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Summary. Programmers confront a minefield when they design interactive Web programs.
Web interactions take place via Web browsers. Browsers permit consumers to whimsically
navigate among the various stages of a dialog, leading to unexpected outcomes. Furthermore,
the growing diversity of browsers means the number of interactive operations users can per-
form continues to grow.

To investigate this programming problem, we develop a foundational model of Web inter-
actions that reduces the panoply of browser-supported user interactions to three fundamental
ones. We use the model to formally describe two classes of errors in Web programs. The de-
scriptions suggest techniques for detecting both classes of errors. For one class we present an
incrementally-checked record type system, which effectively eliminates these errors. For the
other class, we introduce a dynamic safety check that employs program annotations to detect
errors.

1 Introduction

Over the past decade, the Web has evolved from a static medium into an interactive
one. A representative article claims that more than half of all Web transactions are
interactive [4], and this ratio only grows in favor of interactivity. Indeed, entire corpo-
rations (including book retailers, auction sites, travel reservation services, and so on)
now interact primarily or solely through the Web. These interfaces no longer present
static content but rather consume user input, perform computation based on these in-
puts, and generate corresponding output. As a result, the Web has been transformed
into an important (and increasingly dominant) medium of interactive computation.

This rapid growth in the volume of interactively generated content might suggest
that Web page developers and programmers have mastered the mechanics of inter-
active Web content. In practice, however, as this paper demonstrates, consumers still
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encounter many, and sometimes costly, program errors as they utilize these new ser-
vices. Furthermore, many of these errors are caused precisely when users employ the
interactive operations supported by Web browsers. A strong foundation for interac-
tive computation must therefore study and address the world of Web programs.

A Web program’s execution consists of a series of interactions between a Web
browser and a Web server. When a Web browser submits a request whose path points
to a Web program, the server invokes the program with the request via any of a
number of protocols (CGI [19], Java servlets [7], or Microsoft’s ASP.NET [18]). It
then waits for the program to terminate and turns the program’s output into a response
that the browser can display. Put differently, each individual Web program simply
consumes an HTTP request and produces a Web page in response. It is therefore
appropriate to call such programs “scripts” considering that they only read some
inputs and write some output. This very simplicity, however, is also what makes the
design of multi-stage Web dialogs difficult.

First, multi-stage interactive Web programs consist of many scripts, each han-
dling one request. These scripts communicate with each other via external media,
because the participants in a dialog must remember earlier parts of a conversation.
Not surprisingly, forcing the scripts to communicate this way causes many problems,
considering that such communications rely on unstated, and therefore easily violated,
invariants.

Second, the use of aWeb browser for the consumer’s side of the dialog introduces
even more complications. The primary purpose of a Web browser is to empower con-
sumers to navigate among a web of hyperlinked nodes at will. A consumer naturally
wants this same power to explore dialogs on the Web. For example, a consumer may
wish to backtrack to an earlier stage in a dialog, clone a page with choices and ex-
plore different possibilities in parallel, bookmark an interaction and come back to it
later, and so on. Hence, a programmer must be extremely careful about the invariants
that govern the communications among the scripts that make up an interactive Web
program. What appears to be invariant in a purely sequential dialog context may not
be so in a dialog medium that allows arbitrary navigation actions.

In this paper, we make three contributions to the problem of designing reliable
interactive Web programs. First, we develop a simple, formal model of Web interac-
tions. Using this model, we can explain the above problems concisely. Second, we
develop a type system that solves one of these problems in a provable manner (rela-
tive to the model). Third, because not all the checks can be performed statically, we
suggest run-time checks to supplement the type system.

Section 2 describes a problem on an actual corporate Web site that succintly
demonstrates the style of problems we study. Section 4 introduces a model of Web
interactions suitable for understanding problems with sequential programs. Section 5
uses the model to demonstrate two major classes of mistakes. Section 6 introduces a
standard type system for the Web that eliminates the first class of mistakes. Section 7
introduces a dynamic check into the programming language that warns consumers
of potential problems. Sections 3 and 8 place our work in context.



Modeling Web Interactions and Errors 3

2 A Sample Problem

We illustrate one of the Web programming problems with an example from the com-
mercial world. Figure 1 contains snapshots from an actual interaction with Orbitz,4
which sells travel services from many vendors. It naturally invites comparison shop-
ping. In particular, a customer may enter the origin and destination airports to look
for flights between cities, receive a list of flight choices, and then conduct the fol-
lowing actions:

1. Use the “open link in new window” option to study the details of a flight that
leaves at 5:50pm (step 1). The consumer now has two browser windows open.

2. Switching back to the choices window (step 2), the consumer can inspect a dif-
ferent option, e.g., a flight leaving at 9:30am (step 3). Now the consumer can
perform a side-by-side comparison of the options in two browser windows.

3. After comparing the flight details, the customer decides to take the first flight
after all. The consumer switches back to the window with the 5:50pm flight
(step 4). Using this window (form), the consumer submits the request for the
5:50pm flight (step 5).

At this point, the consumer expects the reservation system to respond with a page
confirming the 5:50pm flight. Alarmingly, even though the page indicates that click-
ing would reserve on the 5:50pm flight, Orbitz instead selects the 9:30am flight. A
customer who doesn’t pay close attention may purchase a ticket on the wrong flight.

The Orbitz problem dramatically illustrates our case. Sadly, this is not an iso-
lated error. It exists in other services (such as hotel reservations) on the Orbitz site.
Furthermore, as plain consumers, we have stumbled across this and related problems
while using several vendor’s sites, including Apple, Continental Airlines, Hertz car
rentals, Microsoft, and Register.com. Clearly, an error that occurs repeatedly across
organizations suggests not a one-time programming fault but rather a systemic prob-
lem. Hence, we must develop a foundational model to study Web interactions.

3 Prior Work

The Bigwig project [2] (a descendant of Bell Lab’s Mawl project [1]) provides a
radical solution to the problem. The main purpose of the project is to provide a
domain-specific language for composing interactive Web sessions. The language’s
runtime system enforces the (informal) model of a session as a pair of communicat-
ing threads [3]. For example, clicking on the back button takes the consumer back
to the very beginning of the dialog. While such a runtime system prevents damage,
it is also overly draconian, especially when compared to other approaches to dealing
with Web dialogs.

John Hughes [15], Christian Queinnec [22], and Paul Graham [13] independently
had the deep insight that a browser’s navigation actions correspond to the use of first-
class continuations in a program. In particular, they show that an interaction with the
4 The screenshots were produced on June 28, 2002.
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consumer corresponds to the manipulation of a continuation. If the underlying lan-
guage and server support these manipulations, a program doesn’t have to terminate to
interact with a consumer but instead captures a continuation and suspends the evalua-
tion. Every time a consumer submits a response, the computation resumes the proper
continuation. Put differently, the communication among scripts is now internalized
within one program and can thus be subjected to the safety checks of the language.

Our prior work explored the implications of Queinnec’s in two ways. First,
we built a Web server that enables Web programs to interact directly with con-
sumers [14]. Programming in this world eliminates many of the problems in a nat-
ural manner. Second, because this solution only applies if the server offers support
for storing continuations, we explored the automatic generation of robust Web pro-
grams via functional compilation techniques [17]. While this idea works in principle,
a full-fledged implementation requires a re-engineered library system and runtime
environment for the targeted language.

Thiemann [26] started with Hughes’s ideas and provides a monad-based library
for constructing Web dialogs. In principle, his solution corresponds to our second
approach; his monads take care of the “compilation” of Web scripts into a suitable
continuation form. Working with Haskell, Thiemann can now use Haskell’s type sys-
tem to check the natural communication invariants between the various portions of a
Web program. This work must accommodate effects (interactions with file systems,
data bases, etc.), which it does in a somewhat unnatural manner. Specifically, for
each interaction, the CGI scripts are re-executed from the beginning to the current
point of interaction, which can be computationally expensive. This monad-based ap-
proach does, however, avoid the re-execution of effects, thereby preserving observed
behavior relative to these effects.

4 Modeling the Web

As Web browsers proliferate, we expect that both the number and the nature of prob-
lems induced by interaction will grow. Browsers are likely to introduce interaction
features that are especially convenient to a user but are equally unanticipated by the
application developer. It becomes increasingly difficult to reason about the behavior
of a program in the context of each particular browser; we would, therefore, bene-
fit from a foundational model that encapsulates a wide variety of these interactions
in a small set of primitives, akin to what Turing machines or lambda calculi do for
standard computation. This section presents our first attempt at constructing such a
model.

The model we present has four characteristics. First, it consists of a single server
and a single client, because we wish to study the problems of sequentialWeb inter-
actions. Second, it deals exclusively with dynamically generated Web pages, called
forms, to mirror HTML’s sub-language of requests. Third, the model allows the con-
sumer to switch among Web pages arbitrarily; as we show later, this suffices to rep-
resent the problem in Section 2 and similar phenomena. Finally, the model is abstract
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with respect to the programming language so that we can experiment with alterna-
tives; here we use a lambda calculus for forms and basic data, though we could also
have used a model such as Classic Java [10].

Our model lacks several properties that are orthogonal to our goals. First, the
model ignores client-side storage, a.k.a. “cookies,” which primarily addresses cus-
tomization and storage optimizations. Server-side storage suffices for our goals. Sec-
ond, Web programmers must address concurrency via locking, possibly relying on
a server that serializes each session’s requests or relying on a database. Distribut-
ing the server software across multiple machines complicates concurrency further.
Third, monitoring and restarting servers improves fault tolerance. Fourth, the model
does not allow the user to add fields to or drop fields fromWeb forms before submis-
sion. While the HTTP protocol permits this, browsers typically ensure that this does
not happen. Accordingly, Web applications can protect themselves against dropped
fields through a simple dynamic check that will not, in practice, ever fail. Finally, the
model neither addresses nor introduces any security concerns, but existing solutions
for ensuring authentication and privacy apply [8, 11].

4.1 Server and Client

Figure 2 describes the components of our model. Each Web configuration (W) con-
sists of a single server (S) and a single client (C). The server consists of storage (Σ)
and a dispatcher (see Figure 4). The dispatcher contains a table P (for “programs”)
that associates URLs with programs and an evaluator that applies programs from the
table to the submitted form. Programs are closed terms (M◦) in a yet to be specified
programming language.

W = S × C

S = Σ × P

P = Url "→ M◦

M◦ = programs
C = F ×

−→
F

F = (form Url
−−−−→
(Id V"))

V" = Int | String

{ “”, “x”, “why”, “zee” } ⊂ String
{ x, y, z } ⊂ Id
{ www.drscheme.org, www.plt-scheme.org } ⊂ Url

Fig. 2. Components of the Web Model

The client consists of the current Web form and a set of all visited Web forms.
Initially, the set is a singleton consisting of only the home page. It then grows as the
consumer visits additional pages. The model assumes that the consumer can freely
(non-deterministically) replace the current page with some previously visited page,
or visit a new page. Since the current page is always an element of all previously
visited pages, the consumer can also return to this page. We claim that this model of
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a consumer represents most interesting browser navigation actions, including some
not yet conceived by browser implementors.5

The model distills a Web page to a minimal representation. Every page is simply
a form (F). It contains the URL to which the form is submitted and a set of form
fields. A field names a value that the consumer may edit at will. Figure 3 presents a
concrete WebL form and its equivalent in HTML.

(form www.plt-scheme.org/my-program.ss
(name "Paul") (time "1:30"))

<html>
<body>
<form action="www.plt-scheme.org/my-program.ss"

method="post">
<input type="text" name="name" value="Paul" />
<input type="text" name="time" value="1:30" />
<input type="submit" value="Submit">

</form>
</body>

</html>

Fig. 3.WebL Form and Equivalent HTML Form
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Fig. 4. The Web Picture

Figure 4 illustrates how the pieces of the model interact. The bold-faced letters
correspond to the non-terminals in Figure 2. The server and client may run on differ-
ent machines, connected by a network. The client sends its current form to the server.
The form names a program on the server; the server applies this program to the form
and produces a response, possibly accessing the store in the process. Finally, the re-
sponse replaces the current form on the client and appears in the client’s set of visited
forms.
5 Entering arbitrary URLs into the browser is a degenerate case of the user creating a brand
new form, possibly with an incorrect number of fields (zero) or the wrong field names.
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dp : Σ × F −→ Σ × F

fill-form : W −→ W

〈s, 〈(form u
−−−→
(k v0)),

−→
f 〉〉 ↪→ 〈s, 〈(form u

−−−→
(k v1)), {(form u

−−−→
(k v1))} ∪

−→
f 〉〉

switch : W −→ W

〈s, 〈f0,
−→
f 〉〉 ↪→ 〈s, 〈f1,

−→
f 〉〉 wheref1 ∈

−→
f

submit : W −→ W

〈〈σ0, p〉, 〈f0,
−→
f 〉〉 ↪→ 〈〈σ1, p〉, 〈f1, {f1} ∪

−→
f 〉〉

where 〈σ1, f1〉 = dp(σ0, f0)

Fig. 5. Language Transition Relation
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Fig. 6. Client-Server Control Flow

To specify behavior, we use rewriting rules on Web configurations. Figure 5 con-
tains rules that determine the behavior of the client and server as far as Web programs
are concerned. Each rule is indexed by an operation and takes a server-client pair to
a new server-client pair, reflecting the change caused by the operation.

fill-form allows the client to edit the values of fields in the current form. The form
with the new data both becomes the current form and is added to the cache. This
rule does not affect the server.

switch brings to the foreground a (possibly) different Web form from the client’s
repository of visited forms. In practice, this happens in a number of ways:
switching active browser windows, revisiting a cached page6 using the back or
forward buttons, or selecting a bookmark. This, too, does not affect the server.

submit dispatches on the current form’s URL to find a program in the table P. This
program consumes the current server state and the submitted form to generate an
updated server state and a response form. The server records this new state, while

6 The actual behavior of revisiting a page depends on whether the page is cached or not.
Returning to a non-cached page falls under the submit rule.
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the new form is sent to the client and becomes the new current form. Figure 6
depicts this flow of control.

The actual dispatching and evaluation (which is triggered by dispatching) are specific
to the programming language, which we introduce next.

4.2 Functional Web Programming

Figure 7 specifies WebL, a core Web programming language. WebL extends the call-
by-value λ-calculus [21] with integers, strings, and Web forms, which are records
with a reference to a program. The language layer connects to the Web layer of the
model (Figure 2) by providing the two missing components: the syntax (M) and
semantics of program evaluation, and the language-sensitive dispatch function dp.

The form construct creates Web forms. TheM.Id construct extracts the value of
a form field with the name Id. We specify the semantics of WebL with a reduction
semantics [9]. There are two reductions: the βv reduction substitutes an argument
value for the formal parameter in the body of a function at an application, while the
select reduction performs field lookup.

The bottom half of Figure 7 specifies dispatching. It shows how dp processes a
submitted form form0. First, it uses the URL in form0 to extract a program from its
table P. Second, it applies the program to the form and reduces this application to a
value form1. The store σ0 remains the same, because thusfar WebL has no imperative
constructs.

4.3 Stateful Web Programming

Up to this point, scripts in our model can only communicate with each other through
forms. In practice, however, Web scripts often communicate not only via forms but
also through external storage (such as files and servlet session objects [7]). To model
such stateful communications, we extend WebL with read and write primitives. Fig-
ure 8 presents these language extensions. The two primitives empower programs
to read flat values from, and to write flat values to, store locations. The reduction
relation −→vσ is the natural extension of the relation −→v . The extended relation
relates pairs of terms and stores rather than just terms. Consequently the dispatcher
starts a reduction with the invoked program and the current store. At the end it uses
the modified store to form the next Web configuration. Because only one program
may modify the store at a time, the server model is sequential.

5 Problems with Web Applications

Our model ofWeb interactions can represent some commonWeb programming prob-
lems concisely. Here we present two of them. The first problem is that a Web script
expects a different kind of form than is delivered. We dub this problem the “(script)
communication problem.” The second problem reveals a weakness of the hypertext
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Syntax

M = V
| (M M)
| Id
| (form Url −−−−→(Id M))
| M.Id

V = V" | (λ (Id)M) | F
Semantics

E = [] | (E M) | (V E)
| (form Url

−−−−→
(Id V ) (Id E) −−−−→(Id M))

| E.Id

(βv) E[((λ (x) body) v)] −→v E[body[x\v]]
(select) E[(form url −−−−→(ni vi) (nj vj)

−−−−→
(nk vk)) . nj] −→v E[vi]

Language to Web Connection

dp(σ0, (form Url −−−→(Id v))) = 〈σ0, form1
〉

where prog = P(Url) and (prog (form Url −−−→(Id v))) −→∗

v form1

Fig. 7.Web Programming Language

Syntax

M = · · · | (read Id) | (write Id M)

Semantics

〈σ, e0〉 −→vσ 〈σ, e1〉 if e0 −→v e1

〈σ, E[(write Id v")]〉 −→vσ 〈σ[Id\v"], E[v"]〉
〈σ, E[(read Id)]〉 −→vσ 〈σ, E[σ(Id)]〉
where Id ∈ dom(σ), v" ∈ V"

Language to Web Connection

Σ * (Id −→ V")

dp(σ0, (form Url −−−→(Id s))) = 〈σ1, form1
〉

where prog = p(Url)
〈σ0, (prog (form Url

−−−→
(Id s)))〉

−→∗

vσ 〈σ1, form1
〉

Fig. 8. Language Extensions for Storage

transfer protocol. Due to the lack of an update method, information on client Web
pages becomes obsolete over time and, hence, may mislead the consumer. We dub
this problem the “(HTTP) observer problem” indicating that the HTTP protocol does
not permit a proper implementation of the Observer pattern [12] (which enables de-
pendent observers to be notified of state changes).

5.1 The Communication Problem

Since standard Web programs must terminate to interact with a consumer, non-trivial
interactive software consists of many small Web programs. If the software needs to
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interact N times with the client, it consists of N + 1 scripts, and all scripts must
communicate properly with their successors.7 Worse, since the client can arbitrarily
resubmit pages, the programmer cannot assume anything about the scripts’ execution
sequence.

plt-scheme.org/cgi/start.ss "→
(λ (x)
(form plt-scheme.org/cgi/next.ss
(name "Your Name")))

plt-scheme.org/cgi/next.ss "→
(λ (x)
(form plt-scheme.org/cgi/done.ss
(confirm-name x.name)
(confirm-phone x.phone)))

Σ0

start

Σ1

next
phone

submit

()

response

submit

(name)

(form start.ss)

(form next.ss
(name ""))

fill-form

(form next.ss
(name "Ed"))

#

%
$

%

&

%

Fig. 9. Collaborating Programs

Even without the difficulties of unusual execution sequences, splitting Web pro-
grams into pieces can introduce errors. Consider the example in Figure 9. The
server’s table contains two programs with the filenames start.ss and next.ss8. The
start.ss program prompts for the user’s name and directs this information to next.ss.
7 A good programmer may recognize opportunities for aggregating some of the programs.
It is also possible to use a “multiplexer” technique that merges all these scripts into one
single file and uses a dispatcher to find the proper subroutine. The problems remain the
same, however, because the various pieces of the same program communicate via HTTP.

8 Typically, “.ss” is the suffix for Scheme programs; we use it here to be suggestive since our
Web programming language is based on Scheme.
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This second program attempts to verify some properties about the consumer. In do-
ing so, it assumes that the input form contains both name and phone fields, and
attempts to extract both. The attempt to extract the non-existent phone field results in
a runtime error. The diagram illustrates the problem graphically. When programmers
mistakenly encode field names assumptions into the store—a mistake that is easily
made with Java servlet and ASP.NET session objects—these safety errors concerning
form field accesses become even more nefarious.

By now, programmers are well-aware of this problem and employ extensive dy-
namic testing to find these mistakes. In Section 6, we present a type system that
discovers such problems statically and still allows programmers to develop complex
interactive Web programs in an incremental manner.

5.2 The Observer Problem

In a model-view-controller (MVC) architecture, a change to the model triggers no-
tification to all the views to update their display. Web programs do not enjoy this
privilege, because HTTP does not provide for an update (or “push”) method. Once a
browser receives a page, it becomes outdated when the MVC model changes on the
server, which may be due to additional form submissions from the consumer.

The Observer problem is often, but not always, due to a confusion of environ-
ments and stores, or form and server-side storage. A program that reserves flights
needs to use both kinds of storage to represent different kinds of information [17].
Unfortunately, programmers who don’t understand the difference may place infor-
mation into the store when it really belongs in the Web form.

Figure 10 shows a reformulation of Orbitz’s problem (see Section 2) in WebL.
The first of these programs, pick-flight, asks the customer for a preferred flight time.
The second program, confirm-flight, writes the selected flight time into external stor-
age before asking the user to confirm the flight time. The third program, receipt-
flight, reads the selected flight from storage and charges the customer for a ticket.

It is easy to see that the WebL program models the problem in Section 2. Sub-
mitting two requests for the confirm-flight program results in two pages displaying
different flight times on the client, yet only the flight time from the most recent re-
quest resides in the server’s external storage. Submitting the outdated form that no
longer matches the storage produces the mistake.

6 Type Checking Communication

Trying to extract a field from a form fails in WebL if the form does not contain the
named field. To prevent such errors, languages often employ a type system (and/or
safety checks). Our Web model shows, however, that straightforward type checking
doesn’t work, because programs consist of many separate scripts loosely connected
via forms and storage. Checking all the scripts together is infeasible. Not only are
these scripts developed and deployed in an incremental manner, they may also reside
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pick-flight "→ (λ (empty-form) (form confirm-flight (departure-time "hh:mm")))

confirm-flight "→ (λ (first-form)
(write your-flight first-form.departure-time)
(form receipt-flight (confirm-time (read your-flight))))

receipt-flight "→ (λ (confirmed-form)
(buy-flight (read your-flight))
(form next-action (itinerary (read your-flight))))

Fig. 10. Stateful Web Programs

on different Web servers and/or be written in different programming languages. Fur-
thermore, consumers can always edit a URL to generate a fresh request that the server
has not seen before, akin to a user typing a fresh command at the read-eval-print loop
of an interactive language implementation.

We therefore provide an incremental type system for Web applications. When
the server receives a request for a URL not already in its table, it installs the relevant
program to handle the request. Before installing the new program, the server type
checks the program, which is a check for internal consistency. In addition, the server
also derives constraints that this new program imposes on the other programs on
the server with which it interacts. These constraints become external consistency
checks. If either type checking or constraint resolution fails, the program is rejected,
resulting in an error. In practice, a programmer may register several programs of one
application and have them typed checked before they are deployed.

The type system for internal consistency checking heavily borrows from simply-
typed λ-calculi with records [5, 20, 24]. Figure 11 defines the type system. In ad-
dition to the usual function type (−→) and primitive types Int and String, the type
language also includes types for Web forms. Similar to record types, form types con-
tain the names and types of the form fields that, according to their intended usage,
must have flat (marshallable) types. We overload the type environment to map both
variables and store locations to types. An initial type environment Γ0 maps locations
in the external storage to flat types. Typed WebL differs from WebL only by requir-
ing types for function arguments. That is, (λ (x) M) becomes (λ (x : τ ) M) in Typed
WebL.

The type system also serves as the basis for external consistency checking. As
the type checker traverses the program, it generates constraints on external programs.
The type judgments, as shown in Figure 11, have antecedents (above the bar) which,
when conjoined, specify a condition. When this condition holds, the consequent (be-
low the bar) also holds. Each judgment rules that a type environment (Γ ) proves that
a term has a particular type, and generates a (possibly empty) set of constraints. A
constraint Url : (form −−−−→

(Id τ#)) insists that the program associated with Url consume
Web forms of type (form −−−−→

(Id τ#)).
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Types
Type = Type −→ Type

| (form −−−−−−−→
(Id Type"))

| Type"

Type" = String | Int

Type Judgments

Γ + M : Type, Ξ
where
Ξ = {Url : (form −−−→

(Id τ))}

Type Derivation Rules

Γ + string : String,{}

Γ + n : Int,{}

Γ (x) = τ

Γ + x : τ, {}

Γ, x : τx + m : τ, ξ
Γ + (λ (x : τx) m) : τx −→ τ, ξ

Γ + m0 : τx −→ τ, ξ0
Γ + m1 : τx, ξ1

Γ + (m0 m1) : τ, ξ0 ∪ ξ1

Γ + m : (form −−−−−−→
(Ida τ"a) (Idx τ"x)

−−−−−→
(Idb τ"b)), ξ

Γ + m.Idx : τ"x, ξ

−−−−−−−−−−→
Γ + m : τ", ξm

Γ + (form Url −−−−→(Id m)) : (form −−−−→
(Id τ")),

{Url : (form −−−−→
(Id τ"))} ∪

−→
ξm

Γ (l) = τ"

Γ + (read l) : τ", {}

Γ (l) = τ" Γ + m : τ", ξ

Γ + (write l m) : τ", ξ

Fig. 11. Internal Types for WebL

Most type rules in Figure 11 handle constraints in a straightforward manner.
Checking atomic expressions yields the empty set of constraints. Checking most ex-
pressions that contain subexpressions simply propagates the constraints from check-
ing the subexpressions. The application rule says that if the function position gener-
ates constraint ξ0 and the argument position generates constraint ξ1, then the entire
application expression will generate the union of these, i.e., the constraint ξ0 ∪ ξ1.
The only expressions that generate fresh atomic constraints are form expressions.

The expression (form Url −−−−→(Id m)) constructs a form value, so its type is simi-
lar to a record type. This form expression also indirectly connects the program as-
sociated with Url to the form the consumer will submit later. If the type-checker
looked up the program associated withUrl immediately and compared the form type
with the function’s argument type, this would suffice. It would not, however, allow
for independent development of connected Web programs. Instead, type checking
the form expression generates the constraint Url : (form −−−−→

(Id τ#)), which must be
checked later.

Figure 12 extends the definition of the server state S with a set of constraints
Ξ . The function Install-program adds a new program m to the server’s table p at a
given Url if the program is internally and externally consistent. That is, the program
must type check and the generated constraints must be consistent with the constraints
already on the server. A set of constraints is consistent iff the set is a function from
URLs to types. The Constrain function ensures that the program m is well typed, and
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Server Extension and Additional Functions
S = Σ × P ×Ξ

Install-program : Url M W −→ W

Install-program(Url, m, 〈〈σ, p, ξ〉, c〉) = 〈〈σ, p[Url\m], Constrain(ξ, Url, m)〉, c〉
when Consistent(Constrain(ξ, Url, m))

Consistent : Ξ −→ boolean
Consistent(ξ) ≡
(Url : (form −−−−−→

(Id0 τ0))) ∈ ξ ∧

(Url : (form −−−−−→
(Id1 τ1))) ∈ ξ =⇒

−−−−−→
(Id0 τ0) =

−−−−−→
(Id1 τ1)

Constrain : Ξ Url M −→ Ξ

Constrain(ξ0, Url, m) =
ξ0 ∪ ξ1 ∪ {Url : (form −−−−−−→

(Idin τin))}
where
Γ0 + m : (form −−−−−−→

(Idin τin))
−→ (form −−−−−−−−→

(Idout τout)), ξ1

Fig. 12. Constraint Checking

it extends the existing set of constraints ξ0 to include constraints generated during
type checking ξ1.

plt-scheme.org/cgi/start.ss "→
(λ ([x : (form)])
(form plt-scheme.org/cgi/next.ss
(name "Your Name")))

plt-scheme.org/cgi/next.ss "→
(λ ([x : (form (name String) (phone String))])
(form plt-scheme.org/cgi/done.ss
(confirm-name x.name)
(confirm-phone x.phone)))

Fig. 13. Typed Collaborating Programs

The incremental type checker catches communication errors, including the one
demonstrated in Figure 9. Adding type annotations results in the pair of programs
in Figure 13. Type checking produces types and constraints for both programs. The
constraints, however, reveal a problem. Checking start.ss results in the following
constraint:

{ next.ss : (form (name String)) }

When the server installs next.ss, the Constrain function generates this constraint:

{ next.ss : (form (name String) (phone String)) }

These two constraints are not Consistent, so the server rejects the next.ss program.
With type annotations, type checking, constraint generation, and constraint check-

ing in place, the system provides three levels of guarantees. The first result shows that
individual Web scripts respond to appropriately typed requests without getting stuck.
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Proposition 1. For all m in M, τ in Type, and set of Constraints ξ, if Γ0 $ m : τ , ξ
then for some v in V, m −→∗

v v.

The proof is essentially the same as the usual proof of strong normalization for the
simply-typed lambda calculus.

The second proposition shows that the server does not apply Web programs to
forms of the wrong type, as long as the server starts in a good state. Before we can
state it, however, we need to explain what it means for a server state to be well-
typed and for a submitted form to be well-typed. A server is well-typed when all the
programs have function types that map forms to forms and when all the constraints
are consistent:

server-typechecks(〈σ, p, ξ〉) iff Consistent(ξ) and for each Url in dom(p),
Γ0 $ p(Url) : (form −−−−−→

(Id1 τ#1)) −→ (form −−−−−→
(Id2 τ#2)), ξUrl and

ξUrl ⊂ ξ and Url : (form −−−−−→
(Id τ#1)) ∈ ξ

A form is well typed with respect to a server if it refers to a program on the server
that accepts that type of form.
form-typechecks(〈σ, p, ξ〉, (form Url

−−−−→
(Id v#))) iff

there are types −→τ# such that
−−−−−−−−−−→
Γ0 $ v# : τ#, {} and

Url : (form −−−−→
(Id τ#)) is in ξ and

and Url ∈ dom(p)

Proposition 2. If server-typechecks(s0) and form-typechecks(s0, f0) then for some
〈s1, 〈f1,

−→
f 〉〉,

〈s0, 〈f0,
−→
f 〉〉 ↪→submit 〈s1, 〈f1,

−→
f 〉〉.

If the server’s set of constraints is closed, the resulting configuration also guarantees
the success of the next submission.

Proposition 3. If 〈〈σ, p, ξ〉, 〈f0,
−→
f 〉〉 ↪→submit 〈s1, 〈f1,

−→
f 〉〉,

server-typecheck(〈σ, p, ξ〉), form-typechecks(〈σ, p, ξ〉, f0),

and for each constraint Url : (form −−−→
(Id τ)) in ξ, if Url is in dom(p) then

server-typecheck(s1) and form-typechecks(s1, f1).

In practice these checks only need to be performed upon demand. This strategy
makes it possible to incrementally install programs that refer to other programs that
have not yet been written and that are used only in rare cases, with the caveat that
they are only checked when they are installed.

Alternative Web Programming Languages

It is not necessary to instantiate our model with a functional programming language.
Instead, we could have used a language such as <bigwig>, which is the canoni-
cal imperative while-loop language over a basic data type of Web documents [25].
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Furthermore, the <bigwig> language already provides an internal type system that
derives and checks information about Web documents. Its type system is stronger
than ours, allowing programmers to use complex mechanisms for composing Web
documents.

The <bigwig> project and our analysis differ with respect to the ultimate goal.
First, our primary goal is to accommodate the existing Web browser mechanisms. In
contrast, <bigwig>’s runtime system disables the browser’s navigation function-
ality. Second, we wish to accommodate an open world, where scripts in ASP.NET,
Perl, or Python can collaborate. Our propositions show how type checks in the lan-
guage and in the server can accommodate just this kind of openness. The <bigwig>
project does not provide a model and therefore does not provide a foundation for in-
vestigating Web interactions in general.

Separating constraints on collaborating programs from the type checking of in-
dividual programs lends the system flexibility. For Typed WebL programs, the set of
forms produced could be computed simply by examining the program’s return type.
For other languages the local type checking and the constraint generation may be
less connected.

Extending our constraint checking to dynamically typed languages requires a
type inference system capable of determining the types of all possible forms a pro-
gram might produce. Though this is not necessary for Typed WebL, we choose to
keep the constraint generation separate to emphasize the independence of the con-
straints from the languages used for individual scripts.

7 Addressing Outdated Observers

Section 5.2 describes the Observer problem, and points out that it is caused by the
Web’s lack of a “push” method. Some Web sites simulate pushing data by using a
“meta” tag in HTML that forces the generated page to refresh its content periodically.
A naı̈ve implementation of this technique suffers from obvious scalability problems.
More germane to our discussion, however, is that this does not actually implement
the desired user interaction.

To understand this, consider the example in section 2. The user opens a new win-
dow in step 1 to explore the flight departing at 5:50pm. When the user examines a
different flight in step 3, a push implementation would eventually update the infor-
mation in the window for the 5:50pm flight, to maintain its currency with the server’s
state. While this makes the flight reservation made after step 5 consistent with the
information on the window, it means that the user’s mental association of the first
window with the flight at 5:50pm has been silently invalidated by the update. This
error is just as insidious as that in section 2.

A better solution is to modify the server so that it detects when a submitted form
does not reflect the server state. Roughly speaking, this corresponds to the execution
of a safety check like the one for array indexing or list destructuring. If the “up-
to-date” test fails, the server informs the consumer of the situation, which prevents
the erroneous computation from causing further damage. Again, in analogy to safety
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checks, the server signals an exception and thus informs the consumer at the earliest
opportunity that something went wrong. We believe that this approach is general
because it is independent of the scripting language. Further, dynamic checking is
an appropriate compromise because these kinds of situations depend on dynamic
configurations rather than on static properties of the program.

To check on the datedness of a submitted form, the server must perform some
additional bookkeeping. Specifically, determining if something is outdated requires
a notion of time, and therefore the server must keep track of time [23]. For us, time
is the number of processed submissions. The external storage Σ changes so that it
maps locations not only to flat values but also to a timestamp for the last write, i.e.,
Σ ) Id −→ Time× V# (compare to the signature in figure 8).

In addition, the server maintains a carrier set of all storage locations read or
written during the execution of a script. When it sends each page to the consumer,
the server adds the current time stamp and this set of locations as an extra hidden
field on the page.

With this additional bookkeeping, the server can now check whether each request
is up-to-date. When a request arrives, the server extracts both the carrier set and the
page creation time. If any of the timestamps attached to the locations in the carrier
set are out of date, then the submitted form may be inconsistent with the data in the
current server store, and the server signals an exception identifying the out-of-date
items:

A form with carrier set CS and time stamp T submitted to a server with
current state σ is out of date if and only if any of the locations in CS have a
time stamp in σ that is larger than T .

The actual size of the carrier set will vary based not only on the script’s function but
also on its implementation (i.e., depending on how stateful it is).

Clearly, a naı̈ve use of this test produces many false positives. For example, a
script may use and modify the server state to compute a page counter, a set of ad-
vertisements, or other information irrelevant to the consumer. If a form is out of
date only for “irrelevant” storage locations, the consumer should clearly not receive
a warning. We therefore allow programs to specify whether reading or writing a
location in the server state is a relevant or irrelevant action from the consumer’s per-
spective. Assuming that language implementors make this change, the Web server
can reduce the carrier set that it collects during a script execution and the number of
warnings it issues.

8 Conclusion

Our paper introduces a formal model of sequential, interactive Web programs. We
use the model to describe classes of errors that occur when consumers interact with
programs using the natural capabilities of Web browsers. The analysis pinpoints two
classes of problems with scripting languages and servers.
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To remedy the situation, languages used for scripting should come with type
checkers that compute the shape of expected forms on the input side and the shape
of forms that the scripts may produce. These languages should also allow scripts to
specify which actions on the server’s state are relevant for the consumer. Further-
more, servers should be modified to integrate the type information from the scripts.
In particular, servers should only submit forms to a script if the form is well-typed
and its content is up-to-date.

Most combinations of Web servers and Web application programming languages
fail to implement either kind of test. All of them, in particular, fail to check for
the currency of data, even those whose authors are keenly aware of the prob-
lem described in Section 2. While we have implemented our model in a toy Web
server, we have not (yet) ported the code to our PLT Web server [14]. Similarly,
WASH/CGI [26] is based on a purely functional programming language in recog-
nition of the problems involving state; the careful management of state appeares to
address the problem of Section 2. This design is, however, deceiving. The true culprit
is a lack of server-based checks that warn users about outdated information.

This formal model has already proven useful in other work. Web programs nat-
urally give rise to temporal properties governing their execution over the course of
a workflow, making model checking [6] an attractive verification technique. A naı̈ve
model construction based purely on the program source, however, fails to take into
consideration the many interaction possibilities introduced by browsers, and thus
fails to catch errors of the sort discussed in this paper. To model each browser primi-
tive would, however, be onerous. Our work on model checking of Web programs [16]
therefore uses the model of this paper to constrain the language of analysis, and can
thus verify programs that operate in any browser so long as all their interaction prim-
itives can be reduced to the ones presented in this paper.

In short, the formal model helps us to first reduce the complexity of Web interac-
tion primitives to a small and manageable number. It then helps us describe common
Web problems in terms of these primitives. We can then derive verification tech-
niques to address these problems. We hope to exploit this knowledge to build better
languages for programming applications that reside on servers and in Web browsers.
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24. Rémy, D. Typechecking records and variants in a natural extension of ML. In ACM
Symposium on Principles of Programming Languages, pages 77–88, 1989.

25. Sandholm, A. and M. I. Schwartzbach. A type system for dynamic Web documents. In
Symposium on Principles of Programming Languages, pages 290–301, 2000.

26. Thiemann, P. WASH/CGI: Server-side Web scripting with sessions and typed, composi-
tional forms. In Practical Applications of Declarative Languages, pages 192–208, 2002.


