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We describe an active-set method for the minimization of an objective function φ that is the
sum of a smooth convex function and an ℓ1-regularization term. A distinctive feature of the
method is the way in which active-set identification and second-order subspace minimization
steps are integrated to combine the predictive power of the two approaches. At every itera-
tion, the algorithm selects a candidate set of free and fixed variables, performs an (inexact)
subspace phase, and then assesses the quality of the new active set. If it is not judged to be
acceptable, then the set of free variables is restricted and a new active-set prediction is made.
We establish global convergence for our approach, and compare the new method against the
state-of-the-art code LIBLINEAR.
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1. Introduction

The problem of minimizing a composite objective that is the sum of a smooth convex
function and a regularization term has received much attention; see e.g. [2, 25] and the
references therein. This problem arises in statistics, signal processing, machine learning
and in many other areas of applications. In this paper we focus on the case when the
regularizer is defined in terms of an ℓ1-norm, and propose an algorithm that employs a
recursive active-set selection mechanism designed to make a good prediction of the active
subspace at each iteration. This mechanism combines first- and second-order information,
and is designed with the large-scale setting in mind.
The problem under consideration is given by

min
x∈Rn

φ(x) = f(x) + µ‖x‖1. (1)

We assume that f is a smooth convex function and µ > 0 is a fixed penalty parameter.
The algorithm proposed in this paper is different in nature from the most popular

methods proposed for solving problem (1). These include first-order methods, such as
ISTA, SpaRSA and FISTA [3, 9, 30], and proximal Newton methods that compute a
step by minimizing a piecewise quadratic model of (1) using (for example) a coordinate
descent iteration [4, 12, 14, 18, 21, 24, 26, 31]. The proposed algorithm also differs
from methods that solve (1) by reformulating it as a bound constrained problem; for e.g.
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[13, 22, 23, 27, 28].
Our algorithm belongs, instead, to the class of orthant-based methods [1] that minimize

a smooth quadratic model of φ on a sequence of orthant faces of Rn until the optimal
solution is found. But unlike the orthant-based methods described in [1, 7] and the
bound-constrained approaches in [22], every iteration of our algorithm consists of a
corrective cycle of orthant-face predictions and subspace minimization steps. This cycle is
terminated when the orthant-face prediction is deemed to be reliable. After a trial iterate
has been computed, a globalization mechanism accepts or modifies it (if necessary) to
ensure overall convergence of the iteration.
The idea of employing a correction mechanism for refining the selection of the orthant

face was introduced in [6] for the case when f is a convex quadratic function. That
algorithm is, however, not competitive with state-of-the-art methods in terms of CPU
time because each iteration requires the exact solution of a subspace problem, which
is expensive, and because the orthant-face prediction mechanism is too liberal and can
lead to long corrective cycles. These deficiencies are overcome in our algorithm, which
introduces two key components. We employ an adaptive filtering mechanism that in
conjunction with the corrective cycle yields an efficient prediction of zero variables at
each iteration. We also design a strategy for solving, inexactly, the subproblems arising
during each corrective step in a way that does not degrade the accuracy of the orthant-
face prediction and yields important savings in computation. We show that the algorithm
is globally convergent for strongly convex problems. Numerical tests on a variety of
machine learning data sets suggest that our algorithm is competitive with a leading
state-of-the-art code.
The main features of our algorithm can also be highlighted by contrasting them with

recently proposed proximal Newton methods for solving problem (1). The algorithms
proposed by [12, 21, 31] and others first chose an active set of variables using first-order
sensitivity information. The active variables are set to zero, and the rest of the variables
are updated by minimizing a piecewise quadratic approximation to (1) given by

qk(x) = f(xk) + (x− xk)T∇f(xk) +
1

2
(x− xk)T∇2f(xk)(x− xk) + µ‖x‖1. (2)

This minimization is performed inexactly using a randomized coordinate descent method.
After a trial iterate is computed in this manner, a backtracking line search is performed
to ensure decrease in φ(x).
The proximal Newton methods just outlined employ a very simple mechanism (the

minimum norm subgradient) to determine the set of active variables at each iteration.
On the other hand, they solve the sophisticated lasso subproblem (2) that inherits the
non-smooth structure of the original problem and permits iterates to cross points of
non-differentiability of φ(x). The latter property allows proximal Newton methods to
refine the active set with respect to its initial choice. In contrast, our method invests a
significant amount of computation in the identification of a working orthant face in R

n,
and then minimizes a simple smooth quadratic approximation of the problem on that
orthant face,

q̄k(x) = f(xk) + (x− xk)T∇f(xk) +
1

2
(x− xk)T∇2f(xk)(x− xk) + µζTx, (3)

where ζ is an indicator with values 0, 1 or -1, that identifies the orthant face. The working
orthant is selected carefully, by verifying that the predictions made at each corrective
step are realized. We do so because a simpler selection of the orthant face, such as that

2
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performed in the OWL method [1], or the method described in [7] can generate poor
steps in some circumstances.
Given that the two approaches (proximal Newton with coordinate descent solver and

our proposed method) are different in nature, it is natural to ask if one of them will
emerge as the preferred second-order technique for the solution of problem (1). To an-
swer this question we compared a MATLAB implementation of our approach on binary
classification problems with the well-known solver LIBLINEAR (written in C), based
on CPU time. One of the main conclusions of this paper is that both approaches have
their strengths. Orthant-based methods have the attractive property that the subspace
minimization can be performed by a direct linear solver or by an iterative method such
as the conjugate gradient method, which is efficient on a wide range of applications.
On the other hand, the proximal Newton approach method is very effective on appli-
cations where the Hessian matrix is diagonally dominant (or nearly so). In this case,
the coordinate descent iteration is particularly efficient in computing an approximate
solution of problem (2). Both approaches share the need for effective criteria for deciding
when an approximate solution of the subproblem is acceptable. Most implementations
of the proximal Newton method employ adaptive techniques (heuristics or rules based in
randomized analysis), while our implementation employs the classic termination criteria
based on the relative error in the residue of the linear system [17].
This paper is organized in 5 sections. In Section 2 we outline the algorithm, paying

particular attention to the orthant-face identification mechanism. Section 3 discusses the
procedure by which we safeguard against poor steps and ensure global convergence of
the algorithm. In Section 4, we present a comparison of our algorithm against the state-
of-the-art code LIBLINEAR for the solution of binary classification problems; some final
remarks are made in Section 5.

2. The Proposed Algorithm

The algorithm exploits the fact that the objective function φ is smooth in any orthant
face of R

n, which is defined as the intersection of an orthant in R
n and a subspace

{x : xi = 0, i ∈ I ⊂ {1, . . . n}}.
At every iteration, the algorithm identifies an orthant face in R

n using sensitivity
information, performs a minimization on that orthant face to produce a trial point, refines
the orthant-face selection (if necessary), and repeats the process until the choice of the
orthant face is judged to be acceptable. Upon termination of this cycle, a backtracking
line search is performed where the trial points are projected onto the active orthant.
To describe the algorithm in detail, we introduce some notation. Let g(x) denote the

minimum norm subgradient of the objective function (1) at a point x. Thus, we have

gi(x) =











∇if(x) + µ if xi > 0 or (xi = 0 and ∇if(x) + µ < 0)

∇if(x)− µ if xi < 0 or (xi = 0 and ∇if(x)− µ > 0)

0 otherwise,

(4)

for i = 1, . . . n, where

∇if(x)
def
=

∂f(x)

∂xi
.

3
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At an iterate xk, we define three sets:

Ak = {i|xki = 0 and |∇if(x
k)| ≤ µ} (5)

Fk = {i|xki 6= 0} (6)

Uk = {i|xki = 0 and |∇if(x
k)| > µ}. (7)

The variables in Ak are kept at zero (since the corresponding components of gi(x
k) are

zero), while those in Fk are free to move. The remaining variables are in the set Uk. The
decision of which of these are allowed to move significantly impacts the efficiency of the
algorithm. Using the selection mechanism described below, we first create a partition of
Uk,

Uk = UA ∪ UF , (8)

where the variables in UA are fixed at zero and the variables in UF are allowed to move.
We then update the active set as

Ak ← Ak ∪ UA, (9)

and compute a trial step dk as the (approximate) solution of the smooth quadratic
problem

min
d∈Rn

ψ(d) = dT g(xk) +
1

2
dTHkd

s.t. di = 0, i ∈ Ak, (10)

where Hk = ∇2f(xk). The trial iterate is defined as

x̂k = xk + dk.

We then start the corrective cycle and check whether all variables in the set UF moved
as predicted; i.e., whether

sgn([x̂k]i) = sgn(−[g(xk)]i) for all i ∈ UF . (11)

Any variable j ∈ UF for which this equality does not hold, is removed from the set UF
and added to UA. The set Ak is then updated according to (9) and a new trial step
is recomputed by solving (10). We repeat this corrective cycle until all predictions are
correct and the trial point x̂k satisfies (11).
The algorithm then performs a projected backtracking line search along dk to ensure

that the resulting point yields a decrease in the piecewise quadratic model qk(x) defined
in (2). (We do not perform the line search on the objective function (1) as that is
more expensive, and the globalization mechanism described in Section 3 only requires a
decrease in qk(x).)
At iteration k, we identify the current orthant face based on sensitivity information

(4) and define the vector ζk by

ζki =

{

sgn([xk]i) if [xk]i 6= 0

sgn(−[g(xk)]i) if [xk]i = 0.
(12)

4
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Let Pk(x) be the projection operator that projects x ∈ R
n onto the orthant defined by

ζk; i.e.,

Pk
i (x) =

{

xi if sgn(xi) = sgn(ζki )

0 otherwise.
(13)

We then search for the largest step size α ∈ {20, 2−1, 2−2, · · · } such that

q(xk) ≥ q(Pk(xk + α · dk)),

where q is the non-smooth quadratic approximation given by (2). Such a step size exists
because dk is a descent direction for the smooth quadratic function q̄k and because
the trial point lies within the orthant defined by ζk for sufficiently small steps (see
Theorem A.4 in the appendix).
Before giving a detailed description of the algorithm, we describe the selection mech-

anism that, at the beginning of each corrective cycle, defines the splitting (8) of the set
Uk into variables UA, that are kept at zero, and variables UF , that are allowed to move.

At the start of the algorithm, we select a scalar η ∈ (0, 1) and set |UF | = τ0
def
= ⌊η×n⌋;

i.e., the cardinality of the set UF is a fraction of the dimension of the problem. On
subsequent iterations, we update the parameter τk based on its previous value τk−1 and
the number of iterations in the previous corrective cycle. If there were no corrections in
the previous corrective cycle, we set τk+1 = 2τk to allow more variables to change at the
next outer iteration; otherwise we keep the value of τk unchanged. Since the number of
variables in UF cannot be larger than |Uk|, the actual size of UF is given by

|UF | = τ̂k
def
= min(|Uk|, τk).

We use a greedy strategy to populate the sets UA and UF : we collect in UF the τ̂k variables
in Uk with the largest components of the subgradient |g(xk)|. Thus, for any i ∈ UF and
j ∈ UA, we have |gi(x

k)| ≥ |gj(x
k)|.

A formal description of the overall method is given in Algorithm 1.

5
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Algorithm 1 Preliminary Adaptive Orthant-Based Method

1: Given x0 ∈ R
n, L > 0, µ > 0, η ∈ (0, 1).

Let τ0 = ⌊η × n⌋.
2: while k = 0, 1, 2, · · · and stopping criterion not met do
3: Active-Set Identification:

Ak = {i|(xi)
k = 0 and |∇if(x

k)| ≤ µ}

Fk = {i|(xi)
k 6= 0}

Uk = {i|(xi)
k = 0 and |∇if(x

k)| > µ}

4: Selection Mechanism:
Compute g(xk) by (4) and ζk by (12).

5: Set τ̂k ← min(|Uk|, τk).
6: Choose UF ,UA ⊆ U

k such that UF ∩ UA = ∅, |UF | = τ̂k and for any i ∈ UF and
j ∈ UA, |gi(x

k)| ≥ |gj(x
k)|.

7: Set Ak ← Ak ∪ UA.
8: Compute or update second-order approximation Hk.
9: Corrective Cycle:

Set V k ← UF and j ← 0.
10: while V k 6= ∅ do
11:

dk = argmin
di=0,i∈Ak

dT g(xk) + 1
2d

THkd

12: Set x̂k ← xk + dk.
13: Set V k = {i ∈ UF \ A

k|sgn(ζki ) 6= sgn(x̂ki )}.
14: Set Ak ← Ak ∪ V k and j ← j + 1.
15: end while

16: if j = 1 then

17: Set τk+1 = 2 · τk.
18: end if

19: Projected Line Search:
Set α← 1.

20: while q(xk) > q(Pk(xk + α · dk)) do
21: Set α← α/2.
22: end while

23: Set xk+1 = Pk(xk + α · dk).
24: end while

In this paper we assume that the quadratic model (10) employs exact Hessian infor-
mation, i.e. Hk = ∇2f(xk), and that we perform an approximate minimization of this
problem using the conjugate gradient method in the appropriate subspace of dimension
(n − |Ak|); see e.g., [17]. The matrix Hk can also be defined by quasi-Newton updates,
specifically using the compact representations of limited-memory BFGS matrices [5].
Although we do not explore a quasi-Newton variant in this paper, we expect it to be
effective in many applications.
Our selection mechanism for defining the splitting (8) is motivated by the following

6
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considerations. If all variables in Uk were allowed to move, the algorithm would have
similar properties to the OWL method [1], whose performance is not uniformly successful
(see Section 4). Indeed, we observed a more reliable performance when the size of UF
is limited. This also has computational benefits because the subproblem (10) is less
expensive to solve when the number of free variables is smaller (i.e., when the set Ak

is larger). On the other hand, in the extreme case |UF | = 1, the algorithm resembles a
classical active-set method, which is not well-suited for large-scale problems.
These trade-offs are addressed by the dynamic strategy employed in steps 5 and 17 of

Algorithm 1. Initially, we choose UF to be a small subset of Uk (by selecting η to be small).
The algorithm increases the size of UF in subsequent iterations if there is evidence that
the current choice is too restrictive. As as indicator we observe the number of iterations in
the previous corrective cycle. A small number of corrections (in our implementation this
number is 1) suggests that the choice of UF may be too conservative and the size of UF is
doubled at the next outer iteration. We have found that this selection mechanism leads
to more gradual and controlled changes in the active set compared to other orthant-based
methods like OWL and the method proposed in Section 5 of [7].
The projected backtracking line search in Algorithm 1 differs from that used by other

orthant-based methods in that it is based on the quadratic model and not the objective
function. As in other orthant-based methods, the projection promotes sparsity in the
iterates and provides some control for steps that leave the current orthant, outside of
which the smooth approximation in (10) is not valid. But in contrast to other orthant-
based methods, such as OWL, the line search is not the main globalization mechanism
in our algorithm, as described next.

3. Globalization Strategy

While Algorithm 1 generally works well in practice, it may fail (cycle) when the changes
in the active set are not sufficiently controlled. By adding a globalization mechanism we
ensure that all iterates generated by the algorithm provide sufficient reduction in the
objective function and converge to the solution. Our mechanism employs the iterative
soft-thresholding algorithm (ISTA) [8, 9] to generate a reference point. Because the ISTA
method enjoys a global linear rate of convergence on strongly convex problems, it provides
a benchmark for the progress of our algorithm.
We modify Algorithm 1 as follows. The iterate computed in line 23 is now regarded as

a trial iterate and denoted by x̂k. To decide if this point is acceptable we check whether it
produces a lower function value than the ISTA step computed from the starting point of
the iteration, xk. If so, we accept the trial point; otherwise, we search along the segment
joining x̂k and the ISTA point xk

ISTA
to find an acceptable point. Given a Lipschitz

constant L for the gradient of f , the cost of computing the ISTA step is negligible since
gradient information is already available at xk. However, the evaluation of φ(xk

ISTA
) incurs

an additional cost. To get around this expense, we use the value of an upper quadratic
approximation of φ at xk

ISTA
as a surrogate to φ(xk

ISTA
). More specifically, assuming that

L is a Lipschitz constant of ∇f , we define the value of the surrogate function as

Γk = f(xk) +∇f(xk)T (xk
ISTA
− xk) + L

2 ‖x
k
ISTA
− xk‖22 + µ‖xk

ISTA
‖1. (14)

The computation of Γk requires only one inner product. The complete version of the
algorithm, including the globalization mechanism, is given in Algorithm 2.

7
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Algorithm 2 Orthant-Based Adaptive Method (OBA)

1: Given x0 ∈ ℜn, L > 0, µ > 0, η ∈ (0, 1) and ǫ > 0.
Let τ0 = ⌊η × n⌋

2: while k = 0, 1, 2, · · · and stopping criterion not met do
3: Carry out steps 1 – 22 of Algorithm 1.
4: Set x̂k = Pk(xk + α · dk).
5: Globalization:

Compute ISTA step at xk as

xk
ISTA

= Sµ/L(x
k − 1

L∇f(x
k))

where Sα(x) is a component-wise operator defined as Sα(x)i = max{|xi| − α, 0} ·
sgn(xi).

6: Set d̄k ← x̂k − xk
ISTA

and ᾱ← 1.
7: Calculate Γk using (14).
8: while φ(xk

ISTA
+ ᾱ · d̄k) > Γk do

9: Set ᾱ← ᾱ/2.
10: if ᾱ < ǫ then
11: Set ᾱ← 0.
12: end if

13: end while

14: Set xk+1 = xk
ISTA

+ ᾱ · d̄k.
15: end while

The following convergence result is proven in the appendix.

Theorem Assume that f is continuously differentiable and strongly convex and that
∇f is Lipschitz continuous. Then, the iterates {xk} generated by Algorithm 2 converge
to the optimal solution x⋆ of problem (1) at a linear rate.

4. Numerical Experiments

In this section, we demonstrate the viability of our approach. While our method applies
to any convex function with an additive ℓ1-regularizer, we focus on the specific problem of
binary classification using logistic regression. This problem is well studied with theoretical
guarantees and many data sets available of varying sizes, structures and fields of study.
Further, the results reported on this problem are representative of the performance of
OBA on other functions (including multi-class logistic regression, probit regression and
LASSO) where similar trends are observed. We direct the reader to [10] and the references
therein for details regarding the function f and the statistical justifications of this choice.
The data sets chosen for comparison are listed in Table 1. Synthetic is a randomly gen-

erated, balanced, non-diagonally dominant problem; the process for generating this prob-
lem is described in the appendix. Alpha is a data set from the Pascal Large Scale Learn-
ing Challenge [19]. Both these data sets have been feature-wise normalized to [−1, 1].
Details for the other data sets along with their preprocessing steps can be found in
http://www.csie.ntu.edu.tw/~cjlin/liblinear and the references therein.
A variety of methods has been proposed for solving problem (1), and high-performance

implementations of some of these methods are available. One of the most popular codes
is newGLMNET [31], which is a C-implementation of a proximal Newton method and is

8
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Table 1. Data sets

Data set number of data points number of features

Gisette 6000 5000
RCV1 20242 47236
Alpha 500000 500
KDDA 8407752 20216830
KDDB 19264097 29890095
Epsilon 400000 2000
News20 19996 1355191

Synthetic 5000 5000

a part of the LIBLINEAR package. Every iteration of this method identifies the active
set as a subset of Ak as defined in (5), and then solves problem (2) inexactly using a
randomized coordinate descent algorithm. The termination criterion for this inner loop
is based on the ℓ1-norm of the minimum norm subgradient and adjusted by a heuristic
as the iteration progresses.
We implemented Algorithm 2 in MATLAB, where we chose η = 0.01 and ǫ = 10−4.

Subproblem (10) is solved inexactly via the conjugate gradient algorithm. The termina-
tion criterion is based on the relative tolerance of the linear system: The inner loop stops
as soon as the conjugate gradient iterate p satisfies

‖Hkp+ gk‖∞
‖gk‖∞

≤ 0.1.

We also compare with the OWL method [1], as implemented by Schmidt [22]. The OBA
algorithm with the selective-corrective mechanism removed is somewhat related to OWL.
The primary differences between the two include the procedure of handling the active
set constraints in the subproblem and the alignment step included in OWL. Specifically,
OWL minimizes the quadratic model in (10) over R

n, aligns the search direction and
then carries out a projected line search onto the active set.
For all test problems, the regularization parameter µ was chosen through a 5–fold cross

validation. LIBLINEAR and OBA use the exact Hessian in defining the quadratic model
(10) and (2) while OWL uses a limited-memory BFGS approximation. Further, in order
to solve singular problems, LIBLINEAR adds a small multiple (specifically, 10−12) of the
identity to the Hessian and our algorithm uses the value of 10−8. LIBLINEAR employs
a secondary mechanism to guard against singularity: it projects the result of the one
dimensional optimization in the coordinate descent step onto the set [−10, 10].

4.1 Test Results

The comparison of the method proposed in this paper, Algorithm 2 (OBA), against
LIBLINEAR and OWL is presented in Figures 1 and 2. We plot the relative function
error defined as

φ(xk)− φ(x⋆)

1 + φ(x⋆)
(15)

against CPU time. The value of φ(x⋆) was obtained by running our algorithm to a tight
tolerance of 10−10 or until a time limit of 5000 CPU seconds was exceeded. The tolerance
used corresponds to the one defined in [4]. The initial iterate for all methods was the
zero vector.

9
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Figure 1. Relative error (15) in the objective function (vertical axis) versus CPU time – Part 1

We can see that for RCV1 and News20, the performance of OBA is inferior to LIBLIN-
EAR; however, for KDDA, KDDB, Epsilon and Synthetic, the performance is superior.
For Gisette and Alpha, the performance is roughly comparable irrespective of the value
of the relative function error. OWL has gained a reputation as an algorithm which per-
forms well but unreliably so. The experiments support this opinion. For problems like
KDDA or KDDB, the performance of OWL is superior to both LIBLINEAR and OBA;
however, for other problems like Synthetic, Alpha, Epsilon and Gisette, OWL fails to be
competitive due to poor steps and rapid changes in working orthant faces.
We emphasize that the improved performance of the proposed method is driven by

the selective-corrective mechanism as opposed to the ISTA backup. The backup was
never required in the reported experiments for our method which, in contrast to other
orthant-based methods, enjoys global convergence properties.

4.2 Sparsity

It is natural to ask whether an orthant-based method such as OBA is as effective at
generating sparsity in the solution as a proximal Newton method, such as LIBLINEAR.
In proximal Newton methods the non-smoothness of the original problem is retained
in the subproblem (2), and sparsity arises because the solution of the subproblem typ-

10
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Figure 2. Relative error (15) in the objective function (vertical axis) versus CPU time – Part 2

ically lies at points of non-differentiability. In contrast, orthant-based methods solve a
series of smooth problems that have no tendency of inducing sparsity in the solution
by themselves, but achieve it through the projection of the trial point onto the working
orthant.
Both methods, LIBLINEAR and OBA, also promote sparsity through the definition of

the active set at the beginning of each (outer) iteration, but the construction of the active
set differs in the two methods. LIBLINEAR fixes only a subset of the variables in the set
Ak to zero; thus allowing some variables in Ak and all variables in the set Uk to move. On
the other hand, OBA fixes all of the variables in Ak to zero and additionally fixes more
variables in Uk through the selection mechanism and the corrective cycle. Therefore, the
approach in LIBLINEAR can be considered more liberal in that it releases more zero
variables, while the approach in OBA can be regarded as more restrictive. Nevertheless,
OBA becomes increasingly more liberal as the iteration progresses because the selection
mechanism allows the size of the set UF to double under certain circumstances (see step
17 of Algorithm 1).
In the light of these algorithmic differences, it is difficult to predict the relative ability

of the two methods at generating sparse solutions. To explore this, we performed the
following experiments using our data sets and recorded the sparsity in the solution.
LIBLINEAR was used to solve the problems with the tolerance of their stopping criterion

11
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Table 2. Percentage of Zeros in Solu-
tion

Data set LIBLINEAR OBA

Gisette 88.92 90.52

RCV1 97.62 97.65

Alpha 5.60 5.20
KDDA 98.43 98.71

KDDB 97.11 97.87

Epsilon 44.60 69.20

News20 99.60 99.37
Synthetic 56.86 58.82

set to 10−3 (which yielded better misclassification rates than the default value of 10−2),
and OBA was then used to solve the problems to a similar accuracy in the objective
function. The results are presented in Table 2 and show that the two methods achieve
similar values of sparsity, with OBA being somewhat more effective.

4.3 Conjugate Gradients versus Coordinate Descent

Let us now focus on the methods used for solving the subproblems that incorporate
second-order information about the objective function. It is natural to employ the con-
jugate gradient (CG) method in OBA, given that the subproblem (3) is smooth and that
the CG method is an optimal Krylov process that can exploit problem structure effec-
tively. An alternative to the CG method is the randomized coordinate descent algorithm,
which has gained much popularity in recent years [10, 16, 20]
A drawback of coordinate descent for smooth unconstrained optimization is that it can

be slow when the Hessian is not diagonally dominant. We experimented with a coordinate
descent solver for the subproblem in OBA and found that its overall performance is
inferior to that of the CG method.
The situation is quite different in a proximal Newton method where the subproblem

is non-smooth. In that case, it is easy to compute the exact minimizer of (2) along
each coordinate direction, thereby dealing explicitly with the non-differentiability of the
original problem. Since this one dimensional minimization may return zero as the exact
solution, the proximal coordinate descent method provides an active-set identification
mechanism for the overall algorithm. Thus, although sensitivity to the lack of diagonal
dominance may still be present, it is of a lesser concern due the benefits of its active set
identification properties. Furthermore, applications in text classification and other areas
often lead to problems with Hessians that are diagonally dominant [11].
This discussion motivates us to look more closely at the issue of diagonal dominance

and its effect on the two methods. In order to quantify the level of diagonal dominance,
we use the metric employed, for example, in [29]. Given any symmetric matrix A, we
define the level of diagonal dominance of A as

D(A) =
maxi ‖Ai‖2
maxi |Aii|

, (16)

where Ai denotes the ith column of A and Aii denotes the ith diagonal element of A.
The smaller the value of D, the closer is A to being diagonally dominant. In Table 3 we
report the values of D

(

∇2f(x0)
)

for all data sets in Table 1.
Let us begin by considering problem Synthetic, which was specifically constructed

to have a high value of D (see Appendix B for details). We observe from Figure 2

12
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Table 3. The value of D(∇2f(x0)) as
defined in (16)

Data set D(∇2f(x0))

Gisette 57.99
RCV1 1.88
Alpha 9.93
KDDA 1.80
KDDB 1.50
Epsilon 5.55
News20 3.29
Synthetic 69.42

that LIBLINEAR performs poorly compared to OBA. This may be an indication that
proximal Newton methods are sensitive to a lack of diagonal dominance. In fact, by
altering this problem so that D increases, the performance of LIBLINEAR deteriorates.
The text classification tasks (RCV1 and News20), which are empirically observed to
be diagonally dominant [11], have low values of D and indeed, LIBLINEAR converges
quickly1. However, LIBLINEAR also performs well on problem Gisette for which D
is large and poorly on KDDB for which D is low. An examination of the rest of the
results prevents us from establishing a clear correlation between the value of D and the
relative performance of the two methods. We conclude that in ℓ1-regularized problems
the adverse effects of diagonal dominance appear to be less pronounced than for smooth
optimization. Other factors such as the frequency of orthant changes and the inexactness
in the subproblem solution may also play a crucial role in explaining the performance
differences. The identification of problem characteristics that determine which method
performs better for a given instances requires further investigation.

5. Final Remarks

In this paper, we presented a second-order algorithm for solving convex ℓ1-regularized
problems. At each iteration, the algorithm tries to predict the orthant face containing the
solution, solves a smooth quadratic subproblem on this orthant face, and then invokes a
corrective cycle that greatly improves the efficiency and robustness of the algorithm. We
globalized the method by using the ISTA step as a reference for the desired progress. This
enabled us to prove a linear convergence rate of the iterates for strongly convex problems.
The ISTA backup is rarely used in practice (and never in the reported experiments) and
thus, our theoretical result applies to a very robust method that invokes the safeguarding
very rarely. This globalization procedure is analogous to a Newton trust-region method
where the underlying method is known to be very effective but convergence can only be
proved by overcoming pathological situations with a first-order Cauchy step. Numerical
experiments for logistic regression data sets show that our algorithm is competitive in
terms of CPU time with the LIBLINEAR C-code, even though our implementation is in
MATLAB. The algorithm is also effective in generating sparse solutions quickly. Overall,
our experiments indicate that orthant-based methods are a viable alternative to proximal

1Interestingly, the LIBLINEAR website and manual convey that LIBLINEAR is known to perform well on docu-
ment classification tasks but not necessarily on others.
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Newton methods.
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Appendix A. Convergence Analysis

Recall that we wish to solve the problem

min
x∈Rn

φ(x) = f(x) + µ‖x‖1.

For the purpose of our analysis, we make two assumptions:

Assumption A.1 The function f is in C1 and strongly convex with parameter λ > 0;
i.e., for any x, y ∈ R

n and t ∈ [0, 1]:

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)−
1

2
λt(1− t)‖x− y‖22. (A1)

As shown in Nesterov (2004), for continuously differentiable functions, this assumption
is equivalent to

f(y) ≥ f(x) +∇f(x)T (y − x) +
λ

2
‖y − x‖22 for all x, y ∈ R

n. (A2)

Assumption A.2 The gradient of f is Lipschitz continuous with constant L > 0; i.e.,
for any x, y ∈ R

n,

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2

The first theorem shows that the algorithm is well-defined.

Theorem A.3 The backtracking projected line search (steps 20–22 of Algorithm 1)
terminates in a finite number of iterations.

Proof. Consider the kth iteration of Algorithm 1. For notational simplicity, we drop the
iteration index and denote the iterate as x, the direction obtained after the corrective
loop (steps 10–15) as d, and the smooth and non-smooth quadratic approximations as
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q̄ and q, respectively. Along the same lines, let A and U be the active and unsure sets
during this iteration.
We first show that there exists an ᾱ > 0 such that for any α > 0 with α ≤ ᾱ, we

have P(x + αd) = x + αd. Let I1 = {i ∈ {1, 2, 3, · · · , n} : xi 6= 0}} and I2 = {i ∈
{1, 2, 3, · · · , n} : xi = 0}}, and let ᾱ > 0 such that ᾱ <

∣

∣

xi

di

∣

∣ for all i ∈ I1 with di 6= 0.
Let α > 0 be such that α ≤ ᾱ and ζ be defined in (12). We consider two cases:

• Case 1: i ∈ I1
Because α ≤ ᾱ <

∣

∣

xi

di

∣

∣, it is clear that sgn(xi + αdi) = sgn(xi) = ζi, and therefore
P(x+ αd) = x+ αd.

• Case 2: i ∈ I2
By definition, xi = 0. If i ∈ A in step 19 of Algorithm 1, di = 0 and sgn(xi +αdi) =

sgn(xi) = ζi. Otherwise, i ∈ UF ⊆ U , and therefore sgn(−gi) = ζi ∈ {−1, 1}. Assume
that ζi = 1. Thus, sgn(−gi) = 1, and since V k = ∅ and i ∈ UF , sgn(x

k + dk) =
sgn(dk) = 1, so di > 0 which in turn implies αdi > 0. The same conclusion can be
made if ζi = −1. Thus, P(xi + αdi) = P(αdi) = αdi = xi + αdi.

Because d is a minimizer of q̄(x + d) in some subspace, we have q̄(x + αd) ≤ q̄(x) for
sufficiently small α ≤ ᾱ. Then, P(x+αd) = x+αd, i.e., x+αd is in the same orthant as
x, and therefore q(x+αd) = q̄(x+αd) ≤ q̄(x) = q(x). As a consequence, the termination
condition in the while-loop is satisfied after a finite number of iterations.

�

We now show that by ensuring that φ at the new iterate is no larger than the majorizing
function Γk, we can establish linear convergence.

Theorem A.4 Suppose that Assumptions A.1 and A.2 hold. Then, the iterates {xk}
generated by Algorithm 2 converge to the optimal solution x⋆ of problem (1) at a linear
rate.

Proof. Consider the kth iteration of Algorithm 2. For notational simplicity, let us drop
the iteration index and denote the minimum norm subgradient as g, the Hessian ap-
proximation as H, and the iterate as x. Further, as is well known, the ISTA point xk

ISTA
,

computed in step 5 of Algorithm 2, is the minimizer of a proximal approximation of φ(x),

xk
ISTA

= argmin
y
f(x) + (y − x)T∇f(x) +

L

2
‖y − x‖22 + µ‖y‖1. (A3)

Because of Assumption A.2, for any z1, z2 ∈ R
n,

f(z2) ≤ f(z1) +∇f(z1)
T (z2 − z1) +

L

2
‖z2 − z1‖

2
2. (A4)

In particular, by setting z1 = x, z2 = xk
ISTA

, we get

φ(xk
ISTA

) = f(xk
ISTA

) + µ‖xk
ISTA
‖1

≤ f(x) +∇f(x)T (xk
ISTA
− x) +

L

2
‖xk

ISTA
− x‖22 + µ‖xk

ISTA
‖1 ≡ Γk. (A5)

Let us denote the point obtained as a consequence of the globalization mechanism,
which will be the new iterate, as x+. This corresponds to xk+1 in step 14 of Algorithm
2. Realize that the loop in steps 8–13 of Algorithm 2 terminates finitely because once
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ᾱ drops to a value below ǫ, it is set to 0 and then φ(xk
ISTA

+ ᾱd̄) = φ(xk
ISTA

) and the
sufficiency condition (step 8 of Algorithm 2) is trivially satisfied by (A5).
By design, our algorithm generates the point x+ such that

φ(x+) ≤ f(x) +∇f(x)T (xk
ISTA
− x) +

L

2
‖xk

ISTA
− x‖2 + µ‖xk

ISTA
‖1. (A6)

Combining this equation with the fact that xk
ISTA

is the minimizer in objective (A3), we
have for any d ∈ R

n and y = x+ λ
Ld that

φ(x+) ≤ f(x) +∇f(x)T
(

λ

L
d

)

+
L

2

∥

∥

∥

∥

λ

L
d

∥

∥

∥

∥

2

2

+ µ

∥

∥

∥

∥

x+
λ

L
d

∥

∥

∥

∥

1

≤ φ

(

x+
λ

L
d

)

−
λ

2

∥

∥

∥

∥

λ

L
d

∥

∥

∥

∥

2

2

+
L

2

∥

∥

∥

∥

λ

L
d

∥

∥

∥

∥

2

2

= φ

(

x+
λ

L
d

)

+
λ2

2L

(

1−
λ

L

)

‖d‖22,

where the second inequality follows from (A2) with y = x+ λ
Ld. In particular, we can set

d to be x⋆ − x and obtain

φ(x+) ≤ φ

(

x+
λ

L
(x⋆ − x)

)

+
λ2

2L

(

1−
λ

L

)

‖x⋆ − x‖22. (A7)

Using Assumption A.1 and the convexity of the ℓ1-norm, we have, for any z1, z2 ∈ R
n

and t ∈ [0, 1],

φ(tz1 + (1− t)z2) ≤ tφ(z1) + (1− t)φ(z2)−
1

2
λt(1− t)‖z1 − z2‖

2
2.

Setting z1 = x, z2 = x⋆, and t =
(

1− λ
L

)

, we get

φ

(

x+
λ

L
(x⋆ − x)

)

≤
λ

L
φ(x⋆) +

(

1−
λ

L

)

φ(x)−
λ2

2L

(

1−
λ

L

)

‖x⋆ − x‖22.

Combining this result with (A7), we get

φ(x+) ≤
λ

L
φ(x⋆) +

(

1−
λ

L

)

φ(x)−
λ2

2L

(

1−
λ

L

)

‖x⋆ − x‖22 +
λ2

2L

(

1−
λ

L

)

‖x⋆ − x‖22

= φ(x⋆) +

(

1−
λ

L

)

(φ(x) − φ(x⋆)),

and therefore

φ(x+)− φ(x⋆) ≤

(

1−
λ

L

)

(φ(x)− φ(x⋆)).
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By reintroducing the iteration index and using recursion, we have that

φ(xk)− φ(x⋆) ≤

(

1−
λ

L

)k

(φ(x0)− φ(x⋆))

as required.
�

Appendix B. Reproducible Research

The MATLAB code used to generate the “Synthetic” problem is presented below. Given
a dimension n, we use the following code snippet to generate the vector of labels (denoted
by y) and the data matrix (denoted by X).

y=-1+(rand(n,1)>0.5)*2;

X = rand(n,n);

X = X + X’;

mineig = min(eig(X));

if(mineig<0)

X = eye(size(X))*mineig*-2+X;

end

X = chol(X);
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