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—— Abstract

The creation of a programming language calls for guiding principles that point the developers
to goals. This article spells out the three basic principles behind the 20-year development of
Racket. First, programming is about stating and solving problems, and this activity normally
takes place in a context with its own language of discourse; good programmers ought to for-
mulate this language as a programming language. Hence, Racket is a programming language
for creating new programming languages. Second, by following this language-oriented approach
to programming, systems become multi-lingual collections of interconnected components. Each
language and component must be able to protect its specific invariants. In support, Racket offers
protection mechanisms to implement a full language spectrum, from C-level bit manipulation to
soundly typed extensions. Third, because Racket considers programming as problem solving
in the correct language, Racket also turns extra-linguistic mechanisms into linguistic constructs,
especially mechanisms for managing resources and projects. The paper explains these principles
and how Racket lives up to them, presents the evaluation framework behind the design process,
and concludes with a sketch of Racket’s imperfections and opportunities for future improvements.
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1 Racket, Historically Speaking

In 1995, we set out to create an outreach project for novice programmers. After observing
students in labs over the course of a year, we understood that nobody could teach Scheme
in an hour and then focus on the essence of computing and programming—contrary to an
opinion widely held by instructors due to the numerous courses based on MIT’s Structure
and Interpretation of Computer Programs [1]. What was needed, instead, was a teaching
language suitable for instructing beginners. Furthermore, emacs, vi, and similar editors were
overwhelming students who had never programmed before, despite their special modes for
editing and interacting with Scheme. We therefore also wanted a pedagogical programming
environment for our beginners, not just a re-appropriated power tool for professionals.

After we decided to implement our own teaching language and its environment, we
still wanted to demonstrate that Scheme was an excellent implementation vehicle for these
projects. We thought Scheme’s macro system would help us experiment with language
designs. The language also appeared to be a perfect match for constructing a simple
interactive development environment (IDE); after all, many Lisp courses taught how to create
a read-eval-print loop, and a lot of emacs was written in Lisp.

Over 20 years, this work was partially supported by our host institutions: Rice University, University
of Utah, Brown University, University of Chicago, Northeastern University, Northwestern University,
Brigham Young University, and Indiana University as well as several funding agencies and foundations:
AFOSR, CORD, Darpa, the Department of Education’s FIPSE program, the ExxonMobile Foundation,
Microsoft, the Mozilla Foundation, NSF, the Texas Advanced Technology Program.
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The Racket Manifesto

Using Scheme as a starting point turned out to be an acceptable choice, but we soon
found we needed a lot more. We discovered that more was needed than a hygienic and
pattern-oriented variant of Lisp’s old macros. In the same vein, the development of a large
system exposed the difference between having safe abstractions and mimicking them via
lambda. Finally, implementing an IDE also called for executing arbitrary programs under
the control of our own program—and this goal clarified that Scheme did not come with the
means for managing resources and for ensuring the security of the hosting program.

Over time, we adapted Scheme to serve our needs. We built a syntax extension system
on top of Scheme’s macros, added mechanisms for the creation of safe abstractions, and
turned features of the surrounding operating system into linguistic constructs so that we
could program resource administrators and security containers. In time, our language became
a full-fledged tool for the working software engineer. By 2010, our dialect of Scheme had
evolved so much that we renamed it to Racket [19] to let the world know that we had
something different.

2 The Principles of Racket

While we have reported on the pedagogic aspect of the project elsewhere [7], this paper

presents the design principles behind Racket and illustrates with concrete examples how they

affect the reality of its implementation. It groups these principles under three slogans:

1. Racket is about creating new programming languages quickly.
Programming is a form of problem solving. A proper approach uses the language of
the domain to state the problem and to articulate solution processes. In support of
this mode of programming, Racket helps programmers create and quickly deploy new
languages. In particular, the mechanisms for creating and deploying languages must be
contained within the language itself. Once Racket is installed, there must be no need
to step outside to use one of its new languages. This principle is in stark contrast to
the numerous external tools and command-line pre-processors that are used to create
(embedded) domain-specific languages.

2. Racket provides building blocks for strong protection mechanisms.
If programming is about solving problems in the correct language, systems will necessarily
consist of interconnected components in several different languages. Due to the connec-
tions, values flow from one linguistic context into another. Since languages are charged
with providing and preserving invariants, the creators of languages must have the power
to protect the languages’ invariants. By implication, Racket must come with mechanisms
that enable programmers to protect individual components from their clients.
For this reason, Racket comes with the proper building blocks to set up or construct
protection mechanisms at any level, all the way from C to languages with sound, higher-
order type systems, and any mixture in between.

3. Racket turns extra-linguistic mechanisms into linguistic constructs.
When programmers must resort to extra-linguistic mechanisms to solve a problem, the
chosen language has failed them. Even if it is not always obvious how to fix such
failures, programming language researchers ought to accept the general idea and try to
work on finding the proper linguistic mechanisms. Due to Racket’s uses, the language
currently internalizes several resource-management mechanisms that are often found
in the underlying operating system. Similarly, this philosophy prohibits the idea of
“projects,” as found in other IDEs, because this also externalizes resource management,
linking, and other aspects of program creation.
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Evaluating the use of such principles must take place in a feedback loop that encompasses
more than the compiler for the language. In Racket’s case, the feedback loop’s evaluation
stage contains a range of software systems, especially DrRacket [9], the Racket IDE.

Sections 3 through 5 explain the principles in depth: language-oriented programming,
protection mechanisms for full-spectrum programming, and services-as-constructs. Section 6
introduces Racket’s feedback loop in some detail and how it helps us use the guidelines to
turn principles into reality. Finally section 7 puts the principles in perspective, pointing out
in particular where they remain goals and the research needed to reach those goals.

Listing 1 A Racket module

#lang racket

(provide
;; type Video = [Listof Image]
;3 Natural -> Video
walk-simplex)

bl

(require "small.sim" 2htdp/image)

;3 Natural -> Video
(define (walk-simplex timing)
(maximizer #:x 2) ...)

3 Racket is a Programming-Language Programming Language

Racket is a programming language. Actually, at first glance it looks like a family of
conventional languages, including a small untyped, mostly-functional by-value language
(racket/base), a batteries-included extension (racket), and a typed variant (typed/racket).

Like all programming languages, plain Racket forces the programmer to formulate solutions
to problems in terms of its built-in programming constructs. But, Racket is also a member
of the Lisp family, which has always insisted on stating solutions in the most appropriate
language, one suited to the problem domain. As Hudak [21] puts it, “domain-specific
languages are the ultimate abstractions.”

Following this reasoning, each program component is articulated in the Racket-based
programming language that is best suited for the problem it solves. If the language is not
available, the Racket programmer creates it, possibly even for a single module. To support
this kind of system building, Racket is a programming-language programming language.

Listings 1 and 2 illustrate the principle. The first module in listing 1 uses the racket
language, which is specified in the so-called #lang—pronounced “hash lang”—line. The
module provides a single function; the comments inside the provide specification informally
state a type definition and a function signature in terms of this type definition. To implement
this function, the module uses (require "small.sim") to import functionality from the
module in listing 2 and then defines its own functions.

The creator of the module in listing 2 prefers a domain-specific language, because the
module’s purpose is to synthesize a function for a simplex, and the most natural way to
specify the latter is to state a collection of linear inequalities. The comments below the #lang
line in listing 2 state that the module exports a single function, maximizer. Concretely, the

The box in the top
right of a listing
specifies the
filename. It is not
a part of the code.
The astute reader
will notice that
this violates the
principle of
keeping everything
in the language.
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Listing 2 A module for describing a simplex shape

#lang simplex

;5 provides: synthesized function mazimizer:
9g #:x Real -> Real
S #:y Real -> Real

#:variables x y

x + 5 x y <= 10
x - b5 *x y <= 20

* *

3
3

#:variables specification and the following inequalities determine the maximizer function.
When called as (maximizer #:x n), the function produces the maximal y value; conversely,
(maximizer #:y m) delivers the maximal x value.

In support of this kind of language-oriented programming, Racket provides a syntax
extension system that borrows elements from Scheme’s macro system [4, 23, 24] but also
improves on it in several different directions. First, the Racket syntax extension system
is about defining languages [12, 25, 26], not just extending an existing language with new
linguistic constructs. For example, Racket’s class system [16], its first-class components [14],
and its language of (loop) comprehensions are just such sub-languages, though their constructs
are indistinguishable from Racket’s core features. Naturally, a Racket-based language is
just a module whose exports make up a new language. These exports must include certain
features and may otherwise come with any syntactic constructs and run-time values deemed
necessary. The module may define these exports or may import and re-export them from an
existing language. Hence, a language module can easily add features to, or subtract them
from, an existing language.

Second, the syntax extension system also allows a language module to redefine the
meaning of existing constructs. Take function application, for example. Like Lisp, a Racket
function application is just a pair of parentheses around the function and its arguments:

(fa...)
Racket’s syntax system elaborates surface syntax to kernel syntax:
(#%happ £ a ...)

The keyword #%app is Racket’s internal sign post for the function application syntax—and a
language can re-define its meaning. Here is a simplistic re-definition:

#lang racket
(provide (rename-out [call #Jappl) ...)

(define-syntax-rule
(call £ a ...)
;3 rewrites to
(if (check-in-defines f) (#%app f a ...) (signal-error f a ...)))

This module defines the syntactic abbreviation call. A use of call expands to an if
expression that checks a property of £ and, if it holds, uses the imported application syntax
(underlined) to create a function application; otherwise it signals an error. On export, call
is renamed to #%app, meaning when another module specifies this module as its language,
the compiler uses the call syntax to elaborate the module’s function applications, e.g.,
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(gb ...)
-- compiles to--> (#Japp g b ...)
== equivalent == (call gb ...)

-- compiles to--> (if (check-in-defines g) (#%app g b ...) (signal-error g b ...))

That is, the final code uses plain racket’s #)app construct to evaluate the function
application—and that is regular call-by-value function application.

This example is inspired by the teaching languages [6]. In particular, the first-order
functional teaching language uses it to check whether the function position is a name defined
by the program or the language so that it can produce novice-friendly error messages when
something else shows up. However, the pattern is used much more widely. For instance, the
FrTime language uses this same mechanism to create a dataflow variant of call-by-value [2].

Third, Racket’s syntax extension system grants a language-defining module access to
the entire syntax tree for a guest module, not just individual nodes in the syntax tree.
This access allows the collaboration between the rewriting rule for #%app and define in
the above example. Indeed, this kind of communication smoothly generalizes to complex
context-sensitive analysis tasks and, in particular, allows for the implementation of a rather
conventional type checker [42].

Fourth, Racket comes with a library that supports the programmatic creation of lexers
and parsers [34]. It is thus possible for a language implementation to transform conventional
syntax into regular S-expression syntax and to subject this result to the conventional syntax
extension system and its rewriting rules. See listing 2 where the implementor of a domain-
specific language prefers an ASCII-mathematics notation. Importantly, the separation of
parsing from the syntax extension naturally creates an interface between unrelated parts of
language design—notation and meaning—and thus enables language engineers to factor the
work into two independent components: design of surface notation and meaning.

Finally, Racket insists on separating the various stages of language processing, particularly
enforcing a strict separation of compile-time from run-time code. For example, the rewriting
rules generate pure syntax and may not embed other language values inside this syntax.
Similarly, since the world of Racket languages is actually an inverted pyramid of languages
atop languages, each language-processing module may have side-effects—and these side-effects
must be insulated from the rest of the language-processing pipeline.

In sum, Racket’s toolbox empowers programmers to create new languages quickly and thus
enables language-oriented program design. The key to this achievement is to improve over Lisp
and Scheme’s approaches: Racket carefully stages syntax elaboration [12], eliminating Lisp’s
problematic eval-when-where approach; it enables the quick derivation of new languages
from existing ones; and it enables the introduction of conventional syntax.

4 Racket Covers a Full Programming Language Spectrum

An abstraction enforces invariants. Languages are abstractions, and their creators must have
the means to build the necessary enforcement mechanisms—especially when components
in these languages end up in an interconnected, multi-lingual contexts. Since Racket is
a language for building programming languages, it supplies the building blocks for the
construction of enforcement mechanisms, too. Indeed, Racket’s building blocks allow the
creation of a spectrum of languages, and Racket programmers may safely compose components
written in various elements of this spectrum.

To get a sense of what these enforcement requirements may mean, consider the kinds of
languages a Racket programmer may build. As the literature on domain-specific languages
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Listing 3 A Racket module using the foreign-function interface
#lang racket

(provide
;3 [Vectorof [Vectorof Reall]] -> [Vectorof Reall
simplex)

(require ffi/unsafe)
(define lib-simplex (ffi-1ib "./coin-Clp/1lib/1libClp"))

(define (simplex M)
(-simplex-set ...) ...)

(define -simplex-set
(get-ffi-obj "simplex" lib-simplex (_fun _bytes -> _void)))

suggests [20], these constructions are often thin veneers over efficient C-level implementa-
tions. To support this kind of language, Racket comes with a foreign interface that allows
parenthesized C-level programming. Programmers can refer to a C library, import functions
and data structures, and wrap these imports in Racket values. Listing 3 shows an example
of a module that imports functions from the coin-Clp simplex library and defines regular
racket functions around them.

At the other end of the spectrum, a Racket programmer might wish to annotate an
existing module with explicit types and expect type soundness. Doing just that is possible
with typed/racket. Listing 4 illustrates how to transform the module from listing 1 into
a typed one. Adding types moves knowledge out of comments into a statically checked
sub-language, which proves the comments’ validity and thus “hardens” [43] the component,
because the invariants of the typed language are properly protected as its values flow into
untyped components of the world.

Listing 4 A Typed Racket module

#lang typed/racket demo-typed.rkt

(provide walk-simplex)

(: walk-simplex (-> Natural Video))

3

(require/typed 2htdp/image [#:opaque Image image?])
(define-type Video [Listof Image])
(define (walk-simplex timing)

(maximizer #:x 2) ...)

While Racket does not automatically protect such flows of values, it comes with the
tools to build invariant-enforcement mechanisms. Technically, it provides Miller’s proxy
mechanism [32] tailored to the needs of a Racket language builder. Racket’s proxies come in
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two tiers: chaperones and impersonators [38]. Each monitors access to an underlying value
to guarantee basic invariants. Programmers can create customized proxies that monitor
access to functions, immutable values, mutable structures and objects—without ever getting
in the way of other operations on the wrapped values and objects.

Listing 5 A Racket module with contracts

#lang racket demo-contract.rkt

(provide
(contract -out
[walk-simplex (-> natural -number/c (listof image?))]))

P

(require "small.sim" 2htdp/image)

(define (walk-simplex timing)
(maximizer #:x 2) ...)

Racket offers a comprehensive contract system implemented with the proxy mechanisms.
The contracts allow components to express Eiffel-style first-order assertions [31]. The
introduction of contract boundaries smoothly generalizes these first-order statements to
Racket’s higher-order setting. That is, with contracts a component can advertise promises
and obligations on values such as closures [10], objects, classes [36], and modules [37].

Listing 6 A contract for a first-class class in Racket

#lang racket ’class—contract.rkt‘

(define MBTA/c
(class/c
[find-path
;; (find-path f t) finds paths from f to ¢
(-> station/c station/c [listof path/c])]

Loa))
(define (station? s) ...)
(define path/c ...)
(provide

;; does the given value represent a T station?
station?

(contract -out
[mbta%
;; represent the state of the MBTA with search functionality
MBTA/c]

[read -mbta-graph
;; an MBTA/c factory
(-> (object/c mbta%))1))

Listing 5 shows how to express the comments from listing 1 into a contract. The
conventional prefix syntax of the contract says that walk-simplex is a function, that this
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function accepts only natural numbers (0, 1, 2, and so on), and that it returns a list of
images (checked with the image? predicate from the library). Racket checks this first-order
contract in the expected way: if a client module applies the function to something other
than a natural number, the client is blamed for a violation; if walk-simplex ever returns
something other than a list of images, contract.rkt is blamed; and if there is no use, no
error message is ever signaled even if walk-simplex were defined to return a string.

The extract of a module in listing 6 illustrates the use of higher-order contracts. Its
header introduces two contracts and a flat predicate and exports the latter plus a contracted
version of a class and its factory.

Currently, typed/racket [41] is the most important “client” of proxies and contracts.
From a mechanical perspective, typed/racket is like simplex. From the teleological one,
the two languages radically differ from each other; typed/racket is a sibling of racket, not
just an arbitrary language implemented in the Racket world. As mentioned, its purpose is to
help programmers harden untyped modules by equipping them with types.

While type checking guarantees consistency within the module and with respect to other
typed modules, translating types of exported values into run-time contracts ensures a general
form of type soundness, known as Tobin-Hochstadt’s Blame Theorem.! For example, when a
typed module exports a function on integers to an untyped module, the latter must not apply
the function to a string; similarly, if a function on integer-valued functions flows from the
typed to the untyped world, the latter must promise not to apply it to complex functions.

Listings 4 and 5 demonstrate this types-to-contracts translations in a concrete manner.
The type of walk-simplex in the former translates to the contract shown in the latter. While
this translation is straightforward for the functional core, extending this work to Racket’s
class-oriented fragment is the fruit of a multi-year research project [39, 40]. This extension
implements both novel contract mechanisms for Racket’s first-class classes as well as critical
performance enhancements in the types-to-contracts translator.

Listing 7 The Racket language spectrum

explicit types
type checking
valid documentation

FFI wrapper |harden| Racket code |harden [With contracts|hagrden
unsafe C code internal safety external safety

With contracts and types, Racket includes a full spectrum of programming languages
and, importantly, allows programmers to incrementally harden their “scripts” into programs.
Initially, a Racket programmer may write a “script” in the traditional sense, that is, a thin
layer around a C library. Assuming the choice of C is not performance-critical, the programmer
could move the code to Racket, gaining operational and memory safety for the module in
return. The third step would be the addition of contracts to the exports of this library to
protect interactions between clients and the library. Finally, a programmer may equip the
code with explicit, statically checked types, which creates validated documentation, improves

1 As a library-based language, typed/racket is on the same footing as other libraries in the Racket
ecosystem. Thus it cannot defend its invariants as thoroughly as typed languages such as Java or
OCaml. Closing the remaining loopholes to enable more complete guarantees is ongoing research.



Felleisen, Findler, Flatt, et al.

the performance? and maintainability of the code, and may reveal subtle mistakes. Listing 7
summarizes the hardening process in the Racket language spectrum diagrammatically.

While both contracts and types play a central role in this hardening process, the devel-
opment of typed/racket is far more interesting from a linguistic perspective. Equipping
racket with a type system is a challenging task. Programmers who use dynamically typed
languages superimpose their own reasoning system as they design their code. It is fair to call
this reasoning system a type system. Often this informal type system resembles naive set
theory; at other times it incorporates elements from several different type systems.

The design challenge for typed/racket is to bring all of these informal type systems to-
gether in one framework—without introducing incompatibilities and contradictions. After all,
when programmers harden a project, they do not want to modify their code to accommodate
the type checker. Worse, any such modification might introduce a mistake or change the
behavior of the program in undesirable ways. Because of the desire to allow incremental and
selective hardening, it is also critical for typed/racket to preserve the semantics of racket.?

5 Racket Internalizes Extra-Linguistic Mechanisms

While many programming problems originate in a “real” world, program development is
also a problem domain. As such, tools that support programming deserve a language of
their own. Compiler writers take this idea seriously; for example, Dybvig and his group have
developed a language for stating compilers as nano-scale transformations and used it for
both educational [35] and commercial purposes [22]. When it comes to program development
or program execution, however, IDEs resort to mechanisms from the surrounding operating
system. They force programmers to develop programs in project contexts, delegate program
execution to operating systems, and use external tools to inspect programs and their execution
states. Racket’s focus on languages as the key to problem solving points to the alternative
solution of turning these extra-linguistic mechanisms into linguistic constructs [17].

To appreciate this domain, consider the original problem of building a pedagogic IDE
for novice programmers. Clearly, the emphasis on pedagogy and novices prohibits the use
students should be able to type in programs without any knowledge about
computers and to run these programs without leaving the IDE they use. By implication,
the IDE runs student programs under its control. Students make mistakes, though, and
one common mistake is to launch a diverging program, that is, a program that consumes

)

of “projects;’

unbounded amounts of time, memory, or other resources (e.g., file ports, database handles,
network connections; sometimes the access may be via instructor-provided libraries). Similarly,
novices want to find mistakes in programs, meaning their instructors want to show them
how to step through a program’s execution. Finally, when a student submits a program to
some homework server, this program must run in a security context that prohibits it from
inspecting other students’ solutions, attacking the server, and so on.

A close look at these requirements immediately suggests several areas of concern. Due to
its design feedback loop, Racket includes the following external mechanisms as constructs
at the moment: inspectors, which establish a hierarchy of access rights; threads that can
be shut down from the outside; sandboxes, which restrict access to services; custodians,

Performance enhancements can be realized under certain conditions; in general, types-as-contracts may
reduce performance and often require performance tuning.

The design of typed/racket’s type system is a complicated, but separate problem. A full discussion of
this design would not illuminate the explanation of Racket’s design principles, which is why we reserve
this topic for a future paper.
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which manage file handles, sockets, and database connections; eventspaces, which deal with
GUI resources and events; and several more. The remainder of this section sketches two of
these capabilities—inspectors and custodians—and how providing them inside the language
provides fine-grained control over inspection and resources.

Listing 8 Inspection in Racket, part 1

#lang racket/base

(define the-inspector (current-inspector))
(define sub-inspector (make-inspector the-inspector))

(define v
(parameterize ([current-inspector sub-inspector])
(dynamic-require "inspected.rkt" instance-of-s)))

Listing 9 Inspection in Racket, part 2

#lang racket/base

(provide instance-of-s)
(struct s (f1d))
(define instance-of-s (s 1))

Listings 8 and 9 demonstrate how Racket turns program inspection into a linguistic
construct. Ordinarily, a Racket structure declaration like the one for s in listing 9 defines
several functions: a constructor s, a field accessor s-f1d, and a predicate s?. Unless a
module exports the field accessor, instances of s are opaque to other modules in the system,
i.e., other modules cannot view, access, or mutate the content of field £1d in an instance. For
example, dynamically loading module inspected from listing 9, retrieving instance-of-s,
and printing it would reveal no information:

> (dynamic-require "inspected.rkt" ’instance-of-s)
#<s>

When the Racket IDE dynamically loads and evaluates a student program, however, it needs
to have access to structure information for printing, stepping, and debugging.

To address these needs, Racket evaluates modules under a hierarchy of inspectors. If two
modules run under the same inspector or incomparable inspectors in the hierarchy, they
cannot view, access, or mutate each others structures unless they explicitly grant these rights
via provides of the respective functions. In contrast, if module A runs under the control of
inspector ¢ and another module B runs under the control of an inspector j that is below 4, A
can inspect B’s structures—whether B grants these rights or not.

Consider the module in listing 8, which concretely illustrates how inspectors work. The
module creates a reference to the current inspector, that is, the inspector under whose super-
vision it executes. It then makes another inspector; the new one is below make-inspector’s
argument, which is the module’s current inspector. The module then uses parameterize to
set the value of the current-inspector to this newly created inspector for the duration of
the evaluation of

(dynamic-require "inspected.rkt" ’instance-of-s)
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As a result, the value of v is a transparent instance of s, which is defined in inspected but
exported without access methods. Hence, when inspector is loaded into the read-eval-print
loop of DrRacket, v prints as (s 1).

Listing 10 Programming operating-systems patterns in Racket

(define (launch-many-worlds* . thx)
;3 allocate resources of th ... in the currently active custodian
(define cc (current-custodian))
;5 allocate resources of launch-many-worlds in mnew custodian c*
(define c* (make-custodian))
(define ch (make-channel))
(parameterize ([current-custodian cx*])

(channel -put ch
(1list i (parameterize ([current-custodian cc]) (th)))))
;3 th ... send values to channel ch;
;3 if any of these is an exception structure, shut down

(when (exn? x)
(custodian-shutdown-all c*)
(raise x))

)

Listing 10 presents an example of resource administration, another operating-system
service turned into a Racket construct. It displays the essence of the launch-many-worlds
function, which is used to run students’ distributed programs [8] in parallel. The function
consumes an arbitrary number of thunks and runs them in parallel until all of them have
produced a proper value or one of them has signaled an exception. Since the function itself
consumes resources, it uses two custodians: its caller’s—to manage the resources of the
given thunks—and a new one—to manage its own resources, mostly threads. If any of these
thunks raise an exception, the latter custodian is shut down and all of launch-many-world’s
resources are released. For a more sophisticated pattern of killing threads safely, see Flatt
and Findler’s work on “kill safety” [15].

Finally, Racket also internalizes other aspects of its context. Dating back to the beginning,
Racket programs can programmatically link modules [14] and classes [18]. In conventional
languages, programmers must resort to extra-linguistic tools to abstract over such linguistic
constructs; only ML-style languages and some scripting languages make modules and classes
programmable, too.

6 The Racket Design Feedback Loop

The design of a language must take place in the context of a feedback loop. Like the
feedback loop for many programming languages, Racket’s feedback loop contains soundness
theorems [40], performance evaluations [39], and usability studies [28]. As listing 11 shows,
however, the Racket feedback loop also includes a number of software applications While the
preceding sections already indicate the role that DrRacket played for developing, honing, and
checking the principles, the creation of large and complex domain-specific languages such as

Redex [5, 30], Scribble [13], Slideshow [11] and others have had an equally significant impact.

11
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Listing 11 The Racket design feedback loop

confusing

unhelpful for apps

fast, sound, easy to use, and improves

real-world app, e.g. DrRacket, Redex, ...

design and
implementation

=

Redex is probably the most sophisticated client of Racket’s syntax extension system.
It employs the latter at two levels: to compile the Redex language of grammar, type, and
semantics definitions and as a target for the compilation. As such, Redex has stretched and

unsound

expanded the syntax extension system.

Scribble is a domain-specific language for creating Racket documentation. Unlike the
documentation system of conventional languages, a Scribble program can refer to, and
compute with, bindings from a Racket library. As a result, programmers can easily create
intensively cross-referencing manuals, language guides, and books in such a way that each
occurrence of an identifier is automatically linked to its documentation. In fact, a Scribble
file is just a Racket module, so Scribble documents come with all the benefits of other Racket
code—including separate compilation, a feature absent in numerous document markup
processors. Integrating Scribble with Racket exposed a gap in, and thus forced an expansion
of, the phase separation model of Racket’s syntax extension system [12].

Finally, Slideshow is both a domain-specific language for programming presentations and
a graphical tool for displaying them. For a linguist with an awareness of the language of
discourse, designing a language for the programmatic creation of presentations is a natural
step. Presenters want a single point of control: they want parametrized re-use of slides, slide
elements, and other concepts that are most easily expressed with a language but are difficult
to obtain in a WYSIWYG tool. A programmer-as-presenter also has the natural desire to
evaluate code within a presentation, possibly even the presentation itself [17]. Because of
this combination, Slideshow’s construction plays almost the same role in the feedback loop
of design as the DrRacket IDE.

In general, all of these applications challenge the linguist in the problem-solving pro-
grammer. Each poses several different kinds of problems, best articulated and solved with
problem-specific languages. In all cases, the purpose of the languages is to provide a protected
and enforced abstraction. Equally important, they all need fine-grained control over resource-
management mechanisms that are usually found outside of the language. Their existence and
their designs both confirm the Racket principles and illustrate them, so Racketeers frequently
consult these applications when they contribute new languages or new concepts to existing
languages in the realm of Racket.
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7 Racket, the Future: From Imperfections to Research Opportunities

Racket’s design principles have produced a programming language that

enables the rapid creation of new languages for specific problem areas and thus enables

language-oriented programming;

supports a full spectrum of general-purpose programming languages with various conven-

tional degrees of safety; and

internalizes mechanisms from its system context into linguistic constructs for fine-grained,

programmable control.

Turning principles into reality almost always yields an incomplete, and possibly even flawed,
product.* Racket is no exception, but we consider these imperfections as opportunities for
future research. The remainder of this paper sketches some of them.

Racket’s key advantage is its syntax extension system. It makes experienced programmers
extremely productive, but it comes with an extraordinarily steep learning curve. Its syntax
elaboration algorithm is hard to understand; its toolbox is large and complex; and it has
some brittle, unexplored corners that occasionally trip up even experienced programmers.
The situation calls for simplifications of the syntax system and for the creation of a smooth
ramp for the toolbox (in terms of both tools and documentation).

In addition, the syntax extension system does not allow for a separation of concerns, and
programs suffer from this. For example, many programming languages allow programmers
to separate specifications from implementations. In conventional Racket, contracts play the
role of specifications, functions implement them, and programmers may choose to separate
the two concerns in a module. No such separation exists for the syntax system. While
Culpepper’s dissertation [3] research has made some progress in this direction, a lot more work
on separating syntax specifications from syntax implementations is needed. Realizing both
will greatly improve Racket’s support for the principle of language-oriented programming.

Besides a language, modern programmers need an ecosystem. Indeed, many programmers
equate languages with their ecosystems. For Racket, this equation means that the creation
of a new language ought to include the derivation of an IDE from DrRacket. To some extent,
DrRacket can already support new languages automatically, e.g., with on-line syntax checking
and simple refactoring actions. For other tools, such as a syntax-directed stepper, this process
would need a significant amount of work and comes without guidance or automation.®

The currently available enforcement mechanisms give rise to a full spectrum of conventional
programming languages: Typed Racket, Racket with contracts, Racket, and £fi/unsafe
Racket. Although this spectrum is expressive, it lacks power at both ends. To achieve full
control over its context, Racket probably needs access to assembly languages on all possible
platforms (from hardware to the web’s JavaScript). How to integrate this power in a portable
manner is unclear. To realize the full power of types, Racket will have to be equipped
with dependent types. Tobin-Hochstadt and his Typed Racket group are currently working
on first steps in this direction, focusing on numeric constraints in typed/racket. When a
Racket program uses vectors, its corresponding typed variant type-checks what goes into
these vectors and what comes out, but like ML or Haskell, indexing is left to a (contractual)
check in the run-time system. Integrating Xi and Pfenning’s form of programming with
numeric constraints [44] into typed/racket is a natural step beyond plain types.

4 The same caveat applies to the design process, not only its result, but covering the positives and
negatives of the design process is beyond the scope of this paper.

5 Spoofax [27] comes with domain-specific languages for the generation of IDE tools, but also relies on
extra-linguistic mechanisms.
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More generally, Racket’s spectrum of languages creates a multi-lingual world for pro-
grammers, though with far more structure than currently found in practice. Even though
Matthews and Findler [29] have studied the basics of multi-lingual programs, their theory
covers only a small part of this world. Our work on Racket clearly calls for extensions of this
result in several directions, including the sound interaction between by-value and by-name
(or lazy) variants of Racket, typed and dependently typed variants, and so on. We expect
that studying how to protect verified code as it is co-mingled with other kinds of code will
yield new insights into Racket’s safety mechanisms.

Racket must also broaden its horizon and consider security concerns, both as an en-
forcement action but also as an application of the third principle. While sandboxes address
some of the security concerns of running a student program in a homework submission
server, properly addressing this problem calls for articulating security policies and enforcing
them in a system. Moore, et al. [33] recently presented Shill, a secure scripting language
implemented atop Racket. Their work exposed serious gaps between Racket’s principle of
language-oriented programming and its implementation as well as in Racket’s approach to
enforcing security. Once again, we consider these weaknesses an opportunity to improve
Racket and expect to study these problems in the near future.
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