
Blame for all

Amal Ahmed1 and Robert Bruce Findler2 and Jacob Matthews3 and Philip Wadler4

1 Toyota Technological Institute at Chicago
2 Northwestern University

3 Google
4 University of Edinburgh

Abstract. We present a language that integrates statically and dynamically typed
components, similar to the gradual types of Siek and Taha (2006), and extend it to
incorporate parametric polymorphism. Our system permits a dynamically typed
value to be cast to a polymorphic type, with the type enforced by dynamic seal-
ing along the lines proposed by Pierce and Sumii (2000), Matthews and Ahmed
(2008), and Neis, Dreyer, and Rossberg (2009), in a way that ensures all terms
satisfy relational parametricity. Our system includes a notion of blame, which
allows us to show that when more-typed and less-typed portions of a program
interact, that any type failures are due to the less-typed portion.

1 Introduction

The long tradition of work that integrates static and dynamic types includes the coer-
cions of Henglein (1994), the contracts of Findler and Felleisen (2002), the gradual
types of Siek and Taha (2006), the migratory types of Tobin-Hochstadt and Felleisen
(2006), the hybrid types of Flanagan (2006), the dynamic dependent types of Ou, Tan,
Mandelbaum, and Walker (2004), the multi-language programming of Matthews and
Findler (2007), and the blame calculus of Wadler and Findler (2009).

A unifying theme in much of this work is to use casts to mediate between static
and dynamic types. Typically, casts are introduced by compiling to an intermediate
language, while the blame calculus suggests such casts can profitably be treated as
a source language. The main technical innovation is to assign positive and negative
blame (to either the term contained in the cast or the context containing the cast), with
associated notions of positive and negative subtype. These permit Wadler and Findler to
state and give a straightforward proof of the Blame Theorem, which ensures that when
a program goes wrong, blame lies with the less-precisely-typed side of a cast; previous
work ignores such a result or requires a complex statement and proof.

Here we show how to extend a fragment of the blame calculus to incorporate poly-
morphism. For simplicity, our fragment includes base types and dynamic type, as found
in gradual types, but omits subset types, as found in hybrid types. Our system permits
a value of dynamic type to be cast to a polymorphic type, using dynamic sealing to en-
sure that values of polymorphic type satisfy relational parametricity (Reynolds, 1983;
Wadler, 1989). For instance, every function of type ∀X.X → X must be either the
identity function or the constant bottom function, and this holds true even for dynamic
code cast to this static type.

We present terms, types, and reductions for our language, extend our previous char-
acterizations of compatibility and of ordinary, positive, negative, and naive subtypes to
include polymorphic types, and state and prove an appropriate Blame Theorem.

We have demonstrated that our system satisfies relational parametricity using step-
indexed Kripke logical relations similar to those devised by Neis et al. (2009); both that
work and ours refine Matthews and Ahmed (2008). We omit the development due to a
lack of space.

Our definition of subtyping for polymorphic types is arguably too restrictive. In the
last section, we present an improved definition of subtyping and present a conjecture
and a relevant counter-example.

Dynamic sealing to enforce parametricity has long been understood in folklore.
Sealing for data abstraction goes back at least to Morris (1973). Cryptographic seal-
ing for parametricity was introduced by Pierce and Sumii (2000). Extending casts to
include seals, while demonstrating relational parametricity, was first explored in the
context of multi-language programming by Matthews and Ahmed (2008). A practical
implementation for Scheme contracts was described by Guha, Matthews, Findler, and
Krishnamurthi (2007). Recently, use of dynamic sealing to restore parametricity to a
non-parametric language was demonstrated by Neis et al. (2009).

Our work most closely resembles that of Matthews and Ahmed (2008) and Neis
et al. (2009), which both give relational parametricity results based on step-indexed
logical relations. The first uses separate static and dynamic languages; we use a single
language in which each of these extremes is easily embedded. The second includes non-
parametric operations, and describes wrappers that restore relational parametricity; we
provide a language in which all terms satisfy parametricity. Both works use positive and
negative wrappers to enforce sealing, and the second uses positive and negative logical
relations; these appear closely related to our positive and negative subtyping. A precise
understanding of the relationship would be an important subject for future work.

Sections 2–4 present in turn the type rules, reduction rules, and subtyping rules of
our system, Section 5 presents the Blame Theorem, and Section 6 outlines an improved
subtyping relation.

2 Types and terms

Figure 1 presents syntax and type rules for the blame calculus with polymorphic types.
We let S, T range over types, C,D range over casts, and G,H range over grounds.
A type is either a base type B, the dynamic type *, a function type S → T , or a
polymorphic type ∀X.T . Base types B include booleans B and integers I. A cast is
the same as a type, but may also contain a seal k(T). We write |C| for the type erasure
of cast C, which takes a seal k(T) to T and all other constructors to themselves. We
require that seals are always used at the same type: given two seals k(T) and k′(T ′), if
k = k′ then T = T ′. A ground G is either a base type B, the function type *→ *, or a
seal k(T). Each value of dynamic type * will be injected from a ground.

As usual, we write Γ ` t : T if term t has type T in a type environment Γ . There
are two new term forms. A cast term 〈D ⇐ C〉p s converts a term s from type |C| to
type |D|, where the casts C and D are required to be compatible (as defined below)

base type B ::= I | B
ground G,H ::= B | *→ * | k(T)
type S, T ::= * | B | S → T | ∀X.T | X
cast C,D ::= * | B | C → D | ∀X.D | X | k(T)
term s, t, u ::= 〈D ⇐ C〉p s | s isp G | c | x | λx : S. t | t s | ΛX. t | t S
constant c ::= true | false | · · ·
untyped term M,N ::= c | x | λx.N |M N

Type erasure |C| = T

|*| = * |∀X.C| = ∀X. |C| |X| = X
|B| = B |C → D| = |C| → |D| |k(T)| = T

Type rules Γ ` t : T

Γ ` s : |C| C � D

Γ ` 〈D ⇐ C〉p s : |D|

Γ ` s : *

Γ ` s isp G : B

Γ ` c : ty(c)

x : T ∈ Γ

Γ ` x : T

Γ, x : S ` t : T

Γ ` λx : S. t : S → T

Γ ` t : S → T Γ ` s : S

Γ ` t s : T

Γ ` t : T
X 6∈ Γ

Γ ` ΛX. t : ∀X.T

Γ ` t : ∀X.T

Γ ` t S : T [X := S]

Compatibility C � D

C � * * � D B � B X � X k(T) � k(T)

C′ � C D � D′

C → D � C′ → D′

C[X := *] � D

∀X.C � D

C � D
X 6∈ C

C � ∀X.D

Embedding dynamic types dMe = t

dce = 〈*⇐ ty(c)〉 c dλx.Ne = 〈*⇐ *→ *〉 (λx : *. dNe)
dxe = x dM Ne = (〈*→ *⇐ *〉 dMe) dNe

Fig. 1. Type system

and where p is a blame label. An instance term s isp G checks whether a value s of
dynamic type is castable to ground G; it returns a boolean. The other term forms are
standard.

We say cast C is compatible with cast D if some value of type |C| can be converted
to a value of type |D|, and write C � D. In previous work, compatibility is symmetric,

but here it is not. For instance a cast from ∀X.X → X to I → I is permitted, as it
amounts to instantiating the polymorphic type, while a cast from I → I to ∀X.X →
X is not permitted, as a function on integers may not apply to other types. However,
sometimes compatibility is symmetric. For instance a cast from ∀X.X → X to *→ *
is permitted, as it amounts to instantiating the polymorphic type, while a cast from
* → * to ∀X.X → X is also permitted, since a function on dynamics may apply to
all types.

Type * is compatible with any type, and every base type, type variable, and seal is
compatible with itself. Two function types are compatible if their domains and ranges
are compatible—note that, as with subtyping rules, the comparison is contravariant in
the domain and covariant in the range. In previous work, compatibility is covariant in
both the domain and range of a function, but here we must introduce contravariance
because compatiblity is no longer symmetric.

A polymorphic type is compatible with a given type if some instance of the poly-
morphic type is compatible with the given type, while a given type is compatible with
a polymorphic type if the given type is compatible with every instance of the polymor-
phic type. In particular, we have that ∀X.C � D if C[X := *] � D; this will be true
whenever there is some type T such that C[X := T] � D. In the other direction, we
have that C � ∀X.D if C � D and X does not appear free in C (which we can always
achieve by renaming the bound type variableX); this will be true whenever for all types
T we have C � D[X :=T]. It is easy to check that these rules yield the compatibilities
and incompatibilities described above:

∀X.X → X � I→ I, I→ I 6� ∀X.X → X,
∀X.X → X � *→ *, *→ * � ∀X.X → X.

One consequence of the rules is that if C � D then ∀X.C � ∀X.D. It is easy to
check that C � D implies C[X := *] � D. We then have

C[X := *] � D

∀X.C � D
X 6∈ ∀X.C

∀X.C � ∀X.D

The order in which the rules is applied is crucial: we first quantify on the left, and then
since X is no longer free in ∀X.C we may quantify on the right. An easy consequence
of this is that every cast is compatible with itself.

The type system assigns a unique type to each term, and typability is decidable.
There is a standard embedding of untyped terms M into corresponding blame cal-

culus terms dMe.

3 Reductions

Figure 2 defines additional syntax and the rules for reduction. We let v, w range over
values. A value is either a constant, an abstraction, a type abstraction, or of dynamic
type. The first four of these are standard. A value of dynamic type takes the form 〈*⇐
G〉p v where G is ground.

values v, w ::= c | λx : S. t | ΛX. t | 〈*⇐ G〉p v
evaluation context E ::= [] | E isp G | E t | v E | E S | 〈D ⇐ C〉p E

Substitution (key lines) s[X := k(T)]

(〈D ⇐ C〉p s)[X := k(T)] = 〈D[X := k(T)]⇐ C[X := k(T)]〉p (s[X := k(T)])

(λx : S. t)[X := k(T)] = λx : S[X := T]. (t[X := k(T)])

(t S)[X := k(T)] = (t[X := k(T)]) (S[X := T])

Reductions K; s −→ t; K′ s −→ blame p

K; (ΛX. t) S −→ t[X := k(S)]; K ∪ {k}, if k 6∈ K

〈D ⇐ ∀X.C〉p v −→ 〈D ⇐ C[X := *]〉p (v *)

〈∀X.D ⇐ C〉p v −→ ΛX. 〈D ⇐ C〉p v, if X 6∈ C and X 6∈ v

〈*⇐ G〉p v isq G −→ true, if G 6= k(T)

〈*⇐ G〉p v isq H −→ false, if G 6= H and G 6= k(T)

〈*⇐ k(T)〉p v isq H −→ blame q

c v −→ [[c]](v)

(λx. t) v −→ t[x := v]

〈C′ → D′ ⇐ C → D〉p v −→ λx : C′. 〈D′ ⇐ D〉p (v (〈C ⇐ C′〉p̄ x))

〈*⇐ *〉p v −→ v

〈B ⇐ B〉p v −→ v

〈k(T)⇐ k(T)〉p v −→ v

〈*⇐ C → D〉p v −→ 〈*⇐ *→ *〉p 〈*→ *⇐ C → D〉p v, if C → D 6= *→ *

〈C → D ⇐ *〉p v −→ 〈C → D ⇐ *→ *〉p 〈*→ *⇐ *〉p v, if C → D 6= *→ *

〈G⇐ *〉q〈*⇐ G〉p v −→ v

〈H ⇐ *〉q〈*⇐ G〉p v −→ blame q, if G 6= H

K; s −→ t; K′

K; E[s] −→ E[t]; K′

s −→ blame p

E[s] −→ blame p

Fig. 2. Reduction

We let E range over evaluation contexts, which are standard. We write K; s −→
t;K ′, where K and K ′ are sets of seals, to indicate that term s reduces in a single step
to term t. The sets of seals are used to ensure that newly generated seals are fresh. Set

K contains the seals in use before the reduction (so contains all the seals in s) and
set K ′ contains the seals in use after (so contains all the seals in t). These sets grow
monotonically, so we always have K ⊆ K ′. (If we wish to abandon monotonicity, we
may add a garbage collection rule, K ∪ {k}; s −→ s;K when k does not appear in s.)
When the initial and final sets of seals are identical (as happens in all but one of the
given reduction rules) we write s −→ t to abbreviate K; s −→ t;K. We also write
s −→ blame p to indicate that s fails in a single step, allocating blame to p; we omit
K because no new seals are allocated in such a reduction step. We write multi-step
reductions as s −→∗ t or s −→∗ blame p, leaving the seal sets implicit.

The three novel reduction rules are beta reduction for type abstractions, and casting
to or from a polymorphic type. Beta reduction for type abstractions is standard, except
it introduces a fresh seal. This makes use of the substitution s[X := k(T)], which is
standard save that it replaces a type variable by T if the type variable appears in a type,
but replaces the type variable by k(T) if it appears in a cast. Key lines of the definition
of s[X := k(T)] are included in the figure; all other lines are standard.

A value of polymorphic type is cast by applying it to the dynamic type and recur-
sively casting the result. This reduction takes compatible casts into compatible casts,
since ∀X.C � D only if C[X := *] � D. A value is cast to a polymorphic type
by abstracting over the type variable and recursively casting the result; note that the
abstracted type variable may appear free in the cast. Again, this reduction takes com-
patible casts into compatible casts, since C � ∀X.D only if C � D.

Constants of function type are interpreted by a semantic function consistent with
their type: if ty(c) = S → T and value v has type S, then [[c]](v) is a term of type T .

The remaining reductions are standard or appear in previous work on gradual typ-
ing. Beta reduction is standard. A cast to a function type from another function type
decomposes into separate casts on the argument and result—note the reversal in the ar-
gument cast, and the corresponding negating of the blame label. A cast from *, a base
type, or a seal to itself is the identity. A cast between a function C → D and * factors
through a cast to the ground function type * → *; it is required that C → D differs
from * → * to avoid an infinite regression. The final two rules concern casting from a
ground into * and back again. If the cast is back to the same ground, it becomes an iden-
tity cast, while if the cast is back to a different ground it results in blame. Reductions
are closed under evaluation contexts E in the usual way.

The fundamental semantic property satisfied by values of polymorphic type is rela-
tional parametricity, as introduced by Reynolds (1983), which captures the notion that
a polymorphic value is treated abstractly, independently of its representation. Relational
parametricity is equivalent to asserting that every value of a polymorphic type satisfies
a theorem determined by the type (called ‘theorems for free’ by Wadler (1989)). For
example, corresponding to the type

f : ∀X.X → X

we have the theorem

for all types X and X ′ and all relations R ⊆ X ×X ′,
for all values x : X and x′ : X ′, if (x, x′) ∈ R then (f x, f x′) ∈ R.

In particular, for any v : S and v′ : S′ by taking X to be S and X ′ to be S′ and
R to be the relation {(v, v′)}, it follows that f S v is v and f S′ v′ is v′, so f must
be observably equivalent to the identity function. We also consider that a pair of non-
terminating expressions satisfy any relation, so a second possibility is that f is a func-
tion that never terminates (for instance, f might be λx. t0 where t0 is any closed term
that always reduces to blame p). These are the only two possibilities. Note that under
non-terminating we include expressions that allocate blame, so non-terminating means
‘does not reduce to a value’.

Consider the following three casts. (We use the embedding from Figure 1 of untyped
terms M into blame calculus terms dMe.)

〈∀X.X → X ⇐ *〉p dλx. xe
〈∀X.X → X ⇐ *〉p dλx. x+ 1e
〈∀X.X → X ⇐ *〉p dλx.if x isq I then x+ 1 else xe

As one might expect, the first is equivalent to the polymorphic identity function. More
surprisingly, we can arrange that the second and third both behave as a function that
never terminates. Hence, parametricity is satisfied.

How can we define polymorphic casts in order to ensure this behaviour? The intu-
ition behind parametricity is that a value of polymorphic type must be treated uniformly.
Given a value of type X , the only things one can do with it are to directly return the
value, or to pass it to a function expecting a value of type X; there should be no way to
examine a value of type X . Therefore, we arrange our system to ensure that when we
cast from type X to type * that we seal the value in a way that prevents it from being
examined, and that when we coerce from type * back to type X that the corresponding
seal is removed.

Here is the first example.

(〈∀X.X → X ⇐ *〉p dλx. xe) I 3
−→∗ (〈k(I)→ k(I)⇐ *〉p dλx. xe) 3
−→∗ 〈k(I)⇐ *〉p (λx : *. x) (〈*⇐ k(I)〉p̄ 3)
−→∗ 〈k(I)⇐ *〉p 〈*⇐ k(I)〉p̄ 3
−→∗ 3

To perform the type application to I, each occurrence of X in the cast is replaced by
k(I), where k is a fresh seal. Regardless of what type and value are supplied the casts
still match, so this behaves as the identity function.

Here is the second example.

(〈∀X.X → X ⇐ *〉p dλx. x+ 1e) I 3
−→∗ (〈k(I)→ k(I)⇐ *〉p dλx. x+ 1e) 3
−→∗ 〈k(I)⇐ *〉p 〈*⇐ I〉q (〈I⇐ *〉q 〈*⇐ k(I)〉p̄ 3) + 1
−→∗ blame q

Here we’ve used q to label the casts introduced in translating dλx. x + 1e. Again, k
is a freshly generated seal. Regardless of what type and value are supplied the casts
still don’t match, so this behaves as a function that never terminates. It always fails,
blaming q.

Here is the third example.

(〈∀X.X → X ⇐ *〉p dλx.if x isq I then x+ 1 else xe) I 3
−→∗ (〈k(I)→ k(I)⇐ *〉p dλx.if x isq I then x+ 1 else xe) 3
−→∗ 〈k(I)⇐ *〉p if 〈*⇐ k(I)〉p̄ 3 isq I then · · · else · · ·
−→∗ blame q

Sealed values should not be examined, so we arrange for sisq G to allocate blame to q
if its argument is sealed. One might expect the expression sisqG to simply return false
in this case, and in fact this would retain parametricity (the expression in question would
become the identity function). But we would lose another key property, since we want
casting to another type (including to a polymorphic type) to leave the value unaltered
or to indicate blame, but never to change the value returned. In this case, wrapping the
expression changes it to a function that never terminates, which is acceptable, while
changing it to the identity function violates our criterion.

4 Subtyping

Subtyping characterises when a cast cannot give rise to blame. Figure 3 presents four
subtyping judgements—ordinary, positive, negative, and naive. (Strictly speaking, these
are subcasting judgements, since we compare casts rather than types.)

We write C <: D if C is a subtype of D. Every subtype of a ground is a subtype
of *, since a cast from a ground to * cannot allocate blame. A base type, type variable,
or seal is a subtype of itself. Function subtyping is contravariant in the domain and
covariant in the range. Finally, we have the rules for polymorphic types. A polymorphic
type ∀X.C is a subtype of D if its instance C[X := *] is a subtype of D. (A more
general definition would say ∀X.C is a subtype of D if any instance C[X := T] is a
subtype of D; we return to this point in Section 6.) We also have, by analogy with the
compatibility rules, that a type C is a subtype of a polymorphic type ∀X.D only if C
is a subtype of D, when X does not appear free in C. As with compatibility, these rules
allow us to show that C <: D implies ∀X.C <: ∀X.D.

In order to characterize when positive and negative blame cannot occur, we factor
subtyping into two subsidiary relations, positive subtyping, written C <:+ D and neg-
ative subtyping, written C <:− D. We will show that if C <:+ D then a cast from C to
D cannot receive positive blame, and that if C <:− D then a cast from C to D cannot
receive negative blame.

The two judgements are defined in terms of each other, and track the swapping
of positive and negative blame labels that occurs with function types, with the con-
travariant position in the function typing rule reversing the roles. We have C <:+ *
and * <:− D for every cast C and D, since casting to * can never give rise to positive
blame, and casting from * can never give rise to negative blame. We also haveC <:− G
implies C <:− D, since a cast from a ground to * cannot allocate blame, and a cast
from * to any type cannot allocate negative blame.

We also define a naive subtyping judgement, C <:n D, which corresponds to our
informal notion of type C being more precise than type D, and is covariant for both the
domain and range of functions.

Subtype C <: D

C <: G

C <: * * <: * B <: B X <: X k(T) <: k(T)

C′ <: C D <: D′

C → D <: C′ → D′

C[X := *] <: D

∀X.C <: D

C <: D
X 6∈ C

C <: ∀X.D

Positive subtype C <:+ D

C <:+ * B <:+ B X <:+ X k(T) <:+ k(T)

C′ <:− C D <:+ D′

C → D <:+ C′ → D′

C[X := *] <:+ D

∀X.C <:+ D

C <:+ D
X 6∈ C

C <:+ ∀X.D

Negative subtype C <:− D

C <:− G

C <:− D * <:− D B <:− B X <:− X k(T) <:− k(T)

C′ <:+ C D <:− D′

C → D <:− C′ → D′

C[X := *] <:− D

∀X.C <:− D

C <:− D
X 6∈ C

C <:− ∀X.D

Naive subtype C <:n D

C <:n * B <:n B X <:n X k(T) <:n k(T)

C <:n C
′ D <:n D

′

C → D <:n C
′ → D′

C[X := *] <:n D

∀X.C <:n D

C <:n D
X 6∈ C

C <:n ∀X.D

Fig. 3. Subtypes

All four subtyping relations are transitive. They are not reflexive; for example ∀X.X
is not related to itself in any of the four relations. Modifying the rules to ensure reflex-
ivity is important future work.

We will show that C <: D if and only if C <:+ D and C <:− D, hence casting
from a subtype can never allocate positive or negative blame. We will also show that
C <:n D if and only ifC <:+ D andD <:− C. (Note the reversal! CompareC <:− D
in the previous sentence with D <:− C here.) Hence casting from a naive subtype
can never allocate positive blame, while casting to a naive subtype can never allocate
negative blame.

C <:+ D s sf p

〈D ⇐ C〉p s sf p

C <:− D s sf p

〈D ⇐ C〉p̄ s sf p

p 6= q p̄ 6= q s sf p

〈D ⇐ C〉q s sf p x sf p

t sf p p 6= q

s isq G sf p c sf p

t sf p

λx : S. t sf p

t sf p s sf p

t s sf p

t sf p

ΛX. t sf p

t sf p

t S sf p

Fig. 4. Safe terms

5 The Blame Theorem

All results carry over directly from our previous work. To begin, we have the usual
preservation and progress results.

Proposition 1. (Preservation) If Γ ` s : T and K; s −→ t; K ′ then Γ ` t : T .

Proposition 2. (Progress) If ` s : T and K contains all seals in s then either

– s is a value, or
– K; s −→ t; K ′ for some term t and seal set K ′, or
– s −→ blame p for some blame label p.

Preservation and progress on their own do not guarantee a great deal, since they
do not rule out blame as a result. We now turn our attention to results that characterise
situations in which blame cannot arise.

Figure 4 defines the safety relation. A term t is safe for a blame label p, written
t sf p, if all of the casts that have the label p are positive subtypes and all of the casts
that have the label p̄, are negative subtypes. We have the following results.

Proposition 3. (Preservation of safe terms) If Γ ` s : S and s sf p and K; s −→
t; K ′ then t sf p.

Proposition 4. (Progress of safe terms) If ` s : S and s sf p then s 6−→ blame p.

Corollary 1. (Positive and negative blame) Let t be a closed, well-typed term with a
subterm 〈D ⇐ C〉p s containing the only occurrence of p in t.

– If C <:+ D then t 6−→∗ blame p.
– If C <:− D then t 6−→∗ blame p̄.

Subtyping factors into positive and negative subtyping, and naive subtyping also
factors into positive and negative subtyping, this time with the direction of negative
subtyping reversed.

Proposition 5. (Factoring subtyping) C <: D iff C <:+ D and C <:− D.

Proposition 6. (Factoring naive subtyping) C <:n D iff C <:+ D and D <:− C.

The proof of Proposition 6 requires four observations. First, if C <:+ D and X 6∈
C, then X 6∈ D and second if C <:− D and X 6∈ D, then X 6∈ C. Third, given
X 6∈ D, we have C[X := *] <:+ D iff C <:+ D and fourth given X 6∈ C, we have
C <:− D[X := *] iff C <:− D.

We may now characterize how ordinary and naive subtyping relate to blame.

Corollary 2. (Well typed programs can’t be blamed) Let t be a closed, well-typed term
with a subterm 〈D ⇐ C〉p s containing the only occurrence of p in t.

– If C <: D then t 6−→∗ blame p and t 6−→∗ blame p̄.
– If C <:n D then t 6−→∗ blame p.
– If D <:n C then t 6−→∗ blame p̄.

Since our notion of more and less precise types is captured by naive subtyping, the
last two clauses show that any failure of a cast from a more-precisely-typed term to a
less-precisely-typed context must be blamed on the less-precisely-typed context, and
any failure of a cast from a less-precisely-typed term to a more-precisely-typed context
must be blamed on the less-precisely-typed term.

6 Improved subtyping

The penultimate rule in the definition of subtyping (Figure 3), says that a polymorphic
type is a subtype of another if its instance at the dynamic type is a subtype of the other.

C[X := *] <: D

∀X.C <: D

Arguably, this rule is too weak. For instance, it does not allow us to conclude that
∀X.X → X <: I→ I, because we do not have *→ * <: I→ I.

But nonetheless it seems sensible to assert a subtype relation in this case, since for
any closed, well-typed term t with a subterm

〈I→ I⇐ ∀X.X → X〉p s

containing the only occurrence of p in t, we have t 6−→∗ blame p and t 6−→∗ blame p̄.
To fix the problem, we define a new subtyping relation <:′, identical to <:, but with

the subtyping rule above replaced by

C[X := S] <:′ D

∀X.C <:′ D

where C[X := *] in the old rule becomes C[X := S] in the new. With this change, we
can conclude that ∀X.X → X <:′ I→ I by picking I for S.

We then define an analogue of safety, saying that t is safe for p if for every subterm
of the form 〈D ⇐ C〉q s we have C <:′ D whenever p = q or p̄ = q. We conjecture
that progress and preservation also hold for this second form of safety.

Our original conjecture was that we could similarly generalize positive, negative,
and naive subtyping, but this is not the case. For instance, say we give a definition of<:′n

that is identical to <:n, except that we replace C[X := *] <:n D by C[X := S] <:′n D
in the hypothesis of the penultimate rule. Then since I → I <:′n * → I, by taking
X := I we may conclude ∀X.X → X <:′n *→ I. But

(〈*→ I⇐ ∀X.X → X〉p id) (〈*⇐ B〉qtrue)
−→∗ 〈I⇐ *〉p(λx : *. x) (〈*⇐ *〉p̄ (〈*⇐ B〉qtrue)) −→∗ blame p

where id is the polymorphic identity function. So while proper subtyping may general-
ize to arbitrary instances of polymorphic types, naive subtyping does not do so. Though
our work on blame has emphasized the importance of naive subtyping, this shows that
ordinary subtyping may still have an important role to play.

Bibliography

Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions. In
ACM International Conference on Functional Programming (ICFP), October 2002.

Cormac Flanagan. Hybrid type checking. In ACM Symposium on Principles of Pro-
gramming Languages (POPL), January 2006.

Arjun Guha, Jacob Matthews, Robert Bruce Findler, and Shriram Krishnamurthi.
Relationally-parametric polymorphic contracts. In Dynamic Languages Symposium
(DLS), October 2007.

Fritz Henglein. Dynamic typing: Syntax and proof theory. Science of Computer Pro-
gramming, 22(3):197–230, 1994.

Jacob Matthews and Amal Ahmed. Parametric polymorphism through run-time sealing.
In European Symposium on Programming (ESOP), pages 16–31, 2008.

Jacob Matthews and Robert Bruce Findler. Operational semantics for multi-language
programs. In ACM Symposium on Principles of Programming Languages (POPL),
January 2007.

James H. Morris, Jr. Types are not sets. In ACM Symposium on Principles of Program-
ming Languages (POPL), pages 120–124, 1973.

Georg Neis, Derek Dreyer, and Andreas Rossberg. Non-parametric parametric-
ity. Manuscript submitted for publication, March 2009. URL http://www.mpi-
sws.org/∼dreyer/papers/npp/main.pdf.

Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. Dynamic typing
with dependent types. In IFIP International Conference on Theoretical Computer
Science, August 2004.

Benjamin Pierce and Eijiro Sumii. Relating cryptography and polymorphism.
Manuscript, 2000. URL http://www.cis.upenn.edu/∼bcpierce/papers/infohide.ps.

John Reynolds. Types, abstraction, and parametric polymorphism. In R. E. A. Mason,
editor, Information Processing, pages 513–523. North-Holland, 1983.

Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In Scheme
and Functional Programming Workshop (Scheme), September 2006.

Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage migration: From scripts to
programs. In Dynamic Languages Symposium (DLS), October 2006.

Philip Wadler. Theorems for free. In Conference on Functional Programming Lan-
guages and Computer Architecture (FPCA), September 1989.

Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed. In
European Symposium on Programming (ESOP), March 2009.

