref bytevector k) procedure

(bytevector-s8-ref bytevector k) procedure

K must be a valid index of bytevector .

The bytevector-u8-ref procedure returns the byte at index k of bytevector , as

an octet.

The bytevector-s8-ref procedure returns the byte at index k of bytevector , as

a (signed) byte.

(let ((b1 (make-bytevector 16 -127))
(b2 (make-bytevector 16 255)))

(list
(bytevector-s8-ref b1 0)
(bytevector-u8-ref b1 0)
(bytevector-s8-ref b2 0)
(bytevector-u8-ref b2 0))) =⇒ (-127 129 -1 255)

(bytevector-u8-set! bytevector k octet) procedure

(bytevector-s8-set! bytevector k byte) procedure

K must be a valid index of bytevector .

The bytevector-u8-set! procedure stores octet in element k of bytevector .

The bytevector-s8-set! procedure stores the two’s-complement representation

of byte in element k of bytevector .

Both procedures return unspecified values.

(let ((b (make-bytevector 16 -127)))

(bytevector-s8-set! b 0 -126)
(bytevector-u8-set! b 1 246)

(list
(bytevector-s8-ref b 0)
(bytevector-u8-ref b 0)
(bytevector-s8-ref b 1)
(bytevector-u8-ref b 1))) =⇒ (-126 130 -10 246)

(bytevector->u8-list bytevector) procedure

(u8-list->bytevector list) procedure

List must be a list of octets.

Revised6 Scheme 167

The bytevector->u8-list procedure returns a newly allocated list of the octets

of bytevector in the same order.

The u8-list->bytevector procedure returns a newly allocated bytevector whose

elements are the elements of list list , in the same order. It is analogous to

list->vector.

2.4 Operations on integers of arbitrary size

(bytevector-uint-ref bytevector k endianness size) procedure

(bytevector-sint-ref bytevector k endianness size) procedure

(bytevector-uint-set! bytevector k n endianness size) procedure

(bytevector-sint-set! bytevector k n endianness size) procedure

Size must be a positive exact integer object. K , . . . , k + size − 1 must be valid indices

of bytevector .

The bytevector-uint-ref procedure retrieves the exact integer object corres-

ponding to the unsigned representation of size size and specified by endianness at

indices k , . . . , k + size − 1.

The bytevector-sint-ref procedure retrieves the exact integer object cor-

responding to the two’s-complement representation of size size and specified by

endianness at indices k , . . . , k + size − 1.

For bytevector-uint-set!, n must be an exact integer object in the interval

{0, . . . , 256size − 1}.
The bytevector-uint-set! procedure stores the unsigned representation of size

size and specified by endianness into bytevector at indices k , . . . , k + size − 1.

For bytevector-sint-set!, n must be an exact integer object in the interval

{−256size/2, . . . , 256size/2 − 1}. bytevector-sint-set! stores the two’s-complement

representation of size size and specified by endianness into bytevector at indices

k , . . . , k + size − 1.

The . . . -set! procedures return unspecified values.

(define b (make-bytevector 16 -127))

(bytevector-uint-set! b 0 (- (expt 2 128) 3)
(endianness little) 16)

(bytevector-uint-ref b 0 (endianness little) 16)
=⇒ #xfffffffffffffffffffffffffffffffd

(bytevector-sint-ref b 0 (endianness little) 16)
=⇒ -3

(bytevector->u8-list b)
=⇒ (253 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255)

168 M. Sperber et al.

(bytevector-uint-set! b 0 (- (expt 2 128) 3)
(endianness big) 16)

(bytevector-uint-ref b 0 (endianness big) 16)
=⇒ #xfffffffffffffffffffffffffffffffd

(bytevector-sint-ref b 0 (endianness big) 16)
=⇒ -3

(bytevector->u8-list b)
=⇒ (255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 253))

(bytevector->uint-list bytevector endianness size) procedure

(bytevector->sint-list bytevector endianness size) procedure

(uint-list->bytevector list endianness size) procedure

(sint-list->bytevector list endianness size) procedure

Size must be a positive exact integer object. For uint-list->bytevector, list

must be a list of exact integer objects in the interval {0, . . . , 256size − 1}. For

sint-list->bytevector, list must be a list of exact integer objects in the in-

terval {−256size/2, . . . , 256size/2 − 1}. The length of bytevector must be divisible by

size.

These procedures convert between lists of integer objects and their consecutive

representations according to size and endianness in the bytevector objects in the

same way as bytevector->u8-list and u8-list->bytevector do for one-byte

representations.

(let ((b (u8-list->bytevector ’(1 2 3 255 1 2 1 2))))
(bytevector->sint-list b (endianness little) 2))

=⇒ (513 -253 513 513)

(let ((b (u8-list->bytevector ’(1 2 3 255 1 2 1 2))))
(bytevector->uint-list b (endianness little) 2))

=⇒ (513 65283 513 513)

2.5 Operations on 16-bit integers

(bytevector-u16-ref bytevector k endianness) procedure

(bytevector-s16-ref bytevector k endianness) procedure

(bytevector-u16-native-ref bytevector k) procedure

(bytevector-s16-native-ref bytevector k) procedure

(bytevector-u16-set! bytevector k n endianness) procedure

(bytevector-s16-set! bytevector k n endianness) procedure

Revised6 Scheme 169

(bytevector-u16-native-set! bytevector k n) procedure

(bytevector-s16-native-set! bytevector k n) procedure

K must be a valid index of bytevector; so must k + 1. For bytevector-u16-set!
and bytevector-u16-native-set!, n must be an exact integer object in the interval

{0, . . . , 216 − 1}. For bytevector-s16-set! and bytevector-s16-native-set!, n

must be an exact integer object in the interval {−215, . . . , 215 − 1}.
These retrieve and set two-byte representations of numbers at indices k and k +1,

according to the endianness specified by endianness . The procedures with u16 in

their names deal with the unsigned representation; those with s16 in their names

deal with the two’s-complement representation.

The procedures with native in their names employ the native endianness, and

work only at aligned indices: k must be a multiple of 2.

The . . . -set! procedures return unspecified values.

(define b
(u8-list->bytevector
’(255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 253)))

(bytevector-u16-ref b 14 (endianness little))
=⇒ 65023

(bytevector-s16-ref b 14 (endianness little))
=⇒ -513

(bytevector-u16-ref b 14 (endianness big))
=⇒ 65533

(bytevector-s16-ref b 14 (endianness big))
=⇒ -3

(bytevector-u16-set! b 0 12345 (endianness little))
(bytevector-u16-ref b 0 (endianness little))

=⇒ 12345

(bytevector-u16-native-set! b 0 12345)
(bytevector-u16-native-ref b 0) =⇒ 12345

(bytevector-u16-ref b 0 (endianness little))
=⇒ unspecified

2.6 Operations on 32-bit integers

(bytevector-u32-ref bytevector k endianness) procedure

(bytevector-s32-ref bytevector k endianness) procedure

(bytevector-u32-native-ref bytevector k) procedure

(bytevector-s32-native-ref bytevector k) procedure

170 M. Sperber et al.

(bytevector-u32-set! bytevector k n endianness) procedure

(bytevector-s32-set! bytevector k n endianness) procedure

(bytevector-u32-native-set! bytevector k n) procedure

(bytevector-s32-native-set! bytevector k n) procedure

K , . . . , k + 3 must be valid indices of bytevector . For bytevector-u32-set! and

bytevector-u32-native-set!, n must be an exact integer object in the interval

{0, . . . , 232 − 1}. For bytevector-s32-set! and bytevector-s32-native-set!, n

must be an exact integer object in the interval {−231, . . . , 232 − 1}.
These retrieve and set four-byte representations of numbers at indices k , . . . , k +3,

according to the endianness specified by endianness . The procedures with u32 in

their names deal with the unsigned representation; those with s32 with the two’s-

complement representation.

The procedures with native in their names employ the native endianness, and

work only at aligned indices: k must be a multiple of 4.

The . . . -set! procedures return unspecified values.

(define b
(u8-list->bytevector
’(255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 253)))

(bytevector-u32-ref b 12 (endianness little))
=⇒ 4261412863

(bytevector-s32-ref b 12 (endianness little))
=⇒ -33554433

(bytevector-u32-ref b 12 (endianness big))
=⇒ 4294967293

(bytevector-s32-ref b 12 (endianness big))
=⇒ -3

2.7 Operations on 64-bit integers

(bytevector-u64-ref bytevector k endianness) procedure

(bytevector-s64-ref bytevector k endianness) procedure

(bytevector-u64-native-ref bytevector k) procedure

(bytevector-s64-native-ref bytevector k) procedure

(bytevector-u64-set! bytevector k n endianness) procedure

(bytevector-s64-set! bytevector k n endianness) procedure

(bytevector-u64-native-set! bytevector k n) procedure

(bytevector-s64-native-set! bytevector k n) procedure

K , . . . , k + 7 must be valid indices of bytevector . For bytevector-u64-set! and

bytevector-u64-native-set!, n must be an exact integer object in the interval

{0, . . . , 264 − 1}. For bytevector-s64-set! and bytevector-s64-native-set!, n

must be an exact integer object in the interval {−263, . . . , 264 − 1}.

Revised6 Scheme 171

These retrieve and set eight-byte representations of numbers at indices k , . . . , k +7,

according to the endianness specified by endianness . The procedures with u64 in

their names deal with the unsigned representation; those with s64 with the two’s-

complement representation.

The procedures with native in their names employ the native endianness, and

work only at aligned indices: k must be a multiple of 8.

The . . . -set! procedures return unspecified values.

(define b
(u8-list->bytevector
’(255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 253)))

(bytevector-u64-ref b 8 (endianness little))
=⇒ 18302628885633695743

(bytevector-s64-ref b 8 (endianness little))
=⇒ -144115188075855873

(bytevector-u64-ref b 8 (endianness big))
=⇒ 18446744073709551613

(bytevector-s64-ref b 8 (endianness big))
=⇒ -3

2.8 Operations on IEEE-754 representations

(bytevector-ieee-single-native-ref bytevector k) procedure

(bytevector-ieee-single-ref bytevector k endianness) procedure

K , . . . , k + 3 must be valid indices of bytevector . For bytevector-ieee-single-
native-ref, k must be a multiple of 4.

These procedures return the inexact real number object that best represents the

IEEE-754 single-precision number represented by the four bytes beginning at index

k .

(bytevector-ieee-double-native-ref bytevector k) procedure

(bytevector-ieee-double-ref bytevector k endianness) procedure

K , . . . , k + 7 must be valid indices of bytevector . For bytevector-ieee-double-
native-ref, k must be a multiple of 8.

These procedures return the inexact real number object that best represents the

IEEE-754 double-precision number represented by the eight bytes beginning at

index k .

(bytevector-ieee-single-native-set! bytevector k x) procedure

(bytevector-ieee-single-set! bytevector procedure

k x endianness)

172 M. Sperber et al.

K , . . . , k + 3 must be valid indices of bytevector . For bytevector-ieee-single-
native-set!, k must be a multiple of 4.

These procedures store an IEEE-754 single-precision representation of x into

elements k through k + 3 of bytevector , and return unspecified values.

(bytevector-ieee-double-native-set! bytevector k x) procedure

(bytevector-ieee-double-set! bytevector procedure

k x endianness)
K , . . . , k + 7 must be valid indices of bytevector . For bytevector-ieee-double-

native-set!, k must be a multiple of 8.

These procedures store an IEEE-754 double-precision representation of x into

elements k through k + 7 of bytevector , and return unspecified values.

2.9 Operations on strings

This section describes procedures that convert between strings and bytevectors

containing Unicode encodings of those strings. When decoding bytevectors, encoding

errors are handled as with the replace semantics of textual I/O (see section 8.2.4):

If an invalid or incomplete character encoding is encountered, then the replacement

character U+FFFD is appended to the string being generated, an appropriate

number of bytes are ignored, and decoding continues with the following bytes.

(string->utf8 string) procedure

Returns a newly allocated (unless empty) bytevector that contains the UTF-8

encoding of the given string.

(string->utf16 string) procedure

(string->utf16 string endianness) procedure

If endianness is specified, it must be the symbol big or the symbol little. The

string->utf16 procedure returns a newly allocated (unless empty) bytevector that

contains the UTF-16BE or UTF-16LE encoding of the given string (with no byte-

order mark). If endianness is not specified or is big, then UTF-16BE is used. If

endianness is little, then UTF-16LE is used.

(string->utf32 string) procedure

(string->utf32 string endianness) procedure

If endianness is specified, it must be the symbol big or the symbol little. The

string->utf32 procedure returns a newly allocated (unless empty) bytevector that

contains the UTF-32BE or UTF-32LE encoding of the given string (with no byte

mark). If endianness is not specified or is big, then UTF-32BE is used. If endianness

is little, then UTF-32LE is used.

(utf8->string bytevector) procedure

Returns a newly allocated (unless empty) string whose character sequence is

encoded by the given bytevector.

Revised6 Scheme 173

(utf16->string bytevector endianness) procedure

(utf16->string bytevector procedure

endianness endianness-mandatory)
Endianness must be the symbol big or the symbol little. The utf16->string
procedure returns a newly allocated (unless empty) string whose character sequence is

encoded by the given bytevector. Bytevector is decoded according to UTF-16, UTF-

16BE, UTF-16LE, or a fourth encoding scheme that differs from all three of those

as follows: If endianness-mandatory? is absent or #f, utf16->string determines the

endianness according to a UTF-16 BOM at the beginning of bytevector if a BOM

is present; in this case, the BOM is not decoded as a character. Also in this case,

if no UTF-16 BOM is present, endianness specifies the endianness of the encoding.

If endianness-mandatory? is a true value, endianness specifies the endianness of the

encoding, and any UTF-16 BOM in the encoding is decoded as a regular character.

Note: A UTF-16 BOM is either a sequence of bytes #xFE, #xFF specifying big
and UTF-16BE, or #xFF, #xFE specifying little and UTF-16LE.

(utf32->string bytevector endianness) procedure

(utf32->string bytevector procedure

endianness endianness-mandatory)
Endianness must be the symbol big or the symbol little. The utf32->string
procedure returns a newly allocated (unless empty) string whose character sequence is

encoded by the given bytevector. Bytevector is decoded according to UTF-32, UTF-

32BE, UTF-32LE, or a fourth encoding scheme that differs from all three of those

as follows: If endianness-mandatory? is absent or #f, utf32->string determines the

endianness according to a UTF-32 BOM at the beginning of bytevector if a BOM

is present; in this case, the BOM is not decoded as a character. Also in this case,

if no UTF-32 BOM is present, endianness specifies the endianness of the encoding.

If endianness-mandatory? is a true value, endianness specifies the endianness of the

encoding, and any UTF-32 BOM in the encoding is decoded as a regular character.

Note: A UTF-32 BOM is either a sequence of bytes #x00, #x00, #xFE, #xFF

specifying big and UTF-32BE, or #xFF, #xFE, #x00, #x00, specifying little and

UTF-32LE.

3 List utilities

This chapter describes the (rnrs lists (6)) library, which contains various useful

procedures that operate on lists.

(find proc list) procedure

Proc should accept one argument and return a single value. Proc should not mutate

list . The find procedure applies proc to the elements of list in order. If proc returns

a true value for an element, find immediately returns that element. If proc returns

#f for all elements of the list, find returns #f. Proc is always called in the same

dynamic environment as find itself.

174 M. Sperber et al.

(find even? ’(3 1 4 1 5 9)) =⇒ 4
(find even? ’(3 1 5 1 5 9)) =⇒ #f

Implementation responsibilities: The implementation must check that list is a

chain of pairs up to the found element, or that it is indeed a list if no element is

found. It should not check that it is a chain of pairs beyond the found element.

The implementation must check the restrictions on proc to the extent performed

by applying it as described. An implementation may check whether proc is an

appropriate argument before applying it.

(for-all proc list1 list2 . . . listn) procedure

(exists proc list1 list2 . . . listn) procedure

The lists should all have the same length, and proc should accept n arguments

and return a single value. Proc should not mutate the list arguments.

For natural numbers i = 0, 1, . . ., the for-all procedure successively applies proc

to arguments x1
i . . . x

n
i , where xji is the ith element of listj , until #f is returned. If

proc returns true values for all but the last element of list1, for-all performs a tail

call of proc on the kth elements, where k is the length of list1. If proc returns #f on

any set of elements, for-all returns #f after the first such application of proc. If

the lists are all empty, for-all returns #t.
For natural numbers i = 0, 1, . . ., the exists procedure applies proc successively to

arguments x1
i . . . x

n
i , where xji is the ith element of listj , until a true value is returned.

If proc returns #f for all but the last elements of the lists, exists performs a tail

call of proc on the kth elements, where k is the length of list1. If proc returns a

true value on any set of elements, exists returns that value after the first such

application of proc. If the lists are all empty, exists returns #f.
Proc is always called in the same dynamic environment as for-all or, respectively,

exists itself.

(for-all even? ’(3 1 4 1 5 9)) =⇒ #f
(for-all even? ’(2 4 14)) =⇒ #t
(for-all even? ’(2 4 14 . 9)) =⇒ &assertion exception

(for-all (lambda (n) (and (even? n) n))
’(2 4 14)) =⇒ 14

(for-all < ’(1 2 3) ’(2 3 4)) =⇒ #t
(for-all < ’(1 2 4) ’(2 3 4)) =⇒ #f

(exists even? ’(3 1 4 1 5 9)) =⇒ #t
(exists even? ’(3 1 1 5 9)) =⇒ #f
(exists even? ’(3 1 1 5 9 . 2)) =⇒ &assertion exception

(exists (lambda (n) (and (even? n) n)) ’(2 1 4 14))
=⇒ 2

(exists < ’(1 2 4) ’(2 3 4)) =⇒ #t
(exists > ’(1 2 3) ’(2 3 4)) =⇒ #f

Revised6 Scheme 175

Implementation responsibilities: The implementation must check that the lists are

chains of pairs to the extent necessary to determine the return value. If this requires

traversing the lists entirely, the implementation should check that the lists all have

the same length. If not, it should not check that the lists are chains of pairs beyond

the traversal. The implementation must check the restrictions on proc to the extent

performed by applying it as described. An implementation may check whether proc

is an appropriate argument before applying it.

(filter proc list) procedure

(partition proc list) procedure

Proc should accept one argument and return a single value. Proc should not mutate

list .

The filter procedure applies proc to each element of list and returns a list of

the elements of list for which proc returned a true value. The partition procedure

also applies proc to each element of list , but returns two values, the first one a list of

the elements of list for which proc returned a true value, and the second a list of the

elements of list for which proc returned #f. In both cases, the elements of the result

list(s) are in the same order as they appear in the input list. Proc is always called

in the same dynamic environment as filter or, respectively, partition itself. If

multiple returns occur from filter or partitions, the return values returned by

earlier returns are not mutated.

(filter even? ’(3 1 4 1 5 9 2 6)) =⇒ (4 2 6)

(partition even? ’(3 1 4 1 5 9 2 6))
=⇒ (4 2 6) (3 1 1 5 9) ; two values

Implementation responsibilities: The implementation must check the restrictions on

proc to the extent performed by applying it as described. An implementation may

check whether proc is an appropriate argument before applying it.

(fold-left combine nil list1 list2 . . . listn) procedure

The lists should all have the same length. Combine must be a procedure. It

should accept one more argument than there are lists and return a single value.

It should not mutate the list arguments. The fold-left procedure iterates the

combine procedure over an accumulator value and the elements of the lists from

left to right, starting with an accumulator value of nil . More specifically, fold-left
returns nil if the lists are empty. If they are not empty, combine is first applied to

nil and the respective first elements of the lists in order. The result becomes the

new accumulator value, and combine is applied to the new accumulator value and

the respective next elements of the list . This step is repeated until the end of the list

is reached; then the accumulator value is returned. Combine is always called in the

same dynamic environment as fold-left itself.

176 M. Sperber et al.

(fold-left + 0 ’(1 2 3 4 5)) =⇒ 15

(fold-left (lambda (a e) (cons e a)) ’()
’(1 2 3 4 5)) =⇒ (5 4 3 2 1)

(fold-left (lambda (count x)
(if (odd? x) (+ count 1) count))

0
’(3 1 4 1 5 9 2 6 5 3))=⇒ 7

(fold-left (lambda (max-len s)
(max max-len (string-length s)))

0
’("longest" "long" "longer"))

=⇒ 7

(fold-left cons ’(q) ’(a b c)) =⇒ ((((q) . a) . b) . c)

(fold-left + 0 ’(1 2 3) ’(4 5 6)) =⇒ 21

Implementation responsibilities: The implementation should check that the lists all

have the same length. The implementation must check the restrictions on combine

to the extent performed by applying it as described. An implementation may check

whether combine is an appropriate argument before applying it.

(fold-right combine nil list1 list2 . . . listn) procedure

The lists should all have the same length. Combine must be a procedure. It

should accept one more argument than there are lists and return a single value.

Combine should not mutate the list arguments. The fold-right procedure iterates

the combine procedure over the elements of the lists from right to left and an

accumulator value, starting with an accumulator value of nil . More specifically,

fold-right returns nil if the lists are empty. If they are not empty, combine

is first applied to the respective last elements of the lists in order and nil . The

result becomes the new accumulator value, and combine is applied to the respective

previous elements of the lists and the new accumulator value. This step is repeated

until the beginning of the list is reached; then the accumulator value is returned.

Proc is always called in the same dynamic environment as fold-right itself.

(fold-right + 0 ’(1 2 3 4 5)) =⇒ 15

(fold-right cons ’() ’(1 2 3 4 5))=⇒ (1 2 3 4 5)

(fold-right (lambda (x l)
(if (odd? x) (cons x l) l))

’()

Revised6 Scheme 177

’(3 1 4 1 5 9 2 6 5)) =⇒ (3 1 1 5 9 5)

(fold-right cons ’(q) ’(a b c)) =⇒ (a b c q)

(fold-right + 0 ’(1 2 3) ’(4 5 6))=⇒ 21

Implementation responsibilities: The implementation should check that the lists all

have the same length. The implementation must check the restrictions on combine

to the extent performed by applying it as described. An implementation may check

whether combine is an appropriate argument before applying it.

(remp proc list) procedure

(remove obj list) procedure

(remv obj list) procedure

(remq obj list) procedure

Proc should accept one argument and return a single value. Proc should not mutate

list .

Each of these procedures returns a list of the elements of list that do not satisfy

a given condition. The remp procedure applies proc to each element of list and

returns a list of the elements of list for which proc returned #f. Proc is always

called in the same dynamic environment as remp itself. The remove, remv, and remq
procedures return a list of the elements that are not obj . The remq procedure uses

eq? to compare obj with the elements of list , while remv uses eqv? and remove uses

equal?. The elements of the result list are in the same order as they appear in the

input list. If multiple returns occur from remp, the return values returned by earlier

returns are not mutated.

(remp even? ’(3 1 4 1 5 9 2 6 5)) =⇒ (3 1 1 5 9 5)

(remove 1 ’(3 1 4 1 5 9 2 6 5)) =⇒ (3 4 5 9 2 6 5)

(remv 1 ’(3 1 4 1 5 9 2 6 5)) =⇒ (3 4 5 9 2 6 5)

(remq ’foo ’(bar foo baz)) =⇒ (bar baz)

Implementation responsibilities: The implementation must check the restrictions on

proc to the extent performed by applying it as described. An implementation may

check whether proc is an appropriate argument before applying it.

(memp proc list) procedure

(member obj list) procedure

(memv obj list) procedure

(memq obj list) procedure

Proc should accept one argument and return a single value. Proc should not mutate

list .

178 M. Sperber et al.

These procedures return the first sublist of list whose car satisfies a given condition,

where the sublists of lists are the lists returned by (list-tail list k) for k less

than the length of list . The memp procedure applies proc to the cars of the sublists of

list until it finds one for which proc returns a true value. Proc is always called in the

same dynamic environment as memp itself. The member, memv, and memq procedures

look for the first occurrence of obj . If list does not contain an element satisfying

the condition, then #f (not the empty list) is returned. The member procedure uses

equal? to compare obj with the elements of list , while memv uses eqv? and memq
uses eq?.

(memp even? ’(3 1 4 1 5 9 2 6 5)) =⇒ (4 1 5 9 2 6 5)

(memq ’a ’(a b c)) =⇒ (a b c)
(memq ’b ’(a b c)) =⇒ (b c)
(memq ’a ’(b c d)) =⇒ #f
(memq (list ’a) ’(b (a) c)) =⇒ #f
(member (list ’a)

’(b (a) c)) =⇒ ((a) c)
(memq 101 ’(100 101 102)) =⇒ unspecified

(memv 101 ’(100 101 102)) =⇒ (101 102)

Implementation responsibilities: The implementation must check that list is a

chain of pairs up to the found element, or that it is indeed a list if no element is

found. It should not check that it is a chain of pairs beyond the found element.

The implementation must check the restrictions on proc to the extent performed

by applying it as described. An implementation may check whether proc is an

appropriate argument before applying it.

(assp proc alist) procedure

(assoc obj alist) procedure

(assv obj alist) procedure

(assq obj alist) procedure

Alist (for “association list”) should be a list of pairs. Proc should accept one

argument and return a single value. Proc should not mutate alist .

These procedures find the first pair in alist whose car field satisfies a given

condition, and returns that pair without traversing alist further. If no pair in alist

satisfies the condition, then #f is returned. The assp procedure successively applies

proc to the car fields of alist and looks for a pair for which it returns a true value.

Proc is always called in the same dynamic environment as assp itself. The assoc,
assv, and assq procedures look for a pair that has obj as its car. The assoc
procedure uses equal? to compare obj with the car fields of the pairs in alist , while

assv uses eqv? and assq uses eq?.
Implementation responsibilities: The implementation must check that alist is a

chain of pairs containing pairs up to the found pair, or that it is indeed a list of

pairs if no element is found. It should not check that it is a chain of pairs beyond the

found element. The implementation must check the restrictions on proc to the extent

Revised6 Scheme 179

performed by applying it as described. An implementation may check whether proc

is an appropriate argument before applying it.

(define d ’((3 a) (1 b) (4 c)))

(assp even? d) =⇒ (4 c)
(assp odd? d) =⇒ (3 a)

(define e ’((a 1) (b 2) (c 3)))
(assq ’a e) =⇒ (a 1)
(assq ’b e) =⇒ (b 2)
(assq ’d e) =⇒ #f
(assq (list ’a) ’(((a)) ((b)) ((c))))

=⇒ #f
(assoc (list ’a) ’(((a)) ((b)) ((c))))

=⇒ ((a))
(assq 5 ’((2 3) (5 7) (11 13)))

=⇒ unspecified

(assv 5 ’((2 3) (5 7) (11 13)))
=⇒ (5 7)

(cons* obj1 . . . objn obj) procedure

(cons* obj) procedure

If called with at least two arguments, cons* returns a freshly allocated chain of

pairs whose cars are obj1, . . . , objn, and whose last cdr is obj . If called with only one

argument, cons* returns that argument.

(cons* 1 2 ’(3 4 5)) =⇒ (1 2 3 4 5)
(cons* 1 2 3) =⇒ (1 2 . 3)
(cons* 1) =⇒ 1

4 Sorting

This chapter describes the (rnrs sorting (6)) library for sorting lists and vectors.

(list-sort proc list) procedure

(vector-sort proc vector) procedure

Proc should accept any two elements of list or vector , and should not have any side

effects. Proc should return a true value when its first argument is strictly less than

its second, and #f otherwise.

The list-sort and vector-sort procedures perform a stable sort of list or

vector in ascending order according to proc, without changing list or vector in any

way. The list-sort procedure returns a list, and vector-sort returns a vector.

The results may be eq? to the argument when the argument is already sorted, and

the result of list-sort may share structure with a tail of the original list. The

180 M. Sperber et al.

sorting algorithm performs O(n lg n) calls to proc where n is the length of list or

vector , and all arguments passed to proc are elements of the list or vector being

sorted, but the pairing of arguments and the sequencing of calls to proc are not

specified. If multiple returns occur from list-sort or vector-sort, the return

values returned by earlier returns are not mutated.

(list-sort < ’(3 5 2 1)) =⇒ (1 2 3 5)
(vector-sort < ’#(3 5 2 1)) =⇒ #(1 2 3 5)

Implementation responsibilities: The implementation must check the restrictions on

proc to the extent performed by applying it as described. An implementation may

check whether proc is an appropriate argument before applying it.

(vector-sort! proc vector) procedure

Proc should accept any two elements of the vector, and should not have any side

effects. Proc should return a true value when its first argument is strictly less than its

second, and #f otherwise. The vector-sort! procedure destructively sorts vector

in ascending order according to proc. The sorting algorithm performs O(n2) calls to

proc where n is the length of vector , and all arguments passed to proc are elements

of the vector being sorted, but the pairing of arguments and the sequencing of calls

to proc are not specified. The sorting algorithm may be unstable. The procedure

returns unspecified values.

(define v (vector 3 5 2 1))
(vector-sort! < v) =⇒ unspecified

v =⇒ #(1 2 3 5)

Implementation responsibilities: The implementation must check the restrictions on

proc to the extent performed by applying it as described. An implementation may

check whether proc is an appropriate argument before applying it.

5 Control structures

This chapter describes the (rnrs control (6)) library, which provides useful

control structures.

(when 〈test〉 〈expression1〉 〈expression2〉 . . .) syntax

(unless 〈test〉 〈expression1〉 〈expression2〉 . . .) syntax

Syntax: 〈Test〉 must be an expression.

Semantics: A when expression is evaluated by evaluating the 〈test〉 expression. If

〈test〉 evaluates to a true value, the remaining 〈expression〉s are evaluated in order,

and the results of the last 〈expression〉 are returned as the results of the entire when
expression. Otherwise, the when expression returns unspecified values. An unless
expression is evaluated by evaluating the 〈test〉 expression. If 〈test〉 evaluates to

#f, the remaining 〈expression〉s are evaluated in order, and the results of the last

Revised6 Scheme 181

〈expression〉 are returned as the results of the entire unless expression. Otherwise,

the unless expression returns unspecified values.

The final 〈expression〉 is in tail context if the when or unless form is itself in tail

context.

(when (> 3 2) ’greater) =⇒ greater
(when (< 3 2) ’greater) =⇒ unspecified

(unless (> 3 2) ’less) =⇒ unspecified

(unless (< 3 2) ’less) =⇒ less

The when and unless expressions are derived forms. They could be defined by

the following macros:

(define-syntax when
(syntax-rules ()
((when test result1 result2 ...)
(if test

(begin result1 result2 ...)))))

(define-syntax unless
(syntax-rules ()
((unless test result1 result2 ...)
(if (not test)

(begin result1 result2 ...)))))

(do ((〈variable1〉 〈init1〉 〈step1〉) syntax

. . .)
(〈test〉 〈expression〉 . . .)

〈command〉 . . .)
Syntax: The 〈init〉s, 〈step〉s, 〈test〉s, and 〈command〉s must be expressions. The

〈variable〉s must be pairwise distinct variables.

Semantics: The do expression is an iteration construct. It specifies a set of variables

to be bound, how they are to be initialized at the start, and how they are to be

updated on each iteration.

A do expression is evaluated as follows: The 〈init〉 expressions are evaluated (in

some unspecified order), the 〈variable〉s are bound to fresh locations, the results

of the 〈init〉 expressions are stored in the bindings of the 〈variable〉s, and then the

iteration phase begins.

Each iteration begins by evaluating 〈test〉; if the result is #f, then the 〈command〉s
are evaluated in order for effect, the 〈step〉 expressions are evaluated in some

unspecified order, the 〈variable〉s are bound to fresh locations holding the results,

and the next iteration begins.

If 〈test〉 evaluates to a true value, the 〈expression〉s are evaluated from left to right

and the values of the last 〈expression〉 are returned. If no 〈expression〉s are present,

then the do expression returns unspecified values.

182 M. Sperber et al.

The region of the binding of a 〈variable〉 consists of the entire do expression

except for the 〈init〉s.
A 〈step〉 may be omitted, in which case the effect is the same as if (〈variable〉

〈init〉 〈variable〉) had been written instead of (〈variable〉 〈init〉).
If a do expression appears in a tail context, the 〈expression〉s are a 〈tail sequence〉

in the sense of report section 11.20, i.e., the last 〈expression〉 is also in a tail context.

(do ((vec (make-vector 5))
(i 0 (+ i 1)))
((= i 5) vec)

(vector-set! vec i i)) =⇒ #(0 1 2 3 4)

(let ((x ’(1 3 5 7 9)))
(do ((x x (cdr x))

(sum 0 (+ sum (car x))))
((null? x) sum))) =⇒ 25

The following definition of do uses a trick to expand the variable clauses.

(define-syntax do
(syntax-rules ()
((do ((var init step ...) ...)

(test expr ...)
command ...)

(letrec
((loop
(lambda (var ...)
(if test

(begin
#f ; avoid empty begin
expr ...)

(begin
command
...
(loop (do "step" var step ...)

...))))))
(loop init ...)))

((do "step" x)
x)
((do "step" x y)
y)))

(case-lambda 〈case-lambda clause〉 . . .) syntax

Syntax: Each 〈case-lambda clause〉 must be of the form

(〈formals〉 〈body〉)

Revised6 Scheme 183

〈Formals〉 must be as in a lambda form (report section 11.4.2), and 〈body〉 is as

described in report section 11.3.

Semantics: A case-lambda expression evaluates to a procedure. This procedure,

when applied, tries to match its arguments to the 〈case-lambda clause〉s in order.

The arguments match a clause if one of the following conditions is fulfilled:

• 〈Formals〉 has the form (〈variable〉 . . .) and the number of arguments is the

same as the number of formal parameters in 〈formals〉.
• 〈Formals〉 has the form

(〈variable1〉 . . . 〈variablen〉 . 〈variablen+1)〉
and the number of arguments is at least n.

• 〈Formals〉 has the form 〈variable〉.

For the first clause matched by the arguments, the variables of the 〈formals〉 are

bound to fresh locations containing the argument values in the same arrangement

as with lambda.
The last expression of a 〈body〉 in a case-lambda expression is in tail context.

If the arguments match none of the clauses, an exception with condition type

&assertion is raised.

(define foo
(case-lambda
(() ’zero)
((x) (list ’one x))
((x y) (list ’two x y))
((a b c d . e) (list ’four a b c d e))
(rest (list ’rest rest))))

(foo) =⇒ zero
(foo 1) =⇒ (one 1)
(foo 1 2) =⇒ (two 1 2)
(foo 1 2 3) =⇒ (rest (1 2 3))
(foo 1 2 3 4) =⇒ (four 1 2 3 4 ())

The case-lambda keyword can be defined in terms of lambda by the following

macros:

(define-syntax case-lambda
(syntax-rules ()
(((fmls b1 b2 ...))
(lambda fmls b1 b2 ...))
(((fmls b1 b2 ...) ...)
(lambda args

(let ((n (length args)))
(case-lambda-help args n
(fmls b1 b2 ...) ...))))))

184 M. Sperber et al.

(define-syntax case-lambda-help
(syntax-rules ()
((args n)
(assertion-violation #f

"unexpected number of arguments"))
((args n ((x ...) b1 b2 ...) more ...)
(if (= n (length ’(x ...)))

(apply (lambda (x ...) b1 b2 ...) args)
(case-lambda-help args n more ...)))

((args n ((x1 x2 r) b1 b2 ...) more ...)
(if (>= n (length ’(x1 x2 ...)))

(apply (lambda (x1 x2 r) b1 b2 ...)
args)

(case-lambda-help args n more ...)))
((args n (r b1 b2 ...) more ...)
(apply (lambda r b1 b2 ...) args))))

6 Records

This section describes abstractions for creating new data types representing records.

A record is a compound data structure with a fixed number of components, called

fields . Each record has an associated type specified by a record-type descriptor, which

is an object that specifies the fields of the record and various other properties that

all records of that type share. Record objects are created by a record constructor,

a procedure that creates a fresh record object and initializes its fields to values.

Records of different types can be distinguished from each other and from other

types of objects by record predicates. A record predicate returns #t when passed

a record of the type specified by the record-type descriptor and #f otherwise. An

accessor extracts from a record the component associated with a field, and a mutator

changes the component to a different value.

Record types can be extended via single inheritance, allowing record types to

model hierarchies that occur in applications like algebraic data types as well as

single-inheritance class systems. If a record type t extends another record type p,

each record of type t is also a record of type p, and the predicate, accessors, and

mutators applicable to a record of type p are also applicable to a record of type t .

The extension relationship is transitive in the sense that a type extends its parent’s

parent, if any, and so on. A record type that does not extend another record type is

called a base record type.

A record type can be sealed to prevent it from being extended. Moreover, a record

type can be nongenerative, i.e., it is globally identified by a “uid”, and new, compatible

definitions of a nongenerative record type with the same uid as a previous always

yield the same record type.

The record mechanism spans three libraries:

Revised6 Scheme 185

• the (rnrs records syntactic (6)) library, a syntactic layer for defining a

record type and associated constructor, predicate, accessor, and mutators,

• the (rnrs records procedural (6)) library, a procedural layer for creating

and manipulating record types and creating constructors, predicates, accessors,

and mutators;

• the (rnrs records inspection (6)) library, a set of inspection procedures.

The inspection procedures allow programs to obtain from a record instance a

descriptor for the type and from there obtain access to the fields of the record

instance. This facility allows the creation of portable printers and inspectors. A

program may prevent access to a record’s type—and thereby protect the information

stored in the record from the inspection mechanism—by declaring the type opaque.

Thus, opacity as presented here can be used to enforce abstraction barriers.

Any of the standard types mentioned in this report may or may not be imple-

mented as an opaque record type. Thus, it may be possible to use inspection on

objects of the standard types.

The procedural layer is particularly useful for writing interpreters that construct

host-compatible record types. It may also serve as a target for expansion of the

syntactic layers. The record operations provided through the procedural layer may,

however, be less efficient than the operations provided through the syntactic layer,

which is designed to allow expand-time determination of record-instance sizes and

field offsets. Therefore, alternative implementations of syntactic record-type defini-

tion should, when possible, expand into the syntactic layer rather than the procedural

layer.

The syntactic layer is used more commonly and therefore described first. This

chapter uses the rtd and constructor-descriptor parameter names for arguments

that must be record-type descriptors and constructor descriptors, respectively (see

section 6.3).

6.1 Mutability and equivalence of records

The fields of a record type are designated mutable or immutable. Correspondingly, a

record type with no mutable field is called immutable, and all records of that type

are immutable objects. All other record types are mutable, and so are their records.

Each call to a record constructor returns a new record with a fresh location (see

report section 5.10). Consequently, for two records obj1 and obj2, the return value

of (eqv? obj1 obj2), as well as the return value of (eq? obj1 obj2), adheres to the

following criteria (see report section 11.5):

• If obj1 and obj2 have different record types (i.e., their record-type descriptors

are not eqv?), eqv? returns #f.

• If obj1 and obj2 are both records of the same record type, and are the results

of two separate calls to record constructors, then eqv? returns #f.

• If obj1 and obj2 are both the result of a single call to a record constructor,

then eqv? returns #t.

186 M. Sperber et al.

• If obj1 and obj2 are both records of the same record type, where applying an

accessor to both yields results for which eqv? returns #f, then eqv? returns

#f.

6.2 Syntactic layer

The syntactic layer is provided by the (rnrs records syntactic (6)) library.

Some details of the specification are explained in terms of the specification of the

procedural layer below.

The record-type-defining form define-record-type is a definition and can ap-

pear anywhere any other 〈definition〉 can appear.

(define-record-type 〈name spec〉 〈record clause〉*) syntax

fields auxiliary syntax

mutable auxiliary syntax

immutable auxiliary syntax

parent auxiliary syntax

protocol auxiliary syntax

sealed auxiliary syntax

opaque auxiliary syntax

nongenerative auxiliary syntax

parent-rtd auxiliary syntax

A define-record-type form defines a record type along with associated con-

structor descriptor and constructor, predicate, field accessors, and field mutators.

The define-record-type form expands into a set of definitions in the environment

where define-record-type appears; hence, it is possible to refer to the bindings

(except for that of the record type itself) recursively.

The 〈name spec〉 specifies the names of the record type, constructor, and predicate.

It must take one of the following forms:

(〈record name〉 〈constructor name〉 〈predicate name〉)
〈record name〉

〈Record name〉, 〈constructor name〉, and 〈predicate name〉 must all be identifiers.

〈Record name〉, taken as a symbol, becomes the name of the record type. (See the

description of make-record-type-descriptor below.) Additionally, it is bound

by this definition to an expand-time or run-time representation of the record type

and can be used as parent name in syntactic record-type definitions that extend

this definition. It can also be used as a handle to gain access to the underlying

record-type descriptor and constructor descriptor (see record-type-descriptor
and record-constructor-descriptor below).

〈Constructor name〉 is defined by this definition to be a constructor for the defined

record type, with a protocol specified by the protocol clause, or, in its absence,

using a default protocol. For details, see the description of the protocol clause

below.

Revised6 Scheme 187

〈Predicate name〉 is defined by this definition to a predicate for the defined record

type.

The second form of 〈name spec〉 is an abbreviation for the first form, where the

name of the constructor is generated by prefixing the record name with make-, and

the predicate name is generated by adding a question mark (?) to the end of the

record name. For example, if the record name is frob, the name of the constructor

is make-frob, and the predicate name is frob?.
Each 〈record clause〉 must take one of the following forms; it is a syntax violation

if multiple 〈record clause〉s of the same kind appear in a define-record-type
form.

(fields 〈field spec〉*)
Each 〈field spec〉 has one of the following forms

(immutable 〈field name〉 〈accessor name〉)
(mutable 〈field name〉

〈accessor name〉 〈mutator name〉)
(immutable 〈field name〉)
(mutable 〈field name〉)
〈field name〉

〈Field name〉, 〈accessor name〉, and 〈mutator name〉 must all be identifiers. The

first form declares an immutable field called 〈field name〉, with the corresponding

accessor named 〈accessor name〉. The second form declares a mutable field called

〈field name〉, with the corresponding accessor named 〈accessor name〉, and with the

corresponding mutator named 〈mutator name〉.
If 〈field spec〉 takes the third or fourth form, the accessor name is generated by

appending the record name and field name with a hyphen separator, and the mutator

name (for a mutable field) is generated by adding a -set! suffix to the accessor

name. For example, if the record name is frob and the field name is widget, the

accessor name is frob-widget and the mutator name is frob-widget-set!.
If 〈field spec〉 is just a 〈field name〉 form, it is an abbreviation for (immutable

〈field name〉).
The 〈field name〉s become, as symbols, the names of the fields in the record-type

descriptor being created, in the same order.

The fields clause may be absent; this is equivalent to an empty fields clause.

(parent 〈parent name〉)
Specifies that the record type is to have parent type 〈parent name〉, where

〈parent name〉 is the 〈record name〉 of a record type previously defined using

define-record-type. The record-type definition associated with 〈parent name〉
must not be sealed.

(protocol 〈expression〉)
〈Expression〉 is evaluated in the same environment as the define-record-type
form. It must evaluate to a procedure, and this procedure should be a protocol

appropriate for the record type being defined.

The protocol is used to create a record-constructor descriptor as described below.

If no protocol clause is specified, a constructor descriptor is still created using a

188 M. Sperber et al.

default protocol. The clause can be absent only if the record type being defined has

no parent type, or if the parent definition does not specify a protocol.

(sealed #t)
(sealed #f)

If this option is specified with operand #t, the defined record type is sealed, i.e., no

extensions of the record type can be created. If this option is specified with operand

#f, or is absent, the defined record type is not sealed.

(opaque #t)
(opaque #f)

If this option is specified with operand #t, or if an opaque parent record type is

specified, the defined record type is opaque. Otherwise, the defined record type is

not opaque. See the specification of record-rtd below for details.

(nongenerative 〈uid〉)
(nongenerative)

This specifies that the record type is nongenerative with uid 〈uid〉, which must be

an 〈identifier〉. If 〈uid〉 is absent, a unique uid is generated at macro-expansion time.

If two record-type definitions specify the same uid , then the record-type definitions

should be equivalent, i.e., the implied arguments to make-record-type-descriptor
must be equivalent as described under make-record-type-descriptor. See sec-

tion 6.3. If this condition is not met, it is either considered a syntax violation or an

exception with condition type &assertion is raised. If the condition is met, a single

record type is generated for both definitions.

In the absence of a nongenerative clause, a new record type is generated every

time a define-record-type form is evaluated:

(let ((f (lambda (x)
(define-record-type r ...)
(if x r? (make-r ...)))))

((f #t) (f #f))) =⇒ #f

(parent-rtd 〈parent rtd〉 〈parent cd〉)
Specifies that the record type is to have its parent type specified by 〈parent rtd〉,

which should be an expression evaluating to a record-type descriptor or #f, and

〈parent cd〉, which should be an expression evaluating to a constructor descriptor

(see below) or #f.
If 〈parent rtd〉 evaluates to #f, then if 〈parent cd〉 evaluates to a value, that value

must be #f.
If 〈parent rtd〉 evaluates to a record-type descriptor, the record type must not

be sealed. Moreover, a record-type definition must not have both a parent and a

parent-rtd clause.

Note: The syntactic layer is designed to allow record-instance sizes and field offsets

to be determined at expand time, i.e., by a macro definition of define-record-type,
as long as the parent (if any) is known. Implementations that take advantage of

this may generate less efficient constructor, accessor, and mutator code when the

Revised6 Scheme 189

parent-rtd clause is used, since the type of the parent is generally not known until

run time. The parent clause should therefore be used instead when possible.

All bindings created by define-record-type (for the record type, the constructor,

the predicate, the accessors, and the mutators) must have names that are pairwise

distinct.

If no parent clause is present, no parent-rtd clause is present, or a parent-rtd
clause is present but 〈parent rtd〉 evaluates to #f, the record type is a base type.

The constructor created by a define-record-type form is a procedure as follows:

• If the record type is a base type and no protocol clause is present, the

constructor accepts as many arguments as there are fields, in the same order

as they appear in the fields clause, and returns a record object with the fields

initialized to the corresponding arguments.

• If the record type is a base type and a protocol clause is present, the

protocol expression, if it evaluates to a value, must evaluate to a procedure,

and this procedure should accept a single argument. The protocol procedure

is called once during the evaluation of the define-record-type form with a

procedure p as its argument. It should return a procedure, which will become

the constructor bound to 〈constructor name〉. The procedure p accepts as

many arguments as there are fields, in the same order as they appear in the

fields clause, and returns a record object with the fields initialized to the

corresponding arguments.

The constructor returned by the protocol procedure can accept an arbitrary

number of arguments, and should call p once to construct a record object,

and return that record object.

For example, the following protocol expression for a record-type definition

with three fields creates a constructor that accepts values for all fields, and

initialized them in the reverse order of the arguments:

(lambda (p)
(lambda (v1 v2 v3)

(p v3 v2 v1)))

• If the record type is not a base type and a protocol clause is present, then

the protocol procedure is called once with a procedure n as its argument.

As in the previous case, the protocol procedure should return a procedure,

which will become the constructor bound to 〈constructor name〉. However, n

is different from p in the previous case: It accepts arguments corresponding to

the arguments of the constructor of the parent type. It then returns a procedure

p that accepts as many arguments as there are (additional) fields in this type,

in the same order as in the fields clause, and returns a record object with

the fields of the parent record types initialized according to their constructors

and the arguments to n , and the fields of this record type initialized to its

arguments of p.

The constructor returned by the protocol procedure can accept an arbitrary

number of arguments, and should call n once to construct the procedure p,

190 M. Sperber et al.

and call p once to create the record object, and finally return that record

object.

For example, the following protocol expression assumes that the constructor

of the parent type takes three arguments:

(lambda (n)
(lambda (v1 v2 v3 x1 x2 x3 x4)

(let ((p (n v1 v2 v3)))
(p x1 x2 x3 x4))))

The resulting constructor accepts seven arguments, and initializes the fields of

the parent types according to the constructor of the parent type, with v1, v2,
and v3 as arguments. It also initializes the fields of this record type to the

values of x1, . . . , x4.
• If there is a parent clause, but no protocol clause, then the parent type must

not have a protocol clause itself. Similarly, if there is a parent-rtd clause

whose 〈parent rtd〉 evaluates to a record-type descriptor, but no protocol
clause, then the 〈parent cd〉 expression, if it evaluates to a value, must evaluate

to #f. The constructor bound to 〈constructor name〉 is a procedure that

accepts arguments corresponding to the parent types’ constructor first, and

then one argument for each field in the same order as in the fields clause.

The constructor returns a record object with the fields initialized to the

corresponding arguments.

A protocol may perform other actions consistent with the requirements described

above, including mutation of the new record or other side effects, before returning

the record.

Any definition that takes advantage of implicit naming for the constructor, pre-

dicate, accessor, and mutator names can be rewritten trivially to a definition that

specifies all names explicitly. For example, the implicit-naming record definition:

(define-record-type frob
(fields (mutable widget))
(protocol
(lambda (p)
(lambda (n) (p (make-widget n))))))

is equivalent to the following explicit-naming record definition.

(define-record-type (frob make-frob frob?)
(fields (mutable widget

frob-widget
frob-widget-set!))

(protocol
(lambda (p)
(lambda (n) (p (make-widget n))))))

Also, the implicit-naming record definition:

Revised6 Scheme 191

(define-record-type point (fields x y))

is equivalent to the following explicit-naming record definition:

(define-record-type (point make-point point?)
(fields
(immutable x point-x)
(immutable y point-y)))

With implicit naming, it is still possible to specify some of the names explicitly;

for example, the following overrides the choice of accessor and mutator names for

the widget field.

(define-record-type frob
(fields (mutable widget getwid setwid!))
(protocol
(lambda (p)
(lambda (n) (p (make-widget n))))))

(record-type-descriptor 〈record name〉) syntax

Evaluates to the record-type descriptor (see below) associated with the type

specified by 〈record name〉.
Note: The record-type-descriptor procedure works on both opaque and non-

opaque record types.

(record-constructor-descriptor 〈record name〉) syntax

Evaluates to the record-constructor descriptor (see below) associated with

〈record name〉.
The following example uses the record? procedure from the (rnrs records

inspection (6)) library (section 6.4):

(define-record-type (point make-point point?)
(fields (immutable x point-x)

(mutable y point-y set-point-y!))
(nongenerative
point-4893d957-e00b-11d9-817f-00111175eb9e))

(define-record-type (cpoint make-cpoint cpoint?)
(parent point)
(protocol
(lambda (n)
(lambda (x y c)

((n x y) (color->rgb c)))))
(fields
(mutable rgb cpoint-rgb cpoint-rgb-set!)))

(define (color->rgb c)

192 M. Sperber et al.

(cons ’rgb c))

(define p1 (make-point 1 2))
(define p2 (make-cpoint 3 4 ’red))

(point? p1) =⇒ #t
(point? p2) =⇒ #t
(point? (vector)) =⇒ #f
(point? (cons ’a ’b)) =⇒ #f
(cpoint? p1) =⇒ #f
(cpoint? p2) =⇒ #t
(point-x p1) =⇒ 1
(point-y p1) =⇒ 2
(point-x p2) =⇒ 3
(point-y p2) =⇒ 4
(cpoint-rgb p2) =⇒ (rgb . red)

(set-point-y! p1 17) =⇒ unspecified

(point-y p1) =⇒ 17)

(record-rtd p1)
=⇒ (record-type-descriptor point)

(define-record-type (ex1 make-ex1 ex1?)
(protocol (lambda (p) (lambda a (p a))))
(fields (immutable f ex1-f)))

(define ex1-i1 (make-ex1 1 2 3))
(ex1-f ex1-i1) =⇒ (1 2 3)

(define-record-type (ex2 make-ex2 ex2?)
(protocol
(lambda (p) (lambda (a . b) (p a b))))

(fields (immutable a ex2-a)
(immutable b ex2-b)))

(define ex2-i1 (make-ex2 1 2 3))
(ex2-a ex2-i1) =⇒ 1
(ex2-b ex2-i1) =⇒ (2 3)

(define-record-type (unit-vector
make-unit-vector
unit-vector?)

(protocol
(lambda (p)

Revised6 Scheme 193

(lambda (x y z)
(let ((length

(sqrt (+ (* x x)
(* y y)
(* z z)))))

(p (/ x length)
(/ y length)
(/ z length))))))

(fields (immutable x unit-vector-x)
(immutable y unit-vector-y)
(immutable z unit-vector-z)))

(define *ex3-instance* #f)

(define-record-type ex3
(parent cpoint)
(protocol
(lambda (n)
(lambda (x y t)

(let ((r ((n x y ’red) t)))
(set! *ex3-instance* r)
r))))

(fields
(mutable thickness))
(sealed #t) (opaque #t))

(define ex3-i1 (make-ex3 1 2 17))
(ex3? ex3-i1) =⇒ #t
(cpoint-rgb ex3-i1) =⇒ (rgb . red)
(ex3-thickness ex3-i1) =⇒ 17
(ex3-thickness-set! ex3-i1 18) =⇒ unspecified

(ex3-thickness ex3-i1) =⇒ 18
ex3-instance =⇒ ex3-i1

(record? ex3-i1) =⇒ #f

6.3 Procedural layer

The procedural layer is provided by the (rnrs records procedural (6)) library.

(make-record-type-descriptor name procedure

parent uid sealed? opaque? fields)
Returns a record-type descriptor, or rtd, representing a record type distinct from

all built-in types and other record types.

The name argument must be a symbol. It names the record type, and is intended

194 M. Sperber et al.

purely for informational purposes and may be used for printing by the underlying

Scheme system.

The parent argument must be either #f or an rtd. If it is an rtd, the returned

record type, t , extends the record type p represented by parent . An exception with

condition type &assertion is raised if parent is sealed (see below).

The uid argument must be either #f or a symbol. If uid is a symbol, the record-

creation operation is nongenerative i.e., a new record type is created only if no

previous call to make-record-type-descriptor was made with the uid . If uid is

#f, the record-creation operation is generative, i.e., a new record type is created

even if a previous call to make-record-type-descriptor was made with the same

arguments.

If make-record-type-descriptor is called twice with the same uid symbol,

the parent arguments in the two calls must be eqv?, the fields arguments equal?,
the sealed? arguments boolean-equivalent (both #f or both true), and the opaque?

arguments boolean-equivalent if the parents are not opaque. If these conditions are

not met, an exception with condition type &assertion is raised when the second

call occurs. If they are met, the second call returns, without creating a new record

type, the same record-type descriptor (in the sense of eqv?) as the first call.

Note: Users are encouraged to use symbol names constructed using the UUID

namespace (Leach et al., 2005) (for example, using the record-type name as a prefix)

for the uid argument.

The sealed? flag must be a boolean. If true, the returned record type is sealed, i.e.,

it cannot be extended.

The opaque? flag must be a boolean. If true, the record type is opaque. If passed

an instance of the record type, record? returns #f. Moreover, if record-rtd (see

“Inspection” below) is called with an instance of the record type, an exception with

condition type &assertion is raised. The record type is also opaque if an opaque

parent is supplied. If opaque? is #f and an opaque parent is not supplied, the record

is not opaque.

The fields argument must be a vector of field specifiers. Each field specifier must

be a list of the form (mutable name) or a list of the form (immutable name). Each

name must be a symbol and names the corresponding field of the record type; the

names need not be distinct. A field identified as mutable may be modified, whereas,

when a program attempts to obtain a mutator for a field identified as immutable, an

exception with condition type &assertion is raised. Where field order is relevant,

e.g., for record construction and field access, the fields are considered to be ordered

as specified, although no particular order is required for the actual representation

of a record instance.

The specified fields are added to the parent fields, if any, to determine the

complete set of fields of the returned record type. If fields is modified after

make-record-type-descriptor has been called, the effect on the returned rtd

is unspecified.

A generative record-type descriptor created by a call to make-record-type-
descriptor is not eqv? to any record-type descriptor (generative or nongenerative)

created by another call to make-record-type-descriptor. A generative record-

Revised6 Scheme 195

type descriptor is eqv? only to itself, i.e., (eqv? rtd1 rtd2) iff (eq? rtd1 rtd2). Also,

two nongenerative record-type descriptors are eqv? iff they were created by calls to

make-record-type-descriptor with the same uid arguments.

(record-type-descriptor? obj) procedure

Returns #t if the argument is a record-type descriptor, #f otherwise.

(make-record-constructor-descriptor rtd procedure

parent-constructor-descriptor protocol)
Returns a record-constructor descriptor (or constructor descriptor for short) that

specifies a record constructor (or constructor for short), that can be used to con-

struct record values of the type specified by rtd , and which can be obtained via

record-constructor. A constructor descriptor can also be used to create other

constructor descriptors for subtypes of its own record type. Rtd must be a record-

type descriptor. Protocol must be a procedure or #f. If it is #f, a default protocol

procedure is supplied.

If protocol is a procedure, it is handled analogously to the protocol expression in

a define-record-type form.

If rtd is a base record type parent-constructor-descriptor must be #f. In this

case, protocol is called by record-constructor with a single argument p. P is a

procedure that expects one argument for every field of rtd and returns a record with

the fields of rtd initialized to these arguments. The procedure returned by protocol

should call p once with the number of arguments p expects and return the resulting

record as shown in the simple example below:

(lambda (p)
(lambda (v1 v2 v3)
(p v1 v2 v3)))

Here, the call to p returns a record whose fields are initialized with the values of v1,
v2, and v3. The expression above is equivalent to (lambda (p) p). Note that the

procedure returned by protocol is otherwise unconstrained; specifically, it can take

any number of arguments.

If rtd is an extension of another record type parent-rtd and protocol is a procedure,

parent-constructor-descriptor must be a constructor descriptor of parent-rtd or #f.
If parent-constructor-descriptor is a constructor descriptor, protocol is called by

record-constructor with a single argument n , which is a procedure that accepts

the same number of arguments as the constructor of parent-constructor-descriptor

and returns a procedure p that, when called, constructs the record itself. The p

procedure expects one argument for every field of rtd (not including parent fields)

and returns a record with the fields of rtd initialized to these arguments, and the fields

of parent-rtd and its parents initialized as specified by parent-constructor-descriptor .

The procedure returned by protocol should call n once with the number of

arguments n expects, call the procedure p it returns once with the number of

arguments p expects and return the resulting record. A simple protocol in this case

might be written as follows:

196 M. Sperber et al.

(lambda (n)
(lambda (v1 v2 v3 x1 x2 x3 x4)
(let ((p (n v1 v2 v3)))
(p x1 x2 x3 x4))))

This passes arguments v1, v2, v3 to n for parent-constructor-descriptor and calls p
with x1, . . . , x4 to initialize the fields of rtd itself.

Thus, the constructor descriptors for a record type form a sequence of protocols

parallel to the sequence of record-type parents. Each constructor descriptor in

the chain determines the field values for the associated record type. Child record

constructors need not know the number or contents of parent fields, only the number

of arguments accepted by the parent constructor.

Protocol may be #f, specifying a default constructor that accepts one argument for

each field of rtd (including the fields of its parent type, if any). Specifically, if rtd is

a base type, the default protocol procedure behaves as if it were (lambda (p) p).
If rtd is an extension of another type, then parent-constructor-descriptor must be

either #f or itself specify a default constructor, and the default protocol procedure

behaves as if it were:

(lambda (n)
(lambda (v1 ... vj x1 ... xk)
(let ((p (n v1 ... vj)))
(p x1 ... xk))))

The resulting constructor accepts one argument for each of the record type’s complete

set of fields (including those of the parent record type, the parent’s parent record

type, etc.) and returns a record with the fields initialized to those arguments, with

the field values for the parent coming before those of the extension in the argument

list. (In the example, j is the complete number of fields of the parent type, and k is

the number of fields of rtd itself.)

If rtd is an extension of another record type and parent-constructor-descriptor is

#f, parent-constructor-descriptor is treated as if it were a constructor descriptor for

the parent rtd of rtd with a default protocol.

Implementation responsibilities: If protocol is a procedure, the implementation must

check the restrictions on it to the extent performed by applying it as described when

the constructor is called. An implementation may check whether protocol is an

appropriate argument before applying it.

(define rtd1
(make-record-type-descriptor
’rtd1 #f #f #f #f
’#((immutable x1) (immutable x2))))

(define rtd2
(make-record-type-descriptor
’rtd2 rtd1 #f #f #f
’#((immutable x3) (immutable x4))))

Revised6 Scheme 197

(define rtd3
(make-record-type-descriptor
’rtd3 rtd2 #f #f #f
’#((immutable x5) (immutable x6))))

(define protocol1
(lambda (p)
(lambda (a b c)
(p (+ a b) (+ b c)))))

(define protocol2
(lambda (n)
(lambda (a b c d e f)
(let ((p (n a b c)))

(p (+ d e) (+ e f))))))

(define protocol3
(lambda (n)
(lambda (a b c d e f g h i)
(let ((p (n a b c d e f)))

(p (+ g h) (+ h i))))))

(define cd1
(make-record-constructor-descriptor
rtd1 #f protocol1))

(define cd2
(make-record-constructor-descriptor
rtd2 cd1 protocol2))

(define cd3
(make-record-constructor-descriptor
rtd3 cd2 protocol3))

(define make-rtd1 (record-constructor cd1))

(define make-rtd2 (record-constructor cd2))

(define make-rtd3 (record-constructor cd3))

(make-rtd3 1 2 3 4 5 6 7 8 9) =⇒
〈record with fields initialized to 3, 5, 9, 11, 15, 17〉

198 M. Sperber et al.

(record-constructor constructor-descriptor) procedure

Calls the protocol of constructor-descriptor (as described for make-record-con-
structor-descriptor) and returns the resulting constructor constructor for records

of the record type associated with constructor-descriptor .

(record-predicate rtd) procedure

Returns a procedure that, given an object obj , returns #t if obj is a record of the

type represented by rtd , and #f otherwise.

(record-accessor rtd k) procedure

K must be a valid field index of rtd . The record-accessor procedure returns a

one-argument procedure whose argument must be a record of the type represented

by rtd . This procedure returns the value of the selected field of that record.

The field selected corresponds to the k th element (0-based) of the fields argument

to the invocation of make-record-type-descriptor that created rtd . Note that k

cannot be used to specify a field of any type rtd extends.

(record-mutator rtd k) procedure

K must be a valid field index of rtd . The record-mutator procedure returns a

two-argument procedure whose arguments must be a record record r of the type

represented by rtd and an object obj . This procedure stores obj within the field

of r specified by k . The k argument is as in record-accessor. If k specifies an

immutable field, an exception with condition type &assertion is raised. The mutator

returns unspecified values.

(define :point
(make-record-type-descriptor
’point #f
#f #f #f
’#((mutable x) (mutable y))))

(define :point-cd
(make-record-constructor-descriptor :point #f #f))

(define make-point (record-constructor :point-cd))

(define point? (record-predicate :point))
(define point-x (record-accessor :point 0))
(define point-y (record-accessor :point 1))
(define point-x-set! (record-mutator :point 0))
(define point-y-set! (record-mutator :point 1))

(define p1 (make-point 1 2))
(point? p1) =⇒ #t
(point-x p1) =⇒ 1

Revised6 Scheme 199

(point-y p1) =⇒ 2
(point-x-set! p1 5) =⇒ unspecified

(point-x p1) =⇒ 5

(define :point2
(make-record-type-descriptor
’point2 :point
#f #f #f ’#((mutable x) (mutable y))))

(define make-point2
(record-constructor
(make-record-constructor-descriptor :point2
#f #f)))

(define point2? (record-predicate :point2))
(define point2-xx (record-accessor :point2 0))
(define point2-yy (record-accessor :point2 1))

(define p2 (make-point2 1 2 3 4))
(point? p2) =⇒ #t
(point-x p2) =⇒ 1
(point-y p2) =⇒ 2
(point2-xx p2) =⇒ 3
(point2-yy p2) =⇒ 4

(define :point-cd/abs
(make-record-constructor-descriptor
:point #f
(lambda (new)
(lambda (x y)

(new (abs x) (abs y))))))

(define make-point/abs
(record-constructor :point-cd/abs))

(point-x (make-point/abs -1 -2)) =⇒ 1
(point-y (make-point/abs -1 -2)) =⇒ 2

(define :cpoint
(make-record-type-descriptor
’cpoint :point
#f #f #f
’#((mutable rgb))))

(define make-cpoint
(record-constructor

200 M. Sperber et al.

(make-record-constructor-descriptor
:cpoint :point-cd
(lambda (p)
(lambda (x y c)

((p x y) (color->rgb c)))))))

(define make-cpoint/abs
(record-constructor
(make-record-constructor-descriptor
:cpoint :point-cd/abs
(lambda (p)
(lambda (x y c)

((p x y) (color->rgb c)))))))

(define cpoint-rgb
(record-accessor :cpoint 0))

(define (color->rgb c)
(cons ’rgb c))

(cpoint-rgb (make-cpoint -1 -3 ’red))
=⇒ (rgb . red)

(point-x (make-cpoint -1 -3 ’red))
=⇒ -1

(point-x (make-cpoint/abs -1 -3 ’red))
=⇒ 1

6.4 Inspection

The (rnrs records inspection (6)) library provides procedures for inspecting

records and their record-type descriptors. These procedures are designed to allow

the writing of portable printers and inspectors.

On the one hand, record? and record-rtd treat records of opaque record types

as if they were not records. On the other hand, the inspection procedures that

operate on record-type descriptors themselves are not affected by opacity. In other

words, opacity controls whether a program can obtain an rtd from a record. If

the program has access to the original rtd via make-record-type-descriptor or

record-type-descriptor, it can still make use of the inspection procedures.

(record? obj) procedure

Returns #t if obj is a record, and its record type is not opaque, and returns #f
otherwise.

(record-rtd record) procedure

Returns the rtd representing the type of record if the type is not opaque. The rtd

Revised6 Scheme 201

of the most precise type is returned; that is, the type t such that record is of type t

but not of any type that extends t . If the type is opaque, an exception is raised with

condition type &assertion.

(record-type-name rtd) procedure

Returns the name of the record-type descriptor rtd .

(record-type-parent rtd) procedure

Returns the parent of the record-type descriptor rtd , or #f if it has none.

(record-type-uid rtd) procedure

Returns the uid of the record-type descriptor rtd, or #f if it has none. (An

implementation may assign a generated uid to a record type even if the type

is generative, so the return of a uid does not necessarily imply that the type is

nongenerative.)

(record-type-generative? rtd) procedure

Returns #t if rtd is generative, and #f if not.

(record-type-sealed? rtd) procedure

Returns #t if the record-type descriptor is sealed, and #f if not.

(record-type-opaque? rtd) procedure

Returns #t if the the record-type descriptor is opaque, and #f if not.

(record-type-field-names rtd) procedure

Returns a vector of symbols naming the fields of the type represented by rtd

(not including the fields of parent types) where the fields are ordered as described

under make-record-type-descriptor. The returned vector may be immutable. If

the returned vector is modified, the effect on rtd is unspecified.

(record-field-mutable? rtd k) procedure

Returns #t if the field specified by k of the type represented by rtd is mutable,

and #f if not. K is as in record-accessor.

7 Exceptions and conditions

Scheme allows programs to deal with exceptional situations using two cooperating

facilities: the exception system for raising and handling exceptional situations, and

the condition system for describing these situations.

The exception system allows the program, when it detects an exceptional situation,

to pass control to an exception handler, and to dynamically establish such exception

handlers. Exception handlers are always invoked with an object describing the

exceptional situation. Scheme’s condition system provides a standardized taxonomy

of such descriptive objects, as well as a facility for extending the taxonomy.

202 M. Sperber et al.

7.1 Exceptions

This section describes Scheme’s exception-handling and exception-raising constructs

provided by the (rnrs exceptions (6)) library.

Exception handlers are one-argument procedures that determine the action the

program takes when an exceptional situation is signalled. The system implicitly

maintains a current exception handler.

The program raises an exception by invoking the current exception handler,

passing it an object encapsulating information about the exception. Any procedure

accepting one argument may serve as an exception handler and any object may be

used to represent an exception.

The system maintains the current exception handler as part of the dynamic

environment of the program; see report section 5.12.

When a program begins its execution, the current exception handler is expected

to handle all &serious conditions by interrupting execution, reporting that an

exception has been raised, and displaying information about the condition object

that was provided. The handler may then exit, or may provide a choice of other

options. Moreover, the exception handler is expected to return when passed any other

non-&serious condition. Interpretation of these expectations necessarily depends

upon the nature of the system in which programs are executed, but the intent is that

users perceive the raising of an exception as a controlled escape from the situation

that raised the exception, not as a crash.

(with-exception-handler handler thunk) procedure

Handler must be a procedure and should accept one argument. Thunk must be

a procedure and should accept zero arguments. The with-exception-handler
procedure returns the results of invoking thunk without arguments. Handler is

installed as the current exception handler for the dynamic extent (as determined by

dynamic-wind) of the invocation of thunk .

Implementation responsibilities: The implementation must check the restrictions on

thunk to the extent performed by applying it as described above. The implementation

must check the restrictions on handler to the extent performed by applying it as

described when it is called as a result of a call to raise or raise-continuable.
An implementation may check whether handler is an appropriate argument before

applying it.

(guard (〈variable〉 syntax

〈cond clause1〉 〈cond clause2〉 . . .)
〈body〉)

=> auxiliary syntax

else auxiliary syntax

Syntax: Each 〈cond clause〉 is as in the specification of cond. (See report sec-

tion 11.4.5.) => and else are the same as in the (rnrs base (6)) library.

Semantics: Evaluating a guard form evaluates 〈body〉 with an exception handler

that binds the raised object to 〈variable〉 and within the scope of that binding

Revised6 Scheme 203

evaluates the clauses as if they were the clauses of a cond expression. That implicit

cond expression is evaluated with the continuation and dynamic environment of the

guard expression. If every 〈cond clause〉’s 〈test〉 evaluates to #f and there is no else
clause, then raise-continuable is invoked on the raised object within the dynamic

environment of the original call to raise except that the current exception handler

is that of the guard expression.

The final expression in a 〈cond clause〉 is in a tail context if the guard expression

itself is.

(raise obj) procedure

Raises a non-continuable exception by invoking the current exception handler on

obj . The handler is called with a continuation whose dynamic environment is that

of the call to raise, except that the current exception handler is the one that was

in place when the handler being called was installed. When the handler returns, a

non-continuable exception with condition type &non-continuable is raised in the

same dynamic environment as the handler.

(raise-continuable obj) procedure

Raises a continuable exception by invoking the current exception handler on obj .

The handler is called with a continuation that is equivalent to the continuation of

the call to raise-continuable, with these two exceptions: (1) the current exception

handler is the one that was in place when the handler being called was installed,

and (2) if the handler being called returns, then it will again become the current

exception handler. If the handler returns, the values it returns become the values

returned by the call to raise-continuable.

(guard (con
((error? con)
(if (message-condition? con)

(display (condition-message con))
(display "an error has occurred"))

’error)
((violation? con)
(if (message-condition? con)

(display (condition-message con))
(display "the program has a bug"))

’violation))
(raise
(condition
(make-error)
(make-message-condition "I am an error"))))

prints: I am an error
=⇒ error

(guard (con
((error? con)

204 M. Sperber et al.

(if (message-condition? con)
(display (condition-message con))
(display "an error has occurred"))

’error))
(raise
(condition
(make-violation)
(make-message-condition "I am an error"))))

=⇒ &violation exception

(guard (con
((error? con)
(display "error opening file")
#f))

(call-with-input-file "foo.scm" read))
prints: error opening file

=⇒ #f

(with-exception-handler
(lambda (con)
(cond
((not (warning? con))
(raise con))

((message-condition? con)
(display (condition-message con)))

(else
(display "a warning has been issued")))

42)
(lambda ()
(+ (raise-continuable

(condition
(make-warning)
(make-message-condition

"should be a number")))
23)))

prints: should be a number
=⇒ 65

7.2 Conditions

The section describes Scheme’s (rnrs conditions (6)) library for creating and

inspecting condition types and values. A condition value encapsulates information

about an exceptional situation. Scheme also defines a number of basic condition

types.

Revised6 Scheme 205

Scheme conditions provides two mechanisms to enable communication about an

exceptional situation: subtyping among condition types allows handling code to

determine the general nature of an exception even though it does not anticipate

its exact nature, and compound conditions allow an exceptional situation to be

described in multiple ways.

7.2.1 Condition objects

Conceptually, there are two different kinds of condition objects: simple conditions

and compound conditions . An object that is either a simple condition or a compound

condition is simply a condition. Compound conditions form a type disjoint from

the base types described in report section 11.1. A simple condition describes a

single aspect of an exceptional situation. A compound condition represents multiple

aspects of an exceptional situation as a list of simple conditions, its components.

Most of the operations described in this section treat a simple condition identically

to a compound condition with itself as its own sole component. For a subtype t

of &condition, a condition of type t is either a record of type t or a compound

condition containing a component of type t .

&condition condition type

Simple conditions are records of subtypes of the &condition record type. The

&condition type has no fields and is neither sealed nor opaque.

(condition condition1 . . .) procedure

The condition procedure returns a condition object with the components of

the conditions as its components, in the same order, i.e., with the components of

condition1 appearing first in the same order as in condition1, then with the components

of condition2, and so on. The returned condition is compound if the total number of

components is zero or greater than one. Otherwise, it may be compound or simple.

(simple-conditions condition) procedure

The simple-conditions procedure returns a list of the components of condition ,

in the same order as they appeared in the construction of condition . The returned list

is immutable. If the returned list is modified, the effect on condition is unspecified.

Note: Because condition decomposes its arguments into simple conditions, simple-
conditions always returns a “flattened” list of simple conditions.

(condition? obj) procedure

Returns #t if obj is a (simple or compound) condition, otherwise returns #f.

(condition-predicate rtd) procedure

Rtd must be a record-type descriptor of a subtype of &condition. The condition-
predicate procedure returns a procedure that takes one argument. This procedure

returns #t if its argument is a condition of the condition type represented by rtd ,

i.e., if it is either a simple condition of that record type (or one of its subtypes) or a

206 M. Sperber et al.

compound conditition with such a simple condition as one of its components, and

#f otherwise.

(condition-accessor rtd proc) procedure

Rtd must be a record-type descriptor of a subtype of &condition. Proc should

accept one argument, a record of the record type of rtd . The condition-accessor
procedure returns a procedure that accepts a single argument, which must be a

condition of the type represented by rtd . This procedure extracts the first component

of the condition of the type represented by rtd , and returns the result of applying

proc to that component.

(define-record-type (&cond1 make-cond1 real-cond1?)
(parent &condition)
(fields
(immutable x real-cond1-x)))

(define cond1?
(condition-predicate
(record-type-descriptor &cond1)))

(define cond1-x
(condition-accessor
(record-type-descriptor &cond1)
real-cond1-x))

(define foo (make-cond1 ’foo))

(condition? foo) =⇒ #t
(cond1? foo) =⇒ #t
(cond1-x foo) =⇒ foo

(define-record-type (&cond2 make-cond2 real-cond2?)
(parent &condition)
(fields
(immutable y real-cond2-y)))

(define cond2?
(condition-predicate
(record-type-descriptor &cond2)))

(define cond2-y
(condition-accessor

(record-type-descriptor &cond2)
real-cond2-y))

(define bar (make-cond2 ’bar))

Revised6 Scheme 207

(condition? (condition foo bar)) =⇒ #t
(cond1? (condition foo bar)) =⇒ #t
(cond2? (condition foo bar)) =⇒ #t
(cond1? (condition foo)) =⇒ #t
(real-cond1? (condition foo)) =⇒ unspecified

(real-cond1? (condition foo bar)) =⇒ #f
(cond1-x (condition foo bar)) =⇒ foo
(cond2-y (condition foo bar)) =⇒ bar

(equal? (simple-conditions (condition foo bar))
(list foo bar)) =⇒ #t

(equal? (simple-conditions
(condition foo (condition bar)))

(list foo bar)) =⇒ #t

(define-condition-type 〈condition-type〉 syntax

〈supertype〉
〈constructor〉 〈predicate〉
〈field-spec1〉 . . .)
Syntax: 〈Condition-type〉, 〈supertype〉, 〈constructor〉, and 〈predicate〉 must all be

identifiers. Each 〈field-spec〉 must be of the form

(〈field〉 〈accessor〉)

where both 〈field〉 and 〈accessor〉 must be identifiers.

Semantics: The define-condition-type form expands into a record-type defin-

ition for a record type 〈condition-type〉 (see section 6.2). The record type will be

non-opaque, non-sealed, and its fields will be immutable. It will have 〈supertype〉
has its parent type. The remaining identifiers will be bound as follows:

• 〈Constructor〉 is bound to a default constructor for the type (see section 6.3):

It accepts one argument for each of the record type’s complete set of fields

(including parent types, with the fields of the parent coming before those of

the extension in the arguments) and returns a condition object initialized to

those arguments.

• 〈Predicate〉 is bound to a predicate that identifies conditions of type

〈condition-type〉 or any of its subtypes.

• Each 〈accessor〉 is bound to a procedure that extracts the corresponding field

from a condition of type 〈condition-type〉.

(define-condition-type &c &condition
make-c c?
(x c-x))

(define-condition-type &c1 &c

208 M. Sperber et al.

make-c1 c1?
(a c1-a))

(define-condition-type &c2 &c
make-c2 c2?
(b c2-b))

(define v1 (make-c1 "V1" "a1"))

(c? v1) =⇒ #t
(c1? v1) =⇒ #t
(c2? v1) =⇒ #f
(c-x v1) =⇒ "V1"
(c1-a v1) =⇒ "a1"

(define v2 (make-c2 "V2" "b2"))

(c? v2) =⇒ #t
(c1? v2) =⇒ #f
(c2? v2) =⇒ #t
(c-x v2) =⇒ "V2"
(c2-b v2) =⇒ "b2"

(define v3 (condition
(make-c1 "V3/1" "a3")
(make-c2 "V3/2" "b3")))

(c? v3) =⇒ #t
(c1? v3) =⇒ #t
(c2? v3) =⇒ #t
(c-x v3) =⇒ "V3/1"
(c1-a v3) =⇒ "a3"
(c2-b v3) =⇒ "b3"

(define v4 (condition v1 v2))

(c? v4) =⇒ #t
(c1? v4) =⇒ #t
(c2? v4) =⇒ #t
(c-x v4) =⇒ "V1"
(c1-a v4) =⇒ "a1"
(c2-b v4) =⇒ "b2"

(define v5 (condition v2 v3))

(c? v5) =⇒ #t
(c1? v5) =⇒ #t

Revised6 Scheme 209

&condition

&warning &message
&irritants
&who

&serious

&error &violation

&assertion &non-continuable &implementation-restriction &lexical &syntax &undefined

Fig. 1. Hierarchy of standard condition types

(c2? v5) =⇒ #t
(c-x v5) =⇒ "V2"
(c1-a v5) =⇒ "a3"
(c2-b v5) =⇒ "b2"

7.3 Standard condition types

&message condition type

(make-message-condition message) procedure

(message-condition? obj) procedure

(condition-message condition) procedure

This condition type could be defined by

(define-condition-type &message &condition
make-message-condition message-condition?
(message condition-message))

It carries a message further describing the nature of the condition to humans.

&warning condition type

(make-warning) procedure

(warning? obj) procedure

This condition type could be defined by

(define-condition-type &warning &condition
make-warning warning?)

This type describes conditions that do not, in principle, prohibit immediate continued

execution of the program, but may interfere with the program’s execution later.

&serious condition type

(make-serious-condition) procedure

(serious-condition? obj) procedure

This condition type could be defined by

(define-condition-type &serious &condition
make-serious-condition serious-condition?)

210 M. Sperber et al.

This type describes conditions serious enough that they cannot safely be ignored.

This condition type is primarily intended as a supertype of other condition types.

&error condition type

(make-error) procedure

(error? obj) procedure

This condition type could be defined by

(define-condition-type &error &serious
make-error error?)

This type describes errors, typically caused by something that has gone wrong in

the interaction of the program with the external world or the user.

&violation condition type

(make-violation) procedure

(violation? obj) procedure

This condition type could be defined by

(define-condition-type &violation &serious
make-violation violation?)

This type describes violations of the language standard or a library standard,

typically caused by a programming error.

&assertion condition type

(make-assertion-violation) procedure

(assertion-violation? obj) procedure

This condition type could be defined by

(define-condition-type &assertion &violation
make-assertion-violation assertion-violation?)

This type describes an invalid call to a procedure, either passing an invalid number

of arguments, or passing an argument of the wrong type.

&irritants condition type

(make-irritants-condition irritants) procedure

(irritants-condition? obj) procedure

(condition-irritants condition) procedure

This condition type could be defined by

(define-condition-type &irritants &condition
make-irritants-condition irritants-condition?
(irritants condition-irritants))

Irritants should be a list of objects. This condition provides additional information

about a condition, typically the argument list of a procedure that detected an excep-

tion. Conditions of this type are created by the error and assertion-violation
procedures of report section 11.14.

Revised6 Scheme 211

&who condition type

(make-who-condition who) procedure

(who-condition? obj) procedure

(condition-who condition) procedure

This condition type could be defined by

(define-condition-type &who &condition
make-who-condition who-condition?
(who condition-who))

Who should be a symbol or string identifying the entity reporting the exception.

Conditions of this type are created by the error and assertion-violation pro-

cedures (report section 11.14), and the syntax-violation procedure (section 12.9).

&non-continuable condition type

(make-non-continuable-violation) procedure

(non-continuable-violation? obj) procedure

This condition type could be defined by

(define-condition-type &non-continuable &violation
make-non-continuable-violation
non-continuable-violation?)

This type indicates that an exception handler invoked via raise has returned.

&implementation-restriction condition type

(make-implementation-restriction-violation) procedure

(implementation-restriction-violation? obj) procedure

This condition type could be defined by

(define-condition-type &implementation-restriction
&violation

make-implementation-restriction-violation
implementation-restriction-violation?)

This type describes a violation of an implementation restriction allowed by the

specification, such as the absence of representations for NaNs and infinities. (See

section 11.3.)

&lexical condition type

(make-lexical-violation) procedure

(lexical-violation? obj) procedure

This condition type could be defined by

(define-condition-type &lexical &violation
make-lexical-violation lexical-violation?)

212 M. Sperber et al.

This type describes syntax violations at the level of the datum syntax.

&syntax condition type

(make-syntax-violation form subform) procedure

(syntax-violation? obj) procedure

(syntax-violation-form condition) procedure

(syntax-violation-subform condition) procedure

This condition type could be defined by

(define-condition-type &syntax &violation
make-syntax-violation syntax-violation?
(form syntax-violation-form)
(subform syntax-violation-subform))

This type describes syntax violations. Form should be the erroneous syntax object

or a datum representing the code of the erroneous form. Subform should be an

optional syntax object or datum within the erroneous form that more precisely

locates the violation. It can be #f to indicate the absence of more precise information.

&undefined condition type

(make-undefined-violation) procedure

(undefined-violation? obj) procedure

This condition type could be defined by

(define-condition-type &undefined &violation
make-undefined-violation undefined-violation?)

This type describes unbound identifiers in the program.

8 I/O

This chapter describes Scheme’s libraries for performing input and output:

• The (rnrs io ports (6)) library (section 8.2) is an I/O layer for conven-

tional, imperative buffered input and output with text and binary data.

• The (rnrs io simple (6)) library (section 8.3) is a convenience library

atop the (rnrs io ports (6)) library for textual I/O, compatible with the

traditional Scheme I/O procedures (Kelsey et al., 1998).

Section 8.1 defines a condition-type hierarchy that is exported by both the (rnrs
io ports (6)) and (rnrs io simple (6)) libraries.

8.1 Condition types

The procedures described in this chapter, when they detect an exceptional situation

that arises from an “I/O errors”, raise an exception with condition type &i/o.
The condition types and corresponding predicates and accessors are exported by

Revised6 Scheme 213

both the (rnrs io ports (6)) and (rnrs io simple (6)) libraries. They are

also exported by the (rnrs files (6)) library described in chapter 9.

&i/o condition type

(make-i/o-error) procedure

(i/o-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o &error
make-i/o-error i/o-error?)

This is a supertype for a set of more specific I/O errors.

&i/o-read condition type

(make-i/o-read-error) procedure

(i/o-read-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-read &i/o
make-i/o-read-error i/o-read-error?)

This condition type describes read errors that occurred during an I/O operation.

&i/o-write condition type

(make-i/o-write-error) procedure

(i/o-write-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-write &i/o
make-i/o-write-error i/o-write-error?)

This condition type describes write errors that occurred during an I/O operation.

&i/o-invalid-position condition type

(make-i/o-invalid-position-error position) procedure

(i/o-invalid-position-error? obj) procedure

(i/o-error-position condition) procedure

This condition type could be defined by

(define-condition-type &i/o-invalid-position &i/o
make-i/o-invalid-position-error
i/o-invalid-position-error?
(position i/o-error-position))

This condition type describes attempts to set the file position to an invalid position.

Position should be the file position that the program intended to set. This condition

describes a range error, but not an assertion violation.

&i/o-filename condition type

214 M. Sperber et al.

(make-i/o-filename-error filename) procedure

(i/o-filename-error? obj) procedure

(i/o-error-filename condition) procedure

This condition type could be defined by

(define-condition-type &i/o-filename &i/o
make-i/o-filename-error i/o-filename-error?
(filename i/o-error-filename))

This condition type describes an I/O error that occurred during an operation on

a named file. Filename should be the name of the file.

&i/o-file-protection condition type

(make-i/o-file-protection-error filename) procedure

(i/o-file-protection-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-file-protection
&i/o-filename

make-i/o-file-protection-error
i/o-file-protection-error?)

A condition of this type specifies that an operation tried to operate on a named

file with insufficient access rights.

&i/o-file-is-read-only condition type

(make-i/o-file-is-read-only-error filename) procedure

(i/o-file-is-read-only-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-file-is-read-only
&i/o-file-protection

make-i/o-file-is-read-only-error
i/o-file-is-read-only-error?)

A condition of this type specifies that an operation tried to operate on a named

read-only file under the assumption that it is writeable.

&i/o-file-already-exists condition type

(make-i/o-file-already-exists-error filename) procedure

(i/o-file-already-exists-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-file-already-exists
&i/o-filename

make-i/o-file-already-exists-error
i/o-file-already-exists-error?)

Revised6 Scheme 215

A condition of this type specifies that an operation tried to operate on an existing

named file under the assumption that it did not exist.

&i/o-file-does-not-exist condition type

(make-i/o-file-does-not-exist-error filename) procedure

(i/o-file-does-not-exist-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-file-does-not-exist
&i/o-filename

make-i/o-file-does-not-exist-error
i/o-file-does-not-exist-error?)

A condition of this type specifies that an operation tried to operate on an non-

existent named file under the assumption that it existed.

&i/o-port condition type

(make-i/o-port-error pobj) procedure

(i/o-port-error? obj) procedure

(i/o-error-port condition) procedure

This condition type could be defined by

(define-condition-type &i/o-port &i/o
make-i/o-port-error i/o-port-error?
(pobj i/o-error-port))

This condition type specifies the port with which an I/O error is associated. Pobj

should be the port. Conditions raised by procedures accepting a port as an argument

should include an &i/o-port-error condition.

8.2 Port I/O

The (rnrs io ports (6)) library defines an I/O layer for conventional, imperative

buffered input and output. A port represents a buffered access object for a data

sink or source or both simultaneously. The library allows ports to be created from

arbitrary data sources and sinks.

The (rnrs io ports (6)) library distinguishes between input ports and output

ports. An input port is a source for data, whereas an output port is a sink for data.

A port may be both an input port and an output port; such a port typically provides

simultaneous read and write access to a file or other data.

The (rnrs io ports (6)) library also distinguishes between binary ports, which

are sources or sinks for uninterpreted bytes, and textual ports, which are sources or

sinks for characters and strings.

This section uses input-port , output-port , binary-port , textual-port , binary-input-port ,

textual-input-port , binary-output-port , textual-output-port , and port as parameter

names for arguments that must be input ports (or combined input/output ports),

output ports (or combined input/output ports), binary ports, textual ports, binary

input ports, textual input ports, binary output ports, textual output ports, or any

kind of port, respectively.

216 M. Sperber et al.

8.2.1 File names

Some of the procedures described in this chapter accept a file name as an argument.

Valid values for such a file name include strings that name a file using the native

notation of filesystem paths on an implementation’s underlying operating system,

and may include implementation-dependent values as well.

A filename parameter name means that the corresponding argument must be a

file name.

8.2.2 File options

When opening a file, the various procedures in this library accept a file-options
object that encapsulates flags to specify how the file is to be opened. A file-options
object is an enum-set (see chapter 14) over the symbols constituting valid file options.

A file-options parameter name means that the corresponding argument must be a

file-options object.

(file-options 〈file-options symbol〉 . . .) syntax

Each 〈file-options symbol〉 must be a symbol. The file-options syntax returns

a file-options object that encapsulates the specified options.

When supplied to an operation that opens a file for output, the file-options object

returned by (file-options) specifies that the file is created if it does not exist

and an exception with condition type &i/o-file-already-exists is raised if it

does exist. The following standard options can be included to modify the default

behavior.

• no-create If the file does not already exist, it is not created; instead, an

exception with condition type &i/o-file-does-not-exist is raised. If the file

already exists, the exception with condition type &i/o-file-already-exists
is not raised and the file is truncated to zero length.

• no-fail If the file already exists, the exception with condition type &i/o-file-
already-exists is not raised, even if no-create is not included, and the file

is truncated to zero length.
• no-truncate If the file already exists and the exception with condition type

&i/o-file-already-exists has been inhibited by inclusion of no-create or

no-fail, the file is not truncated, but the port’s current position is still set to

the beginning of the file.

These options have no effect when a file is opened only for input. Symbols

other than those listed above may be used as 〈file-options symbol〉s; they have

implementation-specific meaning, if any.

Note: Only the name of 〈file-options symbol〉 is significant.

8.2.3 Buffer modes

Each port has an associated buffer mode. For an output port, the buffer mode

defines when an output operation flushes the buffer associated with the output

Revised6 Scheme 217

port. For an input port, the buffer mode defines how much data will be read to

satisfy read operations. The possible buffer modes are the symbols none for no

buffering, line for flushing upon line endings and reading up to line endings, or

other implementation-dependent behavior, and block for arbitrary buffering. This

section uses the parameter name buffer-mode for arguments that must be buffer-mode

symbols.

If two ports are connected to the same mutable source, both ports are unbuffered,

and reading a byte or character from that shared source via one of the two ports

would change the bytes or characters seen via the other port, a lookahead operation

on one port will render the peeked byte or character inaccessible via the other port,

while a subsequent read operation on the peeked port will see the peeked byte or

character even though the port is otherwise unbuffered.

In other words, the semantics of buffering is defined in terms of side effects on

shared mutable sources, and a lookahead operation has the same side effect on the

shared source as a read operation.

(buffer-mode 〈buffer-mode symbol〉) syntax

〈Buffer-mode symbol〉 must be a symbol whose name is one of none, line, and

block. The result is the corresponding symbol, and specifies the associated buffer

mode.

Note: Only the name of 〈buffer-mode symbol〉 is significant.

(buffer-mode? obj) procedure

Returns #t if the argument is a valid buffer-mode symbol, and returns #f other-

wise.

8.2.4 Transcoders

Several different Unicode encoding schemes describe standard ways to encode char-

acters and strings as byte sequences and to decode those sequences (Unicode Con-

sortium, 2007). Within this document, a codec is an immutable Scheme object that

represents a Unicode or similar encoding scheme.

An end-of-line style is a symbol that, if it is not none, describes how a textual port

transcodes representations of line endings.

A transcoder is an immutable Scheme object that combines a codec with an end-

of-line style and a method for handling decoding errors. Each transcoder represents

some specific bidirectional (but not necessarily lossless), possibly stateful translation

between byte sequences and Unicode characters and strings. Every transcoder can

operate in the input direction (bytes to characters) or in the output direction

(characters to bytes). A transcoder parameter name means that the corresponding

argument must be a transcoder.

A binary port is a port that supports binary I/O, does not have an associated

transcoder and does not support textual I/O. A textual port is a port that supports

textual I/O, and does not support binary I/O. A textual port may or may not have

an associated transcoder.

218 M. Sperber et al.

(latin-1-codec) procedure

(utf-8-codec) procedure

(utf-16-codec) procedure

These are predefined codecs for the ISO 8859-1, UTF-8, and UTF-16 encoding

schemes (Unicode Consortium, 2007).

A call to any of these procedures returns a value that is equal in the sense of eqv?
to the result of any other call to the same procedure.

(eol-style 〈eol-style symbol〉) syntax

〈Eol-style symbol〉 should be a symbol whose name is one of lf, cr, crlf, nel,
crnel, ls, and none. The form evaluates to the corresponding symbol. If the

name of eol-style symbol is not one of these symbols, the effect and result are

implementation-dependent; in particular, the result may be an eol-style symbol

acceptable as an eol-style argument to make-transcoder. Otherwise, an exception

is raised.

All eol-style symbols except none describe a specific line-ending encoding:
lf 〈linefeed〉
cr 〈carriage return〉
crlf 〈carriage return〉 〈linefeed〉
nel 〈next line〉
crnel 〈carriage return〉 〈next line〉
ls 〈line separator〉

For a textual port with a transcoder, and whose transcoder has an eol-style

symbol none, no conversion occurs. For a textual input port, any eol-style symbol

other than none means that all of the above line-ending encodings are recognized

and are translated into a single linefeed. For a textual output port, none and lf
are equivalent. Linefeed characters are encoded according to the specified eol-style

symbol, and all other characters that participate in possible line endings are encoded

as is.

Note: Only the name of 〈eol-style symbol〉 is significant.

(native-eol-style) procedure

Returns the default end-of-line style of the underlying platform, e.g., lf on Unix

and crlf on Windows.

&i/o-decoding condition type

(make-i/o-decoding-error pobj) procedure

(i/o-decoding-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-decoding &i/o-port
make-i/o-decoding-error i/o-decoding-error?)

An exception with this type is raised when one of the operations for textual

input from a port encounters a sequence of bytes that cannot be translated into a

character or string by the input direction of the port’s transcoder.

Revised6 Scheme 219

When such an exception is raised, the port’s position is past the invalid encoding.

&i/o-encoding condition type

(make-i/o-encoding-error pobj cobj) procedure

(i/o-encoding-error? obj) procedure

(i/o-encoding-error-char condition) procedure

This condition type could be defined by

(define-condition-type &i/o-encoding &i/o-port
make-i/o-encoding-error i/o-encoding-error?
(cobj i/o-encoding-error-char))

An exception with this type is raised when one of the operations for textual output

to a port encounters a character that cannot be translated into bytes by the output

direction of the port’s transcoder. Cobj should be the character that could not be

encoded.

(error-handling-mode 〈error-handling-mode symbol〉) syntax

〈Error-handling-mode symbol〉 should be a symbol whose name is one of ignore,
raise, and replace. The form evaluates to the corresponding symbol. If

〈error-handling-mode symbol〉 is not one of these identifiers, effect and result are

implementation-dependent: The result may be an error-handling-mode symbol ac-

ceptable as a handling-mode argument to make-transcoder. If it is not acceptable

as a handling-mode argument to make-transcoder, an exception is raised.

Note: Only the name of 〈error-handling-style symbol〉 is significant.

The error-handling mode of a transcoder specifies the behavior of textual I/O

operations in the presence of encoding or decoding errors.

If a textual input operation encounters an invalid or incomplete character encod-

ing, and the error-handling mode is ignore, an appropriate number of bytes of the

invalid encoding are ignored and decoding continues with the following bytes. If the

error-handling mode is replace, the replacement character U+FFFD is injected

into the data stream, an appropriate number of bytes are ignored, and decoding

continues with the following bytes. If the error-handling mode is raise, an exception

with condition type &i/o-decoding is raised.

If a textual output operation encounters a character it cannot encode, and the

error-handling mode is ignore, the character is ignored and encoding continues

with the next character. If the error-handling mode is replace, a codec-specific

replacement character is emitted by the transcoder, and encoding continues with the

next character. The replacement character is U+FFFD for transcoders whose codec

is one of the Unicode encodings, but is the ? character for the Latin-1 encoding. If

the error-handling mode is raise, an exception with condition type &i/o-encoding
is raised.

(make-transcoder codec) procedure

220 M. Sperber et al.

(make-transcoder codec eol-style) procedure

(make-transcoder codec eol-style handling-mode) procedure

Codec must be a codec; eol-style, if present, an eol-style symbol; and handling-mode,

if present, an error-handling-mode symbol. Eol-style may be omitted, in which case

it defaults to the native end-of-line style of the underlying platform. Handling-mode

may be omitted, in which case it defaults to replace. The result is a transcoder

with the behavior specified by its arguments.

(native-transcoder) procedure

Returns an implementation-dependent transcoder that represents a possibly locale-

dependent “native” transcoding.

(transcoder-codec transcoder) procedure

(transcoder-eol-style transcoder) procedure

(transcoder-error-handling-mode transcoder) procedure

These are accessors for transcoder objects; when applied to a transcoder returned

by make-transcoder, they return the codec, eol-style, and handling-mode arguments,

respectively.

(bytevector->string bytevector transcoder) procedure

Returns the string that results from transcoding the bytevector according to the

input direction of the transcoder.

(string->bytevector string transcoder) procedure

Returns the bytevector that results from transcoding the string according to the

output direction of the transcoder.

8.2.5 End-of-file object

The end-of-file object is returned by various I/O procedures when they reach end

of file.

(eof-object) procedure

Returns the end-of-file object.

(eqv? (eof-object) (eof-object)) =⇒ #t
(eq? (eof-object) (eof-object)) =⇒ #t

Note: The end-of-file object is not a datum value, and thus has no external

representation.

(eof-object? obj) procedure

Returns #t if obj is the end-of-file object, #f otherwise.

Revised6 Scheme 221

8.2.6 Input and output ports

The operations described in this section are common to input and output ports,

both binary and textual. A port may also have an associated position that specifies

a particular place within its data sink or source, and may also provide operations

for inspecting and setting that place.

(port? obj) procedure

Returns #t if the argument is a port, and returns #f otherwise.

(port-transcoder port) procedure

Returns the transcoder associated with port if port is textual and has an associated

transcoder, and returns #f if port is binary or does not have an associated transcoder.

(textual-port? port) procedure

(binary-port? port) procedure

The textual-port? procedure returns #t if port is textual, and returns #f
otherwise. The binary-port? procedure returns #t if port is binary, and returns #f
otherwise.

(transcoded-port binary-port transcoder) procedure

The transcoded-port procedure returns a new textual port with the specified

transcoder . Otherwise the new textual port’s state is largely the same as that of

binary-port . If binary-port is an input port, the new textual port will be an input

port and will transcode the bytes that have not yet been read from binary-port . If

binary-port is an output port, the new textual port will be an output port and will

transcode output characters into bytes that are written to the byte sink represented

by binary-port .

As a side effect, however, transcoded-port closes binary-port in a special way

that allows the new textual port to continue to use the byte source or sink represented

by binary-port , even though binary-port itself is closed and cannot be used by the

input and output operations described in this chapter.

(port-has-port-position? port) procedure

(port-position port) procedure

The port-has-port-position? procedure returns #t if the port supports the

port-position operation, and #f otherwise.

For a binary port, the port-position procedure returns the index of the position

at which the next byte would be read from or written to the port as an exact non-

negative integer object. For a textual port, port-position returns a value of some

implementation-dependent type representing the port’s position; this value may be

useful only as the pos argument to set-port-position!, if the latter is supported

on the port (see below).

If the port does not support the operation, port-position raises an exception

with condition type &assertion.

222 M. Sperber et al.

Note: For a textual port, the port position may or may not be an integer object. If

it is an integer object, the integer object does not necessarily correspond to a byte

or character position.

(port-has-set-port-position!? port) procedure

(set-port-position! port pos) procedure

If port is a binary port, pos should be a non-negative exact integer object. If port

is a textual port, pos should be the return value of a call to port-position on port .

The port-has-set-port-position!? procedure returns #t if the port supports

the set-port-position! operation, and #f otherwise.

The set-port-position! procedure raises an exception with condition type

&assertion if the port does not support the operation, and an exception with

condition type &i/o-invalid-position if pos is not in the range of valid posi-

tions of port . Otherwise, it sets the current position of the port to pos . If port is

an output port, set-port-position! first flushes port . (See flush-output-port,
section 8.2.10.)

If port is a binary output port and the current position is set beyond the

current end of the data in the underlying data sink, the object is not exten-

ded until new data is written at that position. The contents of any intervening

positions are unspecified. Binary ports created by open-file-output-port and

open-file-input/output-port can always be extended in this manner within the

limits of the underlying operating system. In other cases, attempts to set the port

beyond the current end of data in the underlying object may result in an exception

with condition type &i/o-invalid-position.

(close-port port) procedure

Closes the port, rendering the port incapable of delivering or accepting data. If

port is an output port, it is flushed before being closed. This has no effect if the port

has already been closed. A closed port is still a port. The close-port procedure

returns unspecified values.

(call-with-port port proc) procedure

Proc must accept one argument. The call-with-port procedure calls proc with port

as an argument. If proc returns, port is closed automatically and the values returned

by proc are returned. If proc does not return, port is not closed automatically, except

perhaps when it is possible to prove that port will never again be used for an input

or output operation.

8.2.7 Input ports

An input port allows the reading of an infinite sequence of bytes or characters

punctuated by end-of-file objects. An input port connected to a finite data source

ends in an infinite sequence of end-of-file objects.

It is unspecified whether a character encoding consisting of several bytes may have

an end of file between the bytes. If, for example, get-char raises an &i/o-decoding

Revised6 Scheme 223

exception because the character encoding at the port’s position is incomplete up

to the next end of file, a subsequent call to get-char may successfully decode a

character if bytes completing the encoding are available after the end of file.

(input-port? obj) procedure

Returns #t if the argument is an input port (or a combined input and output

port), and returns #f otherwise.

(port-eof? input-port) procedure

Returns #t if the lookahead-u8 procedure (if input-port is a binary port) or

the lookahead-char procedure (if input-port is a textual port) would return the

end-of-file object, and #f otherwise. The operation may block indefinitely if no data

is available but the port cannot be determined to be at end of file.

(open-file-input-port filename) procedure

(open-file-input-port filename file-options) procedure

(open-file-input-port filename procedure

file-options buffer-mode)
(open-file-input-port filename procedure

file-options buffer-mode maybe-transcoder)
Maybe-transcoder must be either a transcoder or #f.

The open-file-input-port procedure returns an input port for the named file.

The file-options and maybe-transcoder arguments are optional.

The file-options argument, which may determine various aspects of the returned

port (see section 8.2.2), defaults to the value of (file-options).
The buffer-mode argument, if supplied, must be one of the symbols that name a

buffer mode. The buffer-mode argument defaults to block.
If maybe-transcoder is a transcoder, it becomes the transcoder associated with the

returned port.

If maybe-transcoder is #f or absent, the port will be a binary port and will

support the port-position and set-port-position! operations. Otherwise the

port will be a textual port, and whether it supports the port-position and

set-port-position! operations is implementation-dependent (and possibly transcoder-

dependent).

(open-bytevector-input-port bytevector) procedure

(open-bytevector-input-port bytevector procedure

maybe-transcoder)
Maybe-transcoder must be either a transcoder or #f.

The open-bytevector-input-port procedure returns an input port whose bytes

are drawn from bytevector . If transcoder is specified, it becomes the transcoder

associated with the returned port.

If maybe-transcoder is #f or absent, the port will be a binary port and will

support the port-position and set-port-position! operations. Otherwise the

port will be a textual port, and whether it supports the port-position and

224 M. Sperber et al.

set-port-position! operations will be implementation-dependent (and possibly

transcoder-dependent).

If bytevector is modified after open-bytevector-input-port has been called, the

effect on the returned port is unspecified.

(open-string-input-port string) procedure

Returns a textual input port whose characters are drawn from string . The

port may or may not have an associated transcoder; if it does, the transcoder

is implementation-dependent. The port should support the port-position and

set-port-position! operations.

If string is modified after open-string-input-port has been called, the effect

on the returned port is unspecified.

(standard-input-port) procedure

Returns a fresh binary input port connected to standard input. Whether the port

supports the port-position and set-port-position! operations is implementation-

dependent.

(current-input-port) procedure

This returns a default textual port for input. Normally, this default port is

associated with standard input, but can be dynamically re-assigned using the

with-input-from-file procedure from the (rnrs io simple (6)) library (see

section 8.3). The port may or may not have an associated transcoder; if it does, the

transcoder is implementation-dependent.

(make-custom-binary-input-port id read! procedure

get-position set-position! close)
Returns a newly created binary input port whose byte source is an arbitrary

algorithm represented by the read! procedure. Id must be a string naming the new

port, provided for informational purposes only. Read! must be a procedure and

should behave as specified below; it will be called by operations that perform binary

input.

Each of the remaining arguments may be #f; if any of those arguments is not #f,
it must be a procedure and should behave as specified below.

• (read! bytevector start count)
Start will be a non-negative exact integer object, count will be a positive exact

integer object, and bytevector will be a bytevector whose length is at least

start + count . The read! procedure should obtain up to count bytes from the

byte source, and should write those bytes into bytevector starting at index

start . The read! procedure should return an exact integer object. This integer

object should represent the number of bytes that it has read. To indicate an

end of file, the read! procedure should write no bytes and return 0.
• (get-position)

The get-position procedure (if supplied) should return an exact integer object

representing the current position of the input port. If not supplied, the custom

port will not support the port-position operation.

Revised6 Scheme 225

• (set-position! pos)
Pos will be a non-negative exact integer object. The set-position! procedure (if

supplied) should set the position of the input port to pos . If not supplied, the

custom port will not support the set-port-position! operation.

• (close)
The close procedure (if supplied) should perform any actions that are necessary

when the input port is closed.

Implementation responsibilities: The implementation must check the return values

of read! and get-position only when it actually calls them as part of an I/O operation

requested by the program. The implementation is not required to check that these

procedures otherwise behave as described. If they do not, however, the behavior of

the resulting port is unspecified.

(make-custom-textual-input-port id read! procedure

get-position set-position! close)
Returns a newly created textual input port whose character source is an arbitrary

algorithm represented by the read! procedure. Id must be a string naming the

new port, provided for informational purposes only. Read! must be a procedure

and should behave as specified below; it will be called by operations that perform

textual input.

Each of the remaining arguments may be #f; if any of those arguments is not #f,
it must be a procedure and should behave as specified below.

• (read! string start count)
Start will be a non-negative exact integer object, count will be a positive exact

integer object, and string will be a string whose length is at least start + count .

The read! procedure should obtain up to count characters from the character

source, and should write those characters into string starting at index start .

The read! procedure should return an exact integer object representing the

number of characters that it has written. To indicate an end of file, the read!

procedure should write no bytes and return 0.

• (get-position)
The get-position procedure (if supplied) should return a single value. The

return value should represent the current position of the input port. If not

supplied, the custom port will not support the port-position operation.

• (set-position! pos)
The set-position! procedure (if supplied) should set the position of the input

port to pos if pos is the return value of a call to get-position . If not supplied,

the custom port will not support the set-port-position! operation.

• (close)
The close procedure (if supplied) should perform any actions that are necessary

when the input port is closed.

The port may or may not have an an associated transcoder; if it does, the

transcoder is implementation-dependent.

226 M. Sperber et al.

Implementation responsibilities: The implementation must check the return values

of read! and get-position only when it actually calls them as part of an I/O operation

requested by the program. The implementation is not required to check that these

procedures otherwise behave as described. If they do not, however, the behavior of

the resulting port is unspecified.

Note: Even when the get-position procedure is supplied, the port-position pro-

cedure cannot generally return a precise value for a custom textual input port if

data has been read from the port. Therefore, it is likely that this entry will change

in a future version of the report.

8.2.8 Binary input

(get-u8 binary-input-port) procedure

Reads from binary-input-port , blocking as necessary, until a byte is available from

binary-input-port or until an end of file is reached. If a byte becomes available,

get-u8 returns the byte as an octet and updates binary-input-port to point just past

that byte. If no input byte is seen before an end of file is reached, the end-of-file

object is returned.

(lookahead-u8 binary-input-port) procedure

The lookahead-u8 procedure is like get-u8, but it does not update binary-input-port

to point past the byte.

(get-bytevector-n binary-input-port count) procedure

Count must be an exact, non-negative integer object representing the number of

bytes to be read. The get-bytevector-n procedure reads from binary-input-port ,

blocking as necessary, until count bytes are available from binary-input-port or

until an end of file is reached. If count bytes are available before an end of file,

get-bytevector-n returns a bytevector of size count . If fewer bytes are available

before an end of file, get-bytevector-n returns a bytevector containing those bytes.

In either case, the input port is updated to point just past the bytes read. If an

end of file is reached before any bytes are available, get-bytevector-n returns the

end-of-file object.

(get-bytevector-n! binary-input-port procedure

bytevector start count)
Start and count must be exact, non-negative integer objects, with count representing

the number of bytes to be read. bytevector must be a bytevector with at least

start + count elements.

The get-bytevector-n! procedure reads from binary-input-port , blocking as

necessary, until count bytes are available from binary-input-port or until an end of

file is reached. If count bytes are available before an end of file, they are written into

bytevector starting at index start , and the result is count . If fewer bytes are available

before the next end of file, the available bytes are written into bytevector starting

at index start , and the result is a number object representing the number of bytes

Revised6 Scheme 227

actually read. In either case, the input port is updated to point just past the bytes

read. If an end of file is reached before any bytes are available, get-bytevector-n!
returns the end-of-file object.

(get-bytevector-some binary-input-port) procedure

Reads from binary-input-port , blocking as necessary, until bytes are available

from binary-input-port or until an end of file is reached. If bytes become available,

get-bytevector-some returns a freshly allocated bytevector containing the initial

available bytes (at least one), and it updates binary-input-port to point just past

these bytes. If no input bytes are seen before an end of file is reached, the end-of-file

object is returned.

(get-bytevector-all binary-input-port) procedure

Attempts to read all bytes until the next end of file, blocking as necessary. If one

or more bytes are read, get-bytevector-all returns a bytevector containing all

bytes up to the next end of file and updates binary-input-port to point just past these

bytes. Otherwise, get-bytevector-all returns the end-of-file object. The operation

may block indefinitely waiting to see if more bytes will become available, even if

some bytes are already available.

8.2.9 Textual input

(get-char textual-input-port) procedure

Reads from textual-input-port , blocking as necessary, until a complete character

is available from textual-input-port , or until an end of file is reached.

If a complete character is available before the next end of file, get-char returns

that character and updates the input port to point past the character. If an end of

file is reached before any character is read, get-char returns the end-of-file object.

(lookahead-char textual-input-port) procedure

The lookahead-char procedure is like get-char, but it does not update the

position of textual-input-port to point past the character.

Note: With some of the standard transcoders described in this document, up to

four bytes of lookahead are needed. Nonstandard transcoders may need even more

lookahead.

(get-string-n textual-input-port count) procedure

Count must be an exact, non-negative integer object, representing the number of

characters to be read.

The get-string-n procedure reads from textual-input-port , blocking as necessary,

until count characters are available, or until an end of file is reached.

If count characters are available before end of file, get-string-n returns a string

consisting of those count characters. If fewer characters are available before an end

of file, but one or more characters can be read, get-string-n returns a string

228 M. Sperber et al.

containing those characters. In either case, the input port is updated to point just

past the characters read. If no characters can be read before an end of file, the

end-of-file object is returned.

(get-string-n! textual-input-port string start count) procedure

Start and count must be exact, non-negative integer objects, with count representing

the number of characters to be read. String must be a string with at least start+count

characters.

The get-string-n! procedure reads from textual-input-port in the same manner

as get-string-n. If count characters are available before an end of file, they are

written into string starting at index start , and count is returned. If fewer characters

are available before an end of file, but one or more can be read, those characters

are written into string starting at index start and the number of characters actually

read is returned as an exact integer object. If no characters can be read before an

end of file, the end-of-file object is returned.

(get-string-all textual-input-port) procedure

Reads from textual-input-port until an end of file, decoding characters in the same

manner as get-string-n and get-string-n!.
If characters are available before the end of file, a string containing all the

characters decoded from that data are returned. If no character precedes the end of

file, the end-of-file object is returned.

(get-line textual-input-port) procedure

Reads from textual-input-port up to and including the linefeed character or end of

file, decoding characters in the same manner as get-string-n and get-string-n!.
If a linefeed character is read, a string containing all of the text up to (but not

including) the linefeed character is returned, and the port is updated to point just

past the linefeed character. If an end of file is encountered before any linefeed

character is read, but some characters have been read and decoded as characters, a

string containing those characters is returned. If an end of file is encountered before

any characters are read, the end-of-file object is returned.

Note: The end-of-line style, if not none, will cause all line endings to be read as

linefeed characters. See section 8.2.4.

(get-datum textual-input-port) procedure

Reads an external representation from textual-input-port and returns the datum

it represents. The get-datum procedure returns the next datum that can be parsed

from the given textual-input-port , updating textual-input-port to point exactly past

the end of the external representation of the object.

Any 〈interlexeme space〉 (see report section 4.2) in the input is first skipped.

If an end of file occurs after the 〈interlexeme space〉, the end-of-file object (see

section 8.2.5) is returned.

If a character inconsistent with an external representation is encountered in the

input, an exception with condition types &lexical and &i/o-read is raised. Also,

Revised6 Scheme 229

if the end of file is encountered after the beginning of an external representation,

but the external representation is incomplete and therefore cannot be parsed, an

exception with condition types &lexical and &i/o-read is raised.

8.2.10 Output ports

An output port is a sink to which bytes or characters are written. The written

data may control external devices or may produce files and other objects that may

subsequently be opened for input.

(output-port? obj) procedure

Returns #t if the argument is an output port (or a combined input and output

port), #f otherwise.

(flush-output-port output-port) procedure

Flushes any buffered output from the buffer of output-port to the underlying file,

device, or object. The flush-output-port procedure returns unspecified values.

(output-port-buffer-mode output-port) procedure

Returns the symbol that represents the buffer mode of output-port .

(open-file-output-port filename) procedure

(open-file-output-port filename file-options) procedure

(open-file-output-port filename file-options buffer-mode) procedure

(open-file-output-port filename file-options buffer-mode procedure

maybe-transcoder)
Maybe-transcoder must be either a transcoder or #f.

The open-file-output-port procedure returns an output port for the named

file.

The file-options argument, which may determine various aspects of the returned

port (see section 8.2.2), defaults to the value of (file-options).
The buffer-mode argument, if supplied, must be one of the symbols that name a

buffer mode. The buffer-mode argument defaults to block.
If maybe-transcoder is a transcoder, it becomes the transcoder associated with the

port.

If maybe-transcoder is #f or absent, the port will be a binary port and will

support the port-position and set-port-position! operations. Otherwise the

port will be a textual port, and whether it supports the port-position and

set-port-position! operations is implementation-dependent (and possibly trans-

coder-dependent).

(open-bytevector-output-port) procedure

(open-bytevector-output-port maybe-transcoder) procedure

Maybe-transcoder must be either a transcoder or #f.
The open-bytevector-output-port procedure returns two values: an output

230 M. Sperber et al.

port and an extraction procedure. The output port accumulates the bytes written to

it for later extraction by the procedure.

If maybe-transcoder is a transcoder, it becomes the transcoder associated with

the port. If maybe-transcoder is #f or absent, the port will be a binary port

and will support the port-position and set-port-position! operations. Other-

wise the port will be a textual port, and whether it supports the port-position
and set-port-position! operations is implementation-dependent (and possibly

transcoder-dependent).

The extraction procedure takes no arguments. When called, it returns a bytevector

consisting of all the port’s accumulated bytes (regardless of the port’s current

position), removes the accumulated bytes from the port, and resets the port’s position.

(call-with-bytevector-output-port proc) procedure

(call-with-bytevector-output-port proc maybe-transcoder)

Proc must accept one argument. Maybe-transcoder must be either a transcoder or

#f.
The call-with-bytevector-output-port procedure creates an output port that

accumulates the bytes written to it and calls proc with that output port as an argu-

ment. Whenever proc returns, a bytevector consisting of all of the port’s accumulated

bytes (regardless of the port’s current position) is returned and the port is closed.

The transcoder associated with the output port is determined as for a call to

open-bytevector-output-port.

(open-string-output-port) procedure

Returns two values: a textual output port and an extraction procedure. The output

port accumulates the characters written to it for later extraction by the procedure.

The port may or may not have an associated transcoder; if it does, the transcoder

is implementation-dependent. The port should support the port-position and

set-port-position! operations.

The extraction procedure takes no arguments. When called, it returns a string

consisting of all of the port’s accumulated characters (regardless of the current

position), removes the accumulated characters from the port, and resets the port’s

position.

(call-with-string-output-port proc) procedure

Proc must accept one argument. The call-with-string-output-port procedure

creates a textual output port that accumulates the characters written to it and

calls proc with that output port as an argument. Whenever proc returns, a string

consisting of all of the port’s accumulated characters (regardless of the port’s current

position) is returned and the port is closed.

The port may or may not have an associated transcoder; if it does, the transcoder

is implementation-dependent. The port should support the port-position and

set-port-position! operations.

Revised6 Scheme 231

(standard-output-port) procedure

(standard-error-port) procedure

Returns a fresh binary output port connected to the standard output or standard

error respectively. Whether the port supports the port-position and set-port-
position! operations is implementation-dependent.

(current-output-port) procedure

(current-error-port) procedure

These return default textual ports for regular output and error output. Normally,

these default ports are associated with standard output, and standard error, respect-

ively. The return value of current-output-port can be dynamically re-assigned

using the with-output-to-file procedure from the (rnrs io simple (6)) lib-

rary (see section 8.3). A port returned by one of these procedures may or may

not have an associated transcoder; if it does, the transcoder is implementation-

dependent.

(make-custom-binary-output-port id write! procedure

get-position set-position! close)
Returns a newly created binary output port whose byte sink is an arbitrary

algorithm represented by the write! procedure. Id must be a string naming the new

port, provided for informational purposes only. Write! must be a procedure and

should behave as specified below; it will be called by operations that perform binary

output.

Each of the remaining arguments may be #f; if any of those arguments is not

#f, it must be a procedure and should behave as specified in the description of

make-custom-binary-input-port.

• (write! bytevector start count)
Start and count will be non-negative exact integer objects, and bytevector will

be a bytevector whose length is at least start + count . The write! procedure

should write up to count bytes from bytevector starting at index start to the

byte sink. The write! procedure should return the number of bytes that it

wrote, as an exact integer object.

Implementation responsibilities: The implementation must check the return values

of write! only when it actually calls write! as part of an I/O operation requested

by the program. The implementation is not required to check that write! otherwise

behaves as described. If it does not, however, the behavior of the resulting port is

unspecified.

(make-custom-textual-output-port id write! procedure

get-position set-position! close)
Returns a newly created textual output port whose byte sink is an arbitrary

algorithm represented by the write! procedure. Id must be a string naming the new

port, provided for informational purposes only. Write! must be a procedure and

232 M. Sperber et al.

should behave as specified below; it will be called by operations that perform textual

output.

Each of the remaining arguments may be #f; if any of those arguments is not

#f, it must be a procedure and should behave as specified in the description of

make-custom-textual-input-port.

• (write! string start count)
Start and count will be non-negative exact integer objects, and string will be a

string whose length is at least start + count . The write! procedure should write

up to count characters from string starting at index start to the character sink.

The write! procedure should return the number of characters that it wrote, as

an exact integer object.

The port may or may not have an associated transcoder; if it does, the transcoder

is implementation-dependent.

Implementation responsibilities: The implementation must check the return values

of write! only when it actually calls write! as part of an I/O operation requested

by the program. The implementation is not required to check that write! otherwise

behaves as described. If it does not, however, the behavior of the resulting port is

unspecified.

8.2.11 Binary output

(put-u8 binary-output-port octet) procedure

Writes octet to the output port and returns unspecified values.

(put-bytevector binary-output-port bytevector) procedure

(put-bytevector binary-output-port bytevector start) procedure

(put-bytevector binary-output-port bytevector start count)
procedureStart and count must be non-negative exact integer objects that

default to 0 and (bytevector-length bytevector) − start , respectively. Bytevector

must have a length of at least start + count . The put-bytevector procedure writes

the count bytes of the bytevector bytevector starting at index start to the output

port. The put-bytevector procedure returns unspecified values.

8.2.12 Textual output

(put-char textual-output-port char) procedure

Writes char to the port. The put-char procedure returns unspecified values.

(put-string textual-output-port string) procedure

(put-string textual-output-port string start) procedure

(put-string textual-output-port string start count) procedure

Start and count must be non-negative exact integer objects. String must have a

length of at least start + count . Start defaults to 0. Count defaults to

(string-length string) − start .

Revised6 Scheme 233

The put-string procedure writes the count characters of string starting at index

start to the port. The put-string procedure returns unspecified values.

(put-datum textual-output-port datum) procedure

Datum should be a datum value. The put-datum procedure writes an external

representation of datum to textual-output-port . The specific external representation is

implementation-dependent. However, whenever possible, an implementation should

produce a representation for which get-datum, when reading the representation,

will return an object equal (in the sense of equal?) to datum .

Note: Not all datums may allow producing an external representation for which

get-datum will produce an object that is equal to the original. Specifically, NaNs

contained in datum may make this impossible.

Note: The put-datum procedure merely writes the external representation, but

no trailing delimiter. If put-datum is used to write several subsequent external

representations to an output port, care should be taken to delimit them properly so

they can be read back in by subsequent calls to get-datum.

8.2.13 Input/output ports

(open-file-input/output-port filename) procedure

(open-file-input/output-port filename file-options) procedure

(open-file-input/output-port filename file-options buffer-mode) procedure

(open-file-input/output-port filename file-options buffer-mode procedure

transcoder)
Returns a single port that is both an input port and an output port for the

named file. The optional arguments default as described in the specification of

open-file-output-port. If the input/output port supports port-position and/or

set-port-position!, the same port position is used for both input and output.

(make-custom-binary-input/output-port id read! write! procedure

get-position set-position! close)
Returns a newly created binary input/output port whose byte source and sink

are arbitrary algorithms represented by the read! and write! procedures. Id must

be a string naming the new port, provided for informational purposes only.

Read! and write! must be procedures, and should behave as specified for the

make-custom-binary-input-port and make-custom-binary-output-port pro-

cedures.

Each of the remaining arguments may be #f; if any of those arguments is not

#f, it must be a procedure and should behave as specified in the description of

make-custom-binary-input-port.
Note: Unless both get-position and set-position! procedures are supplied, a put oper-

ation cannot precisely position the port for output to a custom binary input/output

port after data has been read from the port. Therefore, it is likely that this entry

will change in a future version of the report.

234 M. Sperber et al.

(make-custom-textual-input/output-port id read! write! procedure

get-position set-position! close)
Returns a newly created textual input/output port whose textual source and

sink are arbitrary algorithms represented by the read! and write! procedures.

Id must be a string naming the new port, provided for informational purposes

only. Read! and write! must be procedures, and should behave as specified for

the make-custom-textual-input-port and make-custom-textual-output-port
procedures.

Each of the remaining arguments may be #f; if any of those arguments is not

#f, it must be a procedure and should behave as specified in the description of

make-custom-textual-input-port.
Note: Even when both get-position and set-position! procedures are supplied, the

port-position procedure cannot generally return a precise value for a custom

textual input/output port, and a put operation cannot precisely position the port

for output, after data has been read from the port. Therefore, it is likely that this

entry will change in a future version of the report.

8.3 Simple I/O

This section describes the (rnrs io simple (6)) library, which provides a some-

what more convenient interface for performing textual I/O on ports. This library

implements most of the I/O procedures of the previous revision of this report (Kelsey

et al., 1998).

The ports created by the procedures of this library are textual ports associated

implementation-dependent transcoders.

(eof-object) procedure

(eof-object? obj) procedure

These are the same as eof-object and eof-object? from the (rnrs io ports
(6)) library.

(call-with-input-file filename proc) procedure

(call-with-output-file filename proc) procedure

Proc should accept one argument. These procedures open the file named by filename

for input or for output, with no specified file options, and call proc with the obtained

port as an argument. If proc returns, the port is closed automatically and the values

returned by proc are returned. If proc does not return, the port is not closed

automatically, unless it is possible to prove that the port will never again be used

for an I/O operation.

(input-port? obj) procedure

(output-port? obj) procedure

These are the same as the input-port? and output-port? procedures in the

(rnrs io ports (6)) library.

Revised6 Scheme 235

(current-input-port) procedure

(current-output-port) procedure

(current-error-port) procedure

These are the same as the current-input-port, current-output-port, and

current-error-port procedures from the (rnrs io ports (6)) library.

(with-input-from-file filename thunk) procedure

(with-output-to-file filename thunk) procedure

Thunk must be a procedure and must accept zero arguments. The file is opened for

input or output using empty file options, and thunk is called with no arguments.

During the dynamic extent of the call to thunk , the obtained port is made the

value returned by current-input-port or current-output-port procedures; the

previous default values are reinstated when the dynamic extent is exited. When

thunk returns, the port is closed automatically. The values returned by thunk are

returned. If an escape procedure is used to escape back into the call to thunk after

thunk is returned, the behavior is unspecified.

(open-input-file filename) procedure

Opens filename for input, with empty file options, and returns the obtained port.

(open-output-file filename) procedure

Opens filename for output, with empty file options, and returns the obtained port.

(close-input-port input-port) procedure

(close-output-port output-port) procedure

Closes input-port or output-port , respectively.

(read-char) procedure

(read-char textual-input-port) procedure

Reads from textual-input-port , blocking as necessary until a character is available

from textual-input-port , or the data that are available cannot be the prefix of any

valid encoding, or an end of file is reached.

If a complete character is available before the next end of file, read-char returns

that character, and updates the input port to point past that character. If an end of

file is reached before any data are read, read-char returns the end-of-file object.

If textual-input-port is omitted, it defaults to the value returned by current-input-
port.

(peek-char) procedure

(peek-char textual-input-port) procedure

This is the same as read-char, but does not consume any data from the port.

(read) procedure

(read textual-input-port) procedure

Reads an external representation from textual-input-port and returns the datum

236 M. Sperber et al.

it represents. The read procedure operates in the same way as get-datum, see

section 8.2.9.

If textual-input-port is omitted, it defaults to the value returned by current-input-
port.

(write-char char) procedure

(write-char char textual-output-port) procedure

Writes an encoding of the character char to the textual-output-port , and returns

unspecified values.

If textual-output-port is omitted, it defaults to the value returned by current-
output-port.

(newline) procedure

(newline textual-output-port) procedure

This is equivalent to using write-char to write #\linefeed to textual-output-port .

If textual-output-port is omitted, it defaults to the value returned by current-
output-port.

(display obj) procedure

(display obj textual-output-port) procedure

Writes a representation of obj to the given textual-output-port . Strings that appear

in the written representation are not enclosed in doublequotes, and no characters

are escaped within those strings. Character objects appear in the representation

as if written by write-char instead of by write. The display procedure returns

unspecified values. The textual-output-port argument may be omitted, in which case

it defaults to the value returned by current-output-port.

(write obj) procedure

(write obj textual-output-port) procedure

Writes the external representation of obj to textual-output-port . The write pro-

cedure operates in the same way as put-datum; see section 8.2.12.

If textual-output-port is omitted, it defaults to the value returned by current-
output-port.

9 File system

This chapter describes the (rnrs files (6)) library for operations on the file

system. This library, in addition to the procedures described here, also exports the

I/O condition types described in section 8.1.

(file-exists? filename) procedure

Filename must be a file name (see section 8.2.1). The file-exists? procedure

returns #t if the named file exists at the time the procedure is called, #f otherwise.

Revised6 Scheme 237

(delete-file filename) procedure

Filename must be a file name (see section 8.2.1). The delete-file procedure deletes

the named file if it exists and can be deleted, and returns unspecified values. If the file

does not exist or cannot be deleted, an exception with condition type &i/o-filename
is raised.

10 Command-line access and exit values

The procedures described in this section are exported by the (rnrs programs (6))
library.

(command-line) procedure

Returns a nonempty list of strings. The first element is an implementation-specific

name for the running top-level program. The remaining elements are command-line

arguments according to the operating system’s conventions.

(exit) procedure

(exit obj) procedure

Exits the running program and communicates an exit value to the operating

system. If no argument is supplied, the exit procedure should communicate to the

operating system that the program exited normally. If an argument is supplied, the

exit procedure should translate the argument into an appropriate exit value for the

operating system. If obj is #f, the exit is assumed to be abnormal.

11 Arithmetic

This chapter describes Scheme’s libraries for more specialized numerical operations:

fixnum and flonum arithmetic, as well as bitwise operations on exact integer objects.

11.1 Bitwise operations

A number of procedures operate on the binary two’s-complement representations of

exact integer objects: Bit positions within an exact integer object are counted from

the right, i.e. bit 0 is the least significant bit. Some procedures allow extracting bit

fields, i.e., number objects representing subsequences of the binary representation of

an exact integer object. Bit fields are always positive, and always defined using a

finite number of bits.

11.2 Fixnums

Every implementation must define its fixnum range as a closed interval

[−2w−1, 2w−1 − 1]

such that w is a (mathematical) integer w " 24. Every mathematical integer within

an implementation’s fixnum range must correspond to an exact integer object that is

238 M. Sperber et al.

representable within the implementation. A fixnum is an exact integer object whose

value lies within this fixnum range.

This section describes the (rnrs arithmetic fixnums (6)) library, which de-

fines various operations on fixnums. Fixnum operations perform integer arith-

metic on their fixnum arguments, but raise an exception with condition type

&implementation-restriction if the result is not a fixnum.

This section uses fx , fx1, fx2, etc., as parameter names for arguments that must

be fixnums.

(fixnum? obj) procedure

Returns #t if obj is an exact integer object within the fixnum range, #f otherwise.

(fixnum-width) procedure

(least-fixnum) procedure

(greatest-fixnum) procedure

These procedures return w, −2w−1 and 2w−1 − 1: the width, minimum and the

maximum value of the fixnum range, respectively.

(fx=? fx1 fx2 fx3 . . .) procedure

(fx>? fx1 fx2 fx3 . . .) procedure

(fx<? fx1 fx2 fx3 . . .) procedure

(fx>=? fx1 fx2 fx3 . . .) procedure

(fx<=? fx1 fx2 fx3 . . .) procedure

These procedures return #t if their arguments are (respectively): equal, monoton-

ically increasing, monotonically decreasing, monotonically nondecreasing, or mono-

tonically nonincreasing, #f otherwise.

(fxzero? fx) procedure

(fxpositive? fx) procedure

(fxnegative? fx) procedure

(fxodd? fx) procedure

(fxeven? fx) procedure

These numerical predicates test a fixnum for a particular property, returning #t
or #f. The five properties tested by these procedures are: whether the number object

is zero, greater than zero, less than zero, odd, or even.

(fxmax fx1 fx2 . . .) procedure

(fxmin fx1 fx2 . . .) procedure

These procedures return the maximum or minimum of their arguments.

(fx+ fx1 fx2) procedure

(fx* fx1 fx2) procedure

These procedures return the sum or product of their arguments, provided that

Revised6 Scheme 239

sum or product is a fixnum. An exception with condition type &implementation-
restriction is raised if that sum or product is not a fixnum.

(fx- fx1 fx2) procedure

(fx- fx) procedure

With two arguments, this procedure returns the difference fx1 − fx2, provided that

difference is a fixnum.

With one argument, this procedure returns the additive inverse of its argument,

provided that integer object is a fixnum.

An exception with condition type &implementation-restriction is raised if the

mathematically correct result of this procedure is not a fixnum.

(fx- (least-fixnum)) =⇒ &assertion exception

(fxdiv-and-mod fx1 fx2) procedure

(fxdiv fx1 fx2) procedure

(fxmod fx1 fx2) procedure

(fxdiv0-and-mod0 fx1 fx2) procedure

(fxdiv0 fx1 fx2) procedure

(fxmod0 fx1 fx2) procedure

Fx2 must be nonzero. These procedures implement number-theoretic integer division

and return the results of the corresponding mathematical operations specified in

report section 11.7.4.

(fxdiv fx1 fx2) =⇒ fx1 div fx2

(fxmod fx1 fx2) =⇒ fx1 mod fx2

(fxdiv-and-mod fx1 fx2) =⇒ fx1 div fx2, fx1 mod fx2

; two return values

(fxdiv0 fx1 fx2) =⇒ fx1 div0 fx2

(fxmod0 fx1 fx2) =⇒ fx1 mod0 fx2

(fxdiv0-and-mod0 fx1 fx2) =⇒ fx1 fx1 div0 fx2, fx1 mod0 fx2

; two return values

(fx+/carry fx1 fx2 fx3) procedure

Returns the two fixnum results of the following computation:

(let* ((s (+ fx1 fx2 fx3))
(s0 (mod0 s (expt 2 (fixnum-width))))
(s1 (div0 s (expt 2 (fixnum-width)))))

(values s0 s1))

(fx-/carry fx1 fx2 fx3) procedure

Returns the two fixnum results of the following computation:

240 M. Sperber et al.

(let* ((d (- fx1 fx2 fx3))
(d0 (mod0 d (expt 2 (fixnum-width))))
(d1 (div0 d (expt 2 (fixnum-width)))))

(values d0 d1))

(fx*/carry fx1 fx2 fx3) procedure

Returns the two fixnum results of the following computation:

(let* ((s (+ (* fx1 fx2) fx3))
(s0 (mod0 s (expt 2 (fixnum-width))))
(s1 (div0 s (expt 2 (fixnum-width)))))

(values s0 s1))

(fxnot fx) procedure

Returns the unique fixnum that is congruent mod 2w to the one’s-complement of

fx .

(fxand fx1 . . .) procedure

(fxior fx1 . . .) procedure

(fxxor fx1 . . .) procedure

These procedures return the fixnum that is the bit-wise “and”, “inclusive or”, or

“exclusive or” of the two’s complement representations of their arguments. If they

are passed only one argument, they return that argument. If they are passed no

arguments, they return the fixnum (either −1 or 0) that acts as identity for the

operation.

(fxif fx1 fx2 fx3) procedure

Returns the fixnum that is the bit-wise “if” of the two’s complement represent-

ations of its arguments, i.e. for each bit, if it is 1 in fx1, the corresponding bit in

fx2 becomes the value of the corresponding bit in the result, and if it is 0, the

corresponding bit in fx3 becomes the corresponding bit in the value of the result.

This is the fixnum result of the following computation:

(fxior (fxand fx1 fx2)
(fxand (fxnot fx1) fx3))

(fxbit-count fx) procedure

If fx is non-negative, this procedure returns the number of 1 bits in the two’s

complement representation of fx . Otherwise it returns the result of the following

computation:

(fxnot (fxbit-count (fxnot ei)))

(fxlength fx) procedure

Returns the number of bits needed to represent fx if it is positive, and the number

of bits needed to represent (fxnot fx) if it is negative, which is the fixnum result

of the following computation:

Revised6 Scheme 241

(do ((result 0 (+ result 1))
(bits (if (fxnegative? fx)

(fxnot fx)
fx)

(fxarithmetic-shift-right bits 1)))
((fxzero? bits)
result))

(fxfirst-bit-set fx) procedure

Returns the index of the least significant 1 bit in the two’s complement represent-

ation of fx . If fx is 0, then −1 is returned.

(fxfirst-bit-set 0) =⇒ -1
(fxfirst-bit-set 1) =⇒ 0
(fxfirst-bit-set -4) =⇒ 2

(fxbit-set? fx1 fx2) procedure

Fx2 must be non-negative. The fxbit-set? procedure returns #t if the fx2th bit is

1 in the two’s complement representation of fx1, and #f otherwise. This is the result

of the following computation:

(if (fx>= fx2 (fx- (fixnum-width) 1))
(fxnegative? fx1)
(not
(fxzero?

(fxand fx1

(fxarithmetic-shift-left 1 fx2)))))

(fxcopy-bit fx1 fx2 fx3) procedure

Fx2 must be non-negative and less than w − 1. Fx3 must be 0 or 1. The fxcopy-bit
procedure returns the result of replacing the fx2th bit of fx1 by fx3, which is the

result of the following computation:

(let* ((mask (fxarithmetic-shift-left 1 fx2)))
(fxif mask

(fxarithmetic-shift-left fx3 fx2)
fx1))

(fxbit-field fx1 fx2 fx3) procedure

Fx2 and fx3 must be non-negative and less than w. Moreover, fx2 must be less than

or equal to fx3. The fxbit-field procedure returns the number represented by the

bits at the positions from fx2 (inclusive) to fx3 (exclusive), which is the fixnum result

of the following computation:

242 M. Sperber et al.

(let* ((mask (fxnot
(fxarithmetic-shift-left -1 fx3))))

(fxarithmetic-shift-right (fxand fx1 mask)
fx2))

(fxcopy-bit-field fx1 fx2 fx3 fx4) procedure

Fx2 and fx3 must be non-negative and less than w. Moreover, fx2 must be less than

or equal to fx3. The fxcopy-bit-field procedure returns the result of replacing in

fx1 the bits at positions from fx2 (inclusive) to fx3 (exclusive) by the bits in fx4 from

position 0 (inclusive) to position fx3 − fx2 (exclusive), which is the fixnum result of

the following computation:

(let* ((to fx1)
(start fx2)
(end fx3)
(from fx4)
(mask1 (fxarithmetic-shift-left -1 start))
(mask2 (fxnot

(fxarithmetic-shift-left -1 end)))
(mask (fxand mask1 mask2))
(mask3 (fxnot (fxarithmetic-shift-left

-1 (- end start)))))
(fxif mask

(fxarithmetic-shift-left (fxand from mask3)
start)

to))

(fxcopy-bit-field #b0000001 2 5 #b1111000)=⇒ 1
(fxcopy-bit-field #b0000001 2 5 #b0001111)=⇒ 29
(fxcopy-bit-field #b0001111 2 5 #b0001111)=⇒ 31

(fxarithmetic-shift fx1 fx2) procedure

The absolute value of fx2 must be less than w. If

(floor (* fx1 (expt 2 fx2)))

is a fixnum, then that fixnum is returned. Otherwise an exception with condition

type &implementation-restriction is raised.

(fxarithmetic-shift-left fx1 fx2) procedure

(fxarithmetic-shift-right fx1 fx2) procedure

Fx2 must be non-negative, and less than w. The fxarithmetic-shift-left pro-

cedure behaves the same as fxarithmetic-shift, and the expression

(fxarithmetic-shift-right fx1 fx2)

Revised6 Scheme 243

behaves the same as the expression (fxarithmetic-shift fx1 (fx- fx2)).

(fxrotate-bit-field fx1 fx2 fx3 fx4) procedure

Fx2, fx3, and fx4 must be non-negative and less than w. Fx2 must be less than or

equal to fx3. Fx4 must be less than or equal to the difference between fx3 and fx2.

The fxrotate-bit-field procedure returns the result of cyclically permuting in

fx1 the bits at positions from fx2 (inclusive) to fx3 (exclusive) by fx4 bits towards

the more significant bits, which is the result of the following computation:

(let* ((n fx1)
(start fx2)
(end fx3)
(count fx4)
(width (fx- end start)))

(fxcopy-bit-field n start end
(fxior
(fxarithmetic-shift-left

(fxbit-field n start (fx- end count))
count)

(fxarithmetic-shift-right
(fxbit-field n start end)
(fx- width count)))))

(fxreverse-bit-field fx1 fx2 fx3) procedure

Fx2 and fx3 must be non-negative and less than w. Moreover, fx2 must be less than

or equal to fx3. The fxreverse-bit-field procedure returns the fixnum obtained

from fx1 by reversing the order of the bits at positions from fx2 (inclusive) to fx3

(exclusive).

(fxreverse-bit-field #b1010010 1 4) =⇒ 88 ; #b1011000

11.3 Flonums

This section describes the (rnrs arithmetic flonums (6)) library.

This section uses fl , fl1, fl2, etc., as parameter names for arguments that must be

flonums, and ifl as a name for arguments that must be integer-valued flonums, i.e.,

flonums for which the integer-valued? predicate returns true.

(flonum? obj) procedure

Returns #t if obj is a flonum, #f otherwise.

(real->flonum x) procedure

Returns the best flonum representation of x .

The value returned is a flonum that is numerically closest to the argument.

Note: If flonums are represented in binary floating point, then implementations

244 M. Sperber et al.

should break ties by preferring the floating-point representation whose least signi-

ficant bit is zero.

(fl=? fl1 fl2 fl3 . . .) procedure

(fl<? fl1 fl2 fl3 . . .) procedure

(fl<=? fl1 fl2 fl3 . . .) procedure

(fl>? fl1 fl2 fl3 . . .) procedure

(fl>=? fl1 fl2 fl3 . . .) procedure

These procedures return #t if their arguments are (respectively): equal, monoton-

ically increasing, monotonically decreasing, monotonically nondecreasing, or mono-

tonically nonincreasing, #f otherwise. These predicates must be transitive.

(fl=? +inf.0 +inf.0) =⇒ #t
(fl=? -inf.0 +inf.0) =⇒ #f
(fl=? -inf.0 -inf.0) =⇒ #t
(fl=? 0.0 -0.0) =⇒ #t
(fl<? 0.0 -0.0) =⇒ #f
(fl=? +nan.0 fl) =⇒ #f
(fl<? +nan.0 fl) =⇒ #f

(flinteger? fl) procedure

(flzero? fl) procedure

(flpositive? fl) procedure

(flnegative? fl) procedure

(flodd? ifl) procedure

(fleven? ifl) procedure

(flfinite? fl) procedure

(flinfinite? fl) procedure

(flnan? fl) procedure

These numerical predicates test a flonum for a particular property, returning #t
or #f. The flinteger? procedure tests whether the number object is an integer,

flzero? tests whether it is fl=? to zero, flpositive? tests whether it is greater

than zero, flnegative? tests whether it is less than zero, flodd? tests whether

it is odd, fleven? tests whether it is even, flfinite? tests whether it is not an

infinity and not a NaN, flinfinite? tests whether it is an infinity, and flnan?
tests whether it is a NaN.

(flnegative? -0.0) =⇒ #f
(flfinite? +inf.0) =⇒ #f
(flfinite? 5.0) =⇒ #t
(flinfinite? 5.0) =⇒ #f
(flinfinite? +inf.0) =⇒ #t

Note: (flnegative? -0.0) must return #f, else it would lose the correspondence

with (fl< -0.0 0.0), which is #f according to IEEE 754 (IEEE754, 1985).

Revised6 Scheme 245

(flmax fl1 fl2 . . .) procedure

(flmin fl1 fl2 . . .) procedure

These procedures return the maximum or minimum of their arguments. They

always return a NaN when one or more of the arguments is a NaN.

(fl+ fl1 . . .) procedure

(fl* fl1 . . .) procedure

These procedures return the flonum sum or product of their flonum arguments.

In general, they should return the flonum that best approximates the mathematical

sum or product. (For implementations that represent flonums using IEEE binary

floating point, the meaning of “best” is defined by the IEEE standards.)

(fl+ +inf.0 -inf.0) =⇒ +nan.0
(fl+ +nan.0 fl) =⇒ +nan.0
(fl* +nan.0 fl) =⇒ +nan.0

(fl- fl1 fl2 . . .) procedure

(fl- fl) procedure

(fl/ fl1 fl2 . . .) procedure

(fl/ fl) procedure

With two or more arguments, these procedures return the flonum difference or

quotient of their flonum arguments, associating to the left. With one argument,

however, they return the additive or multiplicative flonum inverse of their argument.

In general, they should return the flonum that best approximates the mathematical

difference or quotient. (For implementations that represent flonums using IEEE

binary floating point, the meaning of “best” is reasonably well-defined by the IEEE

standards.)

(fl- +inf.0 +inf.0) =⇒ +nan.0

For undefined quotients, fl/ behaves as specified by the IEEE standards:

(fl/ 1.0 0.0) =⇒ +inf.0
(fl/ -1.0 0.0) =⇒ -inf.0
(fl/ 0.0 0.0) =⇒ +nan.0

(flabs fl) procedure

Returns the absolute value of fl .

(fldiv-and-mod fl1 fl2) procedure

(fldiv fl1 fl2) procedure

(flmod fl1 fl2) procedure

(fldiv0-and-mod0 fl1 fl2) procedure

(fldiv0 fl1 fl2) procedure

(flmod0 fl1 fl2) procedure

These procedures implement number-theoretic integer division and return the res-

ults of the corresponding mathematical operations specified in report section 11.7.4.

246 M. Sperber et al.

In the cases where the mathematical requirements in section 11.7.4 cannot be sat-

isfied by any number object, either an exception is raised with condition type

&implementation-restriction, or unspecified flonums (one for fldiv flmod,
fldiv0 and flmod0, two for fldiv-and-mod and fldiv0-and-mod0) are returned.

(fldiv fl1 fl2) =⇒ fl1 div fl2

(flmod fl1 fl2) =⇒ fl1 mod fl2

(fldiv-and-mod fl1 fl2) =⇒ fl1 div fl2, fl1 mod fl2

; two return values

(fldiv0 fl1 fl2) =⇒ fl1 div0 fl2

(flmod0 fl1 fl2) =⇒ fl1 mod0 fl2

(fldiv0-and-mod0 fl1 fl2) =⇒ fl1 div0 fl2, fl1 mod0 fl2

; two return values

(flnumerator fl) procedure

(fldenominator fl) procedure

These procedures return the numerator or denominator of fl as a flonum; the

result is computed as if fl was represented as a fraction in lowest terms. The

denominator is always positive. The denominator of 0.0 is defined to be 1.0.

(flnumerator +inf.0) =⇒ +inf.0
(flnumerator -inf.0) =⇒ -inf.0
(fldenominator +inf.0) =⇒ 1.0
(fldenominator -inf.0) =⇒ 1.0
(flnumerator 0.75) =⇒ 3.0 ; probably

(fldenominator 0.75) =⇒ 4.0 ; probably

Implementations should implement following behavior:

(flnumerator -0.0) =⇒ -0.0

(flfloor fl) procedure

(flceiling fl) procedure

(fltruncate fl) procedure

(flround fl) procedure

These procedures return integral flonums for flonum arguments that are not

infinities or NaNs. For such arguments, flfloor returns the largest integral flonum

not larger than fl . The flceiling procedure returns the smallest integral flonum

not smaller than fl . The fltruncate procedure returns the integral flonum closest

to fl whose absolute value is not larger than the absolute value of fl . The flround
procedure returns the closest integral flonum to fl , rounding to even when fl

represents a number halfway between two integers.

Although infinities and NaNs are not integer objects, these procedures return an

infinity when given an infinity as an argument, and a NaN when given a NaN:

(flfloor +inf.0) =⇒ +inf.0
(flceiling -inf.0) =⇒ -inf.0
(fltruncate +nan.0) =⇒ +nan.0

Revised6 Scheme 247

(flexp fl) procedure

(fllog fl) procedure

(fllog fl1 fl2) procedure

(flsin fl) procedure

(flcos fl) procedure

(fltan fl) procedure

(flasin fl) procedure

(flacos fl) procedure

(flatan fl) procedure

(flatan fl1 fl2) procedure

These procedures compute the usual transcendental functions. The flexp pro-

cedure computes the base-e exponential of fl . The fllog procedure with a single

argument computes the natural logarithm of fl (not the base ten logarithm); (fllog
fl1 fl2) computes the base-fl2 logarithm of fl1. The flasin, flacos, and flatan
procedures compute arcsine, arccosine, and arctangent, respectively. (flatan fl1

fl2) computes the arc tangent of fl1/fl2.

See report section 11.7.5 for the underlying mathematical operations. In the event

that these operations do not yield a real result for the given arguments, the result

may be a NaN, or may be some unspecified flonum.

Implementations that use IEEE binary floating-point arithmetic should follow the

relevant standards for these procedures.

(flexp +inf.0) =⇒ +inf.0
(flexp -inf.0) =⇒ 0.0
(fllog +inf.0) =⇒ +inf.0
(fllog 0.0) =⇒ -inf.0
(fllog -0.0) =⇒ unspecified

; if -0.0 is distinguished

(fllog -inf.0) =⇒ +nan.0
(flatan -inf.0) =⇒ -1.5707963267948965

; approximately

(flatan +inf.0) =⇒ 1.5707963267948965
; approximately

(flsqrt fl) procedure

Returns the principal square root of fl . For −0.0, flsqrt should return −0.0; for

other negative arguments, the result may be a NaN or some unspecified flonum.

(flsqrt +inf.0) =⇒ +inf.0
(flsqrt -0.0) =⇒ -0.0

(flexpt fl1 fl2) procedure

Either fl1 should be non-negative, or, if fl1 is negative, fl2 should be an integer

object. The flexpt procedure returns fl1 raised to the power fl2. If fl1 is negative and

fl2 is not an integer object, the result may be a NaN, or may be some unspecified

248 M. Sperber et al.

flonum. If fl1 and fl2 are both zero, the result is 1.0. If fl1 is zero and fl2 is positive,

the result is zero. If fl1 is zero and fl2 is negative, the result may be a NaN, or may

be some unspecified flonum.

&no-infinities condition type

(make-no-infinities-violation) procedure

(no-infinities-violation? obj) procedure

&no-nans condition type

(make-no-nans-violation) procedure

(no-nans-violation? obj) procedure

These condition types could be defined by the following code:

(define-condition-type &no-infinities
&implementation-restriction

make-no-infinities-violation
no-infinities-violation?)

(define-condition-type &no-nans
&implementation-restriction

make-no-nans-violation no-nans-violation?)

These types describe that a program has executed an arithmetic operations that is

specified to return an infinity or a NaN, respectively, on a Scheme implementation

that is not able to represent the infinity or NaN. (See report section 11.7.2.)

(fixnum->flonum fx) procedure

Returns a flonum that is numerically closest to fx .

Note: The result of this procedure may not be numerically equal to fx , because the

fixnum precision may be greater than the flonum precision.

11.4 Exact bitwise arithmetic

This section describes the (rnrs arithmetic bitwise (6)) library. The exact

bitwise arithmetic provides generic operations on exact integer objects. This section

uses ei , ei1, ei2, etc., as parameter names that must be exact integer objects.

(bitwise-not ei) procedure

Returns the exact integer object whose two’s complement representation is the

one’s complement of the two’s complement representation of ei .

(bitwise-and ei1 . . .) procedure

(bitwise-ior ei1 . . .) procedure

(bitwise-xor ei1 . . .) procedure

These procedures return the exact integer object that is the bit-wise “and”,

“inclusive or”, or “exclusive or” of the two’s complement representations of their

arguments. If they are passed only one argument, they return that argument. If they

Revised6 Scheme 249

are passed no arguments, they return the integer object (either −1 or 0) that acts as

identity for the operation.

(bitwise-if ei1 ei2 ei3) procedure

Returns the exact integer object that is the bit-wise “if” of the two’s complement

representations of its arguments, i.e. for each bit, if it is 1 in ei1, the corresponding

bit in ei2 becomes the value of the corresponding bit in the result, and if it is 0, the

corresponding bit in ei3 becomes the corresponding bit in the value of the result.

This is the result of the following computation:

(bitwise-ior (bitwise-and ei1 ei2)
(bitwise-and (bitwise-not ei1) ei3))

(bitwise-bit-count ei) procedure

If ei is non-negative, this procedure returns the number of 1 bits in the two’s

complement representation of ei . Otherwise it returns the result of the following

computation:

(bitwise-not (bitwise-bit-count (bitwise-not ei)))

(bitwise-length ei) procedure

Returns the number of bits needed to represent ei if it is positive, and the number

of bits needed to represent (bitwise-not ei) if it is negative, which is the exact

integer object that is the result of the following computation:

(do ((result 0 (+ result 1))
(bits (if (negative? ei)

(bitwise-not ei)
ei)

(bitwise-arithmetic-shift bits -1)))
((zero? bits)
result))

(bitwise-first-bit-set ei) procedure

Returns the index of the least significant 1 bit in the two’s complement represent-

ation of ei . If ei is 0, then −1 is returned.

(bitwise-first-bit-set 0) =⇒ -1
(bitwise-first-bit-set 1) =⇒ 0
(bitwise-first-bit-set -4) =⇒ 2

(bitwise-bit-set? ei1 ei2) procedure

Ei2 must be non-negative. The bitwise-bit-set? procedure returns #t if the ei2th

bit is 1 in the two’s complement representation of ei1, and #f otherwise. This is the

result of the following computation:

250 M. Sperber et al.

(not (zero?
(bitwise-and
(bitwise-arithmetic-shift-left 1 ei2)
ei1)))

(bitwise-copy-bit ei1 ei2 ei3) procedure

Ei2 must be non-negative, and ei3 must be either 0 or 1. The bitwise-copy-bit
procedure returns the result of replacing the ei2th bit of ei1 by ei3, which is the result

of the following computation:

(let* ((mask (bitwise-arithmetic-shift-left 1 ei2)))
(bitwise-if mask

(bitwise-arithmetic-shift-left ei3 ei2)
ei1))

(bitwise-bit-field ei1 ei2 ei3) procedure

Ei2 and ei3 must be non-negative, and ei2 must be less than or equal to ei3. The

bitwise-bit-field procedure returns the number represented by the bits at the

positions from ei2 (inclusive) to ei3 (exclusive), which is the result of the following

computation:

(let ((mask
(bitwise-not
(bitwise-arithmetic-shift-left -1 ei3))))

(bitwise-arithmetic-shift-right
(bitwise-and ei1 mask)
ei2))

(bitwise-copy-bit-field ei1 ei2 ei3 ei4) procedure

Ei2 and ei3 must be non-negative, and ei2 must be less than or equal to ei3. The

bitwise-copy-bit-field procedure returns the result of replacing in ei1 the bits

at positions from ei2 (inclusive) to ei3 (exclusive) by the bits in ei4 from position

0 (inclusive) to position ei3 − ei2 (exclusive), which is the result of the following

computation:

(let* ((to ei1)
(start ei2)
(end ei3)
(from ei4)
(mask1
(bitwise-arithmetic-shift-left -1 start))

(mask2
(bitwise-not
(bitwise-arithmetic-shift-left -1 end)))

(mask (bitwise-and mask1 mask2)))

Revised6 Scheme 251

(bitwise-if mask
(bitwise-arithmetic-shift-left from

start)
to))

(bitwise-arithmetic-shift ei1 ei2) procedure

Returns the result of the following computation:

(floor (* ei1 (expt 2 ei2)))

Examples:

(bitwise-arithmetic-shift -6 -1) =⇒ -3
(bitwise-arithmetic-shift -5 -1) =⇒ -3
(bitwise-arithmetic-shift -4 -1) =⇒ -2
(bitwise-arithmetic-shift -3 -1) =⇒ -2
(bitwise-arithmetic-shift -2 -1) =⇒ -1
(bitwise-arithmetic-shift -1 -1) =⇒ -1

(bitwise-arithmetic-shift-left ei1 ei2) procedure

(bitwise-arithmetic-shift-right ei1 ei2) procedure

Ei2 must be non-negative. The bitwise-arithmetic-shift-left procedure returns

the same result as bitwise-arithmetic-shift, and

(bitwise-arithmetic-shift-right ei1 ei2)

returns the same result as

(bitwise-arithmetic-shift ei1 (- ei2)).

(bitwise-rotate-bit-field ei1 ei2 ei3 ei4) procedure

Ei2, ei3, ei4 must be non-negative, ei2 must be less than or equal to ei3, and ei4 must

be non-negative. The bitwise-rotate-bit-field procedure returns the result of

cyclically permuting in ei1 the bits at positions from ei2 (inclusive) to ei3 (exclusive)

by ei4 bits towards the more significant bits, which is the result of the following

computation:

(let* ((n ei1)
(start ei2)
(end ei3)
(count ei4)
(width (- end start)))

(if (positive? width)
(let* ((count (mod count width))

(field0
(bitwise-bit-field n start end))

(field1 (bitwise-arithmetic-shift-left

252 M. Sperber et al.

field0 count))
(field2 (bitwise-arithmetic-shift-right

field0
(- width count)))

(field (bitwise-ior field1 field2)))
(bitwise-copy-bit-field n start end field))

n))

(bitwise-reverse-bit-field ei1 ei2 ei3) procedure

Ei2 and ei3 must be non-negative, and ei2 must be less than or equal to ei3. The

bitwise-reverse-bit-field procedure returns the result obtained from ei1 by

reversing the order of the bits at positions from ei2 (inclusive) to ei3 (exclusive).

(bitwise-reverse-bit-field #b1010010 1 4) =⇒ 88 ; #b1011000

12 syntax-case

The (rnrs syntax-case (6)) library provides support for writing low-level macros

in a high-level style, with automatic syntax checking, input destructuring, output

restructuring, maintenance of lexical scoping and referential transparency (hygiene),

and support for controlled identifier capture.

12.1 Hygiene

Barendregt’s hygiene condition (Barendregt, 1984) for the lambda calculus is an

informal notion that requires the free variables of an expression N that is to be

substituted into another expression M not to be captured by bindings in M when

such capture is not intended. Kohlbecker, et al (Kohlbecker et al., 1986) propose

a corresponding hygiene condition for macro expansion that applies in all situations

where capturing is not explicit: “Generated identifiers that become binding instances

in the completely expanded program must only bind variables that are generated at

the same transcription step”. In the terminology of this document, the “generated

identifiers” are those introduced by a transformer rather than those present in the

form passed to the transformer, and a “macro transcription step” corresponds to a

single call by the expander to a transformer. Also, the hygiene condition applies to

all introduced bindings rather than to introduced variable bindings alone.

This leaves open what happens to an introduced identifier that appears outside the

scope of a binding introduced by the same call. Such an identifier refers to the lexical

binding in effect where it appears (within a syntax 〈template〉; see section 12.4)

inside the transformer body or one of the helpers it calls. This is essentially the

referential transparency property described by Clinger and Rees (Clinger & Rees,

1991a). Thus, the hygiene condition can be restated as follows:

A binding for an identifier introduced into the output of a transformer call from the
expander must capture only references to the identifier introduced into the output of the same

Revised6 Scheme 253

transformer call. A reference to an identifier introduced into the output of a transformer
refers to the closest enclosing binding for the introduced identifier or, if it appears outside of
any enclosing binding for the introduced identifier, the closest enclosing lexical binding where
the identifier appears (within a syntax 〈template〉) inside the transformer body or one of the
helpers it calls.

Explicit captures are handled via datum->syntax; see section 12.6.

Operationally, the expander can maintain hygiene with the help of marks and

substitutions. Marks are applied selectively by the expander to the output of each

transformer it invokes, and substitutions are applied to the portions of each binding

form that are supposed to be within the scope of the bound identifiers. Marks

are used to distinguish like-named identifiers that are introduced at different times

(either present in the source or introduced into the output of a particular transformer

call), and substitutions are used to map identifiers to their expand-time values.

Each time the expander encounters a macro use, it applies an antimark to the

input form, invokes the associated transformer, then applies a fresh mark to the

output. Marks and antimarks cancel, so the portions of the input that appear in

the output are effectively left unmarked, while the portions of the output that are

introduced are marked with the fresh mark.

Each time the expander encounters a binding form it creates a set of substitutions,

each mapping one of the (possibly marked) bound identifiers to information about

the binding. (For a lambda expression, the expander might map each bound identifier

to a representation of the formal parameter in the output of the expander. For a

let-syntax form, the expander might map each bound identifier to the associated

transformer.) These substitutions are applied to the portions of the input form in

which the binding is supposed to be visible.

Marks and substitutions together form a wrap that is layered on the form being

processed by the expander and pushed down toward the leaves as necessary. A

wrapped form is referred to as a wrapped syntax object. Ultimately, the wrap may

rest on a leaf that represents an identifier, in which case the wrapped syntax object

is also referred to as an identifier. An identifier contains a name along with the wrap.

(Names are typically represented by symbols.)

When a substitution is created to map an identifier to an expand-time value, the

substitution records the name of the identifier and the set of marks that have been

applied to that identifier, along with the associated expand-time value. The expander

resolves identifier references by looking for the latest matching substitution to be

applied to the identifier, i.e., the outermost substitution in the wrap whose name and

marks match the name and marks recorded in the substitution. The name matches

if it is the same name (if using symbols, then by eq?), and the marks match if the

marks recorded with the substitution are the same as those that appear below the

substitution in the wrap, i.e., those that were applied before the substitution. Marks

applied after a substitution, i.e., appear over the substitution in the wrap, are not

relevant and are ignored.

An algebra that defines how marks and substitutions work more precisely is given

in section 2.4 of Oscar Waddell’s PhD thesis (Waddell, 1999).

254 M. Sperber et al.

12.2 Syntax objects

A syntax object is a representation of a Scheme form that contains contextual

information about the form in addition to its structure. This contextual information

is used by the expander to maintain lexical scoping and may also be used by an

implementation to maintain source-object correlation (Dybvig et al., 1992).

A syntax object may be wrapped, as described in section 12.1. It may also be

unwrapped, fully or partially, i.e., consist of list and vector structure with wrapped

syntax objects or nonsymbol values at the leaves. More formally, a syntax object is:

• a pair of syntax objects,

• a vector of syntax objects,

• a nonpair, nonvector, nonsymbol value, or

• a wrapped syntax object.

The distinction between the terms “syntax object” and “wrapped syntax object” is

important. For example, when invoked by the expander, a transformer (section 12.3)

must accept a wrapped syntax object but may return any syntax object, including

an unwrapped syntax object.

Syntax objects representing identifiers are always wrapped and are distinct from

other types of values. Wrapped syntax objects that are not identifiers may or may

not be distinct from other types of values.

12.3 Transformers

In define-syntax (report section 11.2.2), let-syntax, and letrec-syntax forms

(report section 11.18), a binding for a syntactic keyword is an expression that

evaluates to a transformer.

A transformer is a transformation procedure or a variable transformer. A transform-

ation procedure is a procedure that must accept one argument, a wrapped syntax

object (section 12.2) representing the input, and return a syntax object (section 12.2)

representing the output. The transformer is called by the expander whenever a

reference to a keyword with which it has been associated is found. If the keyword

appears in the car of a list-structured input form, the transformer receives the entire

list-structured form, and its output replaces the entire form. Except with variable

transformers (see below), if the keyword is found in any other definition or expres-

sion context, the transformer receives a wrapped syntax object representing just the

keyword reference, and its output replaces just the reference. Except with variable

transformers, an exception with condition type &syntax is raised if the keyword

appears on the left-hand side of a set! expression.

(make-variable-transformer proc) procedure

Proc should accept one argument, a wrapped syntax object, and return a syntax

object.

The make-variable-transformer procedure creates a variable transformer. A

variable transformer is like an ordinary transformer except that, if a keyword

Revised6 Scheme 255

associated with a variable transformer appears on the left-hand side of a set!
expression, an exception is not raised. Instead, proc is called with a wrapped syntax

object representing the entire set! expression as its argument, and its return value

replaces the entire set! expression.

Implementation responsibilities: The implementation must check the restrictions on

proc only to the extent performed by applying it as described. An implementation

may check whether proc is an appropriate argument before applying it.

12.4 Parsing input and producing output

Transformers can destructure their input with syntax-case and rebuild their output

with syntax.

(syntax-case 〈expression〉 (〈literal〉 . . .) syntax

〈syntax-case clause〉 . . .)
auxiliary syntax

... auxiliary syntax

Syntax: Each 〈literal〉 must be an identifier. Each 〈syntax-case clause〉 must take

one of the following two forms.

(〈pattern〉 〈output expression〉)
(〈pattern〉 〈fender〉 〈output expression〉)

〈Fender〉 and 〈output expression〉 must be 〈expression〉s.
A 〈pattern〉 is an identifier, constant, or one of the following.

(〈pattern〉 ...)
(〈pattern〉 〈pattern〉 〈pattern〉)
(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...)
(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 〈pattern〉)
#(〈pattern〉 ...)
#(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...)

An 〈ellipsis〉 is the identifier “...” (three periods).

An identifier appearing within a 〈pattern〉 may be an underscore (), a literal

identifier listed in the list of literals (〈literal〉 . . .), or an ellipsis (...). All other

identifiers appearing within a 〈pattern〉 are pattern variables. It is a syntax violation

if an ellipsis or underscore appears in (〈literal〉 . . .).
and ... are the same as in the (rnrs base (6)) library.

Pattern variables match arbitrary input subforms and are used to refer to elements

of the input. It is a syntax violation if the same pattern variable appears more than

once in a 〈pattern〉.
Underscores also match arbitrary input subforms but are not pattern variables

and so cannot be used to refer to those elements. Multiple underscores may appear

in a 〈pattern〉.
A literal identifier matches an input subform if and only if the input subform is an

identifier and either both its occurrence in the input expression and its occurrence

256 M. Sperber et al.

in the list of literals have the same lexical binding, or the two identifiers have the

same name and both have no lexical binding.

A subpattern followed by an ellipsis can match zero or more elements of the

input.

More formally, an input form F matches a pattern P if and only if one of the

following holds:

• P is an underscore ().

• P is a pattern variable.

• P is a literal identifier and F is an equivalent identifier in the sense of

free-identifier=? (section 12.5).

• P is of the form (P1 . . . Pn) and F is a list of n elements that match P1

through Pn.

• P is of the form (P1 . . . Pn . Px) and F is a list or improper list of n or

more elements whose first n elements match P1 through Pn and whose nth cdr

matches Px.

• P is of the form (P1 . . . Pk Pe 〈ellipsis〉 Pm+1 . . . Pn), where 〈ellipsis〉 is the

identifier ... and F is a proper list of n elements whose first k elements match

P1 through Pk , whose next m−k elements each match Pe, and whose remaining

n − m elements match Pm+1 through Pn.

• P is of the form (P1 . . . Pk Pe 〈ellipsis〉 Pm+1 . . . Pn . Px), where 〈ellipsis〉
is the identifier ... and F is a list or improper list of n elements whose first

k elements match P1 through Pk , whose next m − k elements each match Pe,

whose next n − m elements match Pm+1 through Pn, and whose nth and final

cdr matches Px.

• P is of the form #(P1 . . . Pn) and F is a vector of n elements that match P1

through Pn.

• P is of the form #(P1 . . . Pk Pe 〈ellipsis〉 Pm+1 . . . Pn), where 〈ellipsis〉 is

the identifier ... and F is a vector of n or more elements whose first k elements

match P1 through Pk , whose next m − k elements each match Pe, and whose

remaining n − m elements match Pm+1 through Pn.

• P is a pattern datum (any nonlist, nonvector, nonsymbol datum) and F is

equal to P in the sense of the equal? procedure.

Semantics: A syntax-case expression first evaluates 〈expression〉. It then attempts

to match the 〈pattern〉 from the first 〈syntax-case clause〉 against the resulting value,

which is unwrapped as necessary to perform the match. If the pattern matches

the value and no 〈fender〉 is present, 〈output expression〉 is evaluated and its value

returned as the value of the syntax-case expression. If the pattern does not match

the value, syntax-case tries the second 〈syntax-case clause〉, then the third, and so

on. It is a syntax violation if the value does not match any of the patterns.

If the optional 〈fender〉 is present, it serves as an additional constraint on accept-

ance of a clause. If the 〈pattern〉 of a given 〈syntax-case clause〉 matches the input

value, the corresponding 〈fender〉 is evaluated. If 〈fender〉 evaluates to a true value,

the clause is accepted; otherwise, the clause is rejected as if the pattern had failed

Revised6 Scheme 257

to match the value. Fenders are logically a part of the matching process, i.e., they

specify additional matching constraints beyond the basic structure of the input.

Pattern variables contained within a clause’s 〈pattern〉 are bound to the cor-

responding pieces of the input value within the clause’s 〈fender〉 (if present) and

〈output expression〉. Pattern variables can be referenced only within syntax ex-

pressions (see below). Pattern variables occupy the same name space as program

variables and keywords.

If the syntax-case form is in tail context, the 〈output expression〉s are also in

tail position.

(syntax 〈template〉) syntax

Note: #’〈template〉 is equivalent to (syntax 〈template〉).
A syntax expression is similar to a quote expression except that (1) the values

of pattern variables appearing within 〈template〉 are inserted into 〈template〉, (2)

contextual information associated both with the input and with the template is

retained in the output to support lexical scoping, and (3) the value of a syntax
expression is a syntax object.

A 〈template〉 is a pattern variable, an identifier that is not a pattern variable, a

pattern datum, or one of the following.

(〈subtemplate〉 ...)
(〈subtemplate〉 〈template〉)
#(〈subtemplate〉 ...)

A 〈subtemplate〉 is a 〈template〉 followed by zero or more ellipses.

The value of a syntax form is a copy of 〈template〉 in which the pattern variables

appearing within the template are replaced with the input subforms to which they

are bound. Pattern data and identifiers that are not pattern variables or ellipses

are copied directly into the output. A subtemplate followed by an ellipsis expands

into zero or more occurrences of the subtemplate. Pattern variables that occur in

subpatterns followed by one or more ellipses may occur only in subtemplates that

are followed by (at least) as many ellipses. These pattern variables are replaced in

the output by the input subforms to which they are bound, distributed as specified.

If a pattern variable is followed by more ellipses in the subtemplate than in the

associated subpattern, the input form is replicated as necessary. The subtemplate

must contain at least one pattern variable from a subpattern followed by an ellipsis,

and for at least one such pattern variable, the subtemplate must be followed by

exactly as many ellipses as the subpattern in which the pattern variable appears.

(Otherwise, the expander would not be able to determine how many times the

subform should be repeated in the output.) It is a syntax violation if the constraints

of this paragraph are not met.

A template of the form (〈ellipsis〉 〈template〉) is identical to 〈template〉, except

that ellipses within the template have no special meaning. That is, any ellipses

contained within 〈template〉 are treated as ordinary identifiers. In particular, the

template (... ...) produces a single ellipsis. This allows macro uses to expand

into forms containing ellipses.

258 M. Sperber et al.

The output produced by syntax is wrapped or unwrapped according to the

following rules.

• the copy of (〈t1〉 . 〈t2〉) is a pair if 〈t1〉 or 〈t2〉 contain any pattern variables,

• the copy of (〈t〉 〈ellipsis〉) is a list if 〈t〉 contains any pattern variables,

• the copy of #(〈t1〉 ... 〈tn〉) is a vector if any of 〈t1〉, . . . , 〈tn〉 contain any

pattern variables, and

• the copy of any portion of 〈t〉 not containing any pattern variables is a

wrapped syntax object.

The input subforms inserted in place of the pattern variables are wrapped if and

only if the corresponding input subforms are wrapped.

The following definitions of or illustrate syntax-case and syntax. The second

is equivalent to the first but uses the #’ prefix instead of the full syntax form.

(define-syntax or
(lambda (x)

(syntax-case x ()
[() (syntax #f)]
[(e) (syntax e)]
[(e1 e2 e3 ...)
(syntax (let ([t e1])

(if t t (or e2 e3 ...))))])))

(define-syntax or
(lambda (x)

(syntax-case x ()
[() #’#f]
[(e) #’e]
[(e1 e2 e3 ...)
#’(let ([t e1])

(if t t (or e2 e3 ...)))])))

The examples below define identifier macros, macro uses supporting keyword

references that do not necessarily appear in the first position of a list-structured

form. The second example uses make-variable-transformer to handle the case

where the keyword appears on the left-hand side of a set! expression.

(define p (cons 4 5))
(define-syntax p.car
(lambda (x)
(syntax-case x ()
[(. rest) #’((car p) . rest)]
[#’(car p)])))

p.car =⇒ 4
(set! p.car 15) =⇒ &syntax exception

Revised6 Scheme 259

(define p (cons 4 5))
(define-syntax p.car
(make-variable-transformer
(lambda (x)
(syntax-case x (set!)

[(set! e) #’(set-car! p e)]
[(. rest) #’((car p) . rest)]
[#’(car p)]))))

(set! p.car 15)
p.car =⇒ 15
p =⇒ (15 . 5)

12.5 Identifier predicates

(identifier? obj) procedure

Returns #t if obj is an identifier, i.e., a syntax object representing an identifier,

and #f otherwise.

The identifier? procedure is often used within a fender to verify that certain

subforms of an input form are identifiers, as in the definition of rec, which creates

self-contained recursive objects, below.

(define-syntax rec
(lambda (x)
(syntax-case x ()
[(x e)
(identifier? #’x)
#’(letrec ([x e]) x)])))

(map (rec fact
(lambda (n)
(if (= n 0)

1
(* n (fact (- n 1))))))

’(1 2 3 4 5)) =⇒ (1 2 6 24 120)

(rec 5 (lambda (x) x)) =⇒ &syntax exception

The procedures bound-identifier=? and free-identifier=? each take two

identifier arguments and return #t if their arguments are equivalent and #f otherwise.

These predicates are used to compare identifiers according to their intended use as

free references or bound identifiers in a given context.

(bound-identifier=? id1 id2) procedure

Id1 and id2 must be identifiers. The procedure bound-identifier=? returns #t
if a binding for one would capture a reference to the other in the output of the

260 M. Sperber et al.

transformer, assuming that the reference appears within the scope of the binding,

and #f otherwise. In general, two identifiers are bound-identifier=? only if both

are present in the original program or both are introduced by the same transformer

application (perhaps implicitly—see datum->syntax). Operationally, two identifiers

are considered equivalent by bound-identifier=? if and only if they have the same

name and same marks (section 12.1).

The bound-identifier=? procedure can be used for detecting duplicate identifiers

in a binding construct or for other preprocessing of a binding construct that requires

detecting instances of the bound identifiers.

(free-identifier=? id1 id2) procedure

Id1 and id2 must be identifiers. The free-identifier=? procedure returns #t if and

only if the two identifiers would resolve to the same binding if both were to appear

in the output of a transformer outside of any bindings inserted by the transformer.

(If neither of two like-named identifiers resolves to a binding, i.e., both are unbound,

they are considered to resolve to the same binding.) Operationally, two identifiers

are considered equivalent by free-identifier=? if and only the topmost matching

substitution for each maps to the same binding (section 12.1) or the identifiers have

the same name and no matching substitution.

The syntax-case and syntax-rules forms internally use free-identifier=?
to compare identifiers listed in the literals list against input identifiers.

(let ([fred 17])
(define-syntax a
(lambda (x)
(syntax-case x ()

[(id) #’(b id fred)])))
(define-syntax b
(lambda (x)
(syntax-case x ()

[(id1 id2)
#`(list

#,(free-identifier=? #’id1 #’id2)
#,(bound-identifier=? #’id1 #’id2))])))

(a fred)) =⇒ (#t #f)

The following definition of unnamed let uses bound-identifier=? to detect

duplicate identifiers.

(define-syntax let
(lambda (x)

(define unique-ids?
(lambda (ls)
(or (null? ls)

(and (let notmem?
([x (car ls)] [ls (cdr ls)])

Revised6 Scheme 261

(or (null? ls)
(and (not (bound-identifier=?

x (car ls)))
(notmem? x (cdr ls)))))

(unique-ids? (cdr ls))))))
(syntax-case x ()
[(((i v) ...) e1 e2 ...)
(unique-ids? #’(i ...))
#’((lambda (i ...) e1 e2 ...) v ...)])))

The argument #’(i ...) to unique-ids? is guaranteed to be a list by the rules

given in the description of syntax above.

With this definition of let:

(let ([a 3] [a 4]) (+ a a)) =⇒ &syntax exception

However,

(let-syntax
([dolet (lambda (x)

(syntax-case x ()
[(b)
#’(let ([a 3] [b 4]) (+ a b))]))])

(dolet a)) =⇒ 7

since the identifier a introduced by dolet and the identifier a extracted from the

input form are not bound-identifier=?.
The following definition of case is equivalent to the one in section 12.4. Rather

than including else in the literals list as before, this version explicitly tests for else
using free-identifier=?.

(define-syntax case
(lambda (x)

(syntax-case x ()
[(e0 [(k ...) e1 e2 ...] ...

[else-key else-e1 else-e2 ...])
(and (identifier? #’else-key)

(free-identifier=? #’else-key #’else))
#’(let ([t e0])

(cond
[(memv t ’(k ...)) e1 e2 ...]
...
[else else-e1 else-e2 ...]))]

[(e0 [(ka ...) e1a e2a ...]
[(kb ...) e1b e2b ...] ...)

#’(let ([t e0])
(cond
[(memv t ’(ka ...)) e1a e2a ...]

262 M. Sperber et al.

[(memv t ’(kb ...)) e1b e2b ...]
...))])))

With either definition of case, else is not recognized as an auxiliary keyword if

an enclosing lexical binding for else exists. For example,

(let ([else #f])
(case 0 [else (write "oops")])) =⇒ &syntax exception

since else is bound lexically and is therefore not the same else that appears in

the definition of case.

12.6 Syntax-object and datum conversions

(syntax->datum syntax-object) procedure

Strips all syntactic information from a syntax object and returns the corresponding

Scheme datum.
Identifiers stripped in this manner are converted to their symbolic names, which

can then be compared with eq?. Thus, a predicate symbolic-identifier=? might

be defined as follows.

(define symbolic-identifier=?
(lambda (x y)
(eq? (syntax->datum x)

(syntax->datum y))))

(datum->syntax template-id datum) procedure
Template-id must be a template identifier and datum should be a datum value.

The datum->syntax procedure returns a syntax-object representation of datum that

contains the same contextual information as template-id , with the effect that the

syntax object behaves as if it were introduced into the code when template-id was

introduced.

The datum->syntax procedure allows a transformer to “bend” lexical scoping

rules by creating implicit identifiers that behave as if they were present in the input

form, thus permitting the definition of macros that introduce visible bindings for

or references to identifiers that do not appear explicitly in the input form. For

example, the following defines a loop expression that uses this controlled form of

identifier capture to bind the variable break to an escape procedure within the loop

body. (The derived with-syntax form is like let but binds pattern variables—see

section 12.8.)

(define-syntax loop
(lambda (x)
(syntax-case x ()
[(k e ...)
(with-syntax

Revised6 Scheme 263

([break (datum->syntax #’k ’break)])
#’(call-with-current-continuation

(lambda (break)
(let f () e ... (f)))))])))

(let ((n 3) (ls ’()))
(loop
(if (= n 0) (break ls))
(set! ls (cons ’a ls))
(set! n (- n 1)))) =⇒ (a a a)

Were loop to be defined as

(define-syntax loop
(lambda (x)
(syntax-case x ()
[(e ...)
#’(call-with-current-continuation

(lambda (break)
(let f () e ... (f))))])))

the variable break would not be visible in e
The datum argument datum may also represent an arbitrary Scheme form, as

demonstrated by the following definition of include.

(define-syntax include
(lambda (x)
(define read-file
(lambda (fn k)

(let ([p (open-file-input-port fn)])
(let f ([x (get-datum p)])
(if (eof-object? x)

(begin (close-port p) ’())
(cons (datum->syntax k x)

(f (get-datum p))))))))
(syntax-case x ()
[(k filename)
(let ([fn (syntax->datum #’filename)])
(with-syntax ([(exp ...)

(read-file fn #’k)])
#’(begin exp ...)))])))

(include "filename") expands into a begin expression containing the forms

found in the file named by "filename". For example, if the file flib.ss contains

(define f (lambda (x) (g (* x x)))), and the file glib.ss contains (define
g (lambda (x) (+ x x))), the expression

(let ()

264 M. Sperber et al.

(include "flib.ss")
(include "glib.ss")
(f 5))

evaluates to 50.
The definition of include uses datum->syntax to convert the objects read from

the file into syntax objects in the proper lexical context, so that identifier references

and definitions within those expressions are scoped where the include form appears.

Using datum->syntax, it is even possible to break hygiene entirely and write mac-

ros in the style of old Lisp macros. The lisp-transformer procedure defined below

creates a transformer that converts its input into a datum, calls the programmer’s

procedure on this datum, and converts the result back into a syntax object scoped

where the original macro use appeared.

(define lisp-transformer
(lambda (p)
(lambda (x)
(syntax-case x ()

[(kwd . rest)
(datum->syntax #’kwd
(p (syntax->datum x)))]))))

12.7 Generating lists of temporaries

Transformers can introduce a fixed number of identifiers into their output simply by

naming each identifier. In some cases, however, the number of identifiers to be intro-

duced depends upon some characteristic of the input expression. A straightforward

definition of letrec, for example, requires as many temporary identifiers as there

are binding pairs in the input expression. The procedure generate-temporaries is

used to construct lists of temporary identifiers.

(generate-temporaries l) procedure

L must be be a list or syntax object representing a list-structured form; its contents

are not important. The number of temporaries generated is the number of elements

in l . Each temporary is guaranteed to be unique, i.e., different from all other

identifiers.

A definition of letrec equivalent to the one using syntax-rules given in report

appendix B is shown below.

(define-syntax letrec
(lambda (x)

(syntax-case x ()
((((i e) ...) b1 b2 ...)
(with-syntax

(((t ...) (generate-temporaries #’(i ...))))
#’(let ((i <undefined>) ...)

Revised6 Scheme 265

(let ((t e) ...)
(set! i t) ...
(let () b1 b2 ...))))))))

This version uses generate-temporaries instead of recursively defined helper to

generate the necessary temporaries.

12.8 Derived forms and procedures

The forms and procedures described in this section can be defined in terms of the

forms and procedures described in earlier sections of this chapter.

(with-syntax ((〈pattern〉 〈expression〉) . . .) 〈body〉) syntax

The with-syntax form is used to bind pattern variables, just as let is used to

bind variables. This allows a transformer to construct its output in separate pieces,

then put the pieces together.

Each 〈pattern〉 is identical in form to a syntax-case pattern. The value of each

〈expression〉 is computed and destructured according to the corresponding 〈pattern〉,
and pattern variables within the 〈pattern〉 are bound as with syntax-case to the

corresponding portions of the value within 〈body〉.
The with-syntax form may be defined in terms of syntax-case as follows.

(define-syntax with-syntax
(lambda (x)
(syntax-case x ()
((((p e0) ...) e1 e2 ...)
(syntax (syntax-case (list e0 ...) ()

((p ...) (let () e1 e2 ...))))))))

The following definition of cond demonstrates the use of with-syntax to support

transformers that employ recursion internally to construct their output. It handles

all cond clause variations and takes care to produce one-armed if expressions where

appropriate.

(define-syntax cond
(lambda (x)

(syntax-case x ()
[(c1 c2 ...)
(let f ([c1 #’c1] [c2* #’(c2 ...)])
(syntax-case c2* ()

[()
(syntax-case c1 (else =>)
[(else e1 e2 ...) #’(begin e1 e2 ...)]
[(e0) #’e0]
[(e0 => e1)
#’(let ([t e0]) (if t (e1 t)))]
[(e0 e1 e2 ...)

266 M. Sperber et al.

#’(if e0 (begin e1 e2 ...))])]
[(c2 c3 ...)
(with-syntax ([rest (f #’c2 #’(c3 ...))])
(syntax-case c1 (=>)
[(e0) #’(let ([t e0]) (if t t rest))]
[(e0 => e1)
#’(let ([t e0]) (if t (e1 t) rest))]

[(e0 e1 e2 ...)
#’(if e0

(begin e1 e2 ...)
rest)]))]))])))

(quasisyntax 〈template〉) syntax

unsyntax auxiliary syntax

unsyntax-splicing auxiliary syntax

The quasisyntax form is similar to syntax, but it allows parts of the quoted

text to be evaluated, in a manner similar to the operation of quasiquote (report

section 11.17).

Within a quasisyntax template, subforms of unsyntax and unsyntax-splicing
forms are evaluated, and everything else is treated as ordinary template material, as

with syntax. The value of each unsyntax subform is inserted into the output in

place of the unsyntax form, while the value of each unsyntax-splicing subform

is spliced into the surrounding list or vector structure. Uses of unsyntax and

unsyntax-splicing are valid only within quasisyntax expressions.

A quasisyntax expression may be nested, with each quasisyntax introducing

a new level of syntax quotation and each unsyntax or unsyntax-splicing taking

away a level of quotation. An expression nested within n quasisyntax expressions

must be within n unsyntax or unsyntax-splicing expressions to be evaluated.

As noted in report section 4.3.5, #`〈template〉 is equivalent to (quasisyntax
〈template〉), #,〈template〉 is equivalent to (unsyntax 〈template〉), and #,@〈template〉
is equivalent to (unsyntax-splicing 〈template〉).

The quasisyntax keyword can be used in place of with-syntax in many cases.

For example, the definition of case shown under the description of with-syntax
above can be rewritten using quasisyntax as follows.

(define-syntax case
(lambda (x)

(syntax-case x ()
[(e c1 c2 ...)
#`(let ([t e])

#,(let f ([c1 #’c1] [cmore #’(c2 ...)])
(if (null? cmore)

(syntax-case c1 (else)
[(else e1 e2 ...)
#’(begin e1 e2 ...)]

Revised6 Scheme 267

[((k ...) e1 e2 ...)
#’(if (memv t ’(k ...))

(begin e1 e2 ...))])
(syntax-case c1 ()
[((k ...) e1 e2 ...)
#`(if (memv t ’(k ...))

(begin e1 e2 ...)
#,(f (car cmore)

(cdr cmore)))]))))])))

Uses of unsyntax and unsyntax-splicing with zero or more than one subform

are valid only in splicing (list or vector) contexts. (unsyntax template . . .) is

equivalent to (unsyntax template) ..., and (unsyntax-splicing template . . .)
is equivalent to (unsyntax-splicing template) These forms are primarily

useful as intermediate forms in the output of the quasisyntax expander.

Note: Uses of unsyntax and unsyntax-splicing with zero or more than one

subform enable certain idioms (Bawden, 1999), such as #,@#,@, which has the

effect of a doubly indirect splicing when used within a doubly nested and doubly

evaluated quasisyntax expression, as with the nested quasiquote examples shown

in section 11.17.

Note: Any syntax-rules form can be expressed with syntax-case by making

the lambda expression and syntax expressions explicit, and syntax-rules may be

defined in terms of syntax-case as follows.

(define-syntax syntax-rules
(lambda (x)
(syntax-case x ()
[((lit ...) [(k . p) t] ...)
(for-all identifier? #’(lit ... k ...))
#’(lambda (x)

(syntax-case x (lit ...)
[(. p) #’t] ...))])))

Note: The identifier-syntax form of the base library (see report section 11.19)

may be defined in terms of syntax-case, syntax, and make-variable-transformer
as follows.

(define-syntax identifier-syntax
(syntax-rules (set!)

[(e)
(lambda (x)
(syntax-case x ()
[id (identifier? #’id) #’e]
[(x (... ...)) #’(e x (... ...))]))]

[((id exp1) ((set! var val) exp2))
(and (identifier? #’id) (identifier? #’var))
(make-variable-transformer

268 M. Sperber et al.

(lambda (x)
(syntax-case x (set!)

[(set! var val) #’exp2]
[(id x (... ...)) #’(exp1 x (... ...))]
[id (identifier? #’id) #’exp1])))]))

12.9 Syntax violations

(syntax-violation who message form) procedure

(syntax-violation who message form subform) procedure

Who must be #f or a string or a symbol. Message must be a string. Form must

be a syntax object or a datum value. Subform must be a syntax object or a datum

value. The syntax-violation procedure raises an exception, reporting a syntax

violation. Who should describe the macro transformer that detected the exception.

The message argument should describe the violation. Form should be the erroneous

source syntax object or a datum value representing a form. The optional subform

argument should be a syntax object or datum value representing a form that more

precisely locates the violation.

If who is #f, syntax-violation attempts to infer an appropriate value for the

condition object (see below) as follows: When form is either an identifier or a list-

structured syntax object containing an identifier as its first element, then the inferred

value is the identifier’s symbol. Otherwise, no value for who is provided as part of

the condition object.

The condition object provided with the exception (see chapter 7) has the following

condition types:

• If who is not #f or can be inferred, the condition has condition type &who, with

who as the value of its field. Otherwise, the condition does not have condition

type &who.
• The condition has condition type &message, with message as the value of its

field.

• The condition has condition type &syntax with form and subform as the value

of its fields. If subform is not provided, the value of the subform field is #f.

13 Hashtables

The (rnrs hashtables (6)) library provides a set of operations on hashtables. A

hashtable is a data structure that associates keys with values. Any object can be used

as a key, provided a hash function and a suitable equivalence function is available.

A hash function is a procedure that maps keys to exact integer objects. It is the

programmer’s responsibility to ensure that the hash function is compatible with the

equivalence function, which is a procedure that accepts two keys and returns true

if they are equivalent and #f otherwise. Standard hashtables for arbitrary objects

Revised6 Scheme 269

based on the eq? and eqv? predicates (see report section 11.5) are provided. Also,

hash functions for arbitrary objects, strings, and symbols are provided.

This section uses the hashtable parameter name for arguments that must be

hashtables, and the key parameter name for arguments that must be hashtable keys.

13.1 Constructors

(make-eq-hashtable) procedure

(make-eq-hashtable k) procedure

Returns a newly allocated mutable hashtable that accepts arbitrary objects as

keys, and compares those keys with eq?. If an argument is given, the initial capacity

of the hashtable is set to approximately k elements.

(make-eqv-hashtable) procedure

(make-eqv-hashtable k) procedure

Returns a newly allocated mutable hashtable that accepts arbitrary objects as keys,

and compares those keys with eqv?. If an argument is given, the initial capacity of

the hashtable is set to approximately k elements.

(make-hashtable hash-function equiv) procedure

(make-hashtable hash-function equiv k) procedure

Hash-function and equiv must be procedures. Hash-function should accept a key as

an argument and should return a non-negative exact integer object. Equiv should

accept two keys as arguments and return a single value. Neither procedure should

mutate the hashtable returned by make-hashtable. The make-hashtable procedure

returns a newly allocated mutable hashtable using hash-function as the hash function

and equiv as the equivalence function used to compare keys. If a third argument is

given, the initial capacity of the hashtable is set to approximately k elements.

Both hash-function and equiv should behave like pure functions on the domain of

keys. For example, the string-hash and string=? procedures are permissible only

if all keys are strings and the contents of those strings are never changed so long as

any of them continues to serve as a key in the hashtable. Furthermore, any pair of

keys for which equiv returns true should be hashed to the same exact integer objects

by hash-function .

Implementation responsibilities: The implementation must check the restrictions

on hash-function and equiv to the extent performed by applying them as described.

Note: Hashtables are allowed to cache the results of calling the hash function and

equivalence function, so programs cannot rely on the hash function being called for

every lookup or update. Furthermore any hashtable operation may call the hash

function more than once.

270 M. Sperber et al.

13.2 Procedures

(hashtable? obj) procedure

Returns #t if obj is a hashtable, #f otherwise.

(hashtable-size hashtable) procedure

Returns the number of keys contained in hashtable as an exact integer object.

(hashtable-ref hashtable key default) procedure

Returns the value in hashtable associated with key . If hashtable does not contain

an association for key , default is returned.

(hashtable-set! hashtable key obj) procedure

Changes hashtable to associate key with obj , adding a new association or replacing

any existing association for key , and returns unspecified values.

(hashtable-delete! hashtable key) procedure

Removes any association for key within hashtable and returns unspecified values.

(hashtable-contains? hashtable key) procedure

Returns #t if hashtable contains an association for key , #f otherwise.

(hashtable-update! hashtable key proc default) procedure

Proc should accept one argument, should return a single value, and should not

mutate hashtable. The hashtable-update! procedure applies proc to the value

in hashtable associated with key , or to default if hashtable does not contain an

association for key . The hashtable is then changed to associate key with the value

returned by proc.

The behavior of hashtable-update! is equivalent to the following code, but

may be implemented more efficiently in cases where the implementation can avoid

multiple lookups of the same key:

(hashtable-set!
hashtable key
(proc (hashtable-ref

hashtable key default)))

(hashtable-copy hashtable) procedure

(hashtable-copy hashtable mutable) procedure

Returns a copy of hashtable. If the mutable argument is provided and is true, the

returned hashtable is mutable; otherwise it is immutable.

(hashtable-clear! hashtable) procedure

(hashtable-clear! hashtable k) procedure

Removes all associations from hashtable and returns unspecified values.

Revised6 Scheme 271

If a second argument is given, the current capacity of the hashtable is reset to

approximately k elements.

(hashtable-keys hashtable) procedure

Returns a vector of all keys in hashtable. The order of the vector is unspecified.

(hashtable-entries hashtable) procedure

Returns two values, a vector of the keys in hashtable, and a vector of the

corresponding values.

(let ((h (make-eqv-hashtable)))
(hashtable-set! h 1 ’one)
(hashtable-set! h 2 ’two)
(hashtable-set! h 3 ’three)
(hashtable-entries h)) =⇒ #(1 2 3) #(one two three)

; two return values

; entries may be in different order

13.3 Inspection

(hashtable-equivalence-function hashtable) procedure

Returns the equivalence function used by hashtable to compare keys. For hasht-

ables created with make-eq-hashtable and make-eqv-hashtable, returns eq? and

eqv? respectively.

(hashtable-hash-function hashtable) procedure

Returns the hash function used by hashtable. For hashtables created by make-eq-
hashtable or make-eqv-hashtable, #f is returned.

(hashtable-mutable? hashtable) procedure

Returns #t if hashtable is mutable, otherwise #f.

13.4 Hash functions

The equal-hash, string-hash, and string-ci-hash procedures of this section are

acceptable as the hash functions of a hashtable only if the keys on which they are

called are not mutated while they remain in use as keys in the hashtable.

(equal-hash obj) procedure

Returns an integer hash value for obj , based on its structure and current contents.

This hash function is suitable for use with equal? as an equivalence function.

Note: Like equal?, the equal-hash procedure must always terminate, even if its

arguments contain cycles.

272 M. Sperber et al.

(string-hash string) procedure

Returns an integer hash value for string , based on its current contents. This hash

function is suitable for use with string=? as an equivalence function.

(string-ci-hash string) procedure

Returns an integer hash value for string based on its current contents, ignoring

case. This hash function is suitable for use with string-ci=? as an equivalence

function.

(symbol-hash symbol) procedure

Returns an integer hash value for symbol .

14 Enumerations

This chapter describes the (rnrs enums (6)) library for dealing with enumerated

values and sets of enumerated values. Enumerated values are represented by ordinary

symbols, while finite sets of enumerated values form a separate type, known as the

enumeration sets. The enumeration sets are further partitioned into sets that share

the same universe and enumeration type. These universes and enumeration types are

created by the make-enumeration procedure. Each call to that procedure creates a

new enumeration type.

This library interprets each enumeration set with respect to its specific universe

of symbols and enumeration type. This facilitates efficient implementation of enu-

meration sets and enables the complement operation.

In the descriptions of the following procedures, enum-set ranges over the enumer-

ation sets, which are defined as the subsets of the universes that can be defined using

make-enumeration.

(make-enumeration symbol-list) procedure

Symbol-list must be a list of symbols. The make-enumeration procedure creates a

new enumeration type whose universe consists of those symbols (in canonical order

of their first appearance in the list) and returns that universe as an enumeration set

whose universe is itself and whose enumeration type is the newly created enumeration

type.

(enum-set-universe enum-set) procedure

Returns the set of all symbols that comprise the universe of its argument, as an

enumeration set.

(enum-set-indexer enum-set) procedure

Returns a unary procedure that, given a symbol that is in the universe of enum-set ,

returns its 0-origin index within the canonical ordering of the symbols in the universe;

given a symbol not in the universe, the unary procedure returns #f.

Revised6 Scheme 273

(let* ((e (make-enumeration ’(red green blue)))
(i (enum-set-indexer e)))

(list (i ’red) (i ’green) (i ’blue) (i ’yellow)))
=⇒ (0 1 2 #f)

The enum-set-indexer procedure could be defined as follows using the memq
procedure from the (rnrs lists (6)) library:

(define (enum-set-indexer set)
(let* ((symbols (enum-set->list

(enum-set-universe set)))
(cardinality (length symbols)))

(lambda (x)
(cond
((memq x symbols)
=> (lambda (probe)

(- cardinality (length probe))))
(else #f)))))

(enum-set-constructor enum-set) procedure

Returns a unary procedure that, given a list of symbols that belong to the universe

of enum-set , returns a subset of that universe that contains exactly the symbols in

the list. The values in the list must all belong to the universe.

(enum-set->list enum-set) procedure

Returns a list of the symbols that belong to its argument, in the canonical order

of the universe of enum-set .

(let* ((e (make-enumeration ’(red green blue)))
(c (enum-set-constructor e)))

(enum-set->list (c ’(blue red)))) =⇒ (red blue)

(enum-set-member? symbol enum-set) procedure

(enum-set-subset? enum-set1 enum-set2) procedure

(enum-set=? enum-set1 enum-set2) procedure

The enum-set-member? procedure returns #t if its first argument is an element

of its second argument, #f otherwise.

The enum-set-subset? procedure returns #t if the universe of enum-set1 is

a subset of the universe of enum-set2 (considered as sets of symbols) and every

element of enum-set1 is a member of enum-set2. It returns #f otherwise.

The enum-set=? procedure returns #t if enum-set1 is a subset of enum-set2 and

vice versa, as determined by the enum-set-subset? procedure. This implies that

the universes of the two sets are equal as sets of symbols, but does not imply that

they are equal as enumeration types. Otherwise, #f is returned.

274 M. Sperber et al.

(let* ((e (make-enumeration ’(red green blue)))
(c (enum-set-constructor e)))

(list
(enum-set-member? ’blue (c ’(red blue)))
(enum-set-member? ’green (c ’(red blue)))
(enum-set-subset? (c ’(red blue)) e)
(enum-set-subset? (c ’(red blue)) (c ’(blue red)))
(enum-set-subset? (c ’(red blue)) (c ’(red)))
(enum-set=? (c ’(red blue)) (c ’(blue red)))))

=⇒ (#t #f #t #t #f #t)

(enum-set-union enum-set1 enum-set2) procedure

(enum-set-intersection enum-set1 enum-set2) procedure

(enum-set-difference enum-set1 enum-set2) procedure

Enum-set1 and enum-set2 must be enumeration sets that have the same enumeration

type.

The enum-set-union procedure returns the union of enum-set1 and enum-set2.

The enum-set-intersection procedure returns the intersection of enum-set1 and

enum-set2. The enum-set-difference procedure returns the difference of enum-set1
and enum-set2.

(let* ((e (make-enumeration ’(red green blue)))
(c (enum-set-constructor e)))

(list (enum-set->list
(enum-set-union (c ’(blue)) (c ’(red))))
(enum-set->list
(enum-set-intersection (c ’(red green))

(c ’(red blue))))
(enum-set->list
(enum-set-difference (c ’(red green))

(c ’(red blue))))))
=⇒ ((red blue) (red) (green))

(enum-set-complement enum-set) procedure

Returns enum-set ’s complement with respect to its universe.

(let* ((e (make-enumeration ’(red green blue)))
(c (enum-set-constructor e)))

(enum-set->list
(enum-set-complement (c ’(red)))))

=⇒ (green blue)

Revised6 Scheme 275

(enum-set-projection enum-set1 enum-set2) procedure

Projects enum-set1 into the universe of enum-set2, dropping any elements of

enum-set1 that do not belong to the universe of enum-set2. (If enum-set1 is a subset

of the universe of its second, no elements are dropped, and the injection is returned.)

The result has the enumeration type of enum-set2.

(let ((e1 (make-enumeration
’(red green blue black)))

(e2 (make-enumeration
’(red black white))))

(enum-set->list
(enum-set-projection e1 e2))))

=⇒ (red black)

(define-enumeration 〈type-name〉 syntax

(〈symbol〉 . . .)
〈constructor-syntax〉)
The define-enumeration form defines an enumeration type and provides two

macros for constructing its members and sets of its members.

A define-enumeration form is a definition and can appear anywhere any other

〈definition〉 can appear.

〈Type-name〉 is an identifier that is bound as a syntactic keyword; 〈symbol〉 . . . are

the symbols that comprise the universe of the enumeration (in order).

(〈type-name〉 〈symbol〉) checks at macro-expansion time whether the name of

〈symbol〉 is in the universe associated with 〈type-name〉. If it is, (〈type-name〉
〈symbol〉) is equivalent to 〈symbol〉. It is a syntax violation if it is not.

〈Constructor-syntax〉 is an identifier that is bound to a macro that, given any finite

sequence of the symbols in the universe, possibly with duplicates, expands into an

expression that evaluates to the enumeration set of those symbols.

(〈constructor-syntax〉 〈symbol〉 . . .) checks at macro-expansion time whether

every 〈symbol〉 . . . is in the universe associated with 〈type-name〉. It is a syntax

violation if one or more is not. Otherwise

(〈constructor-syntax〉 〈symbol〉 . . .)

is equivalent to

((enum-set-constructor (〈constructor-syntax〉))
’(〈symbol〉 . . .)).

Example:

(define-enumeration color
(black white purple maroon)

276 M. Sperber et al.

color-set)

(color black) =⇒ black
(color purpel) =⇒ &syntax exception

(enum-set->list (color-set)) =⇒ ()
(enum-set->list
(color-set maroon white)) =⇒ (white maroon)

Note: In (〈type-name〉 〈symbol〉) and (〈constructor-syntax〉 〈symbol〉 . . .) forms,

only the names of the 〈symbol〉s are significant.

15 Composite library

The (rnrs (6)) library is a composite of most of the libraries described in this

report. The only exceptions are:

• (rnrs eval (6)) (chapter 16)

• (rnrs mutable-pairs (6)) (chapter 17)

• (rnrs mutable-strings (6)) (chapter 18)

• (rnrs r5rs (6)) (chapter 19)

The library exports all procedures and syntactic forms provided by the component

libraries.

All of the bindings exported by (rnrs (6)) are exported for both run and

expand; see report section 7.2.

16 eval

The (rnrs eval (6)) library allows a program to create Scheme expressions as

data at run time and evaluate them.

(eval expression environment) procedure

Evaluates expression in the specified environment and returns its value. Expression

must be a syntactically valid Scheme expression represented as a datum value, and

environment must be an environment, which can be created using the environment
procedure described below.

If the first argument to eval is determined not to be a syntactically correct expres-

sion, then eval must raise an exception with condition type &syntax. Specifically,

if the first argument to eval is a definition or a splicing begin form containing a

definition, it must raise an exception with condition type &syntax.

(environment import-spec . . .) procedure

Import-spec must be a datum representing an 〈import spec〉 (see report section 7.1).

The environment procedure returns an environment corresponding to import-spec.

The bindings of the environment represented by the specifier are immutable: If

Revised6 Scheme 277

eval is applied to an expression that is determined to contain an assignment to

one of the variables of the environment, then eval must raise an exception with a

condition type &syntax.

(library (foo)
(export)
(import (rnrs)

(rnrs eval))
(write
(eval ’(let ((x 3)) x)

(environment ’(rnrs)))))
writes 3

(library (foo)
(export)
(import (rnrs)

(rnrs eval))
(write
(eval
’(eval:car (eval:cons 2 4))
(environment

’(prefix (only (rnrs) car cdr cons null?)
eval:)))))

writes 2

17 Mutable pairs

The procedures provided by the (rnrs mutable-pairs (6)) library allow new

values to be assigned to the car and cdr fields of previously allocated pairs.

(set-car! pair obj) procedure

Stores obj in the car field of pair . The set-car! procedure returns unspecified

values.

(define (f) (list ’not-a-constant-list))
(define (g) ’(constant-list))
(set-car! (f) 3) =⇒ unspecified

(set-car! (g) 3) =⇒ unspecified

; should raise &assertion exception

If an immutable pair is passed to set-car!, an exception with condition type

&assertion should be raised.

(set-cdr! pair obj) procedure

Stores obj in the cdr field of pair . The set-cdr! procedure returns unspecified

values.

278 M. Sperber et al.

If an immutable pair is passed to set-cdr!, an exception with condition type

&assertion should be raised.

(let ((x (list ’a ’b ’c ’a))
(y (list ’a ’b ’c ’a ’b ’c ’a)))

(set-cdr! (list-tail x 2) x)
(set-cdr! (list-tail y 5) y)
(list
(equal? x x)
(equal? x y)
(equal? (list x y ’a) (list y x ’b)))) =⇒ (#t #t #f)

18 Mutable strings

The string-set! procedure provided by the (rnrs mutable-strings (6)) library

allows mutating the characters of a string in-place.

(string-set! string k char) procedure

K must be a valid index of string . The string-set! procedure stores char in

element k of string and returns unspecified values.

Passing an immutable string to string-set! should cause an exception with

condition type &assertion to be raised.

(define (f) (make-string 3 #*))
(define (g) "***")
(string-set! (f) 0 #\?) =⇒ unspecified

(string-set! (g) 0 #\?) =⇒ unspecified

; should raise &assertion exception

(string-set! (symbol->string ’immutable)
0
#\?) =⇒ unspecified

; should raise &assertion exception

Note: Implementors should make string-set! run in constant time.

(string-fill! string char) procedure

Stores char in every element of the given string and returns unspecified values.

19 R5RS compatibility

The features described in this chapter are exported from the (rnrs r5rs (6))
library and provide some functionality of the preceding revision of this report (Kelsey

et al., 1998) that was omitted from the main part of the current report.

Revised6 Scheme 279

(exact->inexact z) procedure

(inexact->exact z) procedure

These are the same as the inexact and exact procedures; see report section 11.7.8.

(quotient n1 n2) procedure

(remainder n1 n2) procedure

(modulo n1 n2) procedure

These procedures implement number-theoretic (integer) division. N2 must be non-

zero. All three procedures return integer objects. If n1/n2 is an integer object:

(quotient n1 n2) =⇒ n1/n2

(remainder n1 n2) =⇒ 0
(modulo n1 n2) =⇒ 0

If n1/n2 is not an integer object:

(quotient n1 n2) =⇒ nq
(remainder n1 n2) =⇒ nr
(modulo n1 n2) =⇒ nm

where nq is n1/n2 rounded towards zero, 0 < |nr| < |n2|, 0 < |nm| < |n2|, nr and nm
differ from n1 by a multiple of n2, nr has the same sign as n1, and nm has the same

sign as n2.

Consequently, for integer objects n1 and n2 with n2 not equal to 0,

(= n1 (+ (* n2 (quotient n1 n2))
(remainder n1 n2)))

=⇒ #t

provided all number object involved in that computation are exact.

(modulo 13 4) =⇒ 1
(remainder 13 4) =⇒ 1

(modulo -13 4) =⇒ 3
(remainder -13 4) =⇒ -1

(modulo 13 -4) =⇒ -3
(remainder 13 -4) =⇒ 1

(modulo -13 -4) =⇒ -1
(remainder -13 -4) =⇒ -1

(remainder -13 -4.0) =⇒ -1.0

Note: These procedures could be defined in terms of div and mod (see report

section 11.7.9) as follows (without checking of the argument types):

280 M. Sperber et al.

(define (sign n)
(cond
((negative? n) -1)
((positive? n) 1)
(else 0)))

(define (quotient n1 n2)
(* (sign n1) (sign n2) (div (abs n1) (abs n2))))

(define (remainder n1 n2)
(* (sign n1) (mod (abs n1) (abs n2))))

(define (modulo n1 n2)
(* (sign n2) (mod (* (sign n2) n1) (abs n2))))

(delay 〈expression〉) syntax

The delay construct is used together with the procedure force to implement

lazy evaluation or call by need. (delay 〈expression〉) returns an object called a

promise which at some point in the future may be asked (by the force procedure)

to evaluate 〈expression〉, and deliver the resulting value. The effect of 〈expression〉
returning multiple values is unspecified.

(force promise) procedure

Promise must be a promise. The force procedure forces the value of promise. If no

value has been computed for the promise, then a value is computed and returned.

The value of the promise is cached (or “memoized”) so that if it is forced a second

time, the previously computed value is returned.

(force (delay (+ 1 2))) =⇒ 3
(let ((p (delay (+ 1 2))))
(list (force p) (force p)))

=⇒ (3 3)

(define a-stream
(letrec ((next

(lambda (n)
(cons n (delay (next (+ n 1)))))))

(next 0)))
(define head car)
(define tail
(lambda (stream) (force (cdr stream))))

(head (tail (tail a-stream)))
=⇒ 2

Revised6 Scheme 281

Promises are mainly intended for programs written in functional style. The fol-

lowing examples should not be considered to illustrate good programming style, but

they illustrate the property that only one value is computed for a promise, no matter

how many times it is forced.

(define count 0)
(define p
(delay (begin (set! count (+ count 1))

(if (> count x)
count
(force p)))))

(define x 5)
p =⇒ a promise

(force p) =⇒ 6
p =⇒ a promise, still

(begin (set! x 10)
(force p)) =⇒ 6

Here is a possible implementation of delay and force. Promises are implemented

here as procedures of no arguments, and force simply calls its argument:

(define force
(lambda (object)
(object)))

The expression

(delay 〈expression〉)

has the same meaning as the procedure call

(make-promise (lambda () 〈expression〉))

as follows

(define-syntax delay
(syntax-rules ()
((delay expression)
(make-promise (lambda () expression))))),

where make-promise is defined as follows:

(define make-promise
(lambda (proc)
(let ((result-ready? #f)

(result #f))
(lambda ()

(if result-ready?
result
(let ((x (proc)))

282 M. Sperber et al.

(if result-ready?
result
(begin (set! result-ready? #t)

(set! result x)
result))))))))

(null-environment n) procedure

N must be the exact integer object 5. The null-environment procedure returns

an environment specifier suitable for use with eval (see chapter 16) representing

an environment that is empty except for the (syntactic) bindings for all keywords

described in the previous revision of this report (Kelsey et al., 1998), including

bindings for =>, ..., else, and that are the same as those in the (rnrs base
(6)) library.

(scheme-report-environment n) procedure

N must be the exact integer object 5. The scheme-report-environment procedure

returns an environment specifier for an environment that is empty except for the bind-

ings for the identifiers described in the previous revision of this report (Kelsey et al.,

1998), omitting load, interaction-environment, transcript-on, transcript-off,
and char-ready?. The variable bindings have as values the procedures of the same

names described in this report, and the keyword bindings, including =>, ..., else,
and are the same as those described in this report.

Revised6 Scheme 283

PART THREE

Non-Normative Appendices

Abstract
This document contains non-normative appendices to the Revised 6 Report on the Algorithmic
Language Scheme. These appendices contain advice for users and suggestions for implementors
on issues not fit for standardization, in particular on platform-specific issues.

This document frequently refers back to the Revised 6 Report on the Algorithmic Language
Scheme and the Revised 6 Report on the Algorithmic Language Scheme — Libraries —; refer-
ences to the report are identified by designations such as “report section” or “report chapter”,
and references to the library report are identified by designations such as “library section” or
“library chapter”.

A Standard-conformant mode

Scheme implementations compliant with the report may operate in a variety of

modes. In particular, in addition to one or more modes conformant with the

requirements of the report, an implementation may offer non-conformant modes.

These modes are by nature implementation-specific, and may differ in the language

and available libraries. In particular, non-conformant language extensions may be

available, including unsafe libraries or otherwise unsafe features, and the semantics

of the language may differ from the semantics described in the report. Moreover,

the default mode offered by a Scheme implementation may be non-conformant, and

such a Scheme implementation may require special settings or declarations to enter

the report-conformant mode. Implementors should clearly document the nature of

the default mode and how to enter a report-conformant mode.

B Optional case insensitivity

In contrast with earlier revisions of the report (Kelsey et al., 1998), the syntax of

data distinguishes upper and lower case in identifiers and in characters specified via

their names. For example, the identifiers X and x are different, and the character

#\space cannot be written #\SPACE.
Implementors may wish to support case-insensitive syntax for backward compat-

ibility or other reasons. If they do so, they should adopt the following directives to

control case folding.

#!fold-case
#!no-fold-case

These directives may appear anywhere comments may appear and are treated

as comments, except that they affect the reading of subsequent lexemes. The

#!fold-case causes the reader to case-fold (see library section 1.2) each 〈identifier〉
and 〈character name〉. The #!no-fold-case directive causes the reader to return to

the default, non-folding behavior.

284 M. Sperber et al.

C Use of square brackets

Even though matched square brackets are synonymous with parentheses in the

syntax, many programmers use square brackets only in a few select places. In

particular, programmers should restrict use of square brackets to places in syntactic

forms where two consecutive open parentheses would otherwise be common. These

are the applicable forms specified in the report and the library report:

• For cond forms (see report section 11.4.5), a 〈cond clause〉 may take one of

the follow forms:

[〈test〉 〈expression1〉 . . .]
[〈test〉 => 〈expression〉]
[else 〈expression1〉 〈expression2〉 . . .]

• For case forms (see report section 11.4.5), a 〈case clause〉 may take one of the

follow forms:

[(〈datum1〉 . . .) 〈expression1〉 〈expression2〉 . . .]
[else 〈expression1〉 〈expression2〉 . . .]

• For let, let*, letrec, letrec* forms (see report section 11.4.6), 〈bindings〉
may take the following form:

([〈variable1〉 〈init1〉] . . .)

• For let-values and let-values* forms (see report section 11.4.6), 〈mv-bindings〉
may take the following form:

([〈formals1〉 〈init1〉] . . .)

• For syntax-rules forms (see report section 11.19), a 〈syntax rule〉 may take

the following form:

[〈srpattern〉 〈template〉]

• For identifier-syntax forms (see report section 11.19), the two clauses may

take the following form:

[〈id1〉 〈template1〉]
[(set! 〈id2〉 〈pattern〉) 〈template2〉]

• For do forms (see library section 5), the variable bindings may take the

following form:

([〈variable1〉 〈init1〉 〈step1〉] . . .)

• For case-lambda forms (see library section 5), a 〈case-lambda clause〉 may

take the following form:

[〈formals〉 〈body〉]

• For guard forms (see library section 7.1), a 〈cond clause〉 may take one of the

follow forms:

Revised6 Scheme 285

[〈test〉 〈expression1〉 . . .]
[〈test〉 => 〈expression〉]
[else 〈expression1〉 〈expression2〉 . . .]

• For syntax-case forms (see library chapter 12.4), a 〈syntax-case rule〉 may

take one of the following forms:

[〈pattern〉 〈output expression〉]
[〈pattern〉 〈fender〉 〈output expression〉]

D Scripts

A Scheme script is a top-level program (see report chapter 8) which is packaged such

that it is directly executable by conforming implementations of Scheme, on one or

more plaforms.

D.1 Script interpreter

Where applicable, implementations should provide a script interpreter in the form

of an executable program named scheme-script that is capable of initiating the

execution of Scheme scripts, as described below.

Rationale: Distributing a Scheme program that is portable with respect to both

Scheme implementations and operating systems is challenging, even if that pro-

gram has been written in standard Scheme. Languages with a single or primary

implementation can at least rely on a standard name for their script interpreters.

Standardizing the name of the executable used to start a Scheme script removes one

barrier to the distribution of Scheme scripts.

D.2 Syntax

A Scheme script is a delimited piece of text, typically a file, which consists of an

optional script header, followed by a top-level program. A script header has the

following syntax:

〈script header〉 −→ 〈shebang〉 /usr/bin/env 〈space〉
scheme-script 〈linefeed〉

〈shebang〉 −→ #! | #! 〈space〉

D.2.1 Script header

The script header, if present on the first line of a script, is used by Unix-like operating

systems to identify the interpreter to execute that script.

The script header syntax given above is the recommended portable form that

programmers should use. However, if the first line of a script begins with #!/ or

286 M. Sperber et al.

#!〈space〉, implementations should ignore it on all platforms, even if it does not

conform to the recommended syntax.

Rationale: Requiring script interpreters to recognize and ignore the script header

helps ensure that Scheme scripts written for Unix-like systems can also run on other

kinds of systems. Furthermore, recognizing all #!/ or #!〈space〉 combinations allows

local customizations to be performed by altering a script header from its default

form.

D.2.2 Example

#!/usr/bin/env scheme-script
#!r6rs
(import (rnrs base)

(rnrs io ports)
(rnrs programs))

(put-bytes (standard-output-port)
(call-with-port

(open-file-input-port
(cadr (command-line)))

get-bytes-all))

D.3 Platform considerations

Many platforms require that scripts be marked as executable in some way. The

platform-specific details of this are beyond the scope of this report. Scripts that are

not suitably marked as executable will fail to execute on many platforms. Other

platform-specific notes for some popular operating systems follow.

D.3.1 Apple Mac OS X

The Mac OS X operating system supports the Unix-like script header for shell scripts

that run in the Terminal. Depending on the intended usage, it may be advisable

to choose a file name ending in .command for a script, as this makes the script

double-clickable.

D.3.2 Unix

Scheme scripts on Unix-like operating systems are supported by the presence of

the script header. Scripts that omit the script header are unlikely to be directly

executable on Unix-like systems.

To support installation of the Scheme script interpreter in non-standard paths,

scripts should use the /usr/bin/env program as specified in the recommended

script header syntax. (Note that on many Unix-like systems, this also allows the

script interpreter itself to be implemented as a shell script.)

Revised6 Scheme 287

D.3.3 Microsoft Windows

The Windows operating system allows a file extension to be associated with a script

interpreter such as scheme-script. This association may be configured appropri-

ately by Scheme implementations, installation programs, or by the user.

D.3.4 Selecting an implementation

If multiple implementations of Scheme are installed on a machine, the user may

wish to specify which implementation should be used to execute Scheme scripts

by default. Most platforms support some mechanism for choosing between altern-

ative implementations of a program. For example, Debian GNU/Linux uses the

/etc/alternatives mechanism to do this; Microsoft Windows uses file extension

associations. Implementations are expected to configure this appropriately, e.g., as

part of their installation procedure. Failing that, users must perform any necessary

configuration to choose their preferred Scheme script interpreter.

E Source code representation

The report does not specify how source code is represented and stored. The only

requirement the report imposes is that the source code of a top-level program (see

report section 8.1) or a script (see section D.2) be delimited. The source code of a

library is self-delimiting in the sense that, if the beginning of a library form can be

identified, so can the end.

Implementations may take radically different approaches to storing source code

for libraries, among them: files in the file system where each file contains an arbitrary

number of library forms, files in the file system where each file contains exactly one

library form, records in a database, and data structures in memory.

Similarly, programs and scripts may be stored in a variety of formats. Platform

constraints may restrict the choices available to an implementation, which is why

the report neither mandates nor recommends a specific method for storage.

Implementations may provide a means for importing libraries coming from the

outside via an interface that accepts a UTF-8 text file in Unicode Normalization

Form C where line endings are encoded as linefeed characters. Such text files

may contain an arbitrary number of library forms. (Authors of such files should

include an #!r6rs comment if the file is written purely with the lexical and datum

syntax described in the report. See report section 4.2.3.) After importing such a

file, the libraries defined in it should be available to other libraries and files. An

implementation may store the file as is, or convert it to some storage format to

achieve this.

Similarly, implementations may provide a means for executing a program repres-

ented as a UTF-8 text file containing its source code. Again, authors of such files

should include an #!r6rs comment if the file is written purely with the lexical and

datum syntax described in the report. This report does not describe a file format

that allows both libraries and programs to appear in the same file.

288 M. Sperber et al.

F Use of library versions

Names for libraries may include a version. An 〈import spec〉 may designate a set

of acceptable versions that may be imported. Conversely, only one version of each

library should be part of a program. This allows using the “name part” of a

〈library name〉 for different purposes than the 〈version〉.
In particular, if several different variants of a library exists where it is feasible that

they coexist in the same program, it is recommended that different names be used

for the variants. In contrast, for compatible versions of a library where coexistence

of several versions is unnecessary and undesirable, it is recommended that the same

name and different versions be used. In particular, it is recommended that new

versions of libraries that are conservative extensions of old ones differ only in the

version, not in the name.

Correspondingly, it is recommended that 〈import spec〉s do not constrain an

import to a single version, but instead specify a wide range of acceptable versions

of a library.

Implementations that allow two libraries of the same name with different versions

to coexist in the same program should report when processing a program that

actually makes use of this extension.

G Unique library names

Programmers should choose names for distributed libraries that do not collide with

other libraries’ names. This appendix suggests a convention for generating unique

library names, similar to the convention for Java (Gosling et al., 2005).

A unique library name can be formed by associating the library with an Internet

domain name, such as mit.edu. The lower-case components of the domain are

reversed to form a prefix for the library name. Adding further name components to

establish a hierarchy may be advisable, depending on the size of the organization

associated with the domain name, the number of libraries to be distributed from it,

and other organizational properties or conventions associated with the library.

Programmers should use library names that are suitable for use as part of file

names. Special characters in domain names that do not fit conventions of commonly

used file systems should be replaced by hyphens or suitable “escape sequences” that,

as much as possible, are suitable for avoiding collisions. Here are some examples

for possible library names according to this convention:

(edu mit swiss cheese)
(de deinprogramm educational graphics turtle)
(com pan-am booking passenger)

The name of a library does not necessarily indicate an Internet address where the

package is distributed.

Revised6 Scheme 289

References

Abelson, Harold, Sussman, Gerald Jay, & Sussman, Julie. (1996). Structure and interpretation
of computer programs. second edn. Cambridge, Mass.: MIT Press.

Backus, J. W., Bauer, F.L., J.Green, Katz, C., Naur, J. McCarthy P., Perlis, A. J., Rutishauser,
H., Samuelson, K., Wegstein, B. Vauquois J. H., van Wijngaarden, A., & Woodger, M.
(1963). Revised report on the algorithmic language Algol 60. Communications of the ACM,
6(1), 1–17.

Barendregt, Henk P. (1984). Introduction to the lambda calculus. Nieuw archief voor wisen-
kunde, 4(2), 337–372.

Bawden, Alan. 1999 (Jan.). Quasiquotation in Lisp. Pages 4–12 of: Danvy, Olivier (ed),
Proceedings acm sigplan workshop on partial evaluation and semantics-based program manip-
ulation pepm ’99. BRICS Notes Series NS-99-1.

Bawden, Alan, & Rees, Jonathan. (1988). Syntactic closures. Pages 86–95 of: ACM conference
on Lisp and functional programming. Snowbird, Utah: ACM Press.

Bradner, Scott. 1997 (Mar.). Key words for use in RFCs to indicate requirement levels. http:/
/www.ietf.org/rfc/rfc2119.txt. RFC 2119.

Burger, Robert G., & Dybvig, R. Kent. (1996). Printing floating-point numbers quickly
and accurately. Pages 108–116 of: Proceedings of the ACM SIGPLAN ’96 conference on
programming language design and implementation. Philadelphia, PA, USA: ACM Press.

Clinger, Will, Dybvig, R. Kent, Sperber, Michael, & van Straaten, Anton. (2005). SRFI 76:
R6RS records. http://srfi.schemers.org/srfi-76/.

Clinger, William. 1985 (1985). The revised revised report on Scheme, or an uncommon Lisp.
Tech. rept. MIT Artificial Intelligence Memo 848. MIT. Also published as Computer
Science Department Technical Report 174, Indiana University, June 1985.

Clinger, William. (1998). Proper tail recursion and space efficiency. Pages 174–185 of: Cooper,
Keith (ed), Proceedings of the 1998 on programming language design and implementation.
Montreal, Canada: ACM Press. Volume 33(5) of SIGPLAN Notices.

Clinger, William, & Rees, Jonathan. (1986). Revised3 report on the algorithmic language
Scheme. SIGPLAN notices, 21(12), 37–79.

Clinger, William, & Rees, Jonathan. (1991a). Macros that work. Pages 155–162 of: Proceedings
1991 ACM sigplan symposium on principles of programming languages. Orlando, Florida:
ACM Press.

Clinger, William, & Rees, Jonathan. (1991b). Revised4 report on the algorithmic language
Scheme. Lisp pointers, IV(3), 1–55.

Clinger, William D. (1990). How to read floating point numbers accurately. Pages 92–101
of: Proceedings on programming language design and implementation ’90. White Plains, New
York, USA: ACM.

Clinger, William D, & Sperber, Michael. (2005). SRFI 77: Preliminary proposal for R6RS
arithmetic. http://srfi.schemers.org/srfi-77/.

Cohen, Danny. 1980 (Apr.). On holy wars and a plea for peace. http://www.ietf.org/rfc/
ien/ien137.txt. Internet Engineering Note 137.

Davis, Mark. (2006). Unicode Standard Annex #29: Text boundaries. http://www.unicode
.org/reports/tr29/.

Dybvig, R. Kent. (2003). The Scheme programming language. third edn. Cambridge: MIT
Press. http://www.scheme.com/tspl3/.

Dybvig, R. Kent. (2005). Chez Scheme version 7 user’s guide. Cadence Research Systems.
http://www.scheme.com/csug7/.

Dybvig, R. Kent. (2006). SRFI 93: R6RS syntax-case macros. http://srfi.schemers
.org/srfi-93/.

290 M. Sperber et al.

Dybvig, R. Kent, Hieb, Robert, & Bruggeman, Carl. (1992). Syntactic abstraction in Scheme.
Lisp and symbolic computation, 5(4), 295–326.

Felleisen, Matthias, & Flatt, Matthew. (2003). Programming languages and lambda calculi.
http://www.cs.utah.edu/plt/publications/pllc.pdf.

Fessenden, Carol, Clinger, William, Friedman, Daniel P., & Haynes, Christopher. (1983).
Scheme 311 version 4 reference manual. Indiana University. Indiana University Computer
Science Technical Report 137, Superseded by (Friedman et al., 1985).

Flatt, Matthew. 2006 (July). PLT MzScheme: Language manual. Rice University, University
of Utah. http://download.plt-scheme.org/doc/352/html/mzscheme/.

Flatt, Matthew, & Dybvig, Kent. (2005). SRFI 83: R6RS library syntax. http://srfi
.schemers.org/srfi-83/.

Flatt, Matthew, & Feeley, Marc. (2005). SRFI 75: R6RS unicode data. http://srfi.schemers
.org/srfi-75/.

Friedman, Daniel P., Haynes, Christopher, Kohlbecker, Eugene, & Wand, Mitchell. 1985 (Jan.).
Scheme 84 interim reference manual. Indiana University. Indiana University Computer
Science Technical Report 153.

Gosling, James, Joy, Bill, Steele, Guy, & Bracha, Gilad. (2005). The JavaTM language
specification. Third edn. Addison-Wesley.

IEEE754. (1985). IEEE standard 754-1985. IEEE standard for binary floating-point arithmetic.
Reprinted in SIGPLAN Notices, 22(2):9-25, 1987.

Kelsey, Richard, Clinger, William, & Rees, Jonathan. (1998). Revised5 report on the al-
gorithmic language Scheme. Higher-order and symbolic computation, 11(1), 7–105.

Kohlbecker, Eugene E., Friedman, Daniel P., Felleisen, Matthias, & Duba, Bruce. (1986).
Hygienic macro expansion. Pages 151–161 of: Proceedings of the 1986 ACM conference on
Lisp and functional programming.

Kohlbecker Jr., Eugene E. 1986 (Aug.). Syntactic extensions in the programming language lisp.
Ph.D. thesis, Indiana University.

Leach, P., Mealling, M., & Salz, R. 2005 (July). A Universally Unique IDentifier (UUID) URN
namespace. http://www.ietf.org/rfc/rfc4122.txt. RFC 4122.

Matthews, Jacob, & Findler, Robert Bruce. 2005 (Sept.). An operational semantics for R5RS
Scheme. Pages 41–54 of: Ashley, J. Michael, & Sperber, Michael (eds), Proceedings of the
sixth workshop on scheme and functional programming. Indiana University Technical Report
TR619.

Matthews, Jacob, & Findler, Robert Bruce. (2007). An operational semantics for Scheme.
Journal of functional programming. From http://www.cambridge.org/journals/JFP/.

Matthews, Jacob, Findler, Robert Bruce, Flatt, Matthew, & Felleisen, Matthias. (2004). A
visual environment for developing context-sensitive term rewriting systems. Proceedings
15th conference on rewriting techniques and applications. Aachen: Springer-Verlag.

MIT Department of Electrical Engineering and Computer Science. 1984 (Sept.). Scheme
manual, seventh edition.

Rees, Jonathan A., & IV, Norman I. Adams. (1982). T: a dialect of lisp or lambda:
The ultimate software tool. Pages 114–122 of: ACM conference on Lisp and functional
programming. Pittsburgh, Pennsylvania: ACM Press.

Rees, Jonathan A., IV, Norman I. Adams, & Meehan, James R. 1984 (Jan.). The T manual.
fourth edn. Yale University Computer Science Department.

Scheme Charter. 2006 (Mar.). Scheme standardization charter. http://www.schemers.org/
Documents/Standards/Charter/mar-2006.txt.

Sperber, Michael, Dybvig, R. Kent, Flatt, Matthew, van Straaten, Anton, Kelsey, Richard,

Revised6 Scheme 291

Clinger, William, & Rees, Jonathan. (2007a). Revised6 report on the algorithmic language
Scheme (Libraries). http://www.r6rs.org/.

Sperber, Michael, Dybvig, R. Kent, Flatt, Matthew, & van Straaten, Anton. (2007b). Revised6

report on the algorithmic language Scheme (Rationale). http://www.r6rs.org/.

Steele Jr., Guy Lewis. 1978 (May). Rabbit: a compiler for Scheme. Tech. rept. MIT Artificial
Intelligence Laboratory Technical Report 474. MIT.

Steele Jr., Guy Lewis. (1990). Common Lisp: The language. second edn. Burlington, MA:
Digital Press.

Steele Jr., Guy Lewis, & Sussman, Gerald Jay. 1978 (Jan.). The revised report on Scheme, a
dialect of Lisp. Tech. rept. MIT Artificial Intelligence Memo 452. MIT.

Sussman, Gerald Jay, & Jr., Guy Lewis Steele. 1975 (Dec.). Scheme: an interpreter for extended
lambda calculus. Tech. rept. MIT Artificial Intelligence Memo 349. MIT.

Texas Instruments. 1985 (Nov.). TI Scheme language reference manual. Texas Instruments,
Inc. Preliminary version 1.0.

Unicode Consortium, The. (2007). The Unicode standard, version 5.0.0. defined by: The
Unicode Standard, Version 5.0 (Boston, MA, Addison-Wesley, 2007. ISBN 0-321-48091-0).

Waddell, Oscar. 1999 (Aug.). Extending the scope of syntactic abstraction. Ph.D. thesis, Indiana
University. http://www.cs.indiana.edu/~owaddell/papers/thesis.ps.gz.

Waite, William M., & Goos, Gerhard. (1984). Compiler construction. Springer-Verlag.

Wright, Andrew, & Felleisen, Matthias. (1994). A syntactic approach to type soundness.
Information and computation, 115(1), 38–94. First appeared as Technical Report TR160,
Rice University, 1991.

292 M. Sperber et al.

Alphabetic index of definitions of concepts, keywords, and procedures

! 49
#,@ 39
#\ 33
#| 32
& 49
’ 39
#’ 39
* 89
* (formal semantics) 136
+ 32, 89
+ (formal semantics) 136
, 39
#, 39
,@ 39
- 32, 49, 90
- (formal semantics) 136
-0.0 27
-> 32, 49
... 32, 119, 255
/ 91
/ (formal semantics) 136
; 32
#; 32
< 88
<= 88
= 88
=> 70, 202
> 88
>= 88
? 49

119, 255
#‘ 39
‘ 39
|# 32

abs 91
accessor 184
acos 94
and 72
angle 95
antimark 253
append 100
apply 109
apply (formal semantics) 141
argument checking 41
asin 94
assert 109
&assertion 210
assertion-violation 108

assertion-violation? 210
assignment 20
assoc 178
assp 178
assq 178
assv 178
atan 94

#b 31, 36
backquote 114
base record type 184
begin 77
begin (formal semantics) 136, 146
begin0 (formal semantics) 136, 146
big-endian 164
binary port 215, 217
binary-port? 221
binding 17, 40
binding construct 40
bit fields 237
bitwise-and 248
bitwise-arithmetic-shift 251
bitwise-arithmetic-shift-left 251
bitwise-arithmetic-shift-right 251
bitwise-bit-count 249
bitwise-bit-field 250
bitwise-bit-set? 249
bitwise-copy-bit 250
bitwise-copy-bit-field 250
bitwise-first-bit-set 249
bitwise-if 249
bitwise-ior 248
bitwise-length 249
bitwise-not 248
bitwise-reverse-bit-field 252
bitwise-rotate-bit-field 251
bitwise-xor 248
body 67
boolean 16
boolean=? 98
boolean? 65, 98
bound 41
bound-identifier=? 259
buffer-mode 217
buffer-mode? 217
byte 163
bytevector 163
bytevector->sint-list 168
bytevector->string 220

Revised6 Scheme 293

bytevector->u8-list 166
bytevector->uint-list 168
bytevector-copy 166
bytevector-copy! 165
bytevector-fill! 165
bytevector-ieee-double-native-ref 171
bytevector-ieee-double-native-set!

172
bytevector-ieee-double-ref 171
bytevector-ieee-single-native-ref 171
bytevector-ieee-single-native-set!

171
bytevector-ieee-single-ref 171
bytevector-length 165
bytevector-s16-native-ref 168
bytevector-s16-native-set! 169
bytevector-s16-ref 168
bytevector-s16-set! 168
bytevector-s32-native-ref 169
bytevector-s32-native-set! 170
bytevector-s32-ref 169
bytevector-s32-set! 170
bytevector-s64-native-ref 170
bytevector-s64-native-set! 170
bytevector-s64-ref 170
bytevector-s64-set! 170
bytevector-s8-ref 166
bytevector-s8-set! 166
bytevector-sint-ref 167
bytevector-sint-set! 167
bytevector-u16-native-ref 168
bytevector-u16-native-set! 169
bytevector-u16-ref 168
bytevector-u16-set! 168
bytevector-u32-native-ref 169
bytevector-u32-native-set! 170
bytevector-u32-ref 169
bytevector-u32-set! 170
bytevector-u64-native-ref 170
bytevector-u64-native-set! 170
bytevector-u64-ref 170
bytevector-u64-set! 170
bytevector-u8-ref 166
bytevector-u8-set! 166
bytevector-uint-ref 167
bytevector-uint-set! 167
bytevector=? 165
bytevector? 165

caar 99
cadr 99
call 60
call by need 280

call-with-bytevector-output-port 230
call-with-current-continuation 110
call-with-input-file 234
call-with-output-file 234
call-with-port 222
call-with-string-output-port 230
call-with-values 111
call-with-values (formal semantics) 133
call/cc 110
call/cc (formal semantics) 142
car 99
car (formal semantics) 137
case 71, 147
case-lambda 182, 183
cdddar 99
cddddr 99
cdr 99
cdr (formal semantics) 137
ceiling 92
char->integer 104
char-alphabetic? 160
char-ci<=? 160
char-ci<? 160
char-ci=? 160
char-ci>=? 160
char-ci>? 160
char-downcase 159
char-foldcase 159
char-general-category 161
char-lower-case? 161
char-numeric? 160
char-title-case? 161
char-titlecase 159
char-upcase 159
char-upper-case? 161
char-whitespace? 160
char<=? 104
char<? 104
char=? 104
char>=? 104
char>? 104
char? 65, 104
character 16, 103
close-input-port 235
close-output-port 235
close-port 222
code point 104
codec 217
command-line 237
comment 29, 32
complex? 85
compound condition 205
cond 70, 121, 146

294 M. Sperber et al.

condition 205
&condition 205
condition 205
condition-accessor 206
condition-irritants 210
condition-message 209
condition-predicate 205
condition-who 211
condition? 205
condition? (formal semantics) 134
cons 99
cons (formal semantics) 137
cons* 179
consi (formal semantics) 137
constant 44
constructor descriptor 195
continuable exception 41, 203
continuation 22
core form 62
cos 94
current exception handler 202
current-error-port 231, 235
current-input-port 224, 235
current-output-port 231, 235

#d 36
datum 27, 28
datum value 21, 27
datum->syntax 262
define 65
define-condition-type 207
define-enumeration 275
define-record-type 186
define-syntax 66
definition 18, 40, 53, 65, 66
delay 280
delete-file 237
denominator 92
derived form 20
display 236
div 91
div-and-mod 91
div0 92
div0-and-mod0 92
do 181, 182
dot (formal semantics) 139
dw (formal semantics) 142, 146
dynamic environment 45
dynamic extent 44
dynamic-wind 110, 112
dynamic-wind (formal semantics) 142

#e 31, 36

else 70, 71, 202
empty list 38, 65, 97, 98, 100
end-of-file object 220
end-of-line style 217
endianness 164
endianness 164
enum-set->list 273
enum-set-complement 274
enum-set-constructor 273
enum-set-difference 274
enum-set-indexer 272
enum-set-intersection 274
enum-set-member? 273
enum-set-projection 275
enum-set-subset? 273
enum-set-union 274
enum-set-universe 272
enum-set=? 273
enumeration 272
enumeration sets 272
enumeration type 272
environment 276
environment 276
eof-object 220, 234
eof-object? 220, 234
eol-style 218
eq? 80
equal-hash 271
equal? 80
equivalence function 268
equivalence predicate 77
eqv? 44, 77
eqv? (formal semantics) 138, 146
&error 210
error 108
error-handling-mode 219
error? 210
escape procedure 22, 110
escape sequence 35
eval 276
even? 88
exact 25, 78
exact 87
exact->inexact 279
exact-integer-sqrt 95
exact? 87
exactness 25
exceptional situation 41, 204
exceptions 202
exists 174
exit 237
exp 94
export 49

Revised6 Scheme 295

expression 17, 53
expt 95
external representation 27

#f 33, 97
false 43
field 184
fields 186
file options 216
file-exists? 236
file-options 216
filter 175
find 173
finite? 89
fixnum 25
fixnum->flonum 248
fl 49
fl* 245
fl+ 245
fl- 245
fl/ 245
fl<=? 244
fl<? 244
fl=? 244
fl>=? 244
fl>? 244
flabs 245
flacos 247
flasin 247
flatan 247
flceiling 246
flcos 247
fldenominator 246
fldiv 245
fldiv-and-mod 245
fldiv0 245
fldiv0-and-mod0 245
fleven? 244
flexp 247
flexpt 247
flfinite? 244
flfloor 246
flinfinite? 244
flinteger? 244
fllog 247
flmax 245
flmin 245
flmod 245
flmod0 245
flnan? 244
flnegative? 244
flnumerator 246
flodd? 244

flonum 26
flonum? 243
floor 92
flpositive? 244
flround 246
flsin 247
flsqrt 247
fltan 247
fltruncate 246
flush-output-port 229
flzero? 244
#!fold-case 283
fold-left 175
fold-right 176
for-all 174
for-each 102
force 280
form 18, 27
free-identifier=? 260
fx 49
fx* 238
fx*/carry 240
fx+ 238
fx+/carry 239
fx- 239
fx-/carry 239
fx<=? 238
fx<? 238
fx=? 238
fx>=? 238
fx>? 238
fxand 240
fxarithmetic-shift 242
fxarithmetic-shift-left 242
fxarithmetic-shift-right 242
fxbit-count 240
fxbit-field 241
fxbit-set? 241
fxcopy-bit 241
fxcopy-bit-field 242
fxdiv 239
fxdiv-and-mod 239
fxdiv0 239
fxdiv0-and-mod0 239
fxeven? 238
fxfirst-bit-set 241
fxif 240
fxior 240
fxlength 240
fxmax 238
fxmin 238
fxmod 239
fxmod0 239

296 M. Sperber et al.

fxnegative? 238
fxnot 240
fxodd? 238
fxpositive? 238
fxreverse-bit-field 243
fxrotate-bit-field 243
fxxor 240
fxzero? 238

gcd 92
generate-temporaries 264
get-bytevector-all 227
get-bytevector-n 226
get-bytevector-n! 226
get-bytevector-some 227
get-char 227
get-datum 228
get-line 228
get-string-all 228
get-string-n 227
get-string-n! 228
get-u8 226
guard 202

hash function 268
hashtable 268, 269
hashtable-clear! 270
hashtable-contains? 270
hashtable-copy 270
hashtable-delete! 270
hashtable-entries 271
hashtable-equivalence-function 271
hashtable-hash-function 271
hashtable-keys 271
hashtable-mutable? 271
hashtable-ref 270
hashtable-set! 270
hashtable-size 270
hashtable-update! 270
hashtable? 270
hole 126
hygienic 61

#i 31, 36
&i/o 213
&i/o-decoding 218
i/o-decoding-error? 218
&i/o-encoding 219
i/o-encoding-error-char 219
i/o-encoding-error? 219
i/o-error-filename 214
i/o-error-port 215
i/o-error-position 213

i/o-error? 213
&i/o-file-already-exists 214
i/o-file-already-exists-error? 214
&i/o-file-does-not-exist 215
i/o-file-does-not-exist-error? 215
&i/o-file-is-read-only 214
i/o-file-is-read-only-error? 214
&i/o-file-protection 214
i/o-file-protection-error? 214
&i/o-filename 213
i/o-filename-error? 214
&i/o-invalid-position 213
i/o-invalid-position-error? 213
&i/o-port 215
i/o-port-error? 215
&i/o-read 213
i/o-read-error? 213
&i/o-write 213
i/o-write-error? 213
identifier 17, 29, 32, 40
identifier macro 258
identifier-syntax 122
identifier? 259
if 69
if (formal semantics) 136
imag-part 95
immutable 44
immutable 186
immutable record type 185
implementation restriction 26, 41
&implementation-restriction 211
implementation-restriction-violation?

211
implicit identifier 262
import 49
import level 54
improper list 98
inexact 25, 78
inexact 87
inexact->exact 279
inexact? 87
infinite? 89
infinity 27
input port 215
input-port? 223
instance 54
instantiation 54
integer object 25
integer->char 104
integer-valued? 86
integer? 85
&irritants 210
irritants-condition? 210

Revised6 Scheme 297

keyword 40, 61

lambda 67, 68
lambda (formal semantics) 133, 139
latin-1-codec 218
lazy evaluation 280
lcm 92
length 100
let 67, 73, 113, 121, 151
let* 67, 74, 148
let*-values 67, 76
let-syntax 116
let-values 67, 76
letrec 67, 74, 148
letrec (formal semantics) 144
letrec* 67, 75, 149
letrec* (formal semantics) 144
letrec-syntax 117
level 54
lexeme 28
&lexical 211
lexical-violation? 211
library 23, 39, 49
library 49
list 16
list 100
list (formal semantics) 137
list->string 106
list->vector 107
list-ref 101
list-sort 179
list-tail 101
list? 100
literal 59
little-endian 164
location 44
log 94
lookahead-char 227
lookahead-u8 226

macro 21, 61
macro keyword 61
macro transformer 61, 116, 254
macro use 61
magnitude 95
make-assertion-violation 210
make-bytevector 165
make-custom-binary-input-port 224
make-custom-binary-input/output-port

233
make-custom-binary-output-port 231
make-custom-textual-input-port 225

make-custom-textual-input/output-port
234

make-custom-textual-output-port 231
make-enumeration 272
make-eq-hashtable 269
make-eqv-hashtable 269
make-error 210
make-hashtable 269
make-i/o-decoding-error 218
make-i/o-encoding-error 219
make-i/o-error 213
make-i/o-file-already-exists-error

214
make-i/o-file-does-not-exist-error

215
make-i/o-file-is-read-only-error 214
make-i/o-file-protection-error 214
make-i/o-filename-error 214
make-i/o-invalid-position-error 213
make-i/o-port-error 215
make-i/o-read-error 213
make-i/o-write-error 213
make-implementation-restriction-violation

211
make-irritants-condition 210
make-lexical-violation 211
make-message-condition 209
make-no-infinities-violation 248
make-no-nans-violation 248
make-non-continuable-violation 211
make-polar 95
make-record-constructor-descriptor

195
make-record-type-descriptor 193
make-rectangular 95
make-serious-condition 209
make-string 105
make-syntax-violation 212
make-transcoder 219
make-undefined-violation 212
make-variable-transformer 254
make-vector 107
make-violation 210
make-warning 209
make-who-condition 211
map 101
mark 253
max 89
may 24
member 177
memp 177
memq 177
memv 177

298 M. Sperber et al.

&message 209
message-condition? 209
min 89
mod 91
mod0 92
modulo 279
must 24
must be 46
must not 24
mutable 44
mutable 186
mutable record type 185
mutator 184

NaN 27
nan? 89
native-endianness 164
native-eol-style 218
native-transcoder 220
negative infinity 27
negative? 88
newline 236
nil 97
#!no-fold-case 283
&no-infinities 248
no-infinities-violation? 248
&no-nans 248
no-nans-violation? 248
&non-continuable 211
non-continuable-violation? 211
nongenerative 184
nongenerative 186
not 97
null (formal semantics) 137, 141
null-environment 282
null? 65, 100
null? (formal semantics) 137
number 16, 24, 237
number->string 96
number? 65, 85
numerator 92
numerical types 24

#o 31, 36
object 15
octet 163
odd? 88
opaque 186
open-bytevector-input-port 223
open-bytevector-output-port 229
open-file-input-port 223
open-file-input/output-port 233
open-file-output-port 229

open-input-file 235
open-output-file 235
open-string-input-port 224
open-string-output-port 230
or 72
output ports 215
output-port-buffer-mode 229
output-port? 229

pair 16, 98
pair? 65, 99
pair? (formal semantics) 137
parent 186
parent-rtd 186
partition 175
pattern variable 119, 255
peek-char 235
phase 54
port 215
port-eof? 223
port-has-port-position? 221
port-has-set-port-position!? 222
port-position 221
port-transcoder 221
port? 221
position 221
positive infinity 27
positive? 88
predicate 77
prefix notation 17
procedure 17, 19
procedure call 19, 60
procedure? 65, 81
procedure? (formal semantics) 139
promise 280
proper tail recursion 44
protocol 195
protocol 186
put-bytevector 232
put-char 232
put-datum 233
put-string 232
put-u8 232

quasiquote 114
quasisyntax 266
quote 67
quotient 279

raise 41
raise 203
raise (formal semantics) 134
raise-continuable 203

Revised6 Scheme 299

raise-continuable (formal semantics) 134
rational-valued? 86
rational? 85
rationalize 93
read 235
read-char 235
real->flonum 243
real-part 95
real-valued? 86
real? 85
record 184
record constructor 184, 195
record-accessor 198
record-constructor 198
record-constructor descriptor 195
record-constructor-descriptor 191
record-field-mutable? 201
record-mutator 198
record-predicate 198
record-rtd 200
record-type descriptor 184, 193
record-type-descriptor 191
record-type-descriptor? 195
record-type-field-names 201
record-type-generative? 201
record-type-name 201
record-type-opaque? 201
record-type-parent 201
record-type-sealed? 201
record-type-uid 201
record? 200
referentially transparent 61
region 40, 70, 73–76, 182
remainder 279
remove 177
remp 177
remq 177
remv 177
responsibility 41
reverse 100
(rnrs (6)) 276
(rnrs arithmetic bitwise (6)) 248
(rnrs arithmetic fixnums (6)) 238
(rnrs arithmetic flonums (6)) 243
(rnrs base (6)) 64
(rnrs bytevectors (6)) 163
(rnrs conditions (6)) 204
(rnrs control (6)) 180
(rnrs enums (6)) 272
(rnrs eval (6)) 276
(rnrs exceptions (6)) 202
(rnrs files (6)) 236
(rnrs hashtables (6)) 268

(rnrs io ports (6)) 215
(rnrs io simple (6)) 234
(rnrs lists (6)) 173
(rnrs mutable-pairs (6)) 277
(rnrs mutable-strings (6)) 278
(rnrs programs (6)) 237
(rnrs r5rs (6)) 278
(rnrs records inspection (6)) 200
(rnrs records procedural (6)) 193
(rnrs records syntactic (6)) 186
(rnrs sorting (6)) 179
(rnrs syntax-case (6)) 252
(rnrs unicode (6)) 159
round 93
rtd 193

safe libraries 42
scalar value 103
Scheme script 285
scheme-report-environment 282
script 285
script header 285
script interpreter 285
sealed 184
sealed 186
&serious 209
serious-condition? 209
set! 70
set! (formal semantics) 139, 144
set-car! 277
set-car! (formal semantics) 137
set-cdr! 277
set-cdr! (formal semantics) 137
set-port-position! 222
should 24
should not 24
simple condition 205
simple-conditions 205
simplest rational 93
sin 94
sint-list->bytevector 168
special form 20
splicing 77
sqrt 94
standard library 39
standard-error-port 231
standard-input-port 224
standard-output-port 231
string 16
string 105
string->bytevector 220
string->list 106
string->number 97

300 M. Sperber et al.

string->symbol 103
string->utf16 172
string->utf32 172
string->utf8 172
string-append 106
string-ci-hash 272
string-ci<=? 163
string-ci<? 162
string-ci=? 162
string-ci>=? 163
string-ci>? 162
string-copy 106
string-downcase 161
string-fill! 278
string-foldcase 161
string-for-each 106
string-hash 272
string-length 105
string-normalize-nfc 163
string-normalize-nfd 163
string-normalize-nfkc 163
string-normalize-nfkd 163
string-ref 105
string-set! 278
string-titlecase 161
string-upcase 161
string<=? 105
string<? 105
string=? 105
string>=? 105
string>? 105
string? 65, 105
subform 18, 27
substitution 253
substring 105
surrogate 104
symbol 16, 33
symbol->string 44, 103
symbol-hash 272
symbol=? 103
symbol? 65, 102
syntactic abstraction 61
syntactic datum 21, 27, 37
syntactic keyword 20, 33, 40, 61
&syntax 212
syntax 257
syntax object 254
syntax violation 42
syntax->datum 262
syntax-case 255
syntax-rules 119
syntax-violation 268
syntax-violation-form 212

syntax-violation-subform 212
syntax-violation? 212

#t 33, 97
tail call 44, 122
tail context 44
tan 94
textual port 217
textual ports 215
textual-port? 221
throw (formal semantics) 142
top-level program 23, 39, 58
transcoded-port 221
transcoder 217
transcoder-codec 220
transcoder-eol-style 220
transcoder-error-handling-mode 220
transformation procedure 254
transformer 61, 116, 254
true 43, 69, 70
truncate 93
type 65

u8-list->bytevector 166
uint-list->bytevector 168
unbound 41, 60
&undefined 212
undefined-violation? 212
Unicode 103
Unicode scalar value 103
universe 272
unless 180, 181
unquote 114
unquote-splicing 114
unspecified behavior 43
unspecified values 43
unsyntax 266
unsyntax-splicing 266
utf-16-codec 218
utf-8-codec 218
utf16->string 173
utf32->string 173
utf8->string 172

valid indices 104, 106
values 111
values (formal semantics) 133, 134, 136, 142,

146
variable 17, 33, 40, 60
variable transformer 254
vector 16
vector 107
vector->list 107

Revised6 Scheme 301

vector-fill! 108
vector-for-each 108
vector-length 107
vector-map 108
vector-ref 107
vector-set! 107
vector-sort 179
vector-sort! 180
vector? 65, 106
&violation 210
violation? 210
visit 54
visiting 54

&warning 209
warning? 209
when 180, 181

whitespace 32
&who 211
who-condition? 211
with-exception-handler 202
with-exception-handler (formal

semantics) 134
with-input-from-file 235
with-output-to-file 235
with-syntax 265
wrap 253
wrapped syntax object 253
write 236
write-char 236

#x 31, 36

zero? 88

