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Abstract
In an object-oriented language, a derived class may declare a /'*m(){
method with the same sighature as a method in the base class. ©)
The meaning of the re-declaration depends on the language. Most }
commonly, the new declaratiarverrides the base declaration, per-
haps completely replacing it, or perhaps ussoger to invoke the }F%
old implementation. Another possibility is that the base class al- m() {
ways controls the method implementation, and the new declaration .. super ... 2
merelyaugments the method in the case that the base method calls }
inner. Each possibility has advantages and disadvantages. In this
paper, we explain why programmers need both kinds of method re- om()
declaration, and we present a language that integrates them. We ' mO {
also present a formal semantics for the new language, and we de- - SUPEF ... @
scribe an implementation for MzScheme. }
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. . . Figure 2. Beta-style Method Extension
In a Java-like language, each method is overrideable by default, so g Y

a subclass can replace the functionality of a method with arbitrar-
ily different functionality. Asuperform (or its equivalent) allows

a subclass implementor to reuse a superclass’s method, instead of

replacing the method entirely. The choice, in any case, belongs toclass hierarchy. Java-style overriding encourages the reuse of class

the subclassmplementor. Correspondingly, as illustrated in Fig-  jmplementations, since subclass implementors are relatively uncon-
ure 1, method dispatch for an object begins at the bottom of the strained in re-shaping the subclass.

In a Beta-like language, a method may be augmented, but the
method cannot be replaced arbitrarily. A class enables method aug-
mentation by callingnner, but it may perform work before and
after theinner call, and it may skip thénner call altogether. The
Permission to make digital or hard copies of all or part of this work for personal or  CNOIC€, in any case, belongs to theperclassmplementor. Corre-
classroom use is granted without fee provided that copies are not made or distributed Spondingly, as illustrated in Figure 2, method dispatch for an ob-
for profit or commercial advantage and that copies bear this notice and the full citation ject begins at the top of the class hierarchy. Controlled method
on the first page. To copy otherwise, to republish, to post on servers or to redistribute extension encourages (though does not guarantee) subclasses that
to lists, requires prior specific permission and/or a fee. . X
OOPSLA'04, Oct. 24-28, 2004, Vancouver, British Columbia, Canada. are behavioral subtypes [1, 21, 22] of the base class, since subclass
Copyright 2004 ACM 1-58113-831-8/04/0010 ...$5.00 |mplementors are relatlvely constrained.



Although programmers can simulate each form of method exten-
sion using the other, simulation patterns are clumsy. The patterns
require that a programmer invent extra methods and give them dis-
tinct names, and the protocol for using and overriding or augment-
ing methods becomes a part of the documentation, rather than the
declared structure of the code. Furthermore, changing an existing
method from one form of extension to the other requires modifica-
tions to existing code.

Some researchers, including Cook [7] and Clark [6], have observed
the dual roles osuper andinner, and they have developed unified
object models with constructs that encompass both. We have taken
a more direct approach, adding Beta-style methoddraret to an
existing Java-style language.

Implementing our combination cfuper and inner requires only
modest changes to a typical compiler and run-time system. In
particular, the compilation of method arsiliper dispatching is
unchanged, and the implementationiofher is an adaptation of
method dispatch (using an auxiliary dispatch table). Furthermore,
our system does not constrain a method permanently to either Java-
style or Beta-style refinement. That is, a derived class may use a
different style of method overriding from its super class.

Since Beta-style method overriding is designed to help enforce in-
variants in the code, it trumps Java-style method overriding in our
design. That is, a Java-style method extension only replaces the be-
havior of the method up to the nearest Beta method. In contrast,
a Beta-style method controls the behavior of all of its subclasses.
Consider the chain of method extensions in Figure 3. Three sub-
chains of Java-style method extensions appear as three distinct sets
of upward arrows in the figure. Eadieta method, meanwhile,
introduces a point of control over all later subclasses. This control
appears in the figure as long-jumping arrows that delineate the three
sets. The number to the right of each method shows its position in
the overall order of execution.

We have implemented this combination sdiper and inner in
MzScheme [12], and our design was motivated by problems
building the DrScheme programming environment [11] using
MzScheme’s object system. In general, we find that most uses
of the object system favor flexible reuse over behavioral control,
which supports our decision to start with a Java-style object sys-
tem. We have noted many exceptions, however, where our code
is made more complex or less reliable by the possibility of uncon-
strained method overriding. We believe that our code will become
cleaner and more reliable by using both kinds of methods, and the
early results are promising.
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Figure 3. BETAJAVA Method Refinement

Section 2 presents a programming task that can be implemented
with only Java-style methods or only Beta-style methods, but it is
best implemented with a combination. Section 3 describes in detalil

our method-dispatch algorithm to support both kinds of methods in havior. For all of these reasons, a class-based, object-oriented lan-
a single class derivation. Section 4 defines a formal model of our guage is an excellent choice for implementing the widget library.

language. Section 5 describes our implementation in MzScheme

and initial experience. One possible class hierarchy for widgets is shown in Figure 4:

2 The Case for Combining Super and Inner

Consider building a library of GUI widgets, including basic win-
dows, bordered panels, and clickable buttons. All widgets corre-
spond to areas on the screen, and they all react in various ways to
mouse and keyboard actions. Furthermore, as the widget set grows,
new widgets tend to resemble existing widgets, but with extra be-

The generidVindowclass includes paintmethod to draw the
content of the window. Subclasseswindowrefine thepaint
method to draw specific kinds of widgets.

Many widgets require a border, BorderWindowefineswin-
dows paintto draw a border around the window. Subclasses
of BorderWindoware expected to refingaint further to draw
inside the border, but they are not expected to repfsist
entirely, which would omit the border.



Window

void paint()

X

BorderWindow
/I Thisand all subclasses should draw a border
void paint()

Button

// Should draw simple buttons
void paint()
void onClick()

A

OK

I mageButton HighlightButton

/I Should draw images for buttons| |// Should draw buttons similar

void paint() // to Button, but with dark blue
/I background and light blue shading
void paint()

Figure 4. Class hierarchy for GUI classes

e The Button class ofBorderWindowimplements a clickable classwindow( ...

widget. It adds thenClickmethod, which is called when the void paint() {

user clicks inside the widget's border. TBettonclass also -+ Il paint the background
refinespaint to provide a default button look, but subclasses ¥

may define an entirely different look for the button, as long as }

the border is intact. i '
classBorderWindowextendsWindow( ...

e ThelmageButtorclass refines thpaint method ofButtonto void paint() {
draw a specific image for the button, supplanting the default super.paint(); // paint background
button look (except for the border). ...: 1/l draw a border

e The HighlightButtonclass, in contrast, builds on the default }
button look, but adds a dark blue background behind the label }

and a translucent texture over the label. The paint method inBorderWindowoverrides the method iWin-

Implementing this class hierarchy in either Java (vsitiper) or dow, which means that whepeintis called on an instance &or-
Beta (withinner) is straightforward, and yet the results are not en- derWindow control jumps to thepaint method inBorderWindow
tirely satisfactory. We consider each possibility in the following two @S opposed tWindow Thesuper call in BorderWindowthen ex-
sub-sections, and then show heuper andinner together provide  Plicitly dispatches tgaintin Windowto paint the background.

a more satisfactory implementation of the hierarchy. ) ) ) )
The next class iButton which further refinepaint

classButtonextendsBorderWindow{ . ..
void paint() {
super.paink(); // paint background, border
.../l draw a button label

}
2.1 Widgets in Java }

. . . . Here, again, the nepaintin Buttonusessuper to paint at first like
To implement Figure 4 in Java, we start witi\dndowclass whose BorderWindow In the BorderWindowcase, however, thisuper

paint method merely erases the background by painting it white, .|| was optional; we could instead have chosen to pRartler-

and aBorderWindowclass that (efines theaint method ofWindow Windowbackgrounds differently. A subclass BbrderWindowis
to draw a border around the window:



always supposed to calorderWindowvis paint to ensure that the
window has a border. This constraint is merely part of the docu-
mentation forBorderWindowit cannot be enforced by Java.

This problem becomes somewhat worse as we move tbrthge-
Buttonclass:

classimageButtorextendsButton{ ...
void paint() {
super.paint(); // paints background, border — and label!
...; Il draw image, somehow blotting out the label
}

}

SincelmageButtors a subclass ddorderWindowit is supposed to
call superto ensure that a border is drawn. But callsgper also
draws a button label, andhageButtorintends to replace the label
with an image.

C++ [25] offers a solution to the immediate problemiimageBut-
ton. Instead of usinguper.paint(), ImageButtoncould refer di-
rectly to BorderWindow::painf). The other problem remains, i.e.,
nothing forcegaintin ImageButtorio callBorderWindow::paing).

A more general solution is to simulate Beta-style methods in Java.
A programmer can designapaint as final inBorderWindowand
have it call a new methodpaintinside Subclass authors cannot
overridepaint, ensuring that the border is always drawn, but they
can overridepaintinsideto redefine the interior painting. Unfor-
tunately, this solution forces programmers to deal with different
names for the same functionality in different parts of the class hi-
erarchy: subclasses dfindoware expected to override thpaint
method to add functionality, but subclasseBofrderWindoware
expected to override thpaintinsidemethod. Besides increasing

the burden on the programmer, these different names limit the ways

in which mixins [3, 5, 14] can be applied, since mixin composi-
tion typically relies on matching method names. Furthermore, if
paintis split into afinal paintand apaintinsidemethod after many

placed completely in a subclass, which tends to maximize the reuse
of a class hierarchy. The only way that a superclass can insist on
specific behavior, preventing subclasses from refining it, is to de-
clare a methodinal. The idiom of afinal method that calls a regu-

lar method (like oupaint/paintinsideexample) appears commonly
used in C++ and Java programs, inspiring design patterns such as
the Template Method [15]. As we demonstrate in the next section,
Beta-style method extension can more directly express a program-
mer’s intent in such cases.

2.2 Widgets in Beta

In Beta, thepattern is the sole abstraction mechanism, and patterns
are used to express types, classes, and methods. We are mainly
interested in patterns as a class mechanism, so for our examples,
we use a Java-like syntax with a Beta-like semantics.

The essential difference of Beta is the absenceupfer and the
presence ahner. In our first two classesVindowexplicitly allows
subclasses to add functionalitypaint by usinginner:

classWindow({ ...
void paint() {
...; Il paint the background
inner.paint();

classBorderWindowextendsWindow{ . ..
void paint() {
.../l draw a border
}
}

When thepaint method is called on an instance®érderWindow
control jumps to the implementation phint in Window At the
point whereWindows paint usesinner, control jumps tgpaint in

classes have been derived, then names must be changed throughoBorderWindow If an instance ofVindowis created, thénner in

the hierarchy belovBorderWindowto accommodate the split.

Assuming that we splipaintinsidefrom paint, we can finish our
widget set in Java as follows:

classlmageButtorextendsButton{ ...
void paintinside) {
.../l draw image (don't cabuper for label)

}

classHighlightButtonextendsButton{ ...
void paintinside) {
... Il replace the background with dark blue
super.paintinsidd); // draws the label
...; I/ draw light blue shading on top of the label

}
}

The HighlightButtonclass callssuper to paint the default button
label, but this class exploits its control over the timing of shiper

call. In particular, it draws the new background, then callper

to draw text on the new background. Reversing the order clearly
would not work.

This last example, in particular, illustrates the overall philosophy
of class extension in Java-like languageasibclass implementors
know better Methods are overrideable by default, so they can be re-

paint has no effect.

This implementation ofVindowis not quite the same as our im-
plementation in Java, because the Bafimdowalways paints the
background, but the painting was optional in the JAiadowclass.

To fix this, we can simulate Java-style methods in Beta, just as we
could simulate Beta-style methods in Java. In this particular case,
we create gaintBackgroundmethod and only call it directly in
Windows paint wheninner would do nothing. To accommodate
such code, we introduce a new variantiofer that has arelse
statement, which is executed only if tmmer has no target.

classWindow({ ...
void paintBackgroung) {
...; Il paint the background

}
void paint() {
inner.paint() elsepaintBackgroung;

classBorderWindowextendsWindow{ . ..
void paint() {
paintBackgroung);
.../l draw a border
inner.paint();



When paint is called for an instance diVindow the inner call
has no target (i.e., no subclass),mntBackgroung is executed.
When paint is called for an instance d8orderWindow inner in
Windowjumps topaintin BorderWindowwhich elects to paint the
background by callingaintBackgroung).

The newBorderWindowalso contains its owimner call in paint, so

that the content of the window can be painted by subclasses. Thus,

Buttonis implemented as follows:

classButtonextendsBorderWindow ...
void paintLabe() {
.../l draw a button label

}
void paint() {
inner.paint() elsepaintLabe();

}

Since theBorderWindowclass does not givButtonthe option to
skip border painting, the implementorBiittoncannot accidentally
omit the border by forgetting to caduper.paint().

Meanwhile, Button uses the sammner programming pattern as
Windowto make label painting optional in subclasses. Much like
introducingpaintinsidein Java to give the superclass control, intro-
ducingpaintLabelin Beta gives subclasses control. Also, as in Java,

this programming pattern proliferates method names, so it is sim-

ilarly unfriendly to programmers and mixins. More significantly,

this programming pattern must be used whenever a subclass shoul
be able to completely replace the functionality of a method, and our
experience suggests that such methods are the rule rather than th

exception.

With paintLabelsplit from paint, we can finish our widget set in
Beta as follows:

classimageButtorextendsButton{ ...
void paint() {
.../l draw image (don't calbaintLabe)
}
}

classHighlightButtonextendsButton{ ...
void paint() {
... Il replace the background with dark blue
paintLabe(); // draws the label
.../l draw light blue shading on top of the label

}
}

TheHighlightButtonclass callpaintLabelto paint the default but-
ton label, again exploiting its control over the timing of haint-
Label call. As written, these methods do not allow refinement in
further subclasses, which would require the introduction of more
paintLabetlike methods.

The necessity of methods likmintLabelhighlights the overall phi-
losophy of class extension in Beta-like languagssperclass im-
plementors know betteiMethods are not overrideable by default,

so they cannot be replaced completely by subclasses, which tend

to maximize the reliability of a class hierarchy. The only way that a
superclass can release its control over behavior is tcnase with

the default work in a new method. As we demonstrated in the pre-
vious section, Java-style method extension more directly express a

programmer’s intent in such cases.

Window

java void paint()

X

BorderWindow

beta void paint()

X

Button
java void paint()
java void onClick()

A

[ |
HighlightButton

ImageButton

beta void paint()| |java void paint()

Figure 5. Hierarchy with both Java- and Beta-style methods

3.3 Widgets in a Beta/Java Combination

In a sufficiently large program, the Java philosophy is right at times,
&nd the Beta philosophy is right at other times; sometimes the sub-
class implementor knows better, and sometimes it is the super-
class implementor. By including both Java-style and Beta-style
method refinement in a programming language, we can support dif-
ferent philosophies for different parts of the program. Indeed, these
philosophies can be mixed at a fine granularity by allowing a pro-
grammer to annote individual method implementationgaga or
betal The resulting system is consistent and, we believe, concep-
tually simple.

Since the initialWindowclass was more cleanly implemented in
Java, we begin our widget implementation witfasa implemen-
tation of paint

classWindow({ ...
java void paint() {
..., Il paint the background
}

}

The java annotation indicates that a subclass can override this
method. If the overriding method wants to use the original method,
it can usesuper.

The BorderWindowclass overridepaint, but its own implementa-
tion should never be overridden completely in later subclasses. That
is, Beta more neatly implements thaint method forBorderWin-

dow, so we annotate the implementation witktta and usénner in

dhe body:

IWe expect that any realistic language will have better keywords
thanjava andbeta, of course.



classBorderWindowextendsWindow{ . ..
beta void paint() {
super.paint(); // paint background
..., /I draw a border
inner.paint();

}

Thebetaannotation indicates that this implementatiopaintcan-

not be overridden. Operationally, when thaint method is called

on an instance d8orderWindowor any subclass dorderWindow
control jumps tdBorderWindovis implementation. This implemen-
tation, in turn, invokes the implementation\iindow then paints

the border, and then allows control to jump to a subclass implemen-
tation.

TheButtonclass, for one, accepts that control:

classButtonextendsBorderWindow ...
java void paint() {
.../l draw a button label
}
}

Thus, wherpaintis called on an instance 8utton control initially
jumps topaint in BorderWindow but ultimately it arrives apaint

in Button The method irButtonis declaredava, however, so that
a subclass can completely replace the button part of the method.

ThelmageButtortlass completely replacesintin Button forcing
any subclasses to draw an imagdgighlightButtonusessuper to
extend button painting, rather than replacing it entirely:

classlmageButtorextendsButton{ ...
java void paint() {
...; Il draw image (don't cabuper for label)
inner.paint();

}

classHighlightButtonextendsButton{ ...
beta void paint() {
... Il replace the background with dark blue
super.paint)); // draws the label
...; Il draw light blue shading on top of the label

}
}

When paint is called on arilmageButtoninstance, control jumps
to BorderWindowthen toWindow then back througBorderWin-
dow to ImageButton Whenpaint is called on aHighlightButton
instance, control jumps tBorderWindow then toWindow then
back throughBorderWindowto HighlightButton then temporarily
to Button and finally back tdHighlightButton

At every point in this class derivation, a programmer specifies ex-
actly the intent for refinement in subclasses. While the overall flow
of control through methods can be complex, it is locally apparent
what results will be achieved. In our example, it is clear thRba
derWindowsubclass always us@drderWindovs paint, whereas a
Buttonsubclass has the option to replguent

The widget example shows hdveta may be used any number of
times. The implementor dmageButtordecided that drawing the
images is mandatory, implementing this intent by annotating the
method withbeta. Because of this annotation, whpaintis called

for a subclass ofmageButton control first jumps toBorderWin-
dow (as required by th&orderWindowimplementor), but always
to ImageButtorbefore any subclass tfhageButton

As shown earlier, it is possible to simulate one form of method
extension in a language that has the other form. The simulation
is awkward compared to directly expressing the intended mode of
method refinement. Furthermore, after a method has been writ-
ten without the simulation pattern, converting it to use a simulation
pattern requires extensive modification to descendant classes (since
they must use the new method name introduced by the simula-
tion). In contrast, changingteetaannotation tgava (or vice-versa)
requires modifying only classes that directly refine the changed
method, and not the decedents of those classes.

With java andbeta annotationsfinal is no longer necessary;fa

nal method is simply detamethod that contains no callsitmer.

In the same way that a Java compiler rejects overriding fofa,

a compiler could statically reject declaration of a method in a sub-
class when a superclass has previously declared the mbttad
with noinner call.

3 From Java to a Beta/Java Combination

Syntactically, the difference between Java and our extension is the
addition ofjava andbetakeywords for methods in classes, plus the
addition of aninner expression form:

Expression= inner . Identifier (Expression. .. Expressioh
elseStatement

An inner expression can appear only if the enclosing class contains
abetadeclaration fotdentifier, or if such a declaration is inherited
and the enclosing class contains jaga declaration ofldentifier.
(Usinginner.moutside of methotbeta mwould be unusual, much
like usingsuper.moutside of a methodh.) If a method has neither
abetanorjava annotationjava is assumed.

3.1 Method Dispatch

Dynamically, the difference between Java and our extension to Java
is in method dispatch, including support fimmer. If a program
contains ndeta annotations (and therefore mner expressions),
then method dispatch proceeds exactly as in Java:

e A method call (of the fornexprmethodNampeuses the class
of the method'’s object to determine the target method imple-
mentation. The target is the implementation in the superclass
that is closest to the instantiated class.

e Eachsuper call is resolved statically to a method implemen-
tation in the closest superclass.

If every method of a program is annotateeta, then method dis-
patching proceeds as in Beta:

o A method call uses the firstimplementation of a method in the
class derivation, starting from the root class. This target can
be resolved statically, assuming that the object expression’s
type is a class (as opposed to an interface).

e Aninner call, in contrast, must use the classtbis to find
the target method. The target is the implementation in the
subclass closest to the class that containgrther call. If no
target exists, then the default expression is evaluated.



External dispatch andhner go to the highesbeta implementa-
tion of a method, because the programmer’s intent in ubitg
is to ensure that the code in that method will get called, no matter
how subclasses refine the method. Ultimately, declaring a method

Window
javavoid paint()

4# beta should trump any future attempts to override it, because the
enforced behavior may be necessary for the program to behave cor-
0 BorderWindow rectly.
beta void paint() An inner or external dispatch skipmva methods, because the
programmer’s intent when usirjgva is to allow overriding. The
4# skippedjava implementations are used only if thener target
chooses to caluper.
Button
java void paint() 3.2 Compiling Method Dispatch
java void onClick( Typically, dynamic method dispatch in Java uses a virtual method
%L table, where a target method implementation is obtained by extract-
ing it from a particular slot in the table. This strategy still works
ImageButton with betamethods, and the only change is in the construction of the
1Y ) - table. Instead of installing the lgsiva implementation of a method
beta void paint() into the table, the firdtetamethod (if any) should be installed. The
relevantbeta method resides in a superclass, so incremental com-
%l pilation of classes in a hierarchy is the same as in Java.
ImagePopup An inner call also needs a dynamic dispatch table, butitimer
java void paint() table is slightly more complex. The target ofianer call is deter-
. . . mined by both the class of the object on which theer is called
javavoid onClick() and the class declaration in which theer call appears. Thus,
4 theinner dispatch table is not simply linear in the numbetbeta
methods. In fact, for each method, the table contains an array of
target methods. Amner call can be mapped statically to an index
GraylmagePopup for the method’s array, where the index is the total numbédreta
2 v javavoid paint() declarations of the method in thener call’s class and its super-
beta void onClick() classes. Meanwhile, index O corresponds to the target for external
method calls.

inner super

For example, when thpaint method is called for an instance of
GraylmagePopupthe numbers in Figure 6 correspond to the in-
dices. An external call always starts with index 0 BatrderWin-
dow. Aninner call in BorderWindowumps to the method at index
1, because thBorderWindowintroduces the firsbeta declaration

of paint An inner call in ImageButtorjumps to the method at in-

) o ] ) dex 2, becausknageButtorintroduces the secorizbtadeclaration
Figure 6 shows one chain in our example GUI widget class hierar- of paint

chy. The extra classémagePopumndGraylmagePopudlustrate
further uses obetaandjava. Arrows on the left side of the figure
show howinner calls forpaintjump from one class to another (the
numbers will be explained in section 3.2), ending at an arrowhead,
and arrows on the right show hauper paint calls jump:

Figure 6. Method dispatch example, with arrows for inner and
super calls inside thepaint method

In general, for a particular method, class, amer array index, the
dispatch table contains one of three values:

e It contains null if no further refinements of the method are

) ) declared belovinner calls that use the index.
e A super call (arrow on the right) behaves exactly as in Java,

always jumping to a statically determined implementation in e |t contains the firsbeta declaration of the method below the
a superclass. We disallosuper calls tobeta declarations, inner call, if any such declaration exists.

because they are not useful in our experience, and because e It contains the lasjava declaration of the method below the
they tend to produce infinite loops that are difficult to debug. inner call, if any such delectation exists, and if heta dec-

e An inner call (arrow on the left) is slightly different than laration is available.

in Beta, because the target is not always in the closest sub-
class. Instead, the target is the closest subclass that declare
the methodbeta, or thefarthestsubclass if no subclass con-
tains abeta declaration of the method.

Figure 7 shows the complete method dispatch tablelftage-
?-’opup and Figure 8 shows the dispatch table@aylmagePopup
In both cases, index 0 contaiBerderWindovis method forpaint,
and index 1 containimageButtois method. At index 2, thém-
e A method call in a mixed environment behaves much like an agePopupable contains the implementation framagePopupbut

inner call, where the target of the initial call is the fils¢ta
implementation of the method if one exists, and the jasi
implementation otherwise.

itis replaced byGraylmagePopup implementation in the table for
GraylmagePopup Similarly, index 0 foronClick containsimage-
Popups implementation inmagePopujs table, but it is overridden



. 0 1 2
paint BorderWindovs | ImageButtofs | ImagePopujs
. 0
onClick ImagePopujs

Figure 7. Dispatch table forImageButtorin Figure 6

. 0 1 2
paint BorderWindovis | ImageButtois | GraylmagePopup
. 0 1
onClick GraylmagePopup | null

Figure 8. Dispatch table for GraylmageButtorn Figure 6

with GraylmagePopup implementation inGraylmagePopup ta-
ble. Finally, index 1 foonClickin GraylmagePopugontains null,
because no method refines theta declaration obnClickin Gray-
ImagePopup

To explain table construction another wayeta method occupies

an index permanently, in all subclasses, and increases the size o
the method’s array, whereagava method occupies an index only
until it is replaced by a subclass implementation. If no methods
are declaredbeta (either in the whole program or for a particular
method), then this algorithm degenerates to the usual Java-style al
gorithm (either for the whole table or for an individual row). For an
instance ofmagePopupall declarations obnClickarejava, so the
onClickrow in Figure 7 has a single slot, just as in a Java dispatch
table.

In the case opaint for ImagePopupeveryinner call has a target
method, since the lagaint method in the chain is declargava.

The lastonClickmethod ofGraylmagePopuphowever, is declared
beta. If the GraylmagePopugontains arinner call for onClick,
there is no target method, which means thaitiner’s elseexpres-
sion is used at run time. This lack of a target is reflected by a null
pointer for index 1 in th@nClickrow of the dispatch table. Thus,
aninner call at run time first checks whether the relevant table slot
is null; if so, it uses theelseexpression, otherwise it jumps to the
table-indicated method.

A Java-style dispatch table always has si2en) for m distinct
methods in the class, but the size of a dispatch tableiwiter de-
pends on both the number of methods in the class and the number o
betaimplementations of the method. A two-dimensional array for
theinner table would thus requir®(m x n) space fom methods

and a maximunieta depth ofn. Our implementation uses an array

method call through an interface behaves the same as an external
method call using the object’s type. In compilation terms, interface
dispatch needs only the implementation that is stored in a virtual
method table, so interface-based method calls are effectively un-
changed compared to Java.

3.4 Differences from Beta

Technically, even for a program that contains ohgta methods,
our language differs from Beta in two respects that are unrelated to
method dispatch:

e Ourinner form contains explicit arguments, instead of im-
plicitly using the enclosing method'’s arguments (or, more pre-
cisely, the current values of the argument variables, in the case
that the variables have been assigned). This forinradr call
more closely parallelsuper, allows the values passedito
ner to be changed non-imperatively, and allowsimamer call
for a particular method to appear in any other method (again,
like super).

Ourinner form includes a default expression to evaluate when
no subclass implementation is available, whereas Beta de-
faults to a null operation. We include a default expression
to make the language more value oriented.

4 BetaJava Model

To demonstrate type soundness of our combination of Beta-style
and Java-style methods, we define a complete formal modeEor B
TAJAVA in the style of @AsSICIAVA [14].

The model simplifies Java considerably, eliminating constructs that
are irrelevant to method dispatch. For example, the model does not
include local variablesf statements, or exceptions. Unlike &s-
sicJAvA, the BETAJAVA model further omits fields, but we have
preserved enoughlt@ssICJAVA structure in our BTAJAVA model

to ensure that fields could be added back to the model, exactly as
they appear in CassICcJAvA. We also omit interfaces fromeBra-

Java, becausdeta andjava play no role in interface declarations.

Figure 9 contains the syntax ofEBAJAVA programs in our model.

A programP consists of a sequence of class declarations followed
by a single expression. The expression plays the roleaofi to

start the program. Each class declaration contains a sequence of
method declarations, and each method is annotated with bitteer

or java. A method body consists of a single expression, which is
either a variable (i.e., a reference to a method argumettisy,
ﬁnhenull keyword, an object creatiamew ¢, or a method call. Each
ethod call has one of three shapes:

e A method call of the formemd(ey, .. .e,) is a normal call to
the methodnd in the object produced bs:

of arrays, instead (as suggested by Figure 7 and Figure 8), so that

the size iO(m+ p) for p total beta declarations, which tends to be
much smaller tha®(mx n).

3.3 Interfaces

The beta and java keywords apply only to method implementa-
tions in a class. Because interfaces reflect subtyping and not behav
ior, these keywords are not needed in an interface declaration. A

e A method callsuper var:c.md(es,...e,) must appear only
within a method (as enforced by the type system). Vae
part of the call is intended to bihis, which is implicit in
Java. An explicit target simplifies our evaluation rules, but
this could be inserted automatically by an elaboration step, as
in CLAssICJaVA. Similarly, the class named in asupercall
must be the name of the containing class’s immediate super-
class. Againg could be inserted by elaboration, and our type
system ensures that the correés named.



P = defn.. defne
defn = classcextendsc { meth.. meth}
meth = kindtmtvar,...tvar){e}
kind = beta|java
¢ = aclass name ddbject
md = amethod name
var = avariable name dhis
t = ¢
e = var
| null
| newc
| emd(e,...e)
| supervar.c.md(e,...€)
| innervar.cmd(e,...e) elsee
g = e|l
¢ = c|L
¢ = c|T

Figure 9. Syntax of BETAJAVA

e A method callinner var.cmd(ey,...e,) elsee must appear
only within a method (again, as enforced by the type system).
As with super calls, var is intended to behis, and a class
¢ is named for the convenience of our evaluation rules. For
inner, the givenc must be the class containing timmer call,

as opposed its superclass, and the type system ensures thi

correlation. The extralsee at the end of arnner call pro-
vides the expression to evaluate if, at run time, no extending
method is provided byar (in a subclass of).

The non-terminalg, €, andc’in Figure 9 are for auxiliary relations

in the evaluation rules, and they are not part of the concrete syntax.

4.1 BetaJava Type Checking

The type-checking rules for BraJava closely resemble those
of CLAssIcJavA, building on a number of simple predicates

same as in CASSICJAVA, except that the method implementation’s
kindis included on the left-hand side of the relation.

Complete type-checking rules foreEBaJava appear in Figure 11.
The rules include the following judgments:

Fo P programP is well-typed
P4 defn classdefnin programP has well-typed methods
P, cHm meth  methodmethin classc has a well-typed body
Pltee:t expressiore has typéd in environment
Pltse:t the type ofeis a subtype of in environment”

To summarize the type rules, a program is well-typed if its class
definitions are well-typed and its final expression is well-typed in
an empty environment. A class definition is well-typed when its
methods are well-typed. A method is well-typed when its body is
well-typed in an environment that includes the method’s arguments.
For expressions, aull or new c expression is always well-typed,
andvar is well-typed if it is bound in the environment.

A call to a methodndis well-typed if thec, relation finds a consis-
tent declaration ofndin a particular class. In the case of a normal
method call, the class is determined by the type of the target object.
In the case of aupercall, the class is named in the call, and it must
be the superclass of the typetbfs (where the type ofhis effec-
tively names the class where thaper call appears). In the case of
aninner call, the clasg is named in the calk must be the type of
this, and the most-specifimd for c must have kindeta

4.2 BetaJava Evaluation

'Sl'he relationsejp and €2 capture the essence bkta-sensitive
method dispatch (see Figure 12). Tag and B relations find a

java or beta method only between classe€sandc” in a chain of
class extensions. These relations also accept a default expréession
to use if no method can be found. (These pieces are assembled as

[/, c”](€) to the right ofel, or €B.)

The two relations implement a two-phase search for a method. The
€8 relation first attempts to find heta method, and if the search

fails, it delegates t@{;, to find ajava method. The=B relation uses
max<, to find the highesbeta method in a class derivation (i.e.,

closest to the root class), while, uses min,, to find the lowest

and relations that are defined in Figure 10. For example, the method (i.e., closest to the instantiated class).

CLASSEYONCE(P) predicate checks that each class name is de-
fined only once. The<p relation associates each class in the pro-
gramP with the class that it extends, ardp captures the method
declarations oP.

The <p relation fills out the subclass relationship as the transitive
closure of<p. (The extension tol and L is used in the eval-
uation rules.) Two additional predicates check global properties:
CLASSEDEFINED(P) ensures that the class hierarchyFoforms
atree, and ETENSIONSCONSISTENT(P) ensures that every decla-
ration of a method in a class derivation uses the same signature.

Since itimplements the Java-like part of method seaggirelation

is similar to€,, except that it takes into account an upper bocthd

and a default expression. The upper bound corresponds to a class
with aninner call, where a legal target method must appear in a
subclass. If no method is found and the default expression is used,
then arbitrary “method” arguments are selected by the relation, with
the constraint that the argument variables do not appear in the ex-
pression.

The eE, relation searches primarily forteetamethod below the up-

Finally, the€p relation combines the methods that a class declares Per boundt”. If no betamethod is foundep uses<y to search for

with the methods that it inherits from its superclasses. dhee-

ajava method, instead. Meanwhile, the default expression passed

lation can be interpreted as a function from classes to method-tupleto EJP corresponds to the default expression forimmer call, in
sets, or as a function from class—method combinations to methodcase neither kind of method is found.

implementations. Specifically, for a clasgnd method nammd,
€p locates the most specific implementationnod, which is the
one declared closest toin the class hierarchy. This relation is the

Using these two relations, the operational semantics foraBava
is defined as a contextual rewriting system on pairs of expressions



CLASSESONCE(P) iff (classc --- classc is in P) impliesc # ¢
OBJECTBUILTIN (P) iff class Objectis notinP

METHODSONCEPERCLASS(P) iff
(classc extendsc’ {--- ty mdy --- t; md, ---} isin P) impliesmd; # md,
CLASSEDEFINED(P) iff (cisinP)impliesc= Object or (classcisinP)

c<pc iff classcextendsc isinP

(mkind, (t1... th — to), (vary,...var,),e) &pc iff
classc extendsc’ {--- kind to md(t; vary, ...ty varm){ e} ---}isinP

<p = transitive—reflexive closure okp plusc<p T andl <pc
<p = irreflexive restriction of<p

WELLFOUNDEDCLASSESP) iff <p is antisymmetric

EXTENSIONSCONSISTENT(P) iff
({m,kind, (t1... th — to), (vary,...varm),€) &pcy)
and((mkind, (t1 ... th —tg), (vary,...var),€) &pcy)
implies(cy Zpcaor (t1... th—to) = (t1... t) — 13))

(mkind, (t1... th — to), (vary,...varm),e) ep c iff
c=ming,({c|c <pcand(mkind,(t]... t) —t5), (vary,...var),€") &pc})
and(m,kind, (ty ... tn — tg),(vary,...varm),e) &pc

Figure 10. Predicates and relations for BETA JAVA

Phqdefn... PrHqydefr, POFce:t
Fo P whereP = defn, ... defr, e, CLASSESONCE(P),
OBJECTBUILTIN (P), METHODSONCEPERCLASS(P),
CLASSESDEFINED(P), WELLFOUNDEDCLASSESP),
and EXTENSIONSCONSISTENT(P)

P this:c,varity,...vamithFse:tg

P.ckm kind o md(t; vary,...th vam){ e} F’;rﬂl—_%ee::(;’ whered <p¢
Pl Fenewc:c Pltenull:c PI ke var:t wherel (var) =t
Prtee:c PBltgep:ty... PIEsen:ity
Pl F.emdes,...en) o where(md,kind, (t; ... ty — tg), (vary,...var),e) €p €
Plrtserity ... Pllksen:ity

whererl (var) =¢/, ¢ <p¢C

P supervar.cmdey, ... &) 1o and(md,kind, (t1... ty —tg), (vary,...varm),€) €p C

Plrt-se; ity ... Plksenith PlEksepitp

wherel (var) =c

P Fe inner var.c.md(ey, ... en) elseep o and(md,beta, (t; ... th — tp),(vary,...vamn),e) €p C

Figure 11. Type-checking rules for BETA JAVA




(m,vary,...var,, & ejp [c,c")(&) iff
E=min<,({T}U{c| ¢ <pcandc<pc”and(mkind,(t; ...
and((mkind, (t1... th — to), (vary,...varn),8 ept
or (€= T,é=¢, andvary,...var, notine))
(myvary,...var, & B [¢,c"](&) iff
¢=max, ({L}U{c|c <pcandc<pc” and({m,beta,(t]...
and({m,beta, (t;... tn —>t0)7(var1,...va_1rn),é> &pC
or (6= L and(m,var,...vam,8&) e [c,c"](&)))

t) —tp), (vary,...varp), &) &pc})

th — tg), (vary,...var,),€") &pc})

Figure 12. Relations for BETAJAVA evaluation

v = null E
| var

I

| E.md(e,...e)

|  vmd(v,...vE.e,...€)

| supervic.md(v,...v,E.e...€)

| innerv.ie.md(y,...v,E,e,...e) elsee

P (E[newc],Z) —y,; (E[var],Z|var — (c)])
wherevar ¢ dom(X)

PF (Elvarmd(vy,...vn)],X) +——p; (E[e[vam < vp]...[vary < vi]fthis — var]],X)
whereZ (var) = (c) and(md,vary, ...varm,€) €8 [c,Object](L)

P (E[supervar.c.md(vy,...vn)],%) +——y; (E[e[vam «— vp]...[vary < vq][this — var]],%)
where(md,java, (1 ... th — to), (vary,...vam),e) €p

P (E[inner var.c.md(vy, ... vn) else€],%) ——y; (E[elvam — vp)...[vary < vq][this — var]], %)
whereZ (var) = (co) and(md,vary,...vam,e) €8 [co,c|(€)

Figure 13. Evaluation rules for BETAJAVA

and stores. As in CASSICJAVA, a storeX is a mapping from gen-
eratedvars to class-tagged records. Since theTBJavA model
does not include fields or field assignments, the store is technically
unnecessary, but we preserve it for consistency withSSI1CJAVA .

The complete evaluation rules are in Figure 13. Normal method
calls useeB with Object as the upper bound, which finds either

Theorem 1 (Type Soundness): I, P where P =
defn, ... defn}, e, then either

o Pk (e0) —p; (v,X) for somevandz;

e P + (g0 b (€,%) implies
Pr (€,Z) —y (€,Y) for some €’ and
s or

the firstbeta method or the lagava method. Aninner call also
useseB , but with the class named in the call as an exclusive upper
bound for finding a method. Auper call merely usesp, as in
CLAssIcJavA, reflecting thasuper dispatch behaves as in Java.

e P (e0) ——y; (E[null.md(vy,...vn)],Z) for
someE, md, vi,...vp, andZ.

The main lemma in support of this theorem states that each
step taken in the evaluation preserves the type correctness of the
The static and dynamic nature of method calls is apparent in the expression-store pair (relative to the program) [26]. Specifically,
model’s relations. For example, the use<gffor super calls relies for a configuration on the left-hand side of an evaluation step, there
on no dynamic information, so it can be computed statically. Sim- exists a type environment that establishes the expression’s type as
ilarly, the result ofeE, for a method call can be precomputed if the somet. This environment must be consistent with the store.

type of the object expression includebeta method; at run-time,

the class will be a subtype of the static type, but the subtype cannotThe soundness proof forl@ssicJava [13] is easily adapted to
override thebetamethod. In contrast, the result feﬁ in aninner BETAJAVA. The super rule is unchanged, so the the proof that
call cannot be pre-computed from just the object expression’s type. a method is found is also unchanged. The normal- ianer-

call forms use the new method-finding relatig, but €B finds

a method anytime that, finds one, and if different implementa-
tions are found, then ETENSIONSCONSISTENT(P) ensures that

the types are consistent.

4.3 BetaJava Soundness

For a well-typed program, evaluation can either produce a value,
loop indefinitely, or get stuck attempting to call a methochofi.

The last possibility would correspond to a run-time error in a Java 5
implementation. These type rules preclude a “method not under-
stood” run-time error, however, which is the essence of soundnessMzScheme is the base language for the PLT Scheme programming
for an object-oriented language. suite, which includes DrScheme [11]. MzScheme extends the stan-

Implementation and Experience



dard Scheme language [19] with numerous constructs, including a
Java-like object systef. The object system is used primarily to
implement DrScheme’s graphical interface.

5.1 Base Implementation

Classes and objects in MzScheme are dynamically typed, which
means that a method call from outside an object typically requires
a dynamic method-name lookup. Self aswper calls within an
object, however, are always resolved at class-construction time. A
self call uses a virtual method table indirection, argliper call is

a direct function call. In short, these calls are implemented as in a
statically typed object-oriented language, such as Java.

Classes are values in MzScheme, and the superclass position in

| allow override allow augment

new method public pubment
override existing override overment
augment existin augride augment

Figure 14. Method keywords in MzScheme

core due to a missing call to a superclass method in an add-on tool.

We expect also to simplify the set of methods in our classes, much

asbetamethods eliminated the need fopaintinnermethod in the
example of Section 2.

a

class declaration can be an arbitrary expression. Consequently, a

mixin can be defined by placingaassexpression within a proce-
dure that accepts a superclass argument. DrScheme uses this for
of mixin extensively. For example, the “autosave” behavior for a
text editor is implemented as a mixin, so that autosaving can be
added to any class that implements the text-editor interface. Add-
ontools for DrScheme introduce new mixins to extend DrScheme’s
behavior.

The autosave mixin must extend the editons-close method,
which is called when the editor’s window is closed, so that the au-
tosave timer is disabled. In previous versions of DrScheme, only
Java-style methods were available, so a mixin that overrigtes
closewas obligated to call the superclass method. Failing to call

the superclass method in a tool-introduced extension would create

a bug orresource leak in DrScheme’s core, and such a leak appeare
in practice. Fixing the bug was trivial, but discovering the bug was

difficult, because the mixin implementor naturally concentrated on

testing the mixin’s owron-closebehavior. Many otheon-...meth-

ods in DrScheme have the same protocol, with the same danger o
errors.

5.2 Adding Inner

An inner method call is implemented in MzScheme using an aux-
illary method table, as described in Section 3.2. Overall, to im-
plement a prototype combination béta andinner, we added or
changed roughly 100 lines of Scheme macro code in the 2800-line
implementation of MzScheme'’s object system. Our production ver-
sion added another 150 lines of code.

Before addingnner to MzScheme, each method was declared as
eitherpublic or override. A public declaration indicates that the
method is new in the class, whereagerride indicates that the

rﬁ Related Work

Smalltalk [16] was the first language to popularize extension as
overriding behavior. This branch of extension has inspired many
languages, including C++ [25] and Java [17]. Although many of

these languages added additional features such as multiple inheri-
tance and mixins, they all maintained overriding as the only form

of method refinement.

CLOS [18] is another language on the Smalltalk branch of method
extension, but it supports anner-like call through an:around
qualifier andcall-next-method Normally, call-next-methodacts

like superin Java. In the case wheuoall-next-methods used in

Hwe least specificaround method, the most specific method with-
out a qualifier will be called. This pattern simulates a sirigreer

call, but there is no way to simulate multiglener calls that move
down a class hierarchy, nor is there a way to caknext-method

£S asuper-like call and arinner-like call in the same method.

Beta [20] inspired gbeta [9]. In gbeta, methods are treated as a
sequence of method bodies (which gbeta cadlsins); aninner
statement goes from the current method body to the next one in the
sequence. By default, the methods are ordered from the first dec-
laration of the method to the last augmentation, but a programmer
can control the order through specific merging operators [10]. For
example, the programmer can name an individual method body and
later add a new body immediately before or after the named one. A
programmer can also place a hewly declared body at the beginning
of the method’s sequence. Clearly, dataandinner declarations
cannot emulate such general merging operations, but gbeta’s merg-
ing operations also cannot implement our semantics. In particular,
gbeta offers no way to ensure that a behavior is never overridden
(as guaranteed by obeta).

method should be declared already in the superclass (in which case

super can be used). This distinction is statically apparent in Java,

but notin MzScheme, due to MzScheme’s form of classes as values.

After addinginner to MzScheme, a method declaration must de-
clare whether the method is new, overriding, or augmenting, and

As far we know, no one has created a simple extension to a Beta-like
language that allows method overriding augberwithout allowing

Beta method to be overridden. We also have found no work adding
a simpleinner extension to a Java-like language.

also whether subclasses are allowed to override or augment theCook, in his Ph.D. thesis [7], develops a semantic model of inheri-

method. We defined a different keyword for each combination, as
shown in Figure 14. For example, tipebment keyword means
“new pullic method, allow aumentonly.”

We are converting many of DrSchemeis-...methods fronpublic
to pubment, thus eliminating the potential for bugs in DrScheme’s

2Technically, the object system is an external library.

tance and uses it in the analysis of various programming languages,
including Smalltalk and Beta. He observes that the underlying in-
heritance mechanisms of Beta and Smalltalk are the same. The dif-
ference is in the combination of inherited structure with local def-
initions: Smalltalk and Beta have inverted inheritance hierarchies,
with Beta’s superpatterns acting as subclasses and subpatterns as
superclasses. Cook’s model can express method refinement as ei-
ther overriding and augmenting, but not both behaviors combined.



Clark [6] describes a functional language with primitives for object- generalization, but we intend to watch for places in DrScheme’s
oriented programming. In his language, an extension of a classimplementation that could benefit frosuper defaults.

is a function of the shadowed definitions availablesimper plus

the shadowing definitions available to the superclagener. He The MzScheme changes described in Section 5 are included in ver-
briefly addresses the issue of whether a subclass definition shouldsion 299.10 and later. An implementation of Section 4's model of
shadow a superclass definition or vice versa, but only to define the BETAJavA (using the PLT reduction semantics tool [23]) is avail-
choice as one or the other. able at the following web site:

Bracha and Cook [5] propose mixins as a method of combin- http://www.cs.utah.edu/plt/super+inner/
ing the inheritance mechanisms of Java and Beta. By choosing
the correct composition of mixins, a programmer can achieve ei-
ther Java-like or Beta-like behavior from methods. Ancona and

Zucca [3, 2] similarly demonstrate formally how overriding op- . . .
erators can be expressed in a mixin-based framework, but these/Ve would like to thank Yang Liu for work on a prototype combina-

systems do not allow both accessing behavior from a previously ton of betaandjava dispatching, Richard Cobbe for his &ssic-

composed mixin's method and accessing behavior from a Succes__JAVA reduction semantics, Erik Ernst for comments and compar-

sively composed mixin’s method; the mixin composition operator 1SONS 0 gbeta’s merging operators, and the anonymous reviewers
determines which will occur. Furthermore, a tedious programming for their suggestions.

pattern is required to simulate Java-style and Beta-style extension,

which is only a slight improvement over the programming pattern

required in Java to achieve Beta-style refinement. 8 References
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