
Extensible Access Control with Authorization Contracts

Scott Moore
Harvard University (USA)

sdmoore@fas.harvard.edu

Christos Dimoulas
Harvard University (USA)

chrdimo@seas.harvard.edu

Robert Bruce Findler
Northwestern University (USA)
robby@eecs.northwestern.edu

Matthew Flatt
University of Utah (USA)

mflatt@cs.utah.edu

Stephen Chong
Harvard University (USA)
chong@seas.harvard.edu

Abstract
Existing programming language access control frameworks
do not meet the needs of all software components. We propose
an expressive framework for implementing access control
monitors for components. The basis of the framework is
a novel concept: the authority environment. An authority
environment associates rights with an execution context. The
building blocks of access control monitors in our framework
are authorization contracts: software contracts that manage
authority environments. We demonstrate the expressiveness
of our framework by implementing a diverse set of existing
access control mechanisms and writing custom access control
monitors for three realistic case studies.

Categories and Subject Descriptors D.3.1 [PROGRAM-
MING LANGUAGES]: Formal Definitions and Theory—
Semantics; D.2.4 [SOFTWARE ENGINEERING]: Software/
Program Verification—Programming by contract

Keywords access control; contracts; authorization logic

1. Introduction
An access control monitor mediates requests to call sensitive
operations and allows each call if and only if the request
possesses the necessary rights to call the operation. Broadly
speaking, when an access control mechanism is presented
with a call to a sensitive operation, it must be able to answer
two questions. First, which rights are required for the call?
And second, which rights does the request possess? The
design of an access control mechanism specifies, implicitly
or explicitly, the answers to these questions.

For example, Unix file permissions describe which users
are allowed to call which operations on a file. The access
control mechanism uses file permissions to determine what
rights are necessary to call different sensitive operations. Each
Unix process executes on behalf of a specific user, and a
request to call an operation possesses the same rights as
the user of the process that issues the request. Thus, file
permissions answer the first question, and the rights of the
user associated with a process answer the second question.
Importantly, Unix associates users and processes in two
different ways. By default, a new process runs on behalf
of the same user as the process that spawned it. But a process
can run on behalf of a different user if it runs an executable
that has the setuid bit set. When a process invokes a setuid
executable, the operating system launches a new process
to run the executable and associates the new process with
the user that owns the executable, rather than the user that
invoked it. Hence, this feature creates services that provide
restricted access to resources that an invoking user could not
otherwise access.

Similar to operating systems, software components also
need access control mechanisms to prevent unauthorized
clients from calling sensitive operations while allowing au-
thorized ones to do so. Thus, when responding to a request
to call a sensitive operation, access control mechanisms for
components must be able to answer the same two questions:
which rights are necessary for the call and which rights the
request possesses.

However, access control needs of components vary, and
it is impossible to choose a single answer to these questions
that satisfies all component authors. To make things worse,
access control mechanisms for general purpose programming
languages have made design choices that are not suitable for
all application domains and are typically mutually incom-
patible. For example, Java stack inspection [40] determines
the rights associated with a call site by walking the stack
from the current stack frame. In contrast, object-capability
languages (e.g., E [25] and Caja [26]) determine rights by the

lexical structure of the program: a code may call operations
on exactly those resources that are reachable from variables
in the code’s text.

In this paper we propose a new, extensible access control
framework that allows component authors to design access
control monitors that suit their needs. The framework sup-
ports the design and implementation of many different novel
and existing access control monitors for software compo-
nents. Moreover, because different monitors are implemented
using a common framework, different software components
within the same application can use different access control
mechanisms.

The framework builds on a novel concept: the authority
environment. Just as each execution context has a variable
environment that maps variable identifiers to values, each ex-
ecution context has an authority environment that associates
the context with its rights to call operations. The rights that a
call to a sensitive operation possesses are those possessed by
the authority environment of the call’s execution context.

By analogy with dynamic and lexical scoping of variable
environments, we identify two ways in which an execution
context can receive authority:
1. dynamically, by inheriting the authority environment of

the surrounding execution context, and
2. lexically, by capturing the authority environment of the

execution context where it is defined.
Returning to the Unix file system example, a process receives
authority dynamically when it inherits the user of the process
that launched it. A process receives authority “lexically”
when it runs a setuid executable.

Based on the correspondence with variable scoping, we
define a framework for designing access control monitors
as sets of monitor actions that manipulate authority environ-
ments (§3). We implement our framework as a library for
Racket [16] without changes to the language’s runtime. We
use higher-order contracts [15] to specify where an access
control monitor should interpose on a program and how it
should manage authority environments. Contracts are exe-
cutable specifications attached to software components that
support separation of concerns by removing defensive checks
from code implementing functionality [22–24]. In the same
way, our authorization contracts separate the task of access
control from the program’s functionality.

The design of this framework presents four major contri-
butions:
1. the introduction of authority environments as a unifying

concept for access control mechanisms (§2),
2. the introduction of context contracts to check and enforce

properties of execution contexts (§3.1),
3. a novel authorization logic for representing and querying

authority in authority environments (§3.2), and
4. authorization contracts that specialize context contracts

for managing authority environments and enforcing access
control policies expressed in the logic (§3.3).

We have used the framework to implement diverse access
control mechanisms: discretionary access control, stack in-
spection, history-based access control, and object-capabilities
(§4). We demonstrate the practicality of our approach with
three realistic case studies (§5).

2. Authority Environments
In this section, we introduce authority environments as a
unifying concept for access control. First, we review the
differences between lexical and dynamic scoping (§2.1). Then
we describe the connection between lexical and dynamic
scoping and access control (§2.2) and show how we can
use scoping in the design of a framework for writing access
control monitors (§2.3). Throughout, we use small examples
in the Racket programming language [16].

2.1 Lexical and Dynamic Scoping
The scope of a variable binding is the spatial and temporal
part of the program in which it is visible. A common way to
categorize strategies for assigning scopes to bindings is as
either lexical or dynamic. Earlier work distinguishes between
the scope of a binding, which describes where the binding
is visible in the program text, and the extent of a binding,
which describes when the binding is visible during execution.
Dynamic scope often refers to bindings that have dynamic
extent and “indefinite” scope. Here, we use dynamic scope to
refer to bindings that have dynamic extent and lexical scope,
also called “fluid” scope [17, 34, 35].

Under lexical scoping, a variable refers to the binding
from its closest binder in the textual structure of the program.
For example, in the Racket expression below, the variable
x in function f refers to the binding in the outer-most let
statement. The evaluation of this expression returns 0 since
the inner-most let statement has no effect on the value x

binds within f.
(let ([x 0])

(let ([f (lambda () x)])
(let ([x 42])

(f))))

In a programming language with fluid scoping, program-
mers can instead associate a binding with the dynamic extent
of an expression. That binding is visible to any code that runs
in the dynamic extent of the expression. For example, the
following Racket expression defines a new fluidly-scoped
variable x with default value 0. The parameterize expression
binds x to the value 42 in the dynamic extent of its body. The
variable x in the body of f refers to the most recent bind-
ing rather than the closest one in the program text. Since f

is invoked within the parameterize expression, the program
evaluates to 42 instead of 0.
(let ([x (make-parameter 0)])

(let ([f (lambda () (x))])
(parameterize ([x 42])

(f))))

Fluid scoping is a useful programming construct because
it allows the context of an expression to communicate with
its callees without explicitly threading arguments through the
program. For example, a library function for printing may
offer a parameter that determines the standard output file.
Instead of threading that file as an argument through every
function call leading to the printf routine, a client program
can instead set the parameter once and all calls to printf in
the body of the program see the client-specified file.

2.2 Scoping for Access Control
This ability to pass contextual information from an execution
context to an eventual callee closely matches the problem
of correctly determining the authority of a request to call a
sensitive operation. To demonstrate this relationship, consider
the design of a web application with multiple users. A
key component of this application is a login function that
authenticates users and executes code on their behalf:
(define (login user guess onSuccess)

(if (check-password? user guess)
(run-as-user user onSuccess)
(error "Wrong password!")))

This login function takes three arguments: the user attempt-
ing to authenticate, the password guess, and a callback
onSuccess to invoke with the user’s rights if the password
is correct. After checking the password, the login function
changes the state of the program to indicate that the current
user is now user and then calls onSuccess.

The body of onSuccess may attempt to access sensitive re-
sources. For example, it may try to update a user’s profile. To
avoid an unauthorized update, the update-profile function
checks whether the current user has sufficient rights:

(define (update-profile profileUser text)
(if (can-update? currentUser profileUser)

...
(error "Unauthorized!")))

Function can-update? compares the current user with the
user who owns the profile to determine whether the update
is authorized. This code thus implicitly uses the authority
of its context, i.e., the current user, in much the same way
that code accesses the dynamically scoped bindings from its
context. By managing authority as an implicit context in this
way, we can avoid modifying the code between the decision
to run a computation with particular authority and the call
to the sensitive operation. This has two advantages. First,
threading authority explicitly through the program reduces
extensibility, since third party code would need to be aware of
and correctly handle authority explicitly. Second, if the code
is untrustworthy, it might attempt to subvert the access control
checks that protect the sensitive operation by fabricating its
own authority.

Another requirement of the security of this application is
that only code running with the authority of the main loop is
allowed to switch users. According to the Principle of Least

(define-monitor users
(monitor-interface

setuid/c chuser/c checkuser/c)
(action
[chuser/c (user)
#:on-create (do-create)
#:on-apply (do-apply

#:check (� @ current-principal user
user)

#:set-principal user)]
[checkuser/c (user)
#:on-create (do-create)
#:on-apply (do-apply

#:check (� @ current-principal user
user))]

[setuid/c
#:on-create (do-create)
#:on-apply (do-apply

#:set-principal closure-principal)]))

Figure 1. Defining a simple access control monitor

Privilege [31], we should further limit the code that is allowed
to switch users to just the login function, and switch to an
unprivileged user for the rest the program. Crucially, the body
of the login function must still use the authority that was
in its environment when it was created, i.e., the authority of
the main loop. In a sense, for login, we wish to close over
the authority of the main loop, in the same way that closures
capture lexically scoped bindings.

To achieve this, we build on the analogy between scoping
and access control and introduce the concept of an authority
environment. An authority environment associates rights with
an execution context, just as a variable environment asso-
ciates bindings with an execution context. Just like variable
environments, authority environments can be captured and as-
sociated with code, updated, and extended with new bindings
for the dynamic extent of a computation. In this application,
the authority environment of an execution context records the
user on whose behalf the code executes. Section 2.3 shows
how authority environments help enforce access control in
our running example, including how to create a secure login

function. Section 3 generalizes authority environments so that
we can express a wide variety of access control mechanisms.

2.3 From Access Control to Authorization Contracts
Using the concept of an authority environment, we build an
access control monitor that manipulates and inspects the au-
thority environments of the example web application. The
monitor consists of actions that describe how events in the
execution of the application interact with its authority envi-
ronment. We describe our framework for defining monitors in
detail in Section 4. Here we explain only the features relevant
to the example.

Figure 1 shows our example monitor. The monitor speci-
fies three actions: setuid/c, chuser/c, and checkuser/c. Each

action defines a higher-order function contract [15]. When
one of these contracts is attached to a function, the contract
captures the current authority environment and associates
it with the function. When the function is called, the con-
tract has access to both the authority environment at the
call site and the authority environment that it has captured.
The monitor configures each action-contract with two hooks:
#:on-create and #:on-apply. By changing these hooks, mon-
itor designers can implement actions that implement different
forms of “lexically” and dynamically scoped authority envi-
ronments.

Action chuser/c is parameterized with an argument user
that identifies the user whose authority should be used dur-
ing the execution of the body of a contracted function. The
#:on-apply hook for chuser/c ignores the authority it has
closed over and sets the active principal to user for the dy-
namic extent of the body of the contracted function, but only
if the #:check holds, that is, the current-principal has au-
thority over user user. Otherwise, it raises a security violation
as a contract violation. Monitor action checkuser/c is also
parameterized with a user. Upon a call of its contracted func-
tion, it checks that the current-principal has authority over
user. If the check succeeds, the action does not change the
authority environment. If the check fails, the action raises a
security violation. The final monitor action, setuid/c, cre-
ates an authority closure: calling a function with this contract
changes the current principal in the authority environment to
the closed-over principal closure-principal for the dynamic
extent of the function’s body.

Using the monitor, we can now reimplement the web appli-
cation. First, we can replace code that defensively performs
authorization checks with contracts that enforce authority
requirements:

(define/contract
(update-profile someUser text)
(->a ([user principal?] [text string?])

#:auth (user) (checkuser/c user)
any))

...)

This revised implementation of update-profile uses the
Racket form define/contract to attach a contract to the
update-profile function. This contract is a dependent con-
tract [15] for a function. It says that update-profile takes
two arguments: user, which must be a principal?, and text,
which must be a string?. The keyword argument1 #:auth

(user)(checkuser/c user) says that the authorization con-
tract for this function depends on the user argument and
attaches the contract (checkuser/c user) to the function. Fi-
nally, the range of this contract is any, making no require-
ments on the return values. The definition of the function can
now elide the authorization check.

We also revise the implementation of login:

1 In Racket, a keyword argument is a (possibly optional) argument passed by
keyword instead of position. A keyword is a symbol starting with #:.

(define/contract
(login user guess onSuccess)
(->a ([user principal?] [guess string?]

[onSuccess (user) (chuser/c user)])
#:auth () setuid/c any)

(if (check-password? user guess)
(onSuccess)
(error "Wrong password")))

The keyword argument #:auth () setuid/c attaches the
setuid/c action to the login function, capturing the authority
of the program context where it is created. This allows the
login function to execute with the captured authority and thus
allows the application to switch to a less privileged principal
without losing the ability to safely authenticate as a different
user. In the original implementation, login uses a hand-rolled
function run-as-user to confine onSuccess within the author-
ity of user. In the revised code, login can invoke onSuccess

directly. The contract on the onSuccess argument attaches the
action (chuser/c user) to the function. This ensures that any
call to onSuccess has the correct authority.

Rewriting this application to use authorization contracts
makes the authorization requirements of each function clear,
while also simplifying its implementation by removing au-
thorization code that was spread throughout the program.

3. A Framework for Access Control
In this section, we present the general design of our frame-
work with a formal model. First, we show how we extend
existing higher-order function contracts to context contracts
that check and modify information about their execution
context (§3.1). Context contracts are expressive enough to
enforce a wide range of properties. However, this flexibil-
ity makes it difficult to use them to implement and reason
about access control. To free users from this burden, our
framework provides a specialized interface for defining au-
thorization contracts. The interface simplifies the definition
of context contracts for access control in two ways. First, it
specifies a common representation for authorization environ-
ments (§3.2). At the core of this representation is a novel
authorization logic that describes how authority captured in
a closure may be used. Second, it defines combinators for
building authorization contracts (§3.3). Authorization con-
tracts are specializations of context contracts that use the
authorization logic to succinctly describe how they manage
authority environments.

3.1 A Contract System with Context Contracts
We model higher-order contracts and context contracts as
extensions to an applied lambda calculus with modules and
parameters, which implement dynamic binding. Figure 2 de-
scribes the syntax of our model. Figure 3 gives the reduction
semantics of the model. Evaluation contexts that are not pre-
sented in Figure 2 are standard and enforce call-by-value,
left-to-right evaluation. The type system and the definition of

Surface syntax

p ::= m ; p | e

m ::= module ` exports xwithx,. . . where x = e,. . .

e ::= v | e e | µx : τ. e | letx = e in e | e⊕ e
| e ≤ e | if e then e else e | make-parameter e
| parameterize e = e in e | ?e | e := e
| flat/c(e) | param/c(e) | e : τ → (e) e
| e : τ →a (λx : τ. e) e
| ctx/c(e,(e⇒ e← e), . . . ,e,(e⇒ e← e), . . .)

v ::= () | n | #t | #f | λx : τ. e | c

c ::= flat/c(v) | param/c(c) | c : τ → (c) c
| c : τ →a (λx : τ. e) c
| ctx/c(v,(v ⇒ v ← v) . . . ,v,(v ⇒ v ← v) . . .)

τ ::= β | τ → τ | τ param | τ ctc | ctx ctc

β ::= Unit | Int | Bool

Expanded syntax

e ::= . . . | `monkj (e,e) | checkkj (e,e) | errorkj
| guardj (e,v,v,e) | install/pj (v,e,e)

v ::= . . . | p(r) | `param/pkj (c, v)

| `ctx/pkj (v,(v ⇒ v ← v), . . .,v)
| install/pj (v,v,v)

Selected evaluation contexts

E ::= . . . | guardj (E,v,v,e)
| install/pj (v,e,E) | install/pj (v,E,v)

Figure 2. Syntax

evaluation contexts are given in Appendix A. Though we omit
the extension for clarity, we have also extended the model
with first class continuations, following Takikawa et al. [37],
because our implementation language supports them and they
interact in interesting ways with our framework.

The semantics of common language features is standard.
Below, we explain the semantics of modules, parameters,
higher-order contracts, and context contracts.

3.1.1 Modules
A program p is a sequence of modules followed by a top-level
expression. A module simultaneously defines a collection of
values owned by a single component and a set of contracts
for those values. Each module

module ` exports xv1 withxc1 ,. . . where y1 = e1,. . .

has a label ` and defines a set of values y1, Values
within the module are visible only to subsequent modules
in the program if they are exported. An export declaration
xvi withxci binds xvi in the rest of the program to the value
defined as xvi in the where clause, but only after attaching
to it the contract defined as xci in the where clause. Meta-
function import, shown in Figure 3, substitutes occurrences

of xvi
in the rest of the program with monitored values

`monk
j (c,v) that enforce the contract.

3.1.2 Higher-order contracts
Term `monk

j (c,v) attaches contract c to value v and monitors
whether uses of v satisfy the contract. Labels j, k, and `,
identify, respectively, the module that imposed the contract,
the module that provided the value, and the module that is the
client of the value. The top-level expression of a program is
identified by the distinguished label `0. These labels are used
to assign blame when a contract is violated. The simplest
contract is a flat contract flat/c(vc) that takes a predicate vc as
an argument. Flat contracts can be applied only to values of
base types Int, Bool, and Unit. When the contract is attached
to a value, the predicate is applied to the value. If the predicate
returns true, the value passes to its context. Otherwise, the
contract system stops the program and raises an error blaming
the provider of the value.

Contract cd : τ → (cc) cr is a higher-order function con-
tract. It specifies a contract cd for the domain of the func-
tion and a contract cr for the range of the function. In addi-
tion, it specifies a context contract cc for the function. Con-
text contracts, novel to this work, are higher-order contracts
that enforce restrictions on the execution context of function
calls. They are described in detail below. Attaching contract
cd : τ → (cc) cr to a function returns a new value that en-
forces contracts on the argument and results of the function
and applies the context contract cc.

Contract cd : τ →a (λx : τ. ec) vr is an indy-dependent2

contract for higher-order functions. This contract corresponds
to the ->a contracts from Section 2. The contract is dependent
since the contract uses the argument of a contracted function
to choose a context contract for the function. Applying
a function v with this contract has four steps. First, the
argument is wrapped with the contract for the domain, cd.
Second, the wrapped argument is passed to the function
λx : τ. ec to construct a context contract. Third, the resulting
context contract is attached to v, which is applied to the
wrapped argument. Finally, the contract for the range, cr, is
attached to the result of the application.

3.1.3 Parameters
Parameters are first-class values that can be used to access
and install dynamic bindings. Parameters implement fluid
scope because access to their dynamic bindings is controlled
lexically by access to the parameter itself. The expression
make-parameter e creates a new parameter p(r) with de-
fault value the result of e, where r is a fresh tag uniquely
identifying the parameter. The default value is recorded in
the store σ. Term parameterize p(r) = e1 in e2 installs the
result of e1 as the new value of the parameter p(r) for the
dynamic extent of e2. Accessing the value of a parameter

2 An indy-dependent contract is a dependent function contract that uses the
“indy” strategy for blame assignment [8].

〈module ` exports x1 withxc1 ,. . . where y1 = v1,. . . ,yn = vn,ye1 = e1,. . . yem = em; p, σ〉
→ 〈module ` exports x1 withxc1 ,. . . where y1 = v1,. . . ,yn = vn,ye1 = {vi/yi}e1,ye2 = e2,. . . yem = em; p, σ〉

〈module ` exports x1 withxc1 ,. . . where . . . ,x1 = v1,. . . ,xc1 = c1,. . .; p, σ〉
→ 〈importJ`,(x1, . . . , xn),(v1, . . . , vn),(c1, . . . , cn),pK, σ〉

〈E[(λx : τ. e) v], σ〉 → 〈E[{v/x}e], σ〉
〈E[µx : τ. e], σ〉 → 〈E[{µx:τ. e/x}e], σ〉
〈E[letx = v in e], σ〉 → 〈E[{v/x}e], σ〉
〈E[if #t then e1 else e2], σ〉 → 〈E[e1], σ〉
〈E[if #f then e1 else e2], σ〉 → 〈E[e2], σ〉
〈E[v1 ⊕ v2], σ〉 → 〈E[v], σ〉 where v = v1 ⊕ v2
〈E[v1 ≤ v2], σ〉 → 〈E[v], σ〉 where v = v1 ≤ v2
〈E[make-parameter v], σ〉 → 〈E[p(r)], σ[r 7→ v]〉 where r is fresh

〈E[?p(r)], σ〉 → 〈v, σ〉 where σ(r) = v and
E does not contain parameterize p(r) = v′ in E′

〈E[parameterize p(r) = v in E′[?r]], σ〉 → 〈E[parameterize p(r) = v in E′[v]], σ〉
where E′ does not contain parameterize p(r) = v′ in E′′

〈E[p(r) := v], σ〉 → 〈E[()], σ[r 7→ v]〉
where E does not contain parameterize p(r) = v′ in E′

〈E[parameterize p(r) = v in E′[p(r) := v′]], σ〉 → 〈E[parameterize p(r) = v′ in E′[v′]], σ〉
where E′ does not contain parameterize p(r) = v′′ in E′′

〈E[parameterize p(r) = v in v′], σ〉 → 〈E[v′], σ〉
〈E[`monkj (flat/c(vc),v)], σ〉 → 〈E[checkkj,k((vc v),v)], σ〉
〈E[`monkj (param/c(c),v)], σ〉 → 〈E[`param/pkj (c, v)], σ〉
〈E[`monkj (cd : τ → (cc) cr,v)], σ〉 → 〈E[(`monkj (cc,λ x : τd.

`monkj (cr,vf
kmon`j(cd,x))) v)], σ〉

where x is fresh

〈E[`monkj (cd : τ →a (λx : τ. ec) cr,v)], σ〉 → 〈E[λ y : τd.
`monkj ({

kmon`j(cd,y)/x}ec,`monkj (cr,v
kmon`j(cd,y)))], σ〉

where y is fresh

〈E[`monkj (ctx/c(vc,(vcg1 ⇒ vcp1 ← vcv1), . . . ,va,(vag1 ⇒ vap1 ← vav1), . . .),v)], σ〉 → 〈E[checkkj ((vc ()),e)], σ〉
where e = guardj ((vcg1 ()),vcp1 ,vcv1 ,. . . guardj ((vcgn ()),vcpn ,vcvn ,

`ctx/pkj (va,(vag1 ⇒ vap1 ← vav1), . . .,v)))

〈E[(`ctx/pkj (va,(vag1 ⇒ vap1 ← vav1), . . .,vf) v)], σ〉 → 〈E[(check`j((va ()),e) v)], σ〉
where e = guardj ((vag1 ()),vap1 ,vav1 ,. . . guardj ((vagn ()),vapn ,vavn ,vf))

〈E[guardj (#f,vp,vv,ef)], σ〉 → 〈E[ef], σ〉
〈E[guardj (#t,vp,vv,ef)], σ〉 → 〈E[install/pj (vp,(vv ()),ef)], σ〉
〈E[(install/pj (vp,vv,vf) v)], σ〉 → 〈E[parameterize vp = vv in (vf v)], σ〉
〈E[?`param/pkj (c, vp)], σ〉 → 〈E[`monkj (c,?vp)], σ〉
〈E[parameterize `param/pkj (c, vp) = v in e], σ〉 → 〈E[parameterize vp = kmon`j(c,v) in e], σ〉
〈E[`param/pkj (c, vp) := v], σ〉 → 〈E[vp := kmon`j(c,v)], σ〉
〈E[checkkj (#t,v)], σ〉 → 〈E[v], σ〉
〈E[checkkj (#f,v)], σ〉 → 〈errorkj , σ〉

importJk,(x1, . . . , xn),(v1, . . . , vn),(c1, . . . , cn),m1; . . . ;mn;eK =
importJk,(x1, . . . , xn),(v1, . . . , vn),(c1, . . . , cn),m1K;
. . . ;
importJk,(x1, . . . , xn),(v1, . . . , vn),(c1, . . . , cn),mnK;
importJk,(x1, . . . , xn),(v1, . . . , vn),(c1, . . . , cn),eK

importJk,(x1, . . . , xn),(v1, . . . , vn),(c1, . . . , cn),module ` exports xv1 withxc1 ,. . . where y1 = e1,. . . ,yn = enK =
module ` exports xv1 withxc1 ,. . . where y1 = {

`monkk(ci,vi)/xi}e1,. . . ,yn = {
`monkk(ci,vi)/xi}en

importJk,(x1, . . . , xn),(v1, . . . , vn),(c1, . . . , cn),eK = {
`0monkk(ci,vi)/xi}e

Figure 3. Reduction semantics

with term ?p(r) returns the value of the closest enclosing
parameterize for p(r) in the current evaluation context. If
there is no such term, it returns the current value for r in the
store. Similarly, term p(r) := v mutates the current binding
for the parameter, updating the parameter associated with
either the closest enclosing parameterize for p(r) in the cur-
rent evaluation context or the value for r in the store, if there
is no such expression.

The parameter contract param/c(c) is a higher-order con-
tract that restricts uses of a parameter. A contracted parameter
v reduces to a proxy `param/pk

j (c, v) that records the labels
of the contract, provider, and client modules and intercepts
uses of the parameter to enforce that values bound to the
parameter meet contract c.

3.1.4 Context contracts
To track properties of execution contexts, context contracts
use parameters to install and access relevant state. A context
contract interposes on programs at two key times: when the
contract is attached to a function and when the contracted
function is applied. At both times, the contract can inspect
the current values of parameters to check that the current
environment is satisfactory, capture the current value for later
use, or change the parameterization of a call to the contracted
function.

A context contract

ctx/c(vc,(vgc ⇒ vpc
← vvc), . . . ,

va,(vga ⇒ vpa
← vva), . . .)

has four parts:
1. vc, a predicate that checks whether the context is appro-

priate when the contract is attached,
2. (vgc ⇒ vpc

← vvc), . . ., a list of guarded parameteriza-
tions, described below, to close over when the contract is
attached,

3. va, a predicate that checks whether the context is appro-
priate when the contract function is called, and

4. (vga ⇒ vpa ← vva), . . ., a list of guarded parameteriza-
tions to be installed around the body of the contracted
function if the contract check succeeds.

The first two parts are evaluated when the contract is attached
to a value. First, the predicate vc is executed to allow the con-
tract to check the current context. If the predicate returns #f, a
contract error is raised blaming the client of the contract. Oth-
erwise, each guarded parameterization (vgc ⇒ vpc

← vvc)
from part 2 is evaluated in turn. Each guarded parameteriza-
tion specifies a guard function vgc , a parameter vpc

, and a
value function vvc . If invoking the guard thunk vgc returns
#t, the corresponding value thunk vvc is executed to produce
a new value. This value is “closed over” and re-installed
for parameter vpc

when the contracted function is applied.
The predicate va and the remaining parameterizations are
recorded in a proxy `ctx/pk

j (va,(vga ⇒ vpa
← vva), . . .,v).

The proxy enforces additional checks and parameteriza-
tions when the contracted function is called. First, the pa-

module ` exports innerwith inner/c,
outerwith outer/c

where inner = λx : Int. x,
outer = λ f : (Int→ Int). λ x : Int. (f x),
true = λ _ : Unit. #t,
int/c = flat/c(λ _ : Int. #t),
fun/c = λ ctx : ctx ctc. (int/c : Int→ (ctx) int/c),
any/ctx = ctx/c(true,true),
any/c = (fun/c any/ctx),
p = make-parameter #f,
check/ctx = ctx/c(true,λ _ : Unit. ?p),
enable/ctx = ctx/c(true,true,((true⇒ p← true))),
enable/c = (fun/c enable/ctx),
inner/c = (fun/c check/ctx),
outer/c = (any/c : (Int→ Int)→ (any/ctx) enable/c);

(inner 42)

Figure 4. Context contracts enforcing nested applications.

rameter values captured when the contract was attached are
reinstalled. This gives the evaluation of the proxy and the
function call access to some bindings from when the contract
was attached, in addition to any bindings that are present in
the current evaluation context. With these captured bindings
in place, the proxy first evaluates the predicate va, which
checks whether the current context is satisfactory. If the pred-
icate returns false, a contract error is raised blaming the client
`. Otherwise, the guarded parameterizations of the proxy
are evaluated in a similar fashion as before. However, any
new bindings are installed just for the dynamic extent of the
contracted function’s call.

Figure 4 demonstrates context contracts with a small exam-
ple. The example involves two context contracts, outer/ctx
and inner/ctx, that communicate via parameter p. The con-
tracts ensure that function inner can be applied only in the
dynamic extent of the function returned by outer. Evaluating
(inner 42) results in a contract error errortop` blaming the
context that applied inner. Replacing this expression with
((outer inner) 42) evaluates to 42.

The ability to close over an environment is a key feature
of authorization contracts. To see that context contracts can
close over some part of the environment when a contract is
applied, consider extending the example in Figure 4 with
the contract capture/c from Figure 5. This contract captures
the value of parameter p when the contract is applied, and
reinstates that value for the dynamic extent of subsequent
applications of the contracted value.

3.1.5 Complete monitoring
Our contract system satisfies complete monitoring [8], an
important correctness criterion for contract systems. Com-
plete monitoring guarantees that a contract system correctly
assigns blame to components that violate their contracts and,
crucially, that the contract system can interpose on all uses
of a value in a component that did not create that value. This
property makes contracts suitable for interposing on pro-
grams to enforce access control policies. Moreover, because

module ` exports . . .
where . . . ,

cp = make-parameter #f,
capture/ctx = ctx/c(true,

((true⇒ cp← λ _ : Unit. ?p)),
true,
((true⇒ p← λ _ : Unit. ?cp)))

. . . ;
. . .

Figure 5. A context contract that closes over parameter p.

the interposition is local to individual components, an access
control monitor can be installed around a component without
a global enforcement mechanism or the cooperation of other
components.

Put differently, complete monitoring guarantees that con-
tracts can enforce the same set of properties as reference
monitors: an arbitrary prefix-closed property of a sequence
of events. For contracts, these events are the attachment of
contracts to values and the use of contracted values. In con-
trast, for inlined reference monitors built with aspects, this
set of events is determined by the point-cuts selected by the
policy. In either case, the programmer must correctly identify
relevant events and specify the policy, but can assume the
policy is enforced.

The formal definition and proof of complete monitoring
for our contract system can be found in the accompanying
technical report [28].

3.2 Representing Authority
In principle, a programmer can use context contracts to
enforce arbitrary properties of execution contexts such as
access control, but in practice this requires the careful design
of an appropriate representation of the relevant information
as an environment, i.e., a set of parameters. In particular, for
access control this requires a representation of the authority
of an execution context.

The authority of an execution context describes the rights
it has to perform sensitive operations. In different access
control mechanisms, the form and organization of these rights
varies. For example, in a web application, a session executes
on behalf of a particular user whose rights may change over
time in accordance with the access control policies attached
to the application’s resources. In the Java stack inspection
framework, rights are sets of “permissions” possessed by
activation records that can be queried with the checkPermission

operation.
A common way to describe the structure of authority in

an access control system involves a mapping from subjects
(users, processes, or security domains) to access rights for
objects (resources that require the protection of the access
control system) [21]. In practice, subjects and objects may
comprise the same entities, so we refer to both as security
principals (or, simply, principals).

To build a framework that supports many different access
control mechanisms, we need a general way to express

Primitives P ::= a | b | . . .
Projection dimensions d ::= α | β | . . .
Principals p, q, r, s ::= P | > | ⊥

| p ∧ p | p ∨ p
| p . d | ←D p |

→
D p

Delegations A ::= p � p @ p
Delegation sets D ::= {A,A, . . .}

Figure 6. Syntax of principals, delegations, and worlds

and reason about principals, the authority of principals, and
how principals delegate and restrict their authority. For this
purpose, we use an authorization logic [2] based on the
Flow-Limited Authorization Model (FLAM) [5]. We briefly
describe our logic, highlighting where it differs from FLAM.
In Section 3.3, we employ this logic to represent authority as
a set of parameters that are managed by specialized context
contracts, dubbed authorization contracts.

Figure 6 presents the syntax of our logic. We assume an
enumerable set of primitive principals P . Primitive principals
represent program entities that possess rights, such as users,
modules, or activation records. We assume a most trusted
principal > and a least trusted principal ⊥. For principals p
and q, the conjunctive principal p ∧ q is a principal with the
authority of both p and q. Similarly, the disjunctive principal
p ∨ q has the authority of either p or q.

If principal p trusts principal q, we write q � p, and
say that q acts for p. The acts-for relation is reflexive and
transitive, and induces a lattice structure over the set of
principals, with conjunction as join, disjunction as meet, and
> and ⊥ as the top and bottom elements of the lattice.

Principals may assert the existence of trust relationships.
A delegation p � q @ r means that principal r asserts that
p acts for q (or, equivalently, that q delegates its authority to
p). Of course, whether a principal s believes the assertion
depends on whether s trusts principal r. (We differ from
FLAM in that we describe only the integrity of delegations,
not their confidentiality.)

Judgment D ; r ` p� q denotes that given the set of
delegations D, principal r believes that principal p acts for
principal q. Intuitively, r believes that p acts for q if that trust
relationship can be derived using only delegations asserted
by principals that r trusts.

Figure 7 presents the inference rules for the judgment
D ; r ` p� q. Rules BOT, TOP, REFL, TRANS, CONJ-LEFT,
CONJ-RIGHT, DISJ-LEFT, and DISJ-RIGHT are standard and
provide the underlying lattice structure for the acts-for rela-
tion. Rule DEL captures the intuition that principal r trusts
only delegations asserted by principals that it trusts, that is
delegations p � q @ s where D ; r ` s� r

We have three additional principal constructors. Princi-
pal p . α is the projection of the authority of principal p on
dimension α3. We use projections to limit or attenuate the

3 FLAM considers basis projections and ownership projections. The projec-
tions we use here are more general and have less structure than either. In
addition to preserving the acts-for lattice, the only structure we impose is
that projections are commutative: p . α . β = p . β . α.

BOT

D ; r ` p� ⊥

TOP

D ; r ` >� p

PROJ

D ; r ` p� p . α

CONJ-LEFT
D ; r ` pk � q k ∈ {1, 2}

D ; r ` p1 ∧ p2� q

CONJ-RIGHT
D ; r ` p� q1 D ; r ` p� q2

D ; r ` p� q1 ∧ q2

DISJ-LEFT
D ; r ` p1� q D ; r ` p2� q

D ; r ` p1 ∨ p2� q

DISJ-RIGHT
D ; r ` p� qk k ∈ {1, 2}

D ; r ` p� q1 ∨ q2

DEL
p � q @ s ∈ D D ; r ` s� r

D ; r ` p� q

CLOSURE-LEFT
D′ ; s ` p� q D ; r ` ←D′s� r

D ; r ` p� ←D′q

CLOSURE-RIGHT
D′ ; s ` p� q D ; r ` ←D′s� r

D ; r ` →D′p� q

REFL

D ; r ` p� p

TRANS
D ; r ` p� q D ; r ` q� s

D ; r ` p� s

Figure 7. Inference rules for judgment D ; l ` p� q

authority of a principal, and to identify access rights. For ex-
ample, p.filesmay refer to principal p’s authority restricted
to p’s rights to access the file system. Similarly, principal
p . obj . invoke (equivalently p . invoke . obj) might refer
to the right to invoke a particular object belonging to principal
p. Principal p can grant this right to another principal q by
asserting a delegation: q � p . obj . invoke @ p.

We leave projection dimensions underspecified, and access
control mechanisms can define their own dimensions. For any
projection dimension α, principal p acts for principal p . α,
as captured in Rule PROJ. Typically the converse does not
hold, and so p . α has strictly less authority than p.

Novel to this work, we introduce closure principals ←D p
and →D p. Given a set of delegations D and principal p,
the left-closure principal ←D p represents p with all of the
trust relationships derivable from D where p delegates its
authority to other principals. The right-closure principal
→
D p represents p with all of the trust relationships derivable
from D where p acts for other principals. In our framework,
delegations may change over time. Closure principals are
useful because they allow us to capture trust relationships
as they exist at particular moments in time. In particular,
closure principals are a principled mechanism to describe
how authority captured by a context contract should be
combined with the current authority environment based on
which parts of the closed over authority environment are
trusted by principals in the current authority environment.

Rule CLOSURE-LEFT shows that D ; r ` p� ←D′q holds
when there is some principal s such that at the time of
closure creation (i.e., with delegation set D′), s believed that
p acted for q (premise D′ ; s ` p� q), and moreover, right
now (i.e., with delegation set D) principal r trusts principal
←
D′s (premise D ; r ` ←D′s� r). Typically, s and r are the
same principal, meaning that r-at-time-D trusts the decisions
made by r-at-time-D′. Rule CLOSURE-RIGHT is similar and
D ; r ` →D′p� q holds when there is some principal s such
that at the time the closure was taken s believed that p acted
for q (premise D′ ; s ` p� q), and principal r trusts s-at-
time-D′ (premise D ; r ` ←D′s� r).

To query whether a particular set of delegations satisfies
an acts-for relation, we use a proof search algorithm adapted

from FLAM [5]. We give examples of using delegations to
implement different authorization mechanisms in Section 4.

Based on this logic, we represent an authority environment
as:
1. a principal, who is responsible for the current execution

context, and
2. a delegation set, which records the current trust relation-

ships between principals.
The latter has two sub-parts: a global, mutable delegation set,
and a set of delegations that are in place only for a currently
executing context.

3.3 Authorization Contracts
Using authority environments, we can now introduce autho-
rization contracts. Authorization contracts specialize context
contracts in two ways. First, they prevent interference from
untrustworthy code by using parameters that the rest of the
program does not have access to. Second, they use a high-
level representation of authority environments rather than
directly manipulating parameters. Authorization contracts
provide a structured way to describe how the underlying
context contracts should manipulate authority environments.

Authorization contracts are defined as monitor actions
using the define-monitor form (§2). In this section, we model
a pared-down version of define-monitor as an extension to
the language model from Section 3.1. Figure 8 displays the
syntax of the extension. The extension introduces new types,
constructors, and operations for principals, delegations, and
delegations sets, including an expression that evaluates an
acts-for judgment: e ; e ` e� e. The define-monitor form
corresponds to the monitor (a . . .) form that can appear in the
where clause of a module definition in the extended model.
Each a in monitor (a . . .) is an action specification. An action
specification actionx (y : τ, . . .) (ce,ae) has a name (x), a
set of arguments (y : τ, . . .), and two terms (ce and ae) that
define the action’s #:on-create and #:on-apply hooks.

The term for the #:on-create hook has the form

check: cee add: cee remove: cee set!-principal: cee

closure-principal: cee closure-delegations: cee

and specifies what the authorization contract should do when
the contract is applied to a value. In particular it describes

m ::= module ` exports xwithx,. . . where x = e,. . . ,monitor (a, . . .),x = e,. . .

v ::= . . . | > | ⊥ | P | D | v � v @ v | {v, . . .}
e ::= . . . | new-principal | new-dimension | e . e | e ; e ` e� e | e � e @ e | letx � x @ x = e in e

| {} | {e} | e ∪ e | e \ e | (fold e e e)

β ::= . . . | Prin | Dim | Del | DelSet
a ::= actionx (y : τ, . . .) (ce,ae)

ce ::= check: cee add: cee remove: cee set!-principal: cee closure-principal: cee closure-delegations: cee

ae ::= check: aee add: aee remove: aee scope: aee set-principal?: aee principal: aee set!-principal: aee

cee ::= e | letx = cee in cee | current-principal | current-delegations

aee ::= e | letx = aee in aee | current-principal | current-delegations | closure-principal | closure-delegations

Figure 8. Syntax extensions for authorization contracts.

how to modify each part of the authority environment. Its
field check accepts an acts-for judgment. If this judgement
does not hold, a contract error is raised blaming the client of
the contract. Field add accepts a set of delegations to add to
the global delegation set. Field remove accepts a set of dele-
gations to remove from the global delegation set, if present.
Field set!-principal changes the current principal to the given
principal. Fields closure-principal and closure-delegations
accept a principal and a set of delegations, respectively, and
record the principal and delegations for use upon a call to
the contracted function. Terms in each of these six fields can
access the pieces of the current authority environment using
current-principal and current-delegations.

The second term corresponds to the #:on-apply hook,
which specifies what the authorization contract should do
upon a call of the contracted function. It has the form

check: cee add: cee remove: cee scope: cee

set-principal?: cee principal: cee set!-principal: cee.

Similar to a ce term, it allows the configuration of the
contract’s behavior. As before, check accepts an acts-for
judgment and raises a contract error if it does not hold.
Likewise, fields add and remove mutate the global delegation
set, and field set!-principal changes the current principal. The
scope field accepts a set of delegations, but this set is installed
only for the dynamic extent of the current function call, rather
than added to the global delegation set. The set-principal?
field requires a boolean value. If that value is #t, the current
authorization environment is extended with a principal for
the dynamic extent of the function call. This (1) allows
changing the principal visible within the extent of the function
call and (2) prevents contracts that change the principal
during the extent of the function call from modifying the
principal of the enclosing context. In addition to accessing
the current principal and delegations from the authority
environment, the seven fields of an ae term can access the
principal and delegations closed over by the contract with
terms closure-principal and closure-delegations.

To give a detailed semantics for monitor terms, we use a
compilation function that replaces monitor expressions with
terms that explicitly construct context contracts. The compi-

lation uses five parameters: one each for the current principal,
global delegation set, and scoped delegation set, plus a pair
to record the closed-over principal and delegations. Each
monitor term generates a fresh set of parameters, preventing
separately defined monitors from interfering with each other.
Each action term compiles to a single context contract that
closes over the fresh parameters. The full compilation func-
tion is listed in Appendix A, along with typing judgments for
authorization contracts and the semantics of expressions that
operate on principals, dimensions, delegations, and delega-
tion sets.

The hooks for defining actions are sufficiently flexible
to implement a variety of access control mechanisms (§4).
Here, we briefly describe some of the ways programmers can
configure authorization contracts.

Mutable Authority Many access control mechanisms have
a global policy that changes over time. For example, in
discretionary access control, users can grant or revoke access
to their resources. We can implement this with a contract that
adds or removes (global) delegations.

Dynamically-scoped Authority An authority closure can
inherit the authority environment from its calling context by
ignoring the authority environment it closes over.

“Lexically”-scoped Authority An authority closure can
isolate itself from the authority of its calling context by
replacing the authority environment at a call site with the
authority that it closes over.

Moreover, different access control mechanisms may re-
quire authorization contracts that blend these different strate-
gies. For example, implementing setuid-like authority clo-
sures requires capturing the principal but not the delegations
the closures close over. Otherwise, updates to the global, mu-
table discretionary access control policy would be forgotten
when a setuid function runs.

4. Putting Authorization Contracts to Work
As evidence of the usefulness and expressiveness of the frame-
work, we implemented a variety of existing access control
mechanisms including discretionary access control, stack

(define-monitor monitor-name
(monitor-interface

action-name ... extra-name ...)
(monitor-syntax-interface

syntax-name ...)
(action ; definitions of monitor actions

[action-name (action-var ...)
#:on-create on-create-hook
#:on-apply on-apply-hook]
...)

(extra ; additional monitor abstractions
(define extra-name extra-body)
...)

(syntax ; syntactic monitor abstractions
(define-syntax syntax-name syntax-body)
...))

Figure 9. The define-monitor form

inspection [40], history-based access control [1], and ob-
ject capabilities [25]. Here, we focus on stack inspection to
demonstrate how to use authorization contracts to design a
complex access control monitor. The remaining access con-
trol mechanisms are described in the accompanying technical
report [28]. Before delving into stack inspection, we fur-
ther explain define-monitor, the main linguistic tool that our
framework provides.

4.1 The define-monitor Form
Figure 9 shows the complete syntax of define-monitor. It has
two sections in addition to the action section we have seen
before: extra and syntax. The first defines extra functions
and contracts that the programmer wants to include in the in-
terface of a monitor. These are usually contracts that combine
two or more actions together or contracts that fix the argu-
ments of an action. The syntax section defines macros that
serve as syntactic abstractions over the monitor’s interface,
for example, to automate the placement of authority contracts
when defining a function. We give examples of definitions in
the extra and syntax sections later. The monitor-interface

and monitor-syntax-interface clauses specify which ele-
ments are available to users of the monitor. After defining a
monitor monitor-name, a client can instantiate it with (run

monitor-name). This creates a fresh monitor, i.e., one with a
fresh authority environment and contracts.

The most complicated part of defining a monitor is writing
the two hooks for each monitor action. To facilitate this, we
provide two functions, do-create and do-apply, that simplify
this process. Each function has optional keyword arguments
corresponding to the fields of an action form in Section 3.3.
The functions provide default values for any argument not
specified. Thus, the programmer need only specify the results
of the hooks they care about. For instance, the default value
for the argument with keyword #:check seen in Figure 1 is
an acts-for relation that is always true.

4.2 A Stack Inspection Monitor
In stack inspection [40], code obtains permissions based on
static properties such as the package it belongs to. At run
time, code can choose to enable its static permissions making
them eligible for satisfying an access control check. Before a
sensitive operation, stack inspection checks for the presence
of a particular permission by walking the run-time call stack
until a frame from code that has enabled the permission
is found. To prevent luring attacks [40], stack inspection
additionally requires that all execution contexts between the
enabled permission and the authorization check have the
required static permission. Despite this protection, untrusted
code may be able to influence the program even if its frames
are no longer on the stack. As a result, modern adaptations of
stack inspection provide additional support for capturing the
permissions of the stack at some point in an execution and
reinstating them for a later check.

Implementations of stack inspection provide the follow-
ing primitives: checkPermission, which checks that a frame
on the stack has the required permission enabled and that
all intervening frames have the required static permission;
doPrivileged, which enables the static permissions of the cur-
rent code for its dynamic extent, possibly using captured per-
missions instead of the current permissions; and getContext,
which captures the permissions of the stack at some point in
execution. In addition, the implementation must provide a
mechanism to associate static permissions with code.

To realize stack inspection using authorization contracts,
a monitor must provide (1) actions that implement these
primitives and (2) a way to grant static permissions to code.
In our monitor, the actions for (1) are check-permission/c,
do-privileged/c, and context/c. To track which permissions
are held by code on the stack, we use the authority environ-
ment to grant permissions to individual frames, each repre-
sented by a distinct principal. Each stack frame has three
projections that are used to manage its authority. The static

projection indicates the permissions granted to the code stati-
cally. The enable projection has the authority of the permis-
sions enabled for this frame. The active projection represents
permissions that would satisfy a privilege check. We say a
principal has a particular permission if it acts for the corre-
sponding projection of the > principal.

We use one additional monitor action, privileged/c, to in-
dicate the static permissions a piece of code possesses and to
enforce that a stack frame’s active projection acts for exactly
those permissions for which checkPermission should suc-
ceed. Action privileged/c takes a list of permissions (each
of which is a projection of the> principal). On an #:on-apply

event, it creates a new principal callee to represent the new
stack frame and adds delegations initializing these projections
for the dynamic extent of the function:

(� @ (. callee static) permissions >)
(� @ (. callee enable)

(. current-principal active)
current-principal)

(� @ (. callee active)
(∨ (. callee enable) (. callee static))
callee).

These delegations give callee the specified static permissions
(by asserting that the callee’s static dimension acts for
the conjunctive principle permissions), assert that the new
frame inherits the active permissions from the previous
frame, and require that the callee has both static and enabled
permissions to make them active.

Tracking the authority of each frame in this way makes
walking the stack unnecessary. Action check-permission/c

only checks that the active projection of the current principal
acts for all of the requested permissions.

Action do-privileged/c enables the current frame’s static
permissions by adding a delegation from the frame’s static

projection to its enable projection for the dynamic extent of
the wrapped function.

Action context/c is used to capture the permissions of
the current stack for future permission checks. It captures
the current authorization environment when it is attached
to a function. When it is invoked, it installs the same set of
delegations as privileged/c, except that the first delegation
that grants static permissions gets replaced with a delegation
that derives permissions from the active permissions of the
captured frame at the time they were captured:

(� @ (. callee static)
(. (→ closure-principal

closure-delegations)
active) >).

The right-closure principal on the right hand side of this del-
egation acts for all of the principals that closure-principal
acted for when the closure was created.

The monitor must also provide (2) a way to grant static per-
missions to code. Because Racket does not have class-loading
facilities that would allow permissions to be granted to code
at load-time, we use macros to attach authorization contracts
to code that should have static permissions. In particular,
the monitor provides a new definition form define/rights

in its syntax section. This form works like the define form,
but takes two additional arguments: a set of permissions and
a contract to apply to the definition. It defines a function
wrapped with the given contract and a privileged/c contract.
In addition, the macro define/rights coerces any function
arguments or free-variables appearing in the body of the func-
tion to authority closures by applying an additional contract
unprivileged/c, which is defined in the extra section of the
monitor. Action unprivileged/c switches to the ⊥ princi-
pal for the dynamic extent of the closure it wraps, prevent-
ing any check-permission/c actions from succeeding. Thus,

(define/rights (read-file file) (filesys)
(check-permission/c filesys)
...)

(define/rights (read-privileged file)
(filesys)

do-privileged/c
(if (safe? file) (read-file file) #f))

(define/rights (malicious) (net)
any/c
(read-file "/etc/passwd"))

> (malicious)
; read-file: contract violation;
; (. frame10247 active) 6� (. > filesys)
; @ (. > filesys)
; contract from: (definition read-file)
; blaming: top-level

Figure 10. Using the stack inspection monitor

these contracts prevent functions that were not defined with
define/rights from using code that requires permissions.

Figure 10 shows an example program using the stack
inspection monitor. There are three functions defined using
define/rights. Two of these functions are trusted to access
the filesystem: read-file and read-privileged. However,
read-file should not be used directly, so it checks that the
filesys permission has been enabled by one of its callers.
Function read-privileged enables the filesys permission,
but only calls read-file if the file is safe to read. Function
malicious does not have the filesys permission but attempts
to read "/etc/passwd" anyway, so invoking this function
results in a contract violation. The contract violation says
that the stack frame corresponding to the call to read-file

does not have the necessary permission filesys.

5. Case studies
To evaluate the use of our framework in practical applica-
tions, we developed three case studies. The first adds simple
authorization contracts to the implementation of a card game
to ensure that player’s moves affect only the parts of the game
state they control. The second secures a plugin interface of
the DrRacket development environment and demonstrates
how the flexibility of the framework can support complex
security mechanisms. The third, which mirrors the example
from Section 2.2, replaces authorization checks in a web
application with authorization contracts.

We evaluated the performance of our framework on each
case study. The experiments were conducted on a MacBook
Pro with a 2.6 GHz Intel Core i5 and 16GB of RAM running
Mac OS X 10.11 and Racket 6.4.0.9. In the first two case
studies, authorization contracts have significant impact on
the performance of the benchmarks. However, both case
studies are worst case scenarios: they have no existing code

implementing access control (and so we are strictly adding
functionality), and after adding contracts, they invoke many
access control checks (tens of thousands in the case of the
card game) while performing cheap operations. Moreover,
in the DrRacket case study, the absolute overhead for each
benchmark due to authorization contracts is less than 45ms,
but the relative overhead is high since the baseline running
time is less than 15ms. The third case study replaces existing
access control checks with authorization contracts, with
negligible impact on performance. Our implementation is
a prototype, and we anticipate that optimizations in the
implementation of our contracts can further reduce their
overhead.

Preventing Cheating in a Card Game We have used autho-
rization contracts to enforce a security policy for a functional
implementation of the card game Dominion4. The exact rules
of Dominion do not matter for our purpose, except that each
player collects cards in a local deck and attempts to outscore
the rest of the players by playing cards from their deck. Dur-
ing each turn, players can play cards from their deck to either
purchase additional cards or attack other players, forcing
them to discard some of their cards.

In this implementation, each player is a program that runs
in its own process and responds automatically to messages
from a central broker. The broker maintains the shared
inventory of cards and a mirror of each player’s local deck.
Players perform moves by sending messages to the broker
describing the move.

To perform a move, the player sends a message to the
broker identifying a card to play. In response, the broker
updates its copy of the game state to reflect the move and,
if the move involves an attack on another player, informs
the other player of the attack. The other player then has an
opportunity to defend by choosing which card to discard and
the broker again updates the game state.

The broker represents the local deck of each player as
an immutable record player and the state of the game as an
immutable structure game that holds a list of player records.
The first element in this list corresponds to the player who
makes the next move. The broker is implemented as a core
drive function that delegates to two functions: move and
defend. Both functions perform functional updates to the
relevant structures.

We enforce the policy that the broker only updates the
current player’s deck or a defending player’s deck. The
monitor that enforces this policy specifies three authorization
contracts: deprivilege/c, which sets the principal for the
dynamic extent of a function to ⊥; (switch-player/c name),
which sets the principal for the dynamic extent of a function
to the player with name name; and (check-player/c name),
which checks before calling a function if the current principal
is the player with name name.

4 The implementation is part of the teaching material of a long running
undergraduate Functional Programming course.

To enforce the policy, we attach contract deprivilege/c
to the function drive so that only authorized code can modify
the game state during the game. The contract for the game

structure, game/c, gives the accessor functions of each field of
the player records in the game the contract(check-player/c
name), where name is the name of the corresponding player.
The contract for the move function is
(->a

([game game/c] [turn any/c] [play any/c])
#:auth (game)

(switch-player/c
(player-name

(first (game-players game))))
(values [game-result-game game/c]

[turn-result any/c]))

and it authorizes the move function to act on behalf of the cur-
rent player, i.e., (first (game-players game)). The contract
for defend is
(->a ([player player/c] [defense any/c])

#:auth (player)
(switch-player/c

(player-name player))
[result player/c])

which similarly allows the function to update the state of the
player who was attacked.

We created 10 benchmarks for the Dominion case study
that each consists of a simulated game with 2-7 players.
Adding authorization contracts increases running time by
1.3–1.7× at both the median and 99th percentile.

Securing a Plugin Interface We wrote a monitor to protect
DrRacket from malicious or buggy third-party key bindings.
First, we explain aspects of DrRacket’s design related to
key bindings. Keystrokes sent to DrRacket are dispatched
as method calls to a text% object which encapsulates the
state of the editor. This object has methods that access and
modify parts of DrRacket. For instance, the get-text method
returns the content of the editor, while the set-padding

method changes the inset padding used to display the editor’s
content. Each text% object has a keymap% object that stores
registered key bindings and maps sequences of keystrokes to
the action they trigger. A keybinding action is an arbitrary
Racket function of two arguments: the current text% object
and an event% object, which describes the event that triggered
the action. On startup, DrRacket populates its text% object’s
key map with built-in key bindings. In addition, DrRacket
registers user-defined key bindings from configuration files.
Keybinding actions can inspect and modify almost any aspect
of DrRacket through the text% object. This gives users a
powerful interface for customizing DrRacket but makes key
bindings a source of vulnerabilities. For instance, a key
binding could accidentally erase the user’s code or snoop
on the editing session.

Our monitor restricts which text% object methods a key-
binding action can invoke. We group methods of text% that

can access or modify similar parts of DrRacket. For instance,
methods that write to the clipboard (e.g. cut and copy) belong
to the same group while methods that change how DrRacket
displays content (e.g. set-max-width and set-line-spacing)
belong to a second group. Each group has a corresponding
privilege that is required to invoke the group’s methods. For
example, the privileges ReadClipboard and ChangeEditorView

grant access to the methods mentioned above. Methods can
belong to multiple groups. Access control checks around each
method verify that the authority of a calling execution context
has the necessary privileges.

In addition to methods that require specific privileges to
invoke, text% has sensitive methods that should be invoked
only by another method of the text% object. For example,
the on-delete method should never be invoked directly as
its correctness depends on DrRacket’s state. Instead, key
bindings should invoke the delete method that subsequently
calls on-delete. To support this use case, we require an
additional privilege to call on-delete that is granted during
the dynamic extent of delete.

The stack-inspection-like access control mechanism we
have described so far is not sufficient. Some methods of text%
install callbacks that are triggered by subsequent events. For
example, add-undo registers a callback that runs when the
user wishes to undo the action of a key binding. This callback
should not run with the authority of its calling context, but
instead should use the privileges of the action that created
it. To achieve this, we create authority closures around any
callbacks registered by an action.

Our monitor represents each privilege as a unique prin-
cipal and represents sets of principals as conjunctions and
disjunctions of principals. It defines three actions: check/c,
enable/c, and closure/c. Upon an #:on-apply event, the first
action consumes principal perms and checks if the current
principal has permissions that imply perms. Then the action
switches the current principal to a principal that only has
permissions perms. When a function wrapped with enable/c

is applied, it switches the current principal to a principal that
has the same permissions as the current principal augmented
with perms. The #:on-create event of the third action creates
an authority closure. When the authority closure is applied, it
installs the closed-over principal.

We use the actions of the monitor to define an authoriza-
tion contract for the keybinding interface:

(->a ([t text/c] [e (is-a?/c event%)])
#:auth () (check/c perms) any)

where perms is a principal which encodes the privileges we
grant to the key binding and text/c is the object contract we
define for the editor’s text% object. text/c applies a contract
to each method of text% specifying whether the method
enables some permission, requires some permissions, or
creates an authority closure around one of its arguments. For
example, text/c gives the method blink-caret the contract

(check/c ChangeEditorView). In essence, text/c defines a
security policy for the editor.

To assess the monitor’s performance, we ran a series of
30 benchmarks, adapted from DrRacket’s test suite, that
simulate a sequence of keystrokes that trigger built-in key
bindings. We ran these benchmarks with the monitor off
and on. When the monitor is on, the prototype grants the
minimum set of privileges necessary for each key binding. For
each benchmark, we measured the time required to retrieve
and execute each key binding. Our measurements show that
the authority monitor increases median response time by
3–7× and increases response time at the 99th percentile by
3–5×. However, for an IDE, a response time fast enough for
interactive use is more important. Our prototype achieves this
goal with a maximum response time of 53ms.

Authentication in a Web Application The Racket package
system allows users to discover and install packages from a
public index service. Individual users can add new packages
or update old ones by logging into the index service web ap-
plication, which is implemented using the Racket web-server.
Requests to add or modify packages are issued to the appli-
cation as asynchronous http requests. The baseline imple-
mentation of the application uses macros to authenticate the
user and perform any required access control checks before
processing the request. For example, the jsonp/pkg/modify

endpoint authenticates the current user and checks that they
are an author of the package they are attempting to modify.
This approach to access control is brittle, since it requires that
the checks included for each endpoint accurately capture the
privileges required when processing the response.

Using authorization contracts, we are able to separate the
tasks of authentication and authorization in the index service
web application. Rather than performing a different set of
access control checks for each endpoint, all endpoints now
simply invoke an authenticate function that checks whether
the current session is valid and which user is logged in, then
invokes a procedure to process the request, like the login

function from Section 2.2. The access control policies for
sensitive operations like updating a package are enforced by
adding authorization contracts that implement the necessary
checks to the web application’s data model. There are two
types of checks: (is-author/c pkg) which checks that the
logged in user is an author of package pkg, and is-curator/c,
which checks whether the logged in user has “curator” status,
which allows them to tag packages with information about
their quality.

To evaluate the new implementation’s performance, we
measured the latency of 1,000 repeated requests to modify
a package record. Replacing inline checks with authoriza-
tion contracts has minimal impact on performance. Median
latency was 283ms for the baseline implementation versus
281ms with authorization contracts. At the 99th percentile, us-
ing authorization contracts latency was 338ms versus 330ms
with the baseline implementation.

6. Related Work
The connection between scoping and access control has been
implicit in prior work on security in programming languages
but has never been a central concept for extensible access
control. Morris’s seminal paper “Protection in Programming
Languages” [29] describes how lexical scope can be used to
create security abstractions within a program. More recently,
the object-capability paradigm has embraced lexical scope
as an organizing security principle [25]. Wallach and Felten
[39] note that “in some ways, [stack inspection] resembles
dynamic variables (where free variables are resolved from
the caller’s environment rather than from the environment
in which the function is defined).” Phung et al. [30] use
dynamic and lexical scoping to associate principals with
executing code in order to correctly enforce security policies
on programs that mix JavaScript and ActionScript code.

Inlined Reference Monitors An alternative approach to
language-level access control is inlined reference monitoring.
Reference monitors observe the actions taken by a system
and intercede to prevent violations of a security policy [3].
They can enforce a large class of policies [32]. Inlined ref-
erence monitoring (IRM) weaves the implementation of a
reference monitor into the program being monitored [12].
Many implementations of inlined reference monitoring rely
on aspects to identify security relevant actions during pro-
gram execution [6, 7, 13, 14, 20]. Policies supported by these
tools typically focus on access patterns for sensitive resources.
While policies supported by our framework can be encoded
this way, as in Erlingsson and Schneider’s IRM implementa-
tion of Java stack inspection [13], policies where the authority
of code depends on application state require duplicating code.
A further disadvantage of IRMs is that they require a global
transformation of the program to inline the security monitor.
Because authorization contracts are applied at component
boundaries, our framework requires only local modifications.

Authorization Logics Authorization logics give a formal
language to express access control policies [1]. Authorization
logics have been used to understand existing access control
mechanisms, including Java stack inspection [39]. Aura [19]
and Fine [36] implement access control using proof-carrying
authentication, where proofs of formulas in an authorization
logic are used as capabilities [4]. Our access control logic is
inspired by the Flow-Limited Authorization Model [5], which
uses projections to describe attenuated authority without
requiring additional constructs such as roles or groups.

Contracts for Security Previous work has used contracts
to enforce limited access control policies. Moore et al. [27]
use contracts to constrain the use of capabilities in a secure
shell scripting language. Dimoulas et al. [9] use contracts to
control the flow of capabilities between components in object-
capability languages. Heidegger et al. [18] use contracts
to specify which fields of an object may be accessed by a
component. However, each of these systems is specialized

to enforce a specific type of access control policy. Disney
et al. [10] introduce temporal higher-order contracts that
enforce that sequences of function calls and returns match a
specification. Schollier et al.’s computational contracts [33]
can enforce a wide range of trace properties on programs.
Unlike authorization contracts and temporal higher-order
contracts, computational contracts use aspects to interpose
on program events. Both of these systems support arbitrarily
powerful monitors, but like inlined reference monitoring,
provide limited support for writing complex access control
policies like stack inspection or discretionary access control.

Scoped Aspects for Security Dutchyn et al. [11] enforce
simple access control policies with lexically and dynamically-
scoped aspects. With additional aspect scoping mechanisms,
Toledo et al. [38] encode full Java stack inspection. While as-
pects can enforce a wide range of access control mechanisms,
authorization contracts offer linguistic support for implement-
ing diverse (and customized) access control mechanisms with
ease. Doing the same with aspects, if possible, requires brittle
and complex encodings.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant Numbers CCF-1438271,
CNS-1524052, and CCF-1526324. This research is also
supported by the Air Force Research Laboratory and a Google
Faculty Research Award.

References
[1] M. Abadi and C. Fournet. Access control based on execution

history. In Proceedings of the 10th Annual Network and
Distributed System Security Symposium (NDSS), pages 107–
121, February 2003.

[2] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus
for access control in distributed systems. ACM Transactions
on Programming Languages and Systems (TOPLAS), 15(4):
706–734, Sept. 1993.

[3] J. P. Anderson. Computer security technology planning study.
Technical Report ESD-TR-73-51, U.S. Air Force Electronic
Systems Division, Deputy for Command and Management
Systems, HQ Electronic Systems Division, 1972.

[4] A. W. Appel and E. W. Felten. Proof-carrying authentication.
In Proceedings of the 6th ACM Conference on Computer
and Communications Security (CCS), pages 52–62, November
1999.

[5] O. Arden, J. Liu, and A. C. Myers. Flow-limited authoriza-
tion. In Proceedings of the 28th IEEE Computer Security
Foundations Symposium (CSF), pages 569–583, July 2015.

[6] L. Bauer, J. Ligatti, and D. Walker. Composing security
policies with Polymer. In Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 305–314, June 2005.

[7] F. Chen and G. Roşu. Java-MOP: A monitoring oriented
programming environment for Java. In Proceedings of the

Eleventh International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), pages
546–550, April 2005.

[8] C. Dimoulas, S. Tobin-Hochstadt, and M. Felleisen. Complete
monitors for behavioral contracts. In Proceedings of the 21st
European Symposium on Programming (ESOP), pages 211–
230, March 2012.

[9] C. Dimoulas, S. Moore, A. Askarov, and S. Chong. Declarative
policies for capability control. In Proceedings of the 27th IEEE
Computer Security Foundations Symposium (CSF), pages 3–17,
2014.

[10] T. Disney, C. Flanagan, and J. McCarthy. Temporal higher-
order contracts. In Proceedings of the 16th ACM SIGPLAN
International Conference on Functional Programming (ICFP),
pages 176–188, September, 2011.

[11] C. Dutchyn, D. B. Tucker, and S. Krishnamurthi. Semantics
and scoping of aspects in higher-order languages. Science of
Computer Programming, 63(3):207–239, December 2006.

[12] U. Erlingsson and F. B. Schneider. SASI enforcement of
security policies: A retrospective. In Proceedings of the 1999
Workshop on New Security Paradigms (NSPW), pages 87–95,
1999.

[13] U. Erlingsson and F. B. Schneider. IRM enforcement of Java
stack inspection. In Proceedings of the 2000 IEEE Symposium
on Security and Privacy (S&P), pages 246–255, May 2000.

[14] D. Evans and A. Twyman. Flexible policy-directed code safety.
In Proceedings of the 1999 IEEE Symposium on Security and
Privacy (S&P), pages 32–45, May 1999.

[15] R. B. Findler and M. Felleisen. Contracts for higher-order
functions. In Proceedings of the Seventh ACM SIGPLAN
International Conference on Functional Programming (ICFP),
pages 48–59, October 2002.

[16] M. Flatt and PLT. Reference: Racket. Technical Report PLT-
TR-2010-1, PLT Design Inc., 2010. http://racket-lang.
org/tr1/.

[17] M. Gasbichler and M. Sperber. Processes vs. user-level threads
in Scsh. In Proceedings of the 3rd ACM SIGPLAN Workshop
on Scheme and Functional Programming, 2002.

[18] P. Heidegger, A. Bieniusa, and P. Thiemann. Access permission
contracts for scripting languages. In Proceedings of the 39th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 111–122, January
2012.

[19] L. Jia, J. A. Vaughan, K. Mazurak, J. Zhao, L. Zarko, J. Schorr,
and S. Zdancewic. AURA: A programming language for autho-
rization and audit. In Proceedings of the 13th ACM SIGPLAN
International Conference on Functional Programming (ICFP),
pages 27–38, September 2008.

[20] M. Jones and K. W. Hamlen. Enforcing IRM security policies:
Two case studies. In Proceedings of the 7th IEEE Intelligence
and Security Informatics Conference (ISI), pages 214–216,
June 2009.

[21] B. W. Lampson. Protection. ACM SIGOPS Operating Systems
Review, 8(1):18–24, Jan. 1974.

[22] B. Meyer. Object-Oriented Software Construction. Prentice
Hall, 1988.

[23] B. Meyer. Design by contract. In Advances in Object-Oriented
Software Engineering, pages 1–50. Prentice Hall, 1991.

[24] B. Meyer. Applying “Design by Contract”. Computer, 25(10):
40–51, October 1992.

[25] M. Miller. Robust Composition: Towards a Unified Approach
to Access Control and Concurrency Control. PhD thesis, Johns
Hopkins University, May 2006.

[26] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja:
Safe active content in sanitized JavaScript, 2008. Google white
paper.

[27] S. Moore, C. Dimoulas, D. King, and S. Chong. Shill: A
secure shell scripting language. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI),
pages 183–199. USENIX, Oct. 2014.

[28] S. Moore, C. Dimoulas, R. B. Findler, M. Flatt, and S. Chong.
Extensible access control with authorization contracts. Techni-
cal Report TR-03-16, Harvard University, 2016.

[29] J. H. Morris, Jr. Protection in programming languages. Com-
munications of the ACM, 16(1):15–21, Jan. 1973.

[30] P. H. Phung, M. Monshizadeh, M. Sridhar, K. W. Hamlen,
and V. N. Venkatakrishnan. Between worlds: Securing mixed
javascript/actionscript multi-party web content, 2015.

[31] J. H. Saltzer. Protection and the control of information sharing
in multics. Communications of the ACM, 17(7):388–402, July
1974.

[32] F. B. Schneider. Enforceable security policies. ACM Trans-
actions on Information and System Security (TISSEC), 3(1):
30–50, Feb. 2000.

[33] C. Schollier, É. Tanter, and W. D. Meuter. Computational
contracts, 2013.

[34] G. L. Steele, Jr. Macaroni is better than spaghetti. In
Proceedings of the 1977 Symposium on Artificial Intelligence
and Programming Languages, pages 60–66, August 1977.

[35] G. L. Steele Jr and G. J. Sussman. The revised report on
SCHEME: A dialect of LISP. Technical Report AIM-452,
Massachusetts Institute of Technology Artificial Intelligence
Laboratory, 1978.

[36] N. Swamy, J. Chen, and R. Chugh. Enforcing stateful autho-
rization and information flow policies in Fine. In Proceedings
of the 19th European Conference on Programming Languages
and Systems (ESOP), pages 529–549, March 2010.

[37] A. Takikawa, T. S. Strickland, and S. Tobin-Hochstadt. Con-
straining delimited control with contracts. In Proceedings of
the 22nd European Conference on Programming Languages
and Systems (ESOP), pages 229–248, March 2013.

[38] R. Toledo, A. Nunez, E. Tanter, and J. Noye. Aspectizing Java
access control. IEEE Transactions on Software Engineering,
38(1):101–117, Jan. 2012.

[39] D. Wallach and E. Felten. Understanding Java stack inspection.
In Proceedings of the 1998 IEEE Symposium on Security and
Privacy (S&P), pages 52–63, May 1998.

[40] D. S. Wallach, D. Balfanz, D. Dean, and E. W. Felten. Ex-
tensible security architectures for Java. In Proceedings of the
Sixteenth ACM Symposium on Operating Systems Principles
(SOSP), pages 116–128, October 1997.

http://racket-lang.org/tr1/
http://racket-lang.org/tr1/

A. Details of model
A.1 Evaluation contexts

E ::= [·] | E e | v E | letx = E in e | if E then e else e | E ⊕ e | v ⊕ E | E ≤ e | v ≤ E
| make-parameter E | ?E | E := e | p(r) := E
| parameterizeE = e in e | parameterize p(r) = E in e | parameterize p(r) = v in E
| flat/c(E) | param/c(E) | E : τ → (e) e | c : τ → (E) e | c : τ → (c) E
| E : τ →a (λx : τ. e) e | c : τ →a (λx : τ. e) E | ctx/c(E,(e⇒ e← e), . . . ,e,(e⇒ e← e), . . .)
| ctx/c(v,(v ⇒ v ← v), . . . ,(E ⇒ e← e),(e⇒ e← e), . . . ,e,(e⇒ e← e), . . .)
| ctx/c(v,(v ⇒ v ← v), . . . ,(v ⇒ E ← e),(e⇒ e← e), . . . ,e,(e⇒ e← e), . . .)
| ctx/c(v,(v ⇒ v ← v), . . . ,(v ⇒ v ← E),(e⇒ e← e), . . . ,e,(e⇒ e← e), . . .)
| ctx/c(v,(v ⇒ v ← v), . . . ,E,(e⇒ e← e), . . .)
| ctx/c(v,(v ⇒ v ← v), . . . ,v,(v ⇒ v ← v), . . . ,(E ⇒ e← e),(e⇒ e← e), . . .)
| ctx/c(v,(v ⇒ v ← v), . . . ,v,(v ⇒ v ← v), . . . ,(v ⇒ E ← e),(e⇒ e← e), . . .)
| ctx/c(v,(v ⇒ v ← v), . . . ,v,(v ⇒ v ← v), . . . ,(v ⇒ v ← E),(e⇒ e← e), . . .)

| `monkj (E,e) | `monkj (c,E) | checkkj (E,e)
| guardj (E,v,v,e) | install/pj (v,e,E) | install/pj (v,E,v)
| module ` exports xwithx,. . . where x = v,. . . ,x = E,x = e,. . .; p

A.2 Typing judgments
Σ ` p : τ

∅; Σ ` m1 . Γ1 . . . Γn−1; Σ ` mn . Γn Γn; Σ ` e : τ

` m1 ; . . .mn ; e : τ

Γ; Σ ` m . Γ′

∅; Σ ` e1 : τ1 . . . {y1 : τ1, . . . , yn−1 : τn−1}; Σ ` en : τn Γ′ = {y1 : τ1, . . . , yn : τn} �{x1,...,xn′}
∀1≤i≤n′ .∃1≤h≤n.xi ≡ yh ∧ τh 6= τ ctc ∧ τh 6= ctx ctc ∀1≤i≤n′ .∃1≤h≤n.xci ≡ yh ∧ τh = τ ctc

Γ; Σ ` module ` exports x1 withxc1 ,. . . , xn′ withxcn′ where y1 = e1,. . . , yn = en . Γ] Γ′

Γ; Σ ` e : τ

Γ; Σ ` () : Unit Γ; Σ ` n : Int Γ; Σ ` #t : Bool Γ; Σ ` #f : Bool

Γ(x) = τ

Γ; Σ ` x : τ

Γ; Σ ` ei : Int i ∈ {1, 2}
Γ; Σ ` e1 ⊕ e2 : Int

Γ; Σ ` ei : Int i ∈ {1, 2}
Γ; Σ ` e1 ≤ e2 : Bool

Γ; Σ ` e1 : τ1 Γ[x 7→ τ1]; Σ ` e2 : τ

Γ; Σ ` letx = e1 in e2 : τ

Γ; Σ ` ec : Bool Γ; Σ ` ei : τ i ∈ {1, 2}
Γ; Σ ` if ec then e1 else e2 : τ

Γ[x 7→ τ1]; Σ ` e : τ2

Γ; Σ ` λx : τ1. e : τ1 → τ2

Γ[x 7→ τ]; Σ ` e : τ

Γ; Σ ` µx : τ. e : τ

Γ; Σ ` e1 : τ1 → τ2 Γ; Σ ` e2 : τ1

Γ; Σ ` e1 e2 : τ2

Σ(r) = τ

Γ; Σ ` p(r) : τ param

Γ; Σ ` e : τ param

Γ; Σ ` ?e : τ

Γ; Σ ` e1 : τ param Γ; Σ ` e2 : τ

Γ; Σ ` e1 := e2 : Unit

Γ; Σ ` e : τ

Γ; Σ ` make-parameter e : τ param

Γ; Σ ` e1 : τp param Γ; Σ ` e2 : τp Γ; Σ ` e3 : τ

Γ; Σ ` parameterize e1 = e2 in e3 : τ

Γ; Σ ` e1 : τ ctc Γ; Σ ` e2 : τ

Γ; Σ ` `monkj (e1,e2) : τ

Γ; Σ ` e1 : ctx ctc Γ; Σ ` e2 : (τd → τr)

Γ; Σ ` `monkj (e1,e2) : (τd → τr)

Γ; Σ ` e1 : Bool Γ; Σ ` v2 : τ

Γ; Σ ` checkkj (e1,v2) : τ

Γ; Σ ` e : β → Bool

Γ; Σ ` flat/c(e) : β ctc

Γ; Σ ` e : τ ctc

Γ; Σ ` param/c(e) : (τ param) ctc

Γ; Σ ` ed : τd ctc Γ; Σ ` er : τr ctc Γ; Σ ` ec : ctx ctc

Γ; Σ ` ed : τd → (ec) er : τd → τr ctc

Γ; Σ ` ed : τd ctc Γ; Σ ` er : τr ctc Γ[x 7→ τd]; Σ ` e : ctx ctc

Γ; Σ ` ed : τd →a (λx : τd. e) er : τd → τr ctc

Γ; Σ ` e1 : Unit→ Bool Γ; Σ ` e2 : Unit→ Bool
Γ; Σ ` egci : Unit→ Bool Γ; Σ ` epci : τci param Γ; Σ ` evci : Unit→ τci
Γ; Σ ` egai

: Unit→ Bool Γ; Σ ` epai
: τai param Γ; Σ ` evai

: Unit→ τai

Γ; Σ ` ctx/c(e1,(egc1 ⇒ epc1 ← evc1), . . . ,e2,(ega1
⇒ epa1

← eva1
), . . .) : ctx ctc

Γ; Σ ` ec : τ ctc Γ; Σ ` e : τ param

Γ; Σ ` `param/pkj (ec, e) : τ param

Γ; Σ ` eg : Bool Γ; Σ ` vp : τ param Γ; Σ ` vv : Unit→ τ Γ; Σ ` ef : τd → τr

Γ; Σ ` guardj (eg,vp,vv,ef) : τd → τr

Γ; Σ ` vp : τ param Γ; Σ ` ev : τ Γ; Σ ` ef : τd → τr

Γ; Σ ` install/pj (vp,ev,ef) : τd → τr

A.3 Typing judgments for authorization contract extensions

Γ; Σ ` m . Γ′

a1, . . . , ao = actionxa1 (ya1 , . . .) (ce,ae), . . . , actionxao (yao , . . .) (ce,ae)
∅; Σ ` e1 : τ1 . . . {y1 : τ1, . . . , yn−1 : τn−1}; Σ ` en : τn

{y1 : τ1, . . . , yn : τn}; Σ ` a1 : τa1 . . . {y1 : τ1, . . . , yn : τn, . . . , xa1 : τa1 , . . . , xao−1 : τao−1}; Σ ` ao : τao
{y1 : τ1, . . . , yn : τn, . . . , xa1 : τa1 , . . . , xao : τao}; Σ ` en+1 : τn+1

. . . {y1 : τ1, . . . , yn : τn, . . . , xa1 : τa1 , . . . , xao : τao , yn+1 : τn+1, . . . , ym−1 : τn−1}; Σ ` em : τm
Γ′ = {y1 : τ1, . . . , ym : τn} �{x1,...,xn′}

∀1≤i≤n′ .(∃1≤h≤m.xi ≡ yh ∧ τh 6= τ ctc ∧ τh 6= ctx ctc) ∨ (∃1≤h≤o.xi ≡ xah ∧ τah 6= τ ctc ∧ τah 6= ctx ctc)
∀1≤i≤n′ .∃1≤h≤m.xci ≡ yh ∧ τh = τ ctc

Γ; Σ ` module ` exports x1 withxc1 ,. . . , xn′ withxcn′ where y1 = e1,. . . , yn = en,monitor (a1, . . . , ao), yk = ek,ym = em . Γ] Γ′

Γ; Σ ` e : τ

Γ; Σ ` > : Prin Γ; Σ ` ⊥ : Prin Γ; Σ ` P : Prin Γ; Σ ` D : Dim Γ; Σ ` new-principal : Prin

Γ; Σ ` new-dimension : Dim

Γ; Σ ` ep : Prin Γ; Σ ` ed : Dim

Γ; Σ ` ep . ed : Prin Γ; Σ ` {} : DelSet

Γ; Σ ` e : Del

Γ; Σ ` {e} : DelSet

Γ; Σ ` e1 : DelSet Γ; Σ ` e2 : DelSet

Γ; Σ ` e1 ∪ e2 : DelSet

Γ; Σ ` e1 : DelSet Γ; Σ ` e2 : DelSet

Γ; Σ ` e1 \ e2 : DelSet

Γ; Σ ` ew : DelSet Γ; Σ ` ef : (τ → (Del→ τ)) Γ; Σ ` ei : τ

Γ; Σ ` (fold ew ef ei) : τ

Γ; Σ ` ew : DelSet Γ; Σ ` es : Prin Γ; Σ ` el : Prin Γ; Σ ` er : Prin

Γ; Σ ` ew ; es ` el� er : τ

Γ; Σ ` es : Prin Γ; Σ ` el : Prin Γ; Σ ` er : Prin

Γ; Σ ` es � el @ er : Del

Γ; Σ ` ea : Del Γ[xs 7→ Prin, xl 7→ Prin, xr 7→ Prin]; Σ ` e : τ

Γ; Σ ` letxs � xl @ xr = ea in e : τ

Γ[y1 7→ τ1, . . . , yn 7→ τn]; Σ ` ce Γ[y1 7→ τ1, . . . , yn 7→ τn]; Σ ` ae
Γ; Σ ` actionx (y1 : τ1, . . . , yn : τn) (ce,ae) : (τ1 → (. . .→ (τn → ctx ctc)))

Γ; Σ ` ce

Γ; Σ ` cee1 : Del Γ; Σ ` cee2 : DelSet Γ; Σ ` cee3 : DelSet Γ; Σ ` cee4 : Prin Γ; Σ ` cee5 : Prin Γ; Σ ` cee6 : DelSet

Γ; Σ ` check: cee1 add: cee2 remove: cee3 set!-principal: ceee4 closure-principal: cee5 closure-delegations: cee6

Γ; Σ ` ae

Γ; Σ ` aee1 : Del Γ; Σ ` aee2 : DelSet Γ; Σ ` aee3 : DelSet Γ; Σ ` aee4 : DelSet
Γ; Σ ` aee5 : Prin Γ; Σ ` aee6 : Prin Γ; Σ ` aee7 : Prin

Γ; Σ ` check: aee1 add: aee2 remove: aee3 scope: aeee4 set-principal?: aee5 principal: aee6 set!-principal: aee7

Γ; Σ ` cee : τ Γ; Σ ` aee : τ

Γ; Σ ` aeev : τx Γ[x 7→ τx]; Σ ` aee : τ

Γ; Σ ` letx = aeev in aee : τ

Γ; Σ ` ceev : τx Γ[x 7→ τx]; Σ ` cee : τ

Γ; Σ ` letx = ceev in cee : τ Γ; Σ ` current-principal : Prin

Γ; Σ ` current-delegations : DelSet Γ; Σ ` closure-principal : Prin Γ; Σ ` closure-delegations : DelSet

A.4 Compiling authorization contract extensions
compileJmodule ` exports x1 withxc1 ,. . . where y1 = e2,. . .; pK =

compile-monitorJmodule ` exports x1 withxc1 ,. . . where y1 = e2,. . .; compileJpKK
compileJeK = e

compile-monitorJmodule `
exports x1 withxc1 , . . .
where y1 = e1,. . . ,yn = en,

monitor (actionxa1 (ya1 : τya1
, . . .) (ce1,ae1), . . . , actionxan (yan : τyan

, . . .) (cen,aen)),
yn+1 = en+1,. . . ,ym = em;K =

module `
exports x1 withxc1 , . . .
where y1 = e1,. . . ,yn = en,

p = make-parameter >,d = make-parameter {},s = make-parameter {},
cp = make-parameter >,cd = make-parameter {},
curp = make-parameter >,curd = make-parameter {},
xa1 = compile-actionJactionxa1 (ya1 : τya1

, . . .) (ce1,ae1), p, d, s, cp, cd, curp, curdK,
. . . ,
xan = compile-actionJactionxan (yan : τyan

, . . .) (cen,aen), p, d, s, cp, cd, curp, curdK,
yn+1 = en+1,. . . ,ym = em;

where p, d, s, cp, cd, curp, and curd are fresh

compile-actionJactionx (y : τy, . . .) (ce,ae), p, d, s, cp, cd, curp, curdK =
λ y : τy.

ctx/c(compile-cecheckJce, p, d, s, curp, curdK,
compile-cecpJce, cp, curp, curdK,
compile-cecdJce, cd, curp, curdK,
compile-aecheckJae, p, d, s, cp, cd, curp, curdK,
compile-aesJae, s, cp, cd, curp, curdK,
compile-aepJae, p, cp, cd, curp, curdK)

compile-cecheckJcheck: e1 add: e2 remove: e3 set!-principal: e4 closure-principal: e5 closure-delegations: e6, p, d, s, curp, curdK =
λ _ : Unit.

let _ = curp := ?p in
let _ = curd := ?d ∪ ?s in
let p1 � p2 @ p3 = compile-ceeJe1, curp, curdK in
if (?curd) ; p3 ` p1� p2 then

let add = compile-ceeJe2, curp, curdK in
let remove = compile-ceeJe3, curp, curdK in
let setprin = compile-ceeJe4, curp, curdK in
let _ = d := (?d ∪ add)/remove in
let _ = p := setprin in
#t

else #f
compile-cecpJcheck: e1 add: e2 remove: e3 set!-principal: e4 closure-principal: e5 closure-delegations: e6, cp, curp, curdK =

((λ _ : Unit. #t)⇒ cp← (λ _ : Unit. compile-ceeJe5, curp, curdK))
compile-cecdJcheck: e1 add: e2 remove: e3 set!-principal: e4 closure-principal: e5 closure-delegations: e6, cd, curp, curdK =

((λ _ : Unit. #t)⇒ cd← (λ _ : Unit. compile-ceeJe6, curp, curdK))

compile-aecheckJcheck: e1 add: e2 remove: e3 scope: e4 set-principal?: e5 principal: e6 set!-principal: e7, p, d, s, cp, cd, curp, curdK =
λ _ : Unit.

let _ = curp := ?p in
let _ = curd := ?d ∪ ?s in
let p1 � p2 @ p3 = compile-aeeJe1, curp, curd, cp, cdK in
if (?curd) ; p3 ` p1� p2 then

let add = compile-aeeJe2, curp, curd, cp, cdK in
let remove = compile-aeeJe3, curp, curd, cp, cdK in
let setprin = compile-aeeJe7, curp, curd, cp, cdK in
let _ = d := (?d ∪ add)/remove in
let _ = p := setprin in
#t

else #f
compile-aepJcheck: e1 add: e2 remove: e3 scope: e4 set-principal?: e5 principal: e6 set!-principal: e7, p, cp, cd, curp, curdK =

(compile-aeeJe5, curp, curd, cp, cdK⇒ p← compile-aeeJe6, curp, curd, cp, cdK)
compile-aesJcheck: e1 add: e2 remove: e3 scope: e4 set-principal?: e5 principal: e6 set!-principal: e7, s, cp, cd, curp, curdK =

((λ _ : Unit. #t)⇒ s← compile-aeeJe4, curp, curd, cp, cdK)

compile-ceeJletx = cee1 in cee2, curp, curdK = let x = compile-ceeJcee1, curp, curdK
in compile-ceeJcee2, curp, curdK

compile-aeeJletx = aee1 in aee2, curp, curd, cp, cdK = let x = compile-aeeJaee1, curp, curd, cp, clodK
in compile-aeeJaee2, curp, curd, cp, cdK

compile-ceeJcurrent-principal, curp, curdK = ?curp
compile-aeeJcurrent-principal, curp, curd, cp, cdK = ?curp
compile-ceeJcurrent-delegations, curp, curdK = ?curd
compile-aeeJcurrent-delegations, curp, curd, cp, cdK = ?curd
compile-aeeJclosure-principal, curp, curd, cp, cdK = ?cp
compile-aeeJclosure-delegations, curp, curd, cp, cdK = ?cd
compile-ceeJe, curp, curdK = e
compile-aeeJe, curp, curd, cp, cdK = e

A.5 Authorization contract extension evaluation contexts
E ::= . . . | E . e | v . c | E ; e ` e� e | v ;E ` e� e | v ; v ` E� e | v ; v ` v� E

| E � e @ e | v � E @ e | v � v @ E | {E} | E ∪ e | v ∪ E | E \ e | v \ E
| (fold E e e) | (fold v E e) | (fold v v E)

A.6 Reduction semantics for authorization contract extensions
〈E[new-principal], σ〉 → 〈E[p], σ〉 where p is fresh

〈E[new-dimension], σ〉 → 〈E[d], σ〉 where d is fresh

〈E[{p1s � p1l @ p1r , . . .} ; ps ` pl� pr], σ〉 → 〈E[#t], σ〉 if {p1l � p1r @ p1s , . . .} ; ps ` pl� pr

〈E[{p1s � p1l @ p1r , . . .} ; ps ` pl� pr], σ〉 → 〈E[#f], σ〉 if {p1l � p1r @ p1s , . . .}; ps 6` pl� pr

〈E[{v11 , . . . , v1n} ∪ {v21 , . . . , v2m}], σ〉 → 〈E[{v31 , . . . , v3k}], σ〉
where {v31 , . . . , v3k} = {v11 , . . . , v1n} ∪ {v21 , . . . , v2m}

〈E[{v11 , . . . , v1n} \ {v21 , . . . , v2m}], σ〉 → 〈E[{v31 , . . . , v3k}], σ〉
where {v31 , . . . , v3k} = {v11 , . . . , v1n} \ {v21 , . . . , v2m}

〈E[(fold {} vf v)], σ〉 → 〈E[v], σ〉
〈E[(fold {v1, v2, . . .} vf v)], σ〉 → 〈E[(fold {v2, . . .} vf ((vf v) v1))], σ〉
〈E[letxs � xl @ xr = vs � vl @ vr in e], σ〉 → 〈E[{vl,vr,vs/xl,xr,xs}e], σ〉

	Introduction
	Authority Environments
	Lexical and Dynamic Scoping
	Scoping for Access Control
	From Access Control to Authorization Contracts

	A Framework for Access Control
	A Contract System with Context Contracts
	Modules
	Higher-order contracts
	Parameters
	Context contracts
	Complete monitoring

	Representing Authority
	Authorization Contracts

	Putting Authorization Contracts to Work
	The define-monitor Form
	A Stack Inspection Monitor

	Case studies
	Related Work
	Details of model
	Evaluation contexts
	Typing judgments
	Typing judgments for authorization contract extensions
	Compiling authorization contract extensions
	Authorization contract extension evaluation contexts
	Reduction semantics for authorization contract extensions

